--- dataset_info: - config_name: edit features: - name: input dtype: string - name: target dtype: string - name: problem_id dtype: string splits: - name: train num_bytes: 56166875 num_examples: 48386 - name: val num_bytes: 3336062 num_examples: 3338 - name: test num_bytes: 857857 num_examples: 794 download_size: 365069 dataset_size: 60360794 - config_name: generate features: - name: problem_id dtype: string - name: problem_description dtype: string splits: - name: train num_bytes: 1793963 num_examples: 1262 - name: val num_bytes: 96855 num_examples: 69 - name: test num_bytes: 60776 num_examples: 49 download_size: 37588 dataset_size: 1951594 - config_name: generate_eval features: - name: problem_id dtype: string - name: runtimes sequence: float64 - name: memories sequence: float64 - name: num_sol dtype: int64 splits: - name: test num_bytes: 770704 num_examples: 48 download_size: 147211 dataset_size: 770704 configs: - config_name: edit data_files: - split: train path: edit/train-* - split: val path: edit/val-* - split: test path: edit/test-* - config_name: generate data_files: - split: train path: generate/train-* - split: val path: generate/val-* - split: test path: generate/test-* - config_name: generate_eval data_files: - split: test path: generate_eval/test-* --- # ECCO Dataset from the paper "ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?" ![teaser](https://github.com/user-attachments/assets/44659b06-3676-4deb-affb-2ec5f02787f6) The dataset consists of 2 subsets `edit` and `generate` each with 3 splits (`train`, `val` and `test`). Code repository: [https://github.com/CodeEff/ECCO](https://github.com/CodeEff/ECCO) ### Loading the dataset / benchmark ```python dataset = load_dataset('CodeEff/ECCO', 'edit') # For history-based editing setting dataset = load_dataset('CodeEff/ECCO', 'generate') # For nl-instructed generation setting ``` These are used to generate code by each model across the 2 paradigms. We use the `test` split for the evaluation/results and the `train` and `val` splits for finetuning and few-shot prompting. ### Download the test cases ```sh mkdir data && cd data wget https://huggingface.co/datasets/CodeEff/ECCO/resolve/main/test_cases.zip unzip test_cases.zip ``` ### Evaluation dataset The dataset also consists of an additional 3rd subset `generate_eval` which consists of the runtime and memory of a spectrum of user solutions for each problem in the `test` split. This is used for the percentile evaluation of the **NL-instructed generation** paradigm. ### Data Sources Dataset is sourced from [IBM CodeNet](https://github.com/IBM/Project_CodeNet) which consists of primarily competetive programming solutions. This is further filtered for efficiency and correctness as described in our paper. ### Citation ```bib @article{waghjale2024ecco, title={ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness?}, author={Waghjale, Siddhant and Veerendranath, Vishruth and Wang, Zora Zhiruo and Fried, Daniel}, journal={arXiv preprint arXiv:2407.14044}, year={2024} } ```