# coding=utf-8 # Lint as: python3 """IndicXNLI: The Cross-Lingual NLI Corpus for Indic Languages.""" import os import json import pandas as pd import datasets from datasets import DownloadManager _CITATION = """\ @misc{aggarwal2023evaluating, title={Evaluating Inter-Bilingual Semantic Parsing for Indian Languages}, author={Divyanshu Aggarwal and Vivek Gupta and Anoop Kunchukuttan}, year={2023}, eprint={2304.13005}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ IE-SemParse is an Inter-bilingual Seq2seq Semantic parsing dataset for 11 distinct Indian languages """ _LANGUAGES = ( 'hi', 'bn', 'mr', 'as', 'ta', 'te', 'or', 'ml', 'pa', 'gu', 'kn' ) _DATASETS = ( 'itop', 'indic-atis', 'indic-TOP' ) mapping = {"itop": "IE-mTOP", "indic-atis": "IE-ATIS", "indic-TOP": } _URL = "https://huggingface.co/datasets/Divyanshu/IE_SemParse/resolve/main/" class IE_SemParseConfig(datasets.BuilderConfig): """BuilderConfig for IE-SemParse.""" def __init__(self, dataset: str, language: str, **kwargs): """BuilderConfig for IE-SemParse. Args: language: One of hi, bn, mr, as, ta, te, or, ml, pa, gu, kn **kwargs: keyword arguments forwarded to super. """ super(IE_SemParseConfig, self).__init__(**kwargs) self.dataset = dataset self.language = language self.languages = _LANGUAGES self.datasets = _DATASETS self._URLS = [os.path.join( _URL, "unfiltered_data", dataset, f"{language}.json")] class IE_SemParse(datasets.GeneratorBasedBuilder): """IE-SemParse: Inter-Bilingual Semantic Parsing Dataset for Indic Languages. Version 1.0.""" VERSION = datasets.Version("1.0.0", "") BUILDER_CONFIG_CLASS = IE_SemParseConfig BUILDER_CONFIGS = [ IE_SemParseConfig( name=f"{dataset}_{language}", language=language, dataset=dataset, version=datasets.Version("1.0.0", ""), description=f"Plain text import of IE-SemParse for the {language} language for {dataset} dataset", ) for language, dataset in zip(_LANGUAGES, _DATASETS) ] def _info(self): dl_manager = datasets.DownloadManager() urls_to_download = self.config._URLS filepath = dl_manager.download_and_extract(urls_to_download)[0] with open(filepath, "r") as f: data = json.load(f) features = datasets.Features( {k: datasets.Value("string") for k in data['train'][0].keys()} ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # No default supervised_keys (as we have to pass both premise # and hypothesis as input). supervised_keys=None, homepage="https://github.com/divyanshuaggarwal/IE-SemParse", citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = self.config._URLS downloaded_file = dl_manager.download_and_extract(urls_to_download)[0] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "split_key": "train", "filepath": downloaded_file, "data_format": "IE-SemParse" }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "split_key": "test", "filepath": downloaded_file, "data_format": "IE-SemParse" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "split_key": "val", "filepath": downloaded_file, "data_format": "IE-SemParse" }, ), ] def _generate_examples(self, data_format, split_key, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, "r") as f: data = json.load(f) data = data[split_key] for idx, row in enumerate(data): yield idx, { k: v for k, v in row.items() }