--- task_categories: - question-answering - visual-question-answering language: - en tags: - Multimodal Search - Multimodal Long Context size_categories: - n<1K configs: - config_name: end2end data_files: - split: end2end path: end2end.parquet - config_name: rerank data_files: - split: rerank path: rerank.parquet - config_name: summarization data_files: - split: summarization path: summarization.parquet dataset_info: - config_name: end2end features: - name: sample_id dtype: string - name: query dtype: string - name: query_image dtype: image - name: image_search_result dtype: image - name: area dtype: string - name: subfield dtype: string - name: timestamp dtype: string - name: gt_requery dtype: string - name: gt_answer dtype: string - name: alternative_gt_answers sequence: string splits: - name: end2end num_examples: 300 - config_name: rerank features: - name: sample_id dtype: string - name: query dtype: string - name: query_image dtype: image - name: image_search_result dtype: image - name: area dtype: string - name: subfield dtype: string - name: timestamp dtype: string - name: valid sequence: int32 - name: not_sure sequence: int32 - name: invalid sequence: int32 - name: gt_answer dtype: string - name: website0_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website1_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website2_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website3_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website4_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website5_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website6_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website7_info struct: - name: title dtype: string - name: snippet dtype: string - name: url dtype: string - name: website0_head_screenshot dtype: image - name: website1_head_screenshot dtype: image - name: website2_head_screenshot dtype: image - name: website3_head_screenshot dtype: image - name: website4_head_screenshot dtype: image - name: website5_head_screenshot dtype: image - name: website6_head_screenshot dtype: image - name: website7_head_screenshot dtype: image splits: - name: rerank num_examples: 300 - config_name: summarization features: - name: sample_id dtype: string - name: query dtype: string - name: query_image dtype: image - name: image_search_result dtype: image - name: area dtype: string - name: subfield dtype: string - name: timestamp dtype: string - name: website_title dtype: string - name: website_snippet dtype: string - name: website_url dtype: string - name: website_original_content dtype: string - name: website_retrieved_content dtype: string - name: website_fullpage_screenshot dtype: image - name: gt_requery dtype: string - name: gt_answer dtype: string - name: alternative_gt_answers sequence: string splits: - name: summarization num_examples: 300 --- # MMSearch 🔥: Benchmarking the Potential of Large Models as Multi-modal Search Engines Official repository for the paper "[MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines](https://huggingface.co/papers/2409.12959)". 🌟 For more details, please refer to the project page with dataset exploration and visualization tools: [https://mmsearch.github.io/](https://mmsearch.github.io). [[🌐 Webpage](https://mmsearch.github.io/)] [[📖 Paper](https://arxiv.org/pdf/2409.12959)] [[🤗 Huggingface Dataset](https://huggingface.co/datasets/CaraJ/MMSearch)] [[🏆 Leaderboard](https://mmsearch.github.io/#leaderboard)] [[🔍 Visualization](https://huggingface.co/datasets/CaraJ/MMSearch/viewer)] ## 💥 News - **[2024.09.25]** 🌟 The [evaluation code](https://github.com/CaraJ7/MMSearch#-evaluation-by-yourself) now supports directly use models implemented in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit)! - **[2024.09.22]** 🔥 We release the [evaluation code](https://github.com/CaraJ7/MMSearch#-evaluation-by-yourself), which you only need to add an inference API of your LMM! - **[2024.09.20]** 🚀 We release the [arXiv paper](https://arxiv.org/abs/2409.12959) and all MMSearch data samples in [huggingface dataset](https://huggingface.co/datasets/CaraJ/MMSearch). ## 📌 ToDo - Coming soon: *MMSearch-Engine (for new query)* ## 👀 About MMSearch The capabilities of **Large Multi-modal Models (LMMs)** in **multimodal search** remain insufficiently explored and evaluated. To fill the blank of a framework for LMM to conduct multimodal AI search engine, we first design a delicate pipeline **MMSearch-Engine** to facilitate **any LMM** to function as a multimodal AI search engine
The overview of MMSearch-Engine.
The overview of MMSearch.
Outline of Evaluation Tasks, Inputs, and Outputs.