import csv import json import os import datasets _CITATION = """\ @inproceedings{cs_restaurants, address = {Tokyo, Japan}, title = {Neural {Generation} for {Czech}: {Data} and {Baselines}}, shorttitle = {Neural {Generation} for {Czech}}, url = {https://www.aclweb.org/anthology/W19-8670/}, urldate = {2019-10-18}, booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)}, author = {Dušek, Ondřej and Jurčíček, Filip}, month = oct, year = {2019}, pages = {563--574}, } """ _DESCRIPTION = """\ The task is generating responses in the context of a (hypothetical) dialogue system that provides information about restaurants. The input is a basic intent/dialogue act type and a list of slots (attributes) and their values. The output is a natural language sentence. """ _URLs = { "train": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/train.json", "validation": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/devel.json", "test": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/test.json", "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/cs_restaurants.zip", } class CSRestaurants(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = "cs_restaurants" def _info(self): features = datasets.Features( { "gem_id": datasets.Value("string"), "gem_parent_id": datasets.Value("string"), "dialog_act": datasets.Value("string"), "dialog_act_delexicalized": datasets.Value("string"), "target_delexicalized": datasets.Value("string"), "target": datasets.Value("string"), "references": [datasets.Value("string")], } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=datasets.info.SupervisedKeysData( input="dialog_act", output="target" ), homepage="https://github.com/UFAL-DSG/cs_restaurant_dataset", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_dir = dl_manager.download_and_extract(_URLs) challenge_sets = [ ("challenge_train_sample", "train_cs_restaurants_RandomSample500.json"), ( "challenge_validation_sample", "validation_cs_restaurants_RandomSample500.json", ), ( "challenge_test_scramble", "test_cs_restaurants_ScrambleInputStructure500.json", ), ] return [ datasets.SplitGenerator( name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} ) for spl in ["train", "validation", "test"] ] + [ datasets.SplitGenerator( name=challenge_split, gen_kwargs={ "filepath": os.path.join( dl_dir["challenge_set"], "cs_restaurants", filename ), "split": challenge_split, }, ) for challenge_split, filename in challenge_sets ] def _generate_examples(self, filepath, split, filepaths=None, lang=None): """Yields examples.""" if split.startswith("challenge"): exples = json.load(open(filepath, encoding="utf-8")) if isinstance(exples, dict): assert len(exples) == 1, "multiple entries found" exples = list(exples.values())[0] for id_, exple in enumerate(exples): if len(exple) == 0: continue exple["gem_parent_id"] = exple["gem_id"] exple["gem_id"] = f"cs_restaurants-{split}-{id_}" yield id_, exple else: with open(filepath, encoding="utf8") as f: data = json.load(f) for id_, instance in enumerate(data): yield id_, { "gem_id": f"cs_restaurants-{split}-{id_}", "gem_parent_id": f"cs_restaurants-{split}-{id_}", "dialog_act": instance["da"], "dialog_act_delexicalized": instance["delex_da"], "target": instance["text"], "target_delexicalized": instance["delex_text"], "references": [] if split == "train" else [instance["text"]], }