""" Convert Brat format annotations to JSONL format for NER training. Author: Amir Safari Date: 17.10.2025 This script processes Brat annotation files (.ann and .txt) from train/dev/test directories and converts them into JSONL format suitable for NER model training. """ import json import re from pathlib import Path print("Starting data conversion from Brat format to JSON Lines...") # Tag mapping: Create a dictionary to convert tag names to integer IDs NER_TAGS = [ "O", "B-Taxon", "I-Taxon", "B-Geographical_Location", "I-Geographical_Location", "B-Habitat", "I-Habitat", "B-Temporal_Expression", "I-Temporal_Expression", "B-Person", "I-Person", ] # Create a mapping from tag name to integer ID tag2id = {tag: i for i, tag in enumerate(NER_TAGS)} # Process each split directory (train, dev, test) for split in ["train", "dev", "test"]: print(f"\nProcessing '{split}' split...") input_dir = Path(split) output_file = f"{split}.jsonl" if not input_dir.exists(): # Skip if directory doesn't exist print(f"Directory not found: {input_dir}. Skipping split.") continue with open(output_file, "w", encoding="utf-8") as outfile: # Find all .ann files and process them with their corresponding .txt files ann_files = sorted(input_dir.glob("*.ann")) for ann_file in ann_files: txt_file = ann_file.with_suffix(".txt") if not txt_file.exists(): continue with open(txt_file, "r", encoding="utf-8") as f: # Tokenize the text by finding all non-whitespace sequences text = f.read() tokens_with_spans = [{"text": match.group(0), "start": match.start(), "end": match.end()} for match in re.finditer(r'\S+', text)] if not tokens_with_spans: continue tokens = [t["text"] for t in tokens_with_spans] ner_tags = ["O"] * len(tokens) # Parse the .ann file to extract entity annotations with open(ann_file, "r", encoding="utf-8") as f: annotations = [] # Apply BIO tagging scheme to tokens based on character span overlaps for line in f: if not line.startswith("T"): continue parts = line.strip().split("\t") if len(parts) < 2: continue tag_info = parts[1] tag_parts = tag_info.split(" ") label = tag_parts[0].replace(" ", "_") spans_str = " ".join(tag_parts[1:]) char_spans = [] for span_part in spans_str.split(';'): try: start, end = map(int, span_part.split(' ')) char_spans.append((start, end)) except ValueError: continue if char_spans: annotations.append({"label": label, "spans": char_spans}) for ann in annotations: is_first_token = True for start_char, end_char in ann["spans"]: for i, token in enumerate(tokens_with_spans): if token["start"] < end_char and token["end"] > start_char: ner_tags[i] = f"B-{ann['label']}" if is_first_token else f"I-{ann['label']}" is_first_token = False # Convert tag strings to integer IDs for model compatibility ner_tag_ids = [tag2id.get(tag, tag2id["O"]) for tag in ner_tags] # Write the processed example as a single JSON line json_line = json.dumps({ "id": txt_file.stem, "tokens": tokens, "ner_tags": ner_tag_ids }) outfile.write(json_line + "\n") print(f"Successfully created {output_file}") print("\nConversion complete! ✨")