# coding=utf-8 # Lint as: python3 """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages.""" import os import json import datasets _CITATION = """\ @misc{https://doi.org/10.48550/arxiv.2204.08776, doi = {10.48550/ARXIV.2204.08776}, url = {https://arxiv.org/abs/2204.08776}, author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } }""" _DESCRIPTION = """\ IndicXNLI is a translated version of XNLI to 11 Indic Languages. As with XNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _LANGUAGES = ( 'hi', 'bn', 'mr', 'as', 'ta', 'te', 'or', 'ml', 'pa', 'gu', 'kn' ) _URL = "https://huggingface.co/datasets/Divyanshu/indicxnli/resolve/main/forward" class IndicxnliConfig(datasets.BuilderConfig): """BuilderConfig for XNLI.""" def __init__(self, language: str, **kwargs): """BuilderConfig for XNLI. Args: language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn **kwargs: keyword arguments forwarded to super. """ super(IndicxnliConfig, self).__init__(**kwargs) self.language = language self.languages = _LANGUAGES self._URLS = { "train": os.path.join(_URL, "train", f"xnli_{self.language}.json"), "test": os.path.join(_URL, "test", f"xnli_{self.language}.json"), "dev": os.path.join(_URL, "dev", f"xnli_{self.language}.json") } class Indicxnli(datasets.GeneratorBasedBuilder): """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages. Version 1.0.""" VERSION = datasets.Version("1.0.0", "") BUILDER_CONFIG_CLASS = IndicxnliConfig BUILDER_CONFIGS = [ IndicxnliConfig( name=lang, language=lang, version=datasets.Version("1.0.0", ""), description=f"Plain text import of IndicXNLI for the {lang} language", ) for lang in _LANGUAGES ] def _info(self): features = datasets.Features( { "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # No default supervised_keys (as we have to pass both premise # and hypothesis as input). supervised_keys=None, homepage="https://github.com/divyanshuaggarwal/IndicXNLI", citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = self.config._URLS downloaded_files = dl_manager.download(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["train"], "data_format": "IndicXNLI", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "data_format": "IndicXNLI"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "data_format": "IndicXNLI"}, ), ] def _generate_examples(self, data_format, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, "r") as f: data = json.load(f) data = data[list(data.keys())[0]] for idx, row in enumerate(data): yield idx, { "premise": row["premise"], "hypothesis": row["hypothesis"], "label": row["label"], }