--- annotations_creators: - machine-generated language_creators: - machine-generated language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te license: - cc0-1.0 multilinguality: - multilingual pretty_name: IndicXNLI size_categories: - 1M - **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776) - **Point of Contact:** [Divyanshu Aggarwal](mailto:divyanshuggrwl@gmail.com) ### Dataset Summary INDICXNLI is similar to existing XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI data for eleven major Indic languages that includes Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’), Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’), Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi (‘hi’), and Bengali (‘bn’). ### Supported Tasks and Leaderboards **Tasks:** Natural Language Inference **Leaderboards:** Currently there is no Leaderboard for this dataset. ### Languages - `Assamese (as)` - `Bengali (bn)` - `Gujarati (gu)` - `Kannada (kn)` - `Hindi (hi)` - `Malayalam (ml)` - `Marathi (mr)` - `Oriya (or)` - `Punjabi (pa)` - `Tamil (ta)` - `Telugu (te)` ## Dataset Structure ### Data Instances One example from the `hi` dataset is given below in JSON format. ```python {'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।', 'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।', 'label': 1 (neutral) } ``` ### Data Fields - `premise (string)`: Premise Sentence - `hypothesis (string)`: Hypothesis Sentence - `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise. ### Data Splits Language | ISO 639-1 Code |Train | Test | Dev | --------------|----------------|-------|-----|------| Assamese | as | 392,702 | 5,010 | 2,490 | Bengali | bn | 392,702 | 5,010 | 2,490 | Gujarati | gu | 392,702 | 5,010 | 2,490 | Hindi | hi | 392,702 | 5,010 | 2,490 | Kannada | kn | 392,702 | 5,010 | 2,490 | Malayalam | ml |392,702 | 5,010 | 2,490 | Marathi | mr |392,702 | 5,010 | 2,490 | Oriya | or | 392,702 | 5,010 | 2,490 | Punjabi | pa | 392,702 | 5,010 | 2,490 | Tamil | ta | 392,702 | 5,010 | 2,490 | Telugu | te | 392,702 | 5,010 | 2,490 | ## Dataset usage Code snippet for using the dataset using datasets library. ```python from datasets import load_dataset dataset = load_dataset("Divyanshu/indicxnli") ``` ## Dataset Creation Machine translation of XNLI english dataset to 11 listed Indic Languages. ### Curation Rationale [More information needed] ### Source Data [XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/) #### Initial Data Collection and Normalization [Detailed in the paper](https://arxiv.org/abs/2204.08776) #### Who are the source language producers? [Detailed in the paper](https://arxiv.org/abs/2204.08776) #### Human Verification Process [Detailed in the paper](https://arxiv.org/abs/2204.08776) ## Considerations for Using the Data ### Social Impact of Dataset [Detailed in the paper](https://arxiv.org/abs/2204.08776) ### Discussion of Biases [Detailed in the paper](https://arxiv.org/abs/2204.08776) ### Other Known Limitations [Detailed in the paper](https://arxiv.org/abs/2204.08776) ### Dataset Curators Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan ### Licensing Information Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders. ### Citation Information If you use any of the datasets, models or code modules, please cite the following paper: ``` @misc{https://doi.org/10.48550/arxiv.2204.08776, doi = {10.48550/ARXIV.2204.08776}, url = {https://arxiv.org/abs/2204.08776}, author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```