# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DIAMED""" import os import json import math import datasets _DESCRIPTION = """\ DIAMED """ _HOMEPAGE = "DIAMED" _LICENSE = "Apache License 2.0" _URL = "https://huggingface.co/datasets/Dr-BERT/DiaMED/resolve/main/data.zip" _CITATION = """\ DIAMED """ class DiaMed(datasets.GeneratorBasedBuilder): """DIAMED""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"DiaMED data"), ] DEFAULT_CONFIG_NAME = "default" def _info(self): features = datasets.Features( { "identifier": datasets.Value("string"), "title": datasets.Value("string"), "clinical_case": datasets.Value("string"), "topic": datasets.Value("string"), "keywords": datasets.Sequence( datasets.Value("string"), ), "domains": datasets.Sequence( datasets.Value("string"), ), "collected_at": datasets.Value("string"), "published_at": datasets.Value("string"), "source_url": datasets.Value("string"), "source_name": datasets.Value("string"), "license": datasets.Value("string"), "figures_urls": datasets.Sequence( datasets.Value("string"), ), "figures_paths": datasets.Sequence( datasets.Value("string"), ), "figures": datasets.Sequence( datasets.Image(), ), "icd-10": datasets.features.ClassLabel(names=[ 'A00-B99 Certain infectious and parasitic diseases', 'C00-D49 Neoplasms', 'D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism', 'E00-E89 Endocrine, nutritional and metabolic diseases', 'F01-F99 Mental, Behavioral and Neurodevelopmental disorders', 'G00-G99 Diseases of the nervous system', 'H00-H59 Diseases of the eye and adnexa', 'H60-H95 Diseases of the ear and mastoid process', 'I00-I99 Diseases of the circulatory system', 'J00-J99 Diseases of the respiratory system', 'K00-K95 Diseases of the digestive system', 'L00-L99 Diseases of the skin and subcutaneous tissue', 'M00-M99 Diseases of the musculoskeletal system and connective tissue', 'N00-N99 Diseases of the genitourinary system', 'O00-O9A Pregnancy, childbirth and the puerperium', 'P00-P96 Certain conditions originating in the perinatal period', 'Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities', 'R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified', 'S00-T88 Injury, poisoning and certain other consequences of external causes', 'U00-U85 Codes for special purposes', 'V00-Y99 External causes of morbidity', 'Z00-Z99 Factors influencing health status and contact with health services', ]), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URL) print("#"*50) print(data_dir) # data_dir = "./splits/" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "base_path": data_dir, "filepath": data_dir + "/splits/train.json", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "base_path": data_dir, "filepath": data_dir + "/splits/validation.json", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "base_path": data_dir, "filepath": data_dir + "/splits/test.json", }, ), ] def _generate_examples(self, base_path, filepath): with open(filepath, encoding="utf-8") as f: data = json.load(f) for key, d in enumerate(data): print("*"*50) if str(d["icd-10"]) == "nan" or d["icd-10"].find("Plusieurs cas cliniques") != -1 or d["icd-10"].find("Aucune annotation") != -1: continue yield key, { "identifier": d["identifier"], "title": d["title"], "clinical_case": d["clinical_case"], "topic": d["topic"], "keywords": d["keywords"], "domains": d["domain"], "collected_at": d["collected_at"], "published_at": d["published_at"], "source_url": d["source_url"], "source_name": d["source_name"], "license": d["license"], "figures_urls": d["figures"], "figures": [base_path + fg.lstrip(".") for fg in d["local_figures"]], "figures_paths": [base_path + fg.lstrip(".") for fg in d["local_figures"]], "icd-10": d["icd-10"], }