import math import torch import torch.nn as nn import torch.nn.functional as F from modules.FastDiff.module.util import calc_noise_scale_embedding def swish(x): return x * torch.sigmoid(x) # dilated conv layer with kaiming_normal initialization # from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py class Conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1): super(Conv, self).__init__() self.padding = dilation * (kernel_size - 1) // 2 self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=self.padding) self.conv = nn.utils.weight_norm(self.conv) nn.init.kaiming_normal_(self.conv.weight) def forward(self, x): out = self.conv(x) return out # conv1x1 layer with zero initialization # from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed class ZeroConv1d(nn.Module): def __init__(self, in_channel, out_channel): super(ZeroConv1d, self).__init__() self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() def forward(self, x): out = self.conv(x) return out # every residual block (named residual layer in paper) # contains one noncausal dilated conv class Residual_block(nn.Module): def __init__(self, res_channels, skip_channels, dilation, noise_scale_embed_dim_out, multiband=True): super(Residual_block, self).__init__() self.res_channels = res_channels # the layer-specific fc for noise scale embedding self.fc_t = nn.Linear(noise_scale_embed_dim_out, self.res_channels) # dilated conv layer self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels, kernel_size=3, dilation=dilation) # add mel spectrogram upsampler and conditioner conv1x1 layer self.upsample_conv2d = torch.nn.ModuleList() if multiband is True: params = 8 else: params = 16 for s in [params, params]: ####### Very Important!!!!! ####### conv_trans2d = torch.nn.ConvTranspose2d(1, 1, (3, 2 * s), padding=(1, s // 2), stride=(1, s)) conv_trans2d = torch.nn.utils.weight_norm(conv_trans2d) torch.nn.init.kaiming_normal_(conv_trans2d.weight) self.upsample_conv2d.append(conv_trans2d) self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1) # 80 is mel bands # residual conv1x1 layer, connect to next residual layer self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1) self.res_conv = nn.utils.weight_norm(self.res_conv) nn.init.kaiming_normal_(self.res_conv.weight) # skip conv1x1 layer, add to all skip outputs through skip connections self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1) self.skip_conv = nn.utils.weight_norm(self.skip_conv) nn.init.kaiming_normal_(self.skip_conv.weight) def forward(self, input_data): x, mel_spec, noise_scale_embed = input_data h = x B, C, L = x.shape # B, res_channels, L assert C == self.res_channels # add in noise scale embedding part_t = self.fc_t(noise_scale_embed) part_t = part_t.view([B, self.res_channels, 1]) h += part_t # dilated conv layer h = self.dilated_conv_layer(h) # add mel spectrogram as (local) conditioner assert mel_spec is not None # Upsample spectrogram to size of audio mel_spec = torch.unsqueeze(mel_spec, dim=1) # (B, 1, 80, T') mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4) mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4) mel_spec = torch.squeeze(mel_spec, dim=1) assert(mel_spec.size(2) >= L) if mel_spec.size(2) > L: mel_spec = mel_spec[:, :, :L] mel_spec = self.mel_conv(mel_spec) h += mel_spec # gated-tanh nonlinearity out = torch.tanh(h[:,:self.res_channels,:]) * torch.sigmoid(h[:,self.res_channels:,:]) # residual and skip outputs res = self.res_conv(out) assert x.shape == res.shape skip = self.skip_conv(out) return (x + res) * math.sqrt(0.5), skip # normalize for training stability class Residual_group(nn.Module): def __init__(self, res_channels, skip_channels, num_res_layers, dilation_cycle, noise_scale_embed_dim_in, noise_scale_embed_dim_mid, noise_scale_embed_dim_out, multiband): super(Residual_group, self).__init__() self.num_res_layers = num_res_layers self.noise_scale_embed_dim_in = noise_scale_embed_dim_in # the shared two fc layers for noise scale embedding self.fc_t1 = nn.Linear(noise_scale_embed_dim_in, noise_scale_embed_dim_mid) self.fc_t2 = nn.Linear(noise_scale_embed_dim_mid, noise_scale_embed_dim_out) # stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512 self.residual_blocks = nn.ModuleList() for n in range(self.num_res_layers): self.residual_blocks.append(Residual_block(res_channels, skip_channels, dilation=2 ** (n % dilation_cycle), noise_scale_embed_dim_out=noise_scale_embed_dim_out, multiband=multiband)) def forward(self, input_data): x, mel_spectrogram, noise_scales = input_data # embed noise scale noise_scale_embed = calc_noise_scale_embedding(noise_scales, self.noise_scale_embed_dim_in) noise_scale_embed = swish(self.fc_t1(noise_scale_embed)) noise_scale_embed = swish(self.fc_t2(noise_scale_embed)) # pass all residual layers h = x skip = 0 for n in range(self.num_res_layers): h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, noise_scale_embed)) # use the output from last residual layer skip += skip_n # accumulate all skip outputs return skip * math.sqrt(1.0 / self.num_res_layers) # normalize for training stability class WaveNet_vocoder(nn.Module): def __init__(self, in_channels, res_channels, skip_channels, out_channels, num_res_layers, dilation_cycle, noise_scale_embed_dim_in, noise_scale_embed_dim_mid, noise_scale_embed_dim_out, multiband): super(WaveNet_vocoder, self).__init__() # initial conv1x1 with relu self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU()) # all residual layers self.residual_layer = Residual_group(res_channels=res_channels, skip_channels=skip_channels, num_res_layers=num_res_layers, dilation_cycle=dilation_cycle, noise_scale_embed_dim_in=noise_scale_embed_dim_in, noise_scale_embed_dim_mid=noise_scale_embed_dim_mid, noise_scale_embed_dim_out=noise_scale_embed_dim_out, multiband=multiband) # final conv1x1 -> relu -> zeroconv1x1 self.final_conv = nn.Sequential(Conv(skip_channels, skip_channels, kernel_size=1), nn.ReLU(), ZeroConv1d(skip_channels, out_channels)) def forward(self, input_data): audio, mel_spectrogram, noise_scales = input_data # b x band x T, b x 80 x T', b x 1 x = audio x = self.init_conv(x) x = self.residual_layer((x, mel_spectrogram, noise_scales)) x = self.final_conv(x) return x