,title,abstract 0,When does Bias Transfer in Transfer Learning?,"Using transfer learning to adapt a pre-trained ""source model"" to a downstream ""target task"" can dramatically increase performance with seemingly no downside. In this work, we demonstrate that there can exist a downside after all: bias transfer, or the tendency for biases of the source model to persist even after adapting the model to the target class. Through a combination of synthetic and natural experiments, we show that bias transfer both (a) arises in realistic settings (such as when pre-training on ImageNet or other standard datasets) and (b) can occur even when the target dataset is explicitly de-biased. As transfer-learned models are increasingly deployed in the real world, our work highlights the importance of understanding the limitations of pre-trained source models. Code is available at https://github.com/MadryLab/bias-transfer" 1,Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods,"Online optimization is a well-established optimization paradigm that aims to make a sequence of correct decisions given knowledge of the correct answer to previous decision tasks. Bilevel programming involves a hierarchical optimization problem where the feasible region of the so-called outer problem is restricted by the graph of the solution set mapping of the inner problem. This paper brings these two ideas together and studies an online bilevel optimization setting in which a sequence of time-varying bilevel problems are revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we introduce new notions of bilevel regret, develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and provide regret bounds in terms of the path-length of the inner and outer minimizer sequences." 2,Strong Heuristics for Named Entity Linking,"Named entity linking (NEL) in news is a challenging endeavour due to the frequency of unseen and emerging entities, which necessitates the use of unsupervised or zero-shot methods. However, such methods tend to come with caveats, such as no integration of suitable knowledge bases (like Wikidata) for emerging entities, a lack of scalability, and poor interpretability. Here, we consider person disambiguation in Quotebank, a massive corpus of speaker-attributed quotations from the news, and investigate the suitability of intuitive, lightweight, and scalable heuristics for NEL in web-scale corpora. Our best performing heuristic disambiguates 94% and 63% of the mentions on Quotebank and the AIDA-CoNLL benchmark, respectively. Additionally, the proposed heuristics compare favourably to the state-of-the-art unsupervised and zero-shot methods, Eigenthemes and mGENRE, respectively, thereby serving as strong baselines for unsupervised and zero-shot entity linking." 3,Improved conformalized quantile regression,"Conformalized quantile regression is a procedure that inherits the advantages of conformal prediction and quantile regression. That is, we use quantile regression to estimate the true conditional quantile and then apply a conformal step on a calibration set to ensure marginal coverage. In this way, we get adaptive prediction intervals that account for heteroscedasticity. However, the aforementioned conformal step lacks adaptiveness as described in (Romano et al., 2019). To overcome this limitation, instead of applying a single conformal step after estimating conditional quantiles with quantile regression, we propose to cluster the explanatory variables weighted by their permutation importance with an optimized k-means and apply k conformal steps. To show that this improved version outperforms the classic version of conformalized quantile regression and is more adaptive to heteroscedasticity, we extensively compare the prediction intervals of both in open datasets." 4,A multi-task network approach for calculating discrimination-free insurance prices,"In applications of predictive modeling, such as insurance pricing, indirect or proxy discrimination is an issue of major concern. Namely, there exists the possibility that protected policyholder characteristics are implicitly inferred from non-protected ones by predictive models, and are thus having an undesirable (or illegal) impact on prices. A technical solution to this problem relies on building a best-estimate model using all policyholder characteristics (including protected ones) and then averaging out the protected characteristics for calculating individual prices. However, such approaches require full knowledge of policyholders' protected characteristics, which may in itself be problematic. Here, we address this issue by using a multi-task neural network architecture for claim predictions, which can be trained using only partial information on protected characteristics, and it produces prices that are free from proxy discrimination. We demonstrate the use of the proposed model and we find that its predictive accuracy is comparable to a conventional feedforward neural network (on full information). However, this multi-task network has clearly superior performance in the case of partially missing policyholder information." 5,The Intrinsic Manifolds of Radiological Images and their Role in Deep Learning,"The manifold hypothesis is a core mechanism behind the success of deep learning, so understanding the intrinsic manifold structure of image data is central to studying how neural networks learn from the data. Intrinsic dataset manifolds and their relationship to learning difficulty have recently begun to be studied for the common domain of natural images, but little such research has been attempted for radiological images. We address this here. First, we compare the intrinsic manifold dimensionality of radiological and natural images. We also investigate the relationship between intrinsic dimensionality and generalization ability over a wide range of datasets. Our analysis shows that natural image datasets generally have a higher number of intrinsic dimensions than radiological images. However, the relationship between generalization ability and intrinsic dimensionality is much stronger for medical images, which could be explained as radiological images having intrinsic features that are more difficult to learn. These results give a more principled underpinning for the intuition that radiological images can be more challenging to apply deep learning to than natural image datasets common to machine learning research. We believe rather than directly applying models developed for natural images to the radiological imaging domain, more care should be taken to developing architectures and algorithms that are more tailored to the specific characteristics of this domain. The research shown in our paper, demonstrating these characteristics and the differences from natural images, is an important first step in this direction." 6,Private Matrix Approximation and Geometry of Unitary Orbits,"Consider the following optimization problem: Given $n \times n$ matrices $A$ and $\Lambda$, maximize $\langle A, U\Lambda U^*\rangle$ where $U$ varies over the unitary group $\mathrm{U}(n)$. This problem seeks to approximate $A$ by a matrix whose spectrum is the same as $\Lambda$ and, by setting $\Lambda$ to be appropriate diagonal matrices, one can recover matrix approximation problems such as PCA and rank-$k$ approximation. We study the problem of designing differentially private algorithms for this optimization problem in settings where the matrix $A$ is constructed using users' private data. We give efficient and private algorithms that come with upper and lower bounds on the approximation error. Our results unify and improve upon several prior works on private matrix approximation problems. They rely on extensions of packing/covering number bounds for Grassmannians to unitary orbits which should be of independent interest." 7,Astroconformer: Inferring Surface Gravity of Stars from Stellar Light Curves with Transformer,"We introduce Astroconformer, a Transformer-based model to analyze stellar light curves from the Kepler mission. We demonstrate that Astrconformer can robustly infer the stellar surface gravity as a supervised task. Importantly, as Transformer captures long-range information in the time series, it outperforms the state-of-the-art data-driven method in the field, and the critical role of self-attention is proved through ablation experiments. Furthermore, the attention map from Astroconformer exemplifies the long-range correlation information learned by the model, leading to a more interpretable deep learning approach for asteroseismology. Besides data from Kepler, we also show that the method can generalize to sparse cadence light curves from the Rubin Observatory, paving the way for the new era of asteroseismology, harnessing information from long-cadence ground-based observations." 8,DIWIFT: Discovering Instance-wise Influential Features for Tabular Data,"Tabular data is one of the most common data storage formats in business applications, ranging from retail, bank and E-commerce. These applications rely heavily on machine learning models to achieve business success. One of the critical problems in learning tabular data is to distinguish influential features from all the predetermined features. Global feature selection has been well-studied for quite some time, assuming that all instances have the same influential feature subsets. However, different instances rely on different feature subsets in practice, which also gives rise to that instance-wise feature selection receiving increasing attention in recent studies. In this paper, we first propose a novel method for discovering instance-wise influential features for tabular data (DIWIFT), the core of which is to introduce the influence function to measure the importance of an instance-wise feature. DIWIFT is capable of automatically discovering influential feature subsets of different sizes in different instances, which is different from global feature selection that considers all instances with the same influential feature subset. On the other hand, different from the previous instance-wise feature selection, DIWIFT minimizes the validation loss on the validation set and is thus more robust to the distribution shift existing in the training dataset and test dataset, which is important in tabular data. Finally, we conduct extensive experiments on both synthetic and real-world datasets to validate the effectiveness of our DIWIFT, compared it with baseline methods. Moreover, we also demonstrate the robustness of our method via some ablation experiments." 9,Enhancing Adversarial Attacks on Single-Layer NVM Crossbar-Based Neural Networks with Power Consumption Information,"Adversarial attacks on state-of-the-art machine learning models pose a significant threat to the safety and security of mission-critical autonomous systems. This paper considers the additional vulnerability of machine learning models when attackers can measure the power consumption of their underlying hardware platform. In particular, we explore the utility of power consumption information for adversarial attacks on non-volatile memory crossbar-based single-layer neural networks. Our results from experiments with MNIST and CIFAR-10 datasets show that power consumption can reveal important information about the neural network's weight matrix, such as the 1-norm of its columns. That information can be used to infer the sensitivity of the network's loss with respect to different inputs. We also find that surrogate-based black box attacks that utilize crossbar power information can lead to improved attack efficiency." 10,BFE and AdaBFE: A New Approach in Learning Rate Automation for Stochastic Optimization,"In this paper, a new gradient-based optimization approach by automatically adjusting the learning rate is proposed. This approach can be applied to design non-adaptive learning rate and adaptive learning rate. Firstly, I will introduce the non-adaptive learning rate optimization method: Binary Forward Exploration (BFE), and then the corresponding adaptive per-parameter learning rate method: Adaptive BFE (AdaBFE) is possible to be developed. This approach could be an alternative method to optimize the learning rate based on the stochastic gradient descent (SGD) algorithm besides the current non-adaptive learning rate methods e.g. SGD, momentum, Nesterov and the adaptive learning rate methods e.g. AdaGrad, AdaDelta, Adam... The purpose to develop this approach is not to beat the benchmark of other methods but just to provide a different perspective to optimize the gradient descent method, although some comparative study with previous methods will be made in the following sections. This approach is expected to be heuristic or inspire researchers to improve gradient-based optimization combined with previous methods." 11,Graph Trees with Attention,"When dealing with tabular data, models based on regression and decision trees are a popular choice due to the high accuracy they provide on such tasks and their ease of application as compared to other model classes. Yet, when it comes to graph-structure data, current tree learning algorithms do not provide tools to manage the structure of the data other than relying on feature engineering. In this work we address the above gap, and introduce Graph Trees with Attention (GTA), a new family of tree-based learning algorithms that are designed to operate on graphs. GTA leverages both the graph structure and the features at the vertices and employs an attention mechanism that allows decisions to concentrate on sub-structures of the graph. We analyze GTA models and show that they are strictly more expressive than plain decision trees. We also demonstrate the benefits of GTA empirically on multiple graph and node prediction benchmarks. In these experiments, GTA always outperformed other tree-based models and often outperformed other types of graph-learning algorithms such as Graph Neural Networks (GNNs) and Graph Kernels. Finally, we also provide an explainability mechanism for GTA, and demonstrate it can provide intuitive explanations." 12,Robust Counterfactual Explanations for Tree-Based Ensembles,"Counterfactual explanations inform ways to achieve a desired outcome from a machine learning model. However, such explanations are not robust to certain real-world changes in the underlying model (e.g., retraining the model, changing hyperparameters, etc.), questioning their reliability in several applications, e.g., credit lending. In this work, we propose a novel strategy -- that we call RobX -- to generate robust counterfactuals for tree-based ensembles, e.g., XGBoost. Tree-based ensembles pose additional challenges in robust counterfactual generation, e.g., they have a non-smooth and non-differentiable objective function, and they can change a lot in the parameter space under retraining on very similar data. We first introduce a novel metric -- that we call Counterfactual Stability -- that attempts to quantify how robust a counterfactual is going to be to model changes under retraining, and comes with desirable theoretical properties. Our proposed strategy RobX works with any counterfactual generation method (base method) and searches for robust counterfactuals by iteratively refining the counterfactual generated by the base method using our metric Counterfactual Stability. We compare the performance of RobX with popular counterfactual generation methods (for tree-based ensembles) across benchmark datasets. The results demonstrate that our strategy generates counterfactuals that are significantly more robust (nearly 100% validity after actual model changes) and also realistic (in terms of local outlier factor) over existing state-of-the-art methods." 13,A Hybrid Approach for Binary Classification of Imbalanced Data,"Binary classification with an imbalanced dataset is challenging. Models tend to consider all samples as belonging to the majority class. Although existing solutions such as sampling methods, cost-sensitive methods, and ensemble learning methods improve the poor accuracy of the minority class, these methods are limited by overfitting problems or cost parameters that are difficult to decide. We propose HADR, a hybrid approach with dimension reduction that consists of data block construction, dimentionality reduction, and ensemble learning with deep neural network classifiers. We evaluate the performance on eight imbalanced public datasets in terms of recall, G-mean, and AUC. The results show that our model outperforms state-of-the-art methods." 14,Towards the Use of Saliency Maps for Explaining Low-Quality Electrocardiograms to End Users,"When using medical images for diagnosis, either by clinicians or artificial intelligence (AI) systems, it is important that the images are of high quality. When an image is of low quality, the medical exam that produced the image often needs to be redone. In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone. This can be especially difficult for people living in remote regions, who make up a substantial portion of the patients at Portal Telemedicina, a digital healthcare organization based in Brazil. In this paper, we report on ongoing work regarding (i) the development of an AI system for flagging and explaining low-quality medical images in real-time, (ii) an interview study to understand the explanation needs of stakeholders using the AI system at OurCompany, and, (iii) a longitudinal user study design to examine the effect of including explanations on the workflow of the technicians in our clinics. To the best of our knowledge, this would be the first longitudinal study on evaluating the effects of XAI methods on end-users -- stakeholders that use AI systems but do not have AI-specific expertise. We welcome feedback and suggestions on our experimental setup." 15,Pre-training Transformers for Molecular Property Prediction Using Reaction Prediction,"Molecular property prediction is essential in chemistry, especially for drug discovery applications. However, available molecular property data is often limited, encouraging the transfer of information from related data. Transfer learning has had a tremendous impact in fields like Computer Vision and Natural Language Processing signaling for its potential in molecular property prediction. We present a pre-training procedure for molecular representation learning using reaction data and use it to pre-train a SMILES Transformer. We fine-tune and evaluate the pre-trained model on 12 molecular property prediction tasks from MoleculeNet within physical chemistry, biophysics, and physiology and show a statistically significant positive effect on 5 of the 12 tasks compared to a non-pre-trained baseline model." 16,Variational Flow Graphical Model,"This paper introduces a novel approach to embed flow-based models with hierarchical structures. The proposed framework is named Variational Flow Graphical (VFG) Model. VFGs learn the representation of high dimensional data via a message-passing scheme by integrating flow-based functions through variational inference. By leveraging the expressive power of neural networks, VFGs produce a representation of the data using a lower dimension, thus overcoming the drawbacks of many flow-based models, usually requiring a high dimensional latent space involving many trivial variables. Aggregation nodes are introduced in the VFG models to integrate forward-backward hierarchical information via a message passing scheme. Maximizing the evidence lower bound (ELBO) of data likelihood aligns the forward and backward messages in each aggregation node achieving a consistency node state. Algorithms have been developed to learn model parameters through gradient updating regarding the ELBO objective. The consistency of aggregation nodes enable VFGs to be applicable in tractable inference on graphical structures. Besides representation learning and numerical inference, VFGs provide a new approach for distribution modeling on datasets with graphical latent structures. Additionally, theoretical study shows that VFGs are universal approximators by leveraging the implicitly invertible flow-based structures. With flexible graphical structures and superior excessive power, VFGs could potentially be used to improve probabilistic inference. In the experiments, VFGs achieves improved evidence lower bound (ELBO) and likelihood values on multiple datasets." 17,Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology Datasets,"Self-supervised learning (SSL) methods are enabling an increasing number of deep learning models to be trained on image datasets in domains where labels are difficult to obtain. These methods, however, struggle to scale to the high resolution of medical imaging datasets, where they are critical for achieving good generalization on label-scarce medical image datasets. In this work, we propose the Histopathology DatasetGAN (HDGAN) framework, an extension of the DatasetGAN semi-supervised framework for image generation and segmentation that scales well to large-resolution histopathology images. We make several adaptations from the original framework, including updating the generative backbone, selectively extracting latent features from the generator, and switching to memory-mapped arrays. These changes reduce the memory consumption of the framework, improving its applicability to medical imaging domains. We evaluate HDGAN on a thrombotic microangiopathy high-resolution tile dataset, demonstrating strong performance on the high-resolution image-annotation generation task. We hope that this work enables more application of deep learning models to medical datasets, in addition to encouraging more exploration of self-supervised frameworks within the medical imaging domain." 18,Scaling Private Deep Learning with Low-Rank and Sparse Gradients,"Applying Differentially Private Stochastic Gradient Descent (DPSGD) to training modern, large-scale neural networks such as transformer-based models is a challenging task, as the magnitude of noise added to the gradients at each iteration scales with model dimension, hindering the learning capability significantly. We propose a unified framework, $\textsf{LSG}$, that fully exploits the low-rank and sparse structure of neural networks to reduce the dimension of gradient updates, and hence alleviate the negative impacts of DPSGD. The gradient updates are first approximated with a pair of low-rank matrices. Then, a novel strategy is utilized to sparsify the gradients, resulting in low-dimensional, less noisy updates that are yet capable of retaining the performance of neural networks. Empirical evaluation on natural language processing and computer vision tasks shows that our method outperforms other state-of-the-art baselines." 19,Effective and Efficient Training for Sequential Recommendation using Recency Sampling,"Many modern sequential recommender systems use deep neural networks, which can effectively estimate the relevance of items but require a lot of time to train. Slow training increases expenses, hinders product development timescales and prevents the model from being regularly updated to adapt to changing user preferences. Training such sequential models involves appropriately sampling past user interactions to create a realistic training objective. The existing training objectives have limitations. For instance, next item prediction never uses the beginning of the sequence as a learning target, thereby potentially discarding valuable data. On the other hand, the item masking used by BERT4Rec is only weakly related to the goal of the sequential recommendation; therefore, it requires much more time to obtain an effective model. Hence, we propose a novel Recency-based Sampling of Sequences training objective that addresses both limitations. We apply our method to various recent and state-of-the-art model architectures - such as GRU4Rec, Caser, and SASRec. We show that the models enhanced with our method can achieve performances exceeding or very close to stateof-the-art BERT4Rec, but with much less training time." 20,When does SGD favor flat minima? A quantitative characterization via linear stability,"The observation that stochastic gradient descent (SGD) favors flat minima has played a fundamental role in understanding implicit regularization of SGD and guiding the tuning of hyperparameters. In this paper, we provide a quantitative explanation of this striking phenomenon by relating the particular noise structure of SGD to its \emph{linear stability} (Wu et al., 2018). Specifically, we consider training over-parameterized models with square loss. We prove that if a global minimum $\theta^*$ is linearly stable for SGD, then it must satisfy $\|H(\theta^*)\|_F\leq O(\sqrt{B}/\eta)$, where $\|H(\theta^*)\|_F, B,\eta$ denote the Frobenius norm of Hessian at $\theta^*$, batch size, and learning rate, respectively. Otherwise, SGD will escape from that minimum \emph{exponentially} fast. Hence, for minima accessible to SGD, the flatness -- as measured by the Frobenius norm of the Hessian -- is bounded independently of the model size and sample size. The key to obtaining these results is exploiting the particular geometry awareness of SGD noise: 1) the noise magnitude is proportional to loss value; 2) the noise directions concentrate in the sharp directions of local landscape. This property of SGD noise provably holds for linear networks and random feature models (RFMs) and is empirically verified for nonlinear networks. Moreover, the validity and practical relevance of our theoretical findings are justified by extensive numerical experiments." 21,Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning,"Machine learning (ML) models are typically optimized for their accuracy on a given dataset. However, this predictive criterion rarely captures all desirable properties of a model, in particular how well it matches a domain expert's understanding of a task. Underspecification refers to the existence of multiple models that are indistinguishable in their in-domain accuracy, even though they differ in other desirable properties such as out-of-distribution (OOD) performance. Identifying these situations is critical for assessing the reliability of ML models. We formalize the concept of underspecification and propose a method to identify and partially address it. We train multiple models with an independence constraint that forces them to implement different functions. They discover predictive features that are otherwise ignored by standard empirical risk minimization (ERM), which we then distill into a global model with superior OOD performance. Importantly, we constrain the models to align with the data manifold to ensure that they discover meaningful features. We demonstrate the method on multiple datasets in computer vision (collages, WILDS-Camelyon17, GQA) and discuss general implications of underspecification. Most notably, in-domain performance cannot serve for OOD model selection without additional assumptions." 22,Cascaded Deep Hybrid Models for Multistep Household Energy Consumption Forecasting,"Sustainability requires increased energy efficiency with minimal waste. The future power systems should thus provide high levels of flexibility iin controling energy consumption. Precise projections of future energy demand/load at the aggregate and on the individual site levels are of great importance for decision makers and professionals in the energy industry. Forecasting energy loads has become more advantageous for energy providers and customers, allowing them to establish an efficient production strategy to satisfy demand. This study introduces two hybrid cascaded models for forecasting multistep household power consumption in different resolutions. The first model integrates Stationary Wavelet Transform (SWT), as an efficient signal preprocessing technique, with Convolutional Neural Networks and Long Short Term Memory (LSTM). The second hybrid model combines SWT with a self-attention based neural network architecture named transformer. The major constraint of using time-frequency analysis methods such as SWT in multistep energy forecasting problems is that they require sequential signals, making signal reconstruction problematic in multistep forecasting applications.The cascaded models can efficiently address this problem through using the recursive outputs. Experimental results show that the proposed hybrid models achieve superior prediction performance compared to the existing multistep power consumption prediction methods. The results will pave the way for more accurate and reliable forecasting of household power consumption." 23,Instance-Dependent Near-Optimal Policy Identification in Linear MDPs via Online Experiment Design,"While much progress has been made in understanding the minimax sample complexity of reinforcement learning (RL) -- the complexity of learning on the ""worst-case"" instance -- such measures of complexity often do not capture the true difficulty of learning. In practice, on an ""easy"" instance, we might hope to achieve a complexity far better than that achievable on the worst-case instance. In this work we seek to understand the ""instance-dependent"" complexity of learning near-optimal policies (PAC RL) in the setting of RL with linear function approximation. We propose an algorithm, \textsc{Pedel}, which achieves a fine-grained instance-dependent measure of complexity, the first of its kind in the RL with function approximation setting, thereby capturing the difficulty of learning on each particular problem instance. Through an explicit example, we show that \textsc{Pedel} yields provable gains over low-regret, minimax-optimal algorithms and that such algorithms are unable to hit the instance-optimal rate. Our approach relies on a novel online experiment design-based procedure which focuses the exploration budget on the ""directions"" most relevant to learning a near-optimal policy, and may be of independent interest." 24,voxel2vec: A Natural Language Processing Approach to Learning Distributed Representations for Scientific Data,"Relationships in scientific data, such as the numerical and spatial distribution relations of features in univariate data, the scalar-value combinations' relations in multivariate data, and the association of volumes in time-varying and ensemble data, are intricate and complex. This paper presents voxel2vec, a novel unsupervised representation learning model, which is used to learn distributed representations of scalar values/scalar-value combinations in a low-dimensional vector space. Its basic assumption is that if two scalar values/scalar-value combinations have similar contexts, they usually have high similarity in terms of features. By representing scalar values/scalar-value combinations as symbols, voxel2vec learns the similarity between them in the context of spatial distribution and then allows us to explore the overall association between volumes by transfer prediction. We demonstrate the usefulness and effectiveness of voxel2vec by comparing it with the isosurface similarity map of univariate data and applying the learned distributed representations to feature classification for multivariate data and to association analysis for time-varying and ensemble data." 25,Simple and Efficient Heterogeneous Graph Neural Network,"Heterogeneous graph neural networks (HGNNs) deliver the powerful capability to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing HGNNs usually learn to embed information using hierarchy attention mechanism and repeated neighbor aggregation, suffering from unnecessary complexity and redundant computation. This paper proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN) which reduces this excess complexity through avoiding overused node-level attention within the same relation and pre-computing the neighbor aggregation in the pre-processing stage. Unlike previous work, SeHGNN utilizes a light-weight parameter-free neighbor aggregator to learn structural information for each metapath, and a transformer-based semantic aggregator to combine semantic information across metapaths for the final embedding of each node. As a result, SeHGNN offers the simple network structure, high prediction accuracy, and fast training speed. Extensive experiments on five real-world heterogeneous graphs demonstrate the superiority of SeHGNN over the state-of-the-arts on both the accuracy and training speed. Codes are available at https://github.com/ICT-GIMLab/SeHGNN." 26,AI-enhanced iterative solvers for accelerating the solution of large scale parametrized linear systems of equations,"Recent advances in the field of machine learning open a new era in high performance computing. Applications of machine learning algorithms for the development of accurate and cost-efficient surrogates of complex problems have already attracted major attention from scientists. Despite their powerful approximation capabilities, however, surrogates cannot produce the `exact' solution to the problem. To address this issue, this paper exploits up-to-date ML tools and delivers customized iterative solvers of linear equation systems, capable of solving large-scale parametrized problems at any desired level of accuracy. Specifically, the proposed approach consists of the following two steps. At first, a reduced set of model evaluations is performed and the corresponding solutions are used to establish an approximate mapping from the problem's parametric space to its solution space using deep feedforward neural networks and convolutional autoencoders. This mapping serves a means to obtain very accurate initial predictions of the system's response to new query points at negligible computational cost. Subsequently, an iterative solver inspired by the Algebraic Multigrid method in combination with Proper Orthogonal Decomposition, termed POD-2G, is developed that successively refines the initial predictions towards the exact system solutions. The application of POD-2G as a standalone solver or as preconditioner in the context of preconditioned conjugate gradient methods is demonstrated on several numerical examples of large scale systems, with the results indicating its superiority over conventional iterative solution schemes." 27,Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems,"In many scientific disciplines, we are interested in inferring the nonlinear dynamical system underlying a set of observed time series, a challenging task in the face of chaotic behavior and noise. Previous deep learning approaches toward this goal often suffered from a lack of interpretability and tractability. In particular, the high-dimensional latent spaces often required for a faithful embedding, even when the underlying dynamics lives on a lower-dimensional manifold, can hamper theoretical analysis. Motivated by the emerging principles of dendritic computation, we augment a dynamically interpretable and mathematically tractable piecewise-linear (PL) recurrent neural network (RNN) by a linear spline basis expansion. We show that this approach retains all the theoretically appealing properties of the simple PLRNN, yet boosts its capacity for approximating arbitrary nonlinear dynamical systems in comparatively low dimensions. We employ two frameworks for training the system, one combining back-propagation-through-time (BPTT) with teacher forcing, and another based on fast and scalable variational inference. We show that the dendritically expanded PLRNN achieves better reconstructions with fewer parameters and dimensions on various dynamical systems benchmarks and compares favorably to other methods, while retaining a tractable and interpretable structure." 28,Transformers discover an elementary calculation system exploiting local attention and grid-like problem representation,"Mathematical reasoning is one of the most impressive achievements of human intellect but remains a formidable challenge for artificial intelligence systems. In this work we explore whether modern deep learning architectures can learn to solve a symbolic addition task by discovering effective arithmetic procedures. Although the problem might seem trivial at first glance, generalizing arithmetic knowledge to operations involving a higher number of terms, possibly composed by longer sequences of digits, has proven extremely challenging for neural networks. Here we show that universal transformers equipped with local attention and adaptive halting mechanisms can learn to exploit an external, grid-like memory to carry out multi-digit addition. The proposed model achieves remarkable accuracy even when tested with problems requiring extrapolation outside the training distribution; most notably, it does so by discovering human-like calculation strategies such as place value alignment." 29,Compositional Generalization in Grounded Language Learning via Induced Model Sparsity,"We provide a study of how induced model sparsity can help achieve compositional generalization and better sample efficiency in grounded language learning problems. We consider simple language-conditioned navigation problems in a grid world environment with disentangled observations. We show that standard neural architectures do not always yield compositional generalization. To address this, we design an agent that contains a goal identification module that encourages sparse correlations between words in the instruction and attributes of objects, composing them together to find the goal. The output of the goal identification module is the input to a value iteration network planner. Our agent maintains a high level of performance on goals containing novel combinations of properties even when learning from a handful of demonstrations. We examine the internal representations of our agent and find the correct correspondences between words in its dictionary and attributes in the environment." 30,Pure Transformers are Powerful Graph Learners,"We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice. Given a graph, we simply treat all nodes and edges as independent tokens, augment them with token embeddings, and feed them to a Transformer. With an appropriate choice of token embeddings, we prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers, which is already more expressive than all message-passing Graph Neural Networks (GNN). When trained on a large-scale graph dataset (PCQM4Mv2), our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results compared to Transformer variants with sophisticated graph-specific inductive bias. Our implementation is available at https://github.com/jw9730/tokengt." 31,Quantitative Assessment of DESIS Hyperspectral Data for Plant Biodiversity Estimation in Australia,"Diversity of terrestrial plants plays a key role in maintaining a stable, healthy, and productive ecosystem. Though remote sensing has been seen as a promising and cost-effective proxy for estimating plant diversity, there is a lack of quantitative studies on how confidently plant diversity can be inferred from spaceborne hyperspectral data. In this study, we assessed the ability of hyperspectral data captured by the DLR Earth Sensing Imaging Spectrometer (DESIS) for estimating plant species richness in the Southern Tablelands and Snowy Mountains regions in southeast Australia. Spectral features were firstly extracted from DESIS spectra with principal component analysis, canonical correlation analysis, and partial least squares analysis. Then regression was conducted between the extracted features and plant species richness with ordinary least squares regression, kernel ridge regression, and Gaussian process regression. Results were assessed with the coefficient of correlation ($r$) and Root-Mean-Square Error (RMSE), based on a two-fold cross validation scheme. With the best performing model, $r$ is 0.71 and RMSE is 5.99 for the Southern Tablelands region, while $r$ is 0.62 and RMSE is 6.20 for the Snowy Mountains region. The assessment results reported in this study provide supports for future studies on understanding the relationship between spaceborne hyperspectral measurements and terrestrial plant biodiversity." 32,Multi-Contrast MRI Segmentation Trained on Synthetic Images,"In our comprehensive experiments and evaluations, we show that it is possible to generate multiple contrast (even all synthetically) and use synthetically generated images to train an image segmentation engine. We showed promising segmentation results tested on real multi-contrast MRI scans when delineating muscle, fat, bone and bone marrow, all trained on synthetic images. Based on synthetic image training, our segmentation results were as high as 93.91\%, 94.11\%, 91.63\%, 95.33\%, for muscle, fat, bone, and bone marrow delineation, respectively. Results were not significantly different from the ones obtained when real images were used for segmentation training: 94.68\%, 94.67\%, 95.91\%, and 96.82\%, respectively." 33,Ordinal Regression via Binary Preference vs Simple Regression: Statistical and Experimental Perspectives,"Ordinal regression with anchored reference samples (ORARS) has been proposed for predicting the subjective Mean Opinion Score (MOS) of input stimuli automatically. The ORARS addresses the MOS prediction problem by pairing a test sample with each of the pre-scored anchored reference samples. A trained binary classifier is then used to predict which sample, test or anchor, is better statistically. Posteriors of the binary preference decision are then used to predict the MOS of the test sample. In this paper, rigorous framework, analysis, and experiments to demonstrate that ORARS are advantageous over simple regressions are presented. The contributions of this work are: 1) Show that traditional regression can be reformulated into multiple preference tests to yield a better performance, which is confirmed with simulations experimentally; 2) Generalize ORARS to other regression problems and verify its effectiveness; 3) Provide some prerequisite conditions which can insure proper application of ORARS." 34,Information Compression and Performance Evaluation of Tic-Tac-Toe's Evaluation Function Using Singular Value Decomposition,"We approximated the evaluation function for the game Tic-Tac-Toe by singular value decomposition (SVD) and investigated the effect of approximation accuracy on winning rate. We first prepared the perfect evaluation function of Tic-Tac-Toe and performed low-rank approximation by considering the evaluation function as a ninth-order tensor. We found that we can reduce the amount of information of the evaluation function by 70% without significantly degrading the performance. Approximation accuracy and winning rate were strongly correlated but not perfectly proportional. We also investigated how the decomposition method of the evaluation function affects the performance. We considered two decomposition methods: simple SVD regarding the evaluation function as a matrix and the Tucker decomposition by higher-order SVD (HOSVD). At the same compression ratio, the strategy with the approximated evaluation function obtained by HOSVD exhibited a significantly higher winning rate than that obtained by SVD. These results suggest that SVD can effectively compress board game strategies and an optimal compression method that depends on the game exists." 35,Nonparametric Factor Trajectory Learning for Dynamic Tensor Decomposition,"Tensor decomposition is a fundamental framework to analyze data that can be represented by multi-dimensional arrays. In practice, tensor data is often accompanied by temporal information, namely the time points when the entry values were generated. This information implies abundant, complex temporal variation patterns. However, current methods always assume the factor representations of the entities in each tensor mode are static, and never consider their temporal evolution. To fill this gap, we propose NONparametric FActor Trajectory learning for dynamic tensor decomposition (NONFAT). We place Gaussian process (GP) priors in the frequency domain and conduct inverse Fourier transform via Gauss-Laguerre quadrature to sample the trajectory functions. In this way, we can overcome data sparsity and obtain robust trajectory estimates across long time horizons. Given the trajectory values at specific time points, we use a second-level GP to sample the entry values and to capture the temporal relationship between the entities. For efficient and scalable inference, we leverage the matrix Gaussian structure in the model, introduce a matrix Gaussian posterior, and develop a nested sparse variational learning algorithm. We have shown the advantage of our method in several real-world applications." 36,Distillation to Enhance the Portability of Risk Models Across Institutions with Large Patient Claims Database,"Artificial intelligence, and particularly machine learning (ML), is increasingly developed and deployed to support healthcare in a variety of settings. However, clinical decision support (CDS) technologies based on ML need to be portable if they are to be adopted on a broad scale. In this respect, models developed at one institution should be reusable at another. Yet there are numerous examples of portability failure, particularly due to naive application of ML models. Portability failure can lead to suboptimal care and medical errors, which ultimately could prevent the adoption of ML-based CDS in practice. One specific healthcare challenge that could benefit from enhanced portability is the prediction of 30-day readmission risk. Research to date has shown that deep learning models can be effective at modeling such risk. In this work, we investigate the practicality of model portability through a cross-site evaluation of readmission prediction models. To do so, we apply a recurrent neural network, augmented with self-attention and blended with expert features, to build readmission prediction models for two independent large scale claims datasets. We further present a novel transfer learning technique that adapts the well-known method of born-again network (BAN) training. Our experiments show that direct application of ML models trained at one institution and tested at another institution perform worse than models trained and tested at the same institution. We further show that the transfer learning approach based on the BAN produces models that are better than those trained on just a single institution's data. Notably, this improvement is consistent across both sites and occurs after a single retraining, which illustrates the potential for a cheap and general model transfer mechanism of readmission risk prediction." 37,Transformers are Adaptable Task Planners,"Every home is different, and every person likes things done in their particular way. Therefore, home robots of the future need to both reason about the sequential nature of day-to-day tasks and generalize to user's preferences. To this end, we propose a Transformer Task Planner(TTP) that learns high-level actions from demonstrations by leveraging object attribute-based representations. TTP can be pre-trained on multiple preferences and shows generalization to unseen preferences using a single demonstration as a prompt in a simulated dishwasher loading task. Further, we demonstrate real-world dish rearrangement using TTP with a Franka Panda robotic arm, prompted using a single human demonstration." 38,PAC Prediction Sets for Meta-Learning,"Uncertainty quantification is a key component of machine learning models targeted at safety-critical systems such as in healthcare or autonomous vehicles. We study this problem in the context of meta learning, where the goal is to quickly adapt a predictor to new tasks. In particular, we propose a novel algorithm to construct \emph{PAC prediction sets}, which capture uncertainty via sets of labels, that can be adapted to new tasks with only a few training examples. These prediction sets satisfy an extension of the typical PAC guarantee to the meta learning setting; in particular, the PAC guarantee holds with high probability over future tasks. We demonstrate the efficacy of our approach on four datasets across three application domains: mini-ImageNet and CIFAR10-C in the visual domain, FewRel in the language domain, and the CDC Heart Dataset in the medical domain. In particular, our prediction sets satisfy the PAC guarantee while having smaller size compared to other baselines that also satisfy this guarantee." 39,EEPT: Early Discovery of Emerging Entities in Twitter with Semantic Similarity,"Some events which happen in the future could be important for companies, governments, and even our personal life. Prediction of these events before their establishment is helpful for efficient decision-making. We call such events emerging entities. They have not taken place yet, and there is no information about them in KB. However, some clues exist in different areas, especially on social media. Thus, retrieving these type of entities are possible. This paper proposes a method of early discovery of emerging entities. We use semantic clustering of short messages. To evaluate the performance of our proposal, we devise and utilize a performance evaluation metric. The results show that our proposed method finds those emerging entities of which Twitter trends are not always capable." 40,GAMa: Cross-view Video Geo-localization,"The existing work in cross-view geo-localization is based on images where a ground panorama is matched to an aerial image. In this work, we focus on ground videos instead of images which provides additional contextual cues which are important for this task. There are no existing datasets for this problem, therefore we propose GAMa dataset, a large-scale dataset with ground videos and corresponding aerial images. We also propose a novel approach to solve this problem. At clip-level, a short video clip is matched with corresponding aerial image and is later used to get video-level geo-localization of a long video. Moreover, we propose a hierarchical approach to further improve the clip-level geolocalization. It is a challenging dataset, unaligned and limited field of view, and our proposed method achieves a Top-1 recall rate of 19.4% and 45.1% @1.0mile. Code and dataset are available at following link: https://github.com/svyas23/GAMa." 41,Composite FORCE learning of chaotic echo state networks for time-series prediction,"Echo state network (ESN), a kind of recurrent neural networks, consists of a fixed reservoir in which neurons are connected randomly and recursively and obtains the desired output only by training output connection weights. First-order reduced and controlled error (FORCE) learning is an online supervised training approach that can change the chaotic activity of ESNs into specified activity patterns. This paper proposes a composite FORCE learning method based on recursive least squares to train ESNs whose initial activity is spontaneously chaotic, where a composite learning technique featured by dynamic regressor extension and memory data exploitation is applied to enhance parameter convergence. The proposed method is applied to a benchmark problem about predicting chaotic time series generated by the Mackey-Glass system, and numerical results have shown that it significantly improves learning and prediction performances compared with existing methods." 42,BioTABQA: Instruction Learning for Biomedical Table Question Answering,"Table Question Answering (TQA) is an important but under-explored task. Most of the existing QA datasets are in unstructured text format and only few of them use tables as the context. To the best of our knowledge, none of TQA datasets exist in the biomedical domain where tables are frequently used to present information. In this paper, we first curate a table question answering dataset, BioTABQA, using 22 templates and the context from a biomedical textbook on differential diagnosis. BioTABQA can not only be used to teach a model how to answer questions from tables but also evaluate how a model generalizes to unseen questions, an important scenario for biomedical applications. To achieve the generalization evaluation, we divide the templates into 17 training and 5 cross-task evaluations. Then, we develop two baselines using single and multi-tasks learning on BioTABQA. Furthermore, we explore instructional learning, a recent technique showing impressive generalizing performance. Experimental results show that our instruction-tuned model outperforms single and multi-task baselines on an average by ~23% and ~6% across various evaluation settings, and more importantly, instruction-tuned model outperforms baselines by ~5% on cross-tasks." 43,A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation,"In this paper, we study the partial multi-label (PML) image classification problem, where each image is annotated with a candidate label set consists of multiple relevant labels and other noisy labels. Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions, which unfortunately is unavailable in many real tasks. Furthermore, because the objective function for disambiguation is usually elaborately designed on the whole training set, it can be hardly optimized in a deep model with SGD on mini-batches. In this paper, for the first time we propose a deep model for PML to enhance the representation and discrimination ability. On one hand, we propose a novel curriculum based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes. On the other hand, a consistency regularization is introduced for model retraining to balance fitting identified easy labels and exploiting potential relevant labels. Extensive experimental results on the commonly used benchmark datasets show the proposed method significantly outperforms the SOTA methods." 44,Careful seeding for the k-medoids algorithm with incremental k++ cluster construction,"The k-medoids algorithm is a popular variant of the k-means algorithm and widely used in pattern recognition and machine learning. A main drawback of the k-medoids algorithm is that it can be trapped in local optima. An improved k-medoids algorithm (INCKM) was recently proposed to overcome this drawback, based on constructing a candidate medoids subset with a parameter choosing procedure, but it may fail when dealing with imbalanced datasets. In this paper, we propose a novel incremental k-medoids algorithm (INCKPP) which dynamically increases the number of clusters from 2 to k through a nonparametric and stochastic k-means++ search procedure. Our algorithm can overcome the parameter selection problem in the improved k-medoids algorithm, improve the clustering performance, and deal with imbalanced datasets very well. But our algorithm has a weakness in computation efficiency. To address this issue, we propose a fast INCKPP algorithm (called INCKPP$_{sample}$) which preserves the computational efficiency of the simple and fast k-medoids algorithm with an improved clustering performance. The proposed algorithm is compared with three state-of-the-art algorithms: the improved k-medoids algorithm (INCKM), the simple and fast k-medoids algorithm (FKM) and the k-means++ algorithm (KPP). Extensive experiments on both synthetic and real world datasets including imbalanced datasets illustrate the effectiveness of the proposed algorithm." 45,"Ensemble feature selection with clustering for analysis of high-dimensional, correlated clinical data in the search for Alzheimer's disease biomarkers","Healthcare datasets often contain groups of highly correlated features, such as features from the same biological system. When feature selection is applied to these datasets to identify the most important features, the biases inherent in some multivariate feature selectors due to correlated features make it difficult for these methods to distinguish between the important and irrelevant features and the results of the feature selection process can be unstable. Feature selection ensembles, which aggregate the results of multiple individual base feature selectors, have been investigated as a means of stabilising feature selection results, but do not address the problem of correlated features. We present a novel framework to create feature selection ensembles from multivariate feature selectors while taking into account the biases produced by groups of correlated features, using agglomerative hierarchical clustering in a pre-processing step. These methods were applied to two real-world datasets from studies of Alzheimer's disease (AD), a progressive neurodegenerative disease that has no cure and is not yet fully understood. Our results show a marked improvement in the stability of features selected over the models without clustering, and the features selected by these models are in keeping with the findings in the AD literature." 46,Text Enriched Sparse Hyperbolic Graph Convolutional Networks,"Heterogeneous networks, which connect informative nodes containing text with different edge types, are routinely used to store and process information in various real-world applications. Graph Neural Networks (GNNs) and their hyperbolic variants provide a promising approach to encode such networks in a low-dimensional latent space through neighborhood aggregation and hierarchical feature extraction, respectively. However, these approaches typically ignore metapath structures and the available semantic information. Furthermore, these approaches are sensitive to the noise present in the training data. To tackle these limitations, in this paper, we propose Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN) to capture the graph's metapath structures using semantic signals and further improve prediction in large heterogeneous graphs. In TESH-GCN, we extract semantic node information, which successively acts as a connection signal to extract relevant nodes' local neighborhood and graph-level metapath features from the sparse adjacency tensor in a reformulated hyperbolic graph convolution layer. These extracted features in conjunction with semantic features from the language model (for robustness) are used for the final downstream task. Experiments on various heterogeneous graph datasets show that our model outperforms the current state-of-the-art approaches by a large margin on the task of link prediction. We also report a reduction in both the training time and model parameters compared to the existing hyperbolic approaches through a reformulated hyperbolic graph convolution. Furthermore, we illustrate the robustness of our model by experimenting with different levels of simulated noise in both the graph structure and text, and also, present a mechanism to explain TESH-GCN's prediction by analyzing the extracted metapaths." 47,Linear Jamming Bandits: Sample-Efficient Learning for Non-Coherent Digital Jamming,"It has been shown (Amuru et al. 2015) that online learning algorithms can be effectively used to select optimal physical layer parameters for jamming against digital modulation schemes without a priori knowledge of the victim's transmission strategy. However, this learning problem involves solving a multi-armed bandit problem with a mixed action space that can grow very large. As a result, convergence to the optimal jamming strategy can be slow, especially when the victim and jammer's symbols are not perfectly synchronized. In this work, we remedy the sample efficiency issues by introducing a linear bandit algorithm that accounts for inherent similarities between actions. Further, we propose context features which are well-suited for the statistical features of the non-coherent jamming problem and demonstrate significantly improved convergence behavior compared to the prior art. Additionally, we show how prior knowledge about the victim's transmissions can be seamlessly integrated into the learning framework. We finally discuss limitations in the asymptotic regime." 48,Instance-optimal PAC Algorithms for Contextual Bandits,"In the stochastic contextual bandit setting, regret-minimizing algorithms have been extensively researched, but their instance-minimizing best-arm identification counterparts remain seldom studied. In this work, we focus on the stochastic bandit problem in the $(\epsilon,\delta)$-$\textit{PAC}$ setting: given a policy class $\Pi$ the goal of the learner is to return a policy $\pi\in \Pi$ whose expected reward is within $\epsilon$ of the optimal policy with probability greater than $1-\delta$. We characterize the first $\textit{instance-dependent}$ PAC sample complexity of contextual bandits through a quantity $\rho_{\Pi}$, and provide matching upper and lower bounds in terms of $\rho_{\Pi}$ for the agnostic and linear contextual best-arm identification settings. We show that no algorithm can be simultaneously minimax-optimal for regret minimization and instance-dependent PAC for best-arm identification. Our main result is a new instance-optimal and computationally efficient algorithm that relies on a polynomial number of calls to an argmax oracle." 49,Generalization to translation shifts: a study in architectures and augmentations,"We provide a detailed evaluation of various image classification architectures (convolutional, vision transformer, and fully connected MLP networks) and data augmentation techniques towards generalization to large spacial translation shifts. We make the following observations: (a) In the absence of data augmentation, all architectures, including convolutional networks suffer degradation in performance when evaluated on translated test distributions. Understandably, both the in-distribution accuracy as well as degradation to shifts is significantly worse for non-convolutional architectures. (b) Across all architectures, even a minimal augmentation of $4$ pixel random crop improves the robustness of performance to much larger magnitude shifts of up to $1/4$ of image size ($8$-$16$ pixels) in the test data -- suggesting a form of meta generalization from augmentation. For non-convolutional architectures, while the absolute accuracy is still low, we see dramatic improvements in robustness to large translation shifts. (c) With sufficiently advanced augmentation ($4$ pixel crop+RandAugmentation+Erasing+MixUp) pipeline all architectures can be trained to have competitive performance, both in terms of in-distribution accuracy as well as generalization to large translation shifts." 50,Many-body localized hidden Born machine,"Born Machines are quantum-inspired generative models that leverage the probabilistic nature of quantum states. Here, we present a new architecture called many-body localized (MBL) hidden Born machine that uses both MBL dynamics and hidden units as learning resources. We theoretically prove that MBL Born machines possess more expressive power than classical models, and the introduction of hidden units boosts its learning power. We numerically demonstrate that the MBL hidden Born machine is capable of learning a toy dataset consisting of patterns of MNIST handwritten digits, quantum data obtained from quantum many-body states, and non-local parity data. In order to understand the mechanism behind learning, we track physical quantities such as von Neumann entanglement entropy and Hamming distance during learning, and compare the learning outcomes in the MBL, thermal, and Anderson localized phases. We show that the superior learning power of the MBL phase relies importantly on both localization and interaction. Our architecture and algorithm provide novel strategies of utilizing quantum many-body systems as learning resources, and reveal a powerful connection between disorder, interaction, and learning in quantum systems." 51,Rethinking the Importance of Sampling in Physics-informed Neural Networks,"Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving partial differential equations (PDEs) in a variety of domains. While previous research in PINNs has mainly focused on constructing and balancing loss functions during training to avoid poor minima, the effect of sampling collocation points on the performance of PINNs has largely been overlooked. In this work, we find that the performance of PINNs can vary significantly with different sampling strategies, and using a fixed set of collocation points can be quite detrimental to the convergence of PINNs to the correct solution. In particular, (1) we hypothesize that training of PINNs rely on successful ""propagation"" of solution from initial and/or boundary condition points to interior points, and PINNs with poor sampling strategies can get stuck at trivial solutions if there are \textit{propagation failures}. (2) We demonstrate that propagation failures are characterized by highly imbalanced PDE residual fields where very high residuals are observed over very narrow regions. (3) To mitigate propagation failure, we propose a novel \textit{evolutionary sampling} (Evo) method that can incrementally accumulate collocation points in regions of high PDE residuals. We further provide an extension of Evo to respect the principle of causality while solving time-dependent PDEs. We empirically demonstrate the efficacy and efficiency of our proposed methods in a variety of PDE problems." 52,Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms,"The advent of federated learning has facilitated large-scale data exchange amongst machine learning models while maintaining privacy. Despite its brief history, federated learning is rapidly evolving to make wider use more practical. One of the most significant advancements in this domain is the incorporation of transfer learning into federated learning, which overcomes fundamental constraints of primary federated learning, particularly in terms of security. This chapter performs a comprehensive survey on the intersection of federated and transfer learning from a security point of view. The main goal of this study is to uncover potential vulnerabilities and defense mechanisms that might compromise the privacy and performance of systems that use federated and transfer learning." 53,Multi-Label Retinal Disease Classification using Transformers,"Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field." 54,Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder,"Graph theoretical analyses have become standard tools in modeling functional and anatomical connectivity in the brain. With the advent of connectomics, the primary graphs or networks of interest are structural connectome (derived from DTI tractography) and functional connectome (derived from resting-state fMRI). However, most published connectome studies have focused on either structural or functional connectome, yet complementary information between them, when available in the same dataset, can be jointly leveraged to improve our understanding of the brain. To this end, we propose a function-constrained structural graph variational autoencoder (FCS-GVAE) capable of incorporating information from both functional and structural connectome in an unsupervised fashion. This leads to a joint low-dimensional embedding that establishes a unified spatial coordinate system for comparing across different subjects. We evaluate our approach using the publicly available OASIS-3 Alzheimer's disease (AD) dataset and show that a variational formulation is necessary to optimally encode functional brain dynamics. Further, the proposed joint embedding approach can more accurately distinguish different patient sub-populations than approaches that do not use complementary connectome information." 55,TractoFormer: A Novel Fiber-level Whole Brain Tractography Analysis Framework Using Spectral Embedding and Vision Transformers,"Diffusion MRI tractography is an advanced imaging technique for quantitative mapping of the brain's structural connectivity. Whole brain tractography (WBT) data contains over hundreds of thousands of individual fiber streamlines (estimated brain connections), and this data is usually parcellated to create compact representations for data analysis applications such as disease classification. In this paper, we propose a novel parcellation-free WBT analysis framework, TractoFormer, that leverages tractography information at the level of individual fiber streamlines and provides a natural mechanism for interpretation of results using the attention mechanism of transformers. TractoFormer includes two main contributions. First, we propose a novel and simple 2D image representation of WBT, TractoEmbedding, to encode 3D fiber spatial relationships and any feature of interest that can be computed from individual fibers (such as FA or MD). Second, we design a network based on vision transformers (ViTs) that includes: 1) data augmentation to overcome model overfitting on small datasets, 2) identification of discriminative fibers for interpretation of results, and 3) ensemble learning to leverage fiber information from different brain regions. In a synthetic data experiment, TractoFormer successfully identifies discriminative fibers with simulated group differences. In a disease classification experiment comparing several methods, TractoFormer achieves the highest accuracy in classifying schizophrenia vs control. Discriminative fibers are identified in left hemispheric frontal and parietal superficial white matter regions, which have previously been shown to be affected in schizophrenia patients." 56,A Tutorial on the Spectral Theory of Markov Chains,"Markov chains are a class of probabilistic models that have achieved widespread application in the quantitative sciences. This is in part due to their versatility, but is compounded by the ease with which they can be probed analytically. This tutorial provides an in-depth introduction to Markov chains, and explores their connection to graphs and random walks. We utilize tools from linear algebra and graph theory to describe the transition matrices of different types of Markov chains, with a particular focus on exploring properties of the eigenvalues and eigenvectors corresponding to these matrices. The results presented are relevant to a number of methods in machine learning and data mining, which we describe at various stages. Rather than being a novel academic study in its own right, this text presents a collection of known results, together with some new concepts. Moreover, the tutorial focuses on offering intuition to readers rather than formal understanding, and only assumes basic exposure to concepts from linear algebra and probability theory. It is therefore accessible to students and researchers from a wide variety of disciplines." 57,Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs,"Cloud datacenters are exponentially growing both in numbers and size. This increase results in a network activity surge that warrants better congestion avoidance. The resulting challenge is two-fold: (i) designing algorithms that can be custom-tuned to the complex traffic patterns of a given datacenter; but, at the same time (ii) run on low-level hardware with the required low latency of effective Congestion Control (CC). In this work, we present a Reinforcement Learning (RL) based CC solution that learns from certain traffic scenarios and successfully generalizes to others. We then distill the RL neural network policy into binary decision trees to achieve the desired $\mu$sec decision latency required for real-time inference with RDMA. We deploy the distilled policy on NVIDIA NICs in a real network and demonstrate state-of-the-art performance, balancing all tested metrics simultaneously: bandwidth, latency, fairness, and packet drops." 58,Cooperative Distribution Alignment via JSD Upper Bound,"Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution given only samples from each distribution. This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning. Most prior works use adversarial learning (i.e., min-max optimization), which can be challenging to optimize and evaluate. A few recent works explore non-adversarial flow-based (i.e., invertible) approaches, but they lack a unified perspective and are limited in efficiently aligning multiple distributions. Therefore, we propose to unify and generalize previous flow-based approaches under a single non-adversarial framework, which we prove is equivalent to minimizing an upper bound on the Jensen-Shannon Divergence (JSD). Importantly, our problem reduces to a min-min, i.e., cooperative, problem and can provide a natural evaluation metric for unsupervised distribution alignment. We present empirical results of our framework on both simulated and real-world datasets to demonstrate the benefits of our approach." 59,Towards Realistic Semi-Supervised Learning,"Deep learning is pushing the state-of-the-art in many computer vision applications. However, it relies on large annotated data repositories, and capturing the unconstrained nature of the real-world data is yet to be solved. Semi-supervised learning (SSL) complements the annotated training data with a large corpus of unlabeled data to reduce annotation cost. The standard SSL approach assumes unlabeled data are from the same distribution as annotated data. Recently, ORCA [9] introduce a more realistic SSL problem, called open-world SSL, by assuming that the unannotated data might contain samples from unknown classes. This work proposes a novel approach to tackle SSL in open-world setting, where we simultaneously learn to classify known and unknown classes. At the core of our method, we utilize sample uncertainty and incorporate prior knowledge about class distribution to generate reliable pseudo-labels for unlabeled data belonging to both known and unknown classes. Our extensive experimentation showcases the effectiveness of our approach on several benchmark datasets, where it substantially outperforms the existing state-of-the-art on seven diverse datasets including CIFAR-100 (17.6%), ImageNet-100 (5.7%), and Tiny ImageNet (9.9%)." 60,Ultra-Low-Bitrate Speech Coding with Pretrained Transformers,"Speech coding facilitates the transmission of speech over low-bandwidth networks with minimal distortion. Neural-network based speech codecs have recently demonstrated significant improvements in quality over traditional approaches. While this new generation of codecs is capable of synthesizing high-fidelity speech, their use of recurrent or convolutional layers often restricts their effective receptive fields, which prevents them from compressing speech efficiently. We propose to further reduce the bitrate of neural speech codecs through the use of pretrained Transformers, capable of exploiting long-range dependencies in the input signal due to their inductive bias. As such, we use a pretrained Transformer in tandem with a convolutional encoder, which is trained end-to-end with a quantizer and a generative adversarial net decoder. Our numerical experiments show that supplementing the convolutional encoder of a neural speech codec with Transformer speech embeddings yields a speech codec with a bitrate of $600\,\mathrm{bps}$ that outperforms the original neural speech codec in synthesized speech quality when trained at the same bitrate. Subjective human evaluations suggest that the quality of the resulting codec is comparable or better than that of conventional codecs operating at three to four times the rate." 61,OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning,"Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning. Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data. One common assumption in most SSL methods is that the labeled and unlabeled data are from the same underlying data distribution. However, this is hardly the case in many real-world scenarios, which limits their applicability. In this work, instead, we attempt to solve the recently proposed challenging open-world SSL problem that does not make such an assumption. In the open-world SSL problem, the objective is to recognize samples of known classes, and simultaneously detect and cluster samples belonging to novel classes present in unlabeled data. This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes. Using a bi-level optimization rule this pairwise similarity loss exploits the information available in the labeled set to implicitly cluster novel class samples, while simultaneously recognizing samples from known classes. After discovering novel classes, OpenLDN transforms the open-world SSL problem into a standard SSL problem to achieve additional performance gains using existing SSL methods. Our extensive experiments demonstrate that OpenLDN outperforms the current state-of-the-art methods on multiple popular classification benchmarks while providing a better accuracy/training time trade-off." 62,Putting the Con in Context: Identifying Deceptive Actors in the Game of Mafia,"While neural networks demonstrate a remarkable ability to model linguistic content, capturing contextual information related to a speaker's conversational role is an open area of research. In this work, we analyze the effect of speaker role on language use through the game of Mafia, in which participants are assigned either an honest or a deceptive role. In addition to building a framework to collect a dataset of Mafia game records, we demonstrate that there are differences in the language produced by players with different roles. We confirm that classification models are able to rank deceptive players as more suspicious than honest ones based only on their use of language. Furthermore, we show that training models on two auxiliary tasks outperforms a standard BERT-based text classification approach. We also present methods for using our trained models to identify features that distinguish between player roles, which could be used to assist players during the Mafia game." 63,Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning,"Successful deployment of multi-agent reinforcement learning often requires agents to adapt their behaviour. In this work, we discuss the problem of teamwork adaptation in which a team of agents needs to adapt their policies to solve novel tasks with limited fine-tuning. Motivated by the intuition that agents need to be able to identify and distinguish tasks in order to adapt their behaviour to the current task, we propose to learn multi-agent task embeddings (MATE). These task embeddings are trained using an encoder-decoder architecture optimised for reconstruction of the transition and reward functions which uniquely identify tasks. We show that a team of agents is able to adapt to novel tasks when provided with task embeddings. We propose three MATE training paradigms: independent MATE, centralised MATE, and mixed MATE which vary in the information used for the task encoding. We show that the embeddings learned by MATE identify tasks and provide useful information which agents leverage during adaptation to novel tasks." 64,State-Augmented Learnable Algorithms for Resource Management in Wireless Networks,"We consider resource management problems in multi-user wireless networks, which can be cast as optimizing a network-wide utility function, subject to constraints on the long-term average performance of users across the network. We propose a state-augmented algorithm for solving the aforementioned radio resource management (RRM) problems, where, alongside the instantaneous network state, the RRM policy takes as input the set of dual variables corresponding to the constraints, which evolve depending on how much the constraints are violated during execution. We theoretically show that the proposed state-augmented algorithm leads to feasible and near-optimal RRM decisions. Moreover, focusing on the problem of wireless power control using graph neural network (GNN) parameterizations, we demonstrate the superiority of the proposed RRM algorithm over baseline methods across a suite of numerical experiments." 65,Guiding Machine Perception with Psychophysics,"{G}{ustav} Fechner's 1860 delineation of psychophysics, the measurement of sensation in relation to its stimulus, is widely considered to be the advent of modern psychological science. In psychophysics, a researcher parametrically varies some aspects of a stimulus, and measures the resulting changes in a human subject's experience of that stimulus; doing so gives insight to the determining relationship between a sensation and the physical input that evoked it. This approach is used heavily in perceptual domains, including signal detection, threshold measurement, and ideal observer analysis. Scientific fields like vision science have always leaned heavily on the methods and procedures of psychophysics, but there is now growing appreciation of them by machine learning researchers, sparked by widening overlap between biological and artificial perception \cite{rojas2011automatic, scheirer2014perceptual,escalera2014chalearn,zhang2018agil, grieggs2021measuring}. Machine perception that is guided by behavioral measurements, as opposed to guidance restricted to arbitrarily assigned human labels, has significant potential to fuel further progress in artificial intelligence." 66,Improving Trustworthiness of AI Disease Severity Rating in Medical Imaging with Ordinal Conformal Prediction Sets,"The regulatory approval and broad clinical deployment of medical AI have been hampered by the perception that deep learning models fail in unpredictable and possibly catastrophic ways. A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results. Recent developments in distribution-free uncertainty quantification present practical solutions for these issues by providing reliability guarantees for black-box models on arbitrary data distributions as formally valid finite-sample prediction intervals. Our work applies these new uncertainty quantification methods -- specifically conformal prediction -- to a deep-learning model for grading the severity of spinal stenosis in lumbar spine MRI. We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity within a user-defined probability (confidence interval). On a dataset of 409 MRI exams processed by the deep-learning model, the conformal method provides tight coverage with small prediction set sizes. Furthermore, we explore the potential clinical applicability of flagging cases with high uncertainty predictions (large prediction sets) by quantifying an increase in the prevalence of significant imaging abnormalities (e.g. motion artifacts, metallic artifacts, and tumors) that could degrade confidence in predictive performance when compared to a random sample of cases." 67,Offline RL Policies Should be Trained to be Adaptive,"Offline RL algorithms must account for the fact that the dataset they are provided may leave many facets of the environment unknown. The most common way to approach this challenge is to employ pessimistic or conservative methods, which avoid behaviors that are too dissimilar from those in the training dataset. However, relying exclusively on conservatism has drawbacks: performance is sensitive to the exact degree of conservatism, and conservative objectives can recover highly suboptimal policies. In this work, we propose that offline RL methods should instead be adaptive in the presence of uncertainty. We show that acting optimally in offline RL in a Bayesian sense involves solving an implicit POMDP. As a result, optimal policies for offline RL must be adaptive, depending not just on the current state but rather all the transitions seen so far during evaluation.We present a model-free algorithm for approximating this optimal adaptive policy, and demonstrate the efficacy of learning such adaptive policies in offline RL benchmarks." 68,Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue,"We propose a data-driven framework to increase the computational efficiency of the explicit finite element method in the structural analysis of soft tissue. An encoder-decoder long short-term memory deep neural network is trained based on the data produced by an explicit, distributed finite element solver. We leverage this network to predict synchronized displacements at shared nodes, minimizing the amount of communication between processors. We perform extensive numerical experiments to quantify the accuracy and stability of the proposed synchronization-avoiding algorithm." 69,CEN : Cooperatively Evolving Networks,"A finitely repeated game is a dynamic game in which a simultaneous game is played finitely many times. GANs contain two competing modules: the generator module is trained to generate new examples, and the discriminator module is trained to discriminate real examples from generated examples. Training procedure of GAN is a finitely repeated game in which each module tries to optimize it's error at every instance of simultaneous game in a non-cooperative manner. We observed that we can achieve more accurate training, if at each instance of simultaneous game the stronger module cooperate with weaker module and only weaker module only optimize it's error." 70,Accelerating Hamiltonian Monte Carlo via Chebyshev Integration Time,"Hamiltonian Monte Carlo (HMC) is a popular method in sampling. While there are quite a few works of studying this method on various aspects, an interesting question is how to choose its integration time to achieve acceleration. In this work, we consider accelerating the process of sampling from a distribution $\pi(x) \propto \exp(-f(x))$ via HMC via time-varying integration time. When the potential $f$ is $L$-smooth and $m$-strongly convex, i.e.\ for sampling from a log-smooth and strongly log-concave target distribution $\pi$, it is known that under a constant integration time, the number of iterations that ideal HMC takes to get an $\epsilon$ Wasserstein-2 distance to the target $\pi$ is $O( \kappa \log \frac{1}{\epsilon} )$, where $\kappa := \frac{L}{m}$ is the condition number. We propose a scheme of time-varying integration time based on the roots of Chebyshev polynomials. We show that in the case of quadratic potential $f$, i.e., when the target $\pi$ is a Gaussian distribution, ideal HMC with this choice of integration time only takes $O( \sqrt{\kappa} \log \frac{1}{\epsilon} )$ number of iterations to reach Wasserstein-2 distance less than $\epsilon$; this improvement on the dependence on condition number is akin to acceleration in optimization. The design and analysis of HMC with the proposed integration time is built on the tools of Chebyshev polynomials. Experiments find the advantage of adopting our scheme of time-varying integration time even for sampling from distributions with smooth strongly convex potentials that are not quadratic." 71,NeuralPassthrough: Learned Real-Time View Synthesis for VR,"Virtual reality (VR) headsets provide an immersive, stereoscopic visual experience, but at the cost of blocking users from directly observing their physical environment. Passthrough techniques are intended to address this limitation by leveraging outward-facing cameras to reconstruct the images that would otherwise be seen by the user without the headset. This is inherently a real-time view synthesis challenge, since passthrough cameras cannot be physically co-located with the eyes. Existing passthrough techniques suffer from distracting reconstruction artifacts, largely due to the lack of accurate depth information (especially for near-field and disoccluded objects), and also exhibit limited image quality (e.g., being low resolution and monochromatic). In this paper, we propose the first learned passthrough method and assess its performance using a custom VR headset that contains a stereo pair of RGB cameras. Through both simulations and experiments, we demonstrate that our learned passthrough method delivers superior image quality compared to state-of-the-art methods, while meeting strict VR requirements for real-time, perspective-correct stereoscopic view synthesis over a wide field of view for desktop-connected headsets." 72,"CLEAR: Improving Vision-Language Navigation with Cross-Lingual, Environment-Agnostic Representations","Vision-and-Language Navigation (VLN) tasks require an agent to navigate through the environment based on language instructions. In this paper, we aim to solve two key challenges in this task: utilizing multilingual instructions for improved instruction-path grounding and navigating through new environments that are unseen during training. To address these challenges, we propose CLEAR: Cross-Lingual and Environment-Agnostic Representations. First, our agent learns a shared and visually-aligned cross-lingual language representation for the three languages (English, Hindi and Telugu) in the Room-Across-Room dataset. Our language representation learning is guided by text pairs that are aligned by visual information. Second, our agent learns an environment-agnostic visual representation by maximizing the similarity between semantically-aligned image pairs (with constraints on object-matching) from different environments. Our environment agnostic visual representation can mitigate the environment bias induced by low-level visual information. Empirically, on the Room-Across-Room dataset, we show that our multilingual agent gets large improvements in all metrics over the strong baseline model when generalizing to unseen environments with the cross-lingual language representation and the environment-agnostic visual representation. Furthermore, we show that our learned language and visual representations can be successfully transferred to the Room-to-Room and Cooperative Vision-and-Dialogue Navigation task, and present detailed qualitative and quantitative generalization and grounding analysis. Our code is available at https://github.com/jialuli-luka/CLEAR" 73,An Approximation Method for Fitted Random Forests,"Random Forests (RF) is a popular machine learning method for classification and regression problems. It involves a bagging application to decision tree models. One of the primary advantages of the Random Forests model is the reduction in the variance of the forecast. In large scale applications of the model with millions of data points and hundreds of features, the size of the fitted objects can get very large and reach the limits on the available space in production setups, depending on the number and depth of the trees. This could be especially challenging when trained models need to be downloaded on-demand to small devices with limited memory. There is a need to approximate the trained RF models to significantly reduce the model size without losing too much of prediction accuracy. In this project we study methods that approximate each fitted tree in the Random Forests model using the multinomial allocation of the data points to the leafs. Specifically, we begin by studying whether fitting a multinomial logistic regression (and subsequently, a generalized additive model (GAM) extension) to the output of each tree helps reduce the size while preserving the prediction quality." 74,ST-CoNAL: Consistency-Based Acquisition Criterion Using Temporal Self-Ensemble for Active Learning,"Modern deep learning has achieved great success in various fields. However, it requires the labeling of huge amounts of data, which is expensive and labor-intensive. Active learning (AL), which identifies the most informative samples to be labeled, is becoming increasingly important to maximize the efficiency of the training process. The existing AL methods mostly use only a single final fixed model for acquiring the samples to be labeled. This strategy may not be good enough in that the structural uncertainty of a model for given training data is not considered to acquire the samples. In this study, we propose a novel acquisition criterion based on temporal self-ensemble generated by conventional stochastic gradient descent (SGD) optimization. These self-ensemble models are obtained by capturing the intermediate network weights obtained through SGD iterations. Our acquisition function relies on a consistency measure between the student and teacher models. The student models are given a fixed number of temporal self-ensemble models, and the teacher model is constructed by averaging the weights of the student models. Using the proposed acquisition criterion, we present an AL algorithm, namely student-teacher consistency-based AL (ST-CoNAL). Experiments conducted for image classification tasks on CIFAR-10, CIFAR-100, Caltech-256, and Tiny ImageNet datasets demonstrate that the proposed ST-CoNAL achieves significantly better performance than the existing acquisition methods. Furthermore, extensive experiments show the robustness and effectiveness of our methods." 75,DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation for Long-Tailed Visual Recognition,"There is a growing interest in the challenging visual perception task of learning from long-tailed class distributions. The extreme class imbalance in the training dataset biases the model to prefer to recognize majority-class data over minority-class data. Recently, the dual branch network (DBN) framework has been proposed, where two branch networks; the conventional branch and the re-balancing branch were employed to improve the accuracy of long-tailed visual recognition. The re-balancing branch uses a reverse sampler to generate class-balanced training samples to mitigate bias due to class imbalance. Although this strategy has been quite successful in handling bias, using a reversed sampler for training can degrade the representation learning performance. To alleviate this issue, the conventional method used a carefully designed cumulative learning strategy, in which the influence of the re-balancing branch gradually increases throughout the entire training phase. In this study, we aim to develop a simple yet effective method to improve the performance of DBN without cumulative learning that is difficult to optimize. We devise a simple data augmentation method termed bilateral mixup augmentation, which combines one sample from the uniform sampler with another sample from the reversed sampler to produce a training sample. Furthermore, we present class-conditional temperature scaling that mitigates bias toward the majority class for the proposed DBN architecture. Our experiments performed on widely used long-tailed visual recognition datasets show that bilateral mixup augmentation is quite effective in improving the representation learning performance of DBNs, and that the proposed method achieves state-of-the-art performance for some categories." 76,Probability density estimation for sets of large graphs with respect to spectral information using stochastic block models,"For graph-valued data sampled iid from a distribution $\mu$, the sample moments are computed with respect to a choice of metric. In this work, we equip the set of graphs with the pseudo-metric defined by the $\ell_2$ norm between the eigenvalues of the respective adjacency matrices. We use this pseudo metric and the respective sample moments of a graph valued data set to infer the parameters of a distribution $\hat{\mu}$ and interpret this distribution as an approximation of $\mu$. We verify experimentally that complex distributions $\mu$ can be approximated well taking this approach." 77,Automatic inspection of cultural monuments using deep and tensor-based learning on hyperspectral imagery,"In Cultural Heritage, hyperspectral images are commonly used since they provide extended information regarding the optical properties of materials. Thus, the processing of such high-dimensional data becomes challenging from the perspective of machine learning techniques to be applied. In this paper, we propose a Rank-$R$ tensor-based learning model to identify and classify material defects on Cultural Heritage monuments. In contrast to conventional deep learning approaches, the proposed high order tensor-based learning demonstrates greater accuracy and robustness against overfitting. Experimental results on real-world data from UNESCO protected areas indicate the superiority of the proposed scheme compared to conventional deep learning models." 78,UniCR: Universally Approximated Certified Robustness via Randomized Smoothing,"We study certified robustness of machine learning classifiers against adversarial perturbations. In particular, we propose the first universally approximated certified robustness (UniCR) framework, which can approximate the robustness certification of any input on any classifier against any $\ell_p$ perturbations with noise generated by any continuous probability distribution. Compared with the state-of-the-art certified defenses, UniCR provides many significant benefits: (1) the first universal robustness certification framework for the above 4 'any's; (2) automatic robustness certification that avoids case-by-case analysis, (3) tightness validation of certified robustness, and (4) optimality validation of noise distributions used by randomized smoothing. We conduct extensive experiments to validate the above benefits of UniCR and the advantages of UniCR over state-of-the-art certified defenses against $\ell_p$ perturbations." 79,Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast MRI,"Fast MRI aims to reconstruct a high fidelity image from partially observed measurements. Exuberant development in fast MRI using deep learning has been witnessed recently. Meanwhile, novel deep learning paradigms, e.g., Transformer based models, are fast-growing in natural language processing and promptly developed for computer vision and medical image analysis due to their prominent performance. Nevertheless, due to the complexity of the Transformer, the application of fast MRI may not be straightforward. The main obstacle is the computational cost of the self-attention layer, which is the core part of the Transformer, can be expensive for high resolution MRI inputs. In this study, we propose a new Transformer architecture for solving fast MRI that coupled Shifted Windows Transformer with U-Net to reduce the network complexity. We incorporate deformable attention to construe the explainability of our reconstruction model. We empirically demonstrate that our method achieves consistently superior performance on the fast MRI task. Besides, compared to state-of-the-art Transformer models, our method has fewer network parameters while revealing explainability. The code is publicly available at https://github.com/ayanglab/SDAUT." 80,Deterministic Decoupling of Global Features and its Application to Data Analysis,"We introduce a method for deterministic decoupling of global features and show its applicability to improve data analysis performance, as well as to open new venues for feature transfer. We propose a new formalism that is based on defining transformations on submanifolds, by following trajectories along the features gradients. Through these transformations we define a normalization that, we demonstrate, allows for decoupling differentiable features. By applying this to sampling moments, we obtain a quasi-analytic solution for the orthokurtosis, a normalized version of the kurtosis that is not just decoupled from mean and variance, but also from skewness. We apply this method in the original data domain and at the output of a filter bank to regression and classification problems based on global descriptors, obtaining a consistent and significant improvement in performance as compared to using classical (non-decoupled) descriptors." 81,A survey of multimodal deep generative models,"Multimodal learning is a framework for building models that make predictions based on different types of modalities. Important challenges in multimodal learning are the inference of shared representations from arbitrary modalities and cross-modal generation via these representations; however, achieving this requires taking the heterogeneous nature of multimodal data into account. In recent years, deep generative models, i.e., generative models in which distributions are parameterized by deep neural networks, have attracted much attention, especially variational autoencoders, which are suitable for accomplishing the above challenges because they can consider heterogeneity and infer good representations of data. Therefore, various multimodal generative models based on variational autoencoders, called multimodal deep generative models, have been proposed in recent years. In this paper, we provide a categorized survey of studies on multimodal deep generative models." 82,Adapting to Online Label Shift with Provable Guarantees,"The standard supervised learning paradigm works effectively when training data shares the same distribution as the upcoming testing samples. However, this assumption is often violated in real-world applications, especially when testing data appear in an online fashion. In this paper, we formulate and investigate the problem of online label shift (OLaS): the learner trains an initial model from the labeled offline data and then deploys it to an unlabeled online environment where the underlying label distribution changes over time but the label-conditional density does not. The non-stationarity nature and the lack of supervision make the problem challenging to be tackled. To address the difficulty, we construct a new unbiased risk estimator that utilizes the unlabeled data, which exhibits many benign properties albeit with potential non-convexity. Building upon that, we propose novel online ensemble algorithms to deal with the non-stationarity of the environments. Our approach enjoys optimal dynamic regret, indicating that the performance is competitive with a clairvoyant who knows the online environments in hindsight and then chooses the best decision for each round. The obtained dynamic regret bound scales with the intensity and pattern of label distribution shift, hence exhibiting the adaptivity in the OLaS problem. Extensive experiments are conducted to validate the effectiveness and support our theoretical findings." 83,Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality,"Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model in the training stability and generalization abilities. In this paper, we systematically study how to improve the covariance conditioning by enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods can simultaneously improve the covariance conditioning and generalization. Moreover, the combinations with orthogonal weight can further boost the performances." 84,An Intrusion Detection System based on Deep Belief Networks,"The rapid growth of connected devices has led to the proliferation of novel cyber-security threats known as zero-day attacks. Traditional behaviour-based IDS rely on DNN to detect these attacks. The quality of the dataset used to train the DNN plays a critical role in the detection performance, with underrepresented samples causing poor performances. In this paper, we develop and evaluate the performance of DBN on detecting cyber-attacks within a network of connected devices. The CICIDS2017 dataset was used to train and evaluate the performance of our proposed DBN approach. Several class balancing techniques were applied and evaluated. Lastly, we compare our approach against a conventional MLP model and the existing state-of-the-art. Our proposed DBN approach shows competitive and promising results, with significant performance improvement on the detection of attacks underrepresented in the training dataset." 85,An Empirical Study of Implicit Regularization in Deep Offline RL,"Deep neural networks are the most commonly used function approximators in offline Reinforcement Learning these days. Prior works have shown that neural nets trained with TD-learning and gradient descent can exhibit implicit regularization that can be characterized by under-parameterization of these networks. Specifically, the rank of the penultimate feature layer, also called \textit{effective rank}, has been observed to drastically collapse during the training. In turn, this collapse has been argued to reduce the model's ability to further adapt in later stages of learning, leading to the diminished final performance. Such an association between the effective rank and performance makes effective rank compelling for offline RL, primarily for offline policy evaluation. In this work, we conduct a careful empirical study on the relation between effective rank and performance on three offline RL datasets : bsuite, Atari, and DeepMind lab. We observe that a direct association exists only in restricted settings and disappears in the more extensive hyperparameter sweeps. Also, we empirically identify three phases of learning that explain the impact of implicit regularization on the learning dynamics and found that bootstrapping alone is insufficient to explain the collapse of the effective rank. Further, we show that several other factors could confound the relationship between effective rank and performance and conclude that studying this association under simplistic assumptions could be highly misleading." 86,Neural Networks and the Chomsky Hierarchy,"Reliable generalization lies at the heart of safe ML and AI. However, understanding when and how neural networks generalize remains one of the most important unsolved problems in the field. In this work, we conduct an extensive empirical study (2200 models, 16 tasks) to investigate whether insights from the theory of computation can predict the limits of neural network generalization in practice. We demonstrate that grouping tasks according to the Chomsky hierarchy allows us to forecast whether certain architectures will be able to generalize to out-of-distribution inputs. This includes negative results where even extensive amounts of data and training time never led to any non-trivial generalization, despite models having sufficient capacity to perfectly fit the training data. Our results show that, for our subset of tasks, RNNs and Transformers fail to generalize on non-regular tasks, LSTMs can solve regular and counter-language tasks, and only networks augmented with structured memory (such as a stack or memory tape) can successfully generalize on context-free and context-sensitive tasks." 87,Predicting Out-of-Domain Generalization with Local Manifold Smoothness,"Understanding how machine learning models generalize to new environments is a critical part of their safe deployment. Recent work has proposed a variety of complexity measures that directly predict or theoretically bound the generalization capacity of a model. However, these methods rely on a strong set of assumptions that in practice are not always satisfied. Motivated by the limited settings in which existing measures can be applied, we propose a novel complexity measure based on the local manifold smoothness of a classifier. We define local manifold smoothness as a classifier's output sensitivity to perturbations in the manifold neighborhood around a given test point. Intuitively, a classifier that is less sensitive to these perturbations should generalize better. To estimate smoothness we sample points using data augmentation and measure the fraction of these points classified into the majority class. Our method only requires selecting a data augmentation method and makes no other assumptions about the model or data distributions, meaning it can be applied even in out-of-domain (OOD) settings where existing methods cannot. In experiments on robustness benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our manifold smoothness measure and actual OOD generalization on over 3,000 models evaluated on over 100 train/test domain pairs." 88,Learning to Accelerate Approximate Methods for Solving Integer Programming via Early Fixing,"Integer programming (IP) is an important and challenging problem. Approximate methods have shown promising performance on both effectiveness and efficiency for solving the IP problem. However, we observed that a large fraction of variables solved by some iterative approximate methods fluctuate around their final converged discrete states in very long iterations. Inspired by this observation, we aim to accelerate these approximate methods by early fixing these fluctuated variables to their converged states while not significantly harming the solution accuracy. To this end, we propose an early fixing framework along with the approximate method. We formulate the whole early fixing process as a Markov decision process, and train it using imitation learning. A policy network will evaluate the posterior probability of each free variable concerning its discrete candidate states in each block of iterations. Specifically, we adopt the powerful multi-headed attention mechanism in the policy network. Extensive experiments on our proposed early fixing framework are conducted to three different IP applications: constrained linear programming, MRF energy minimization and sparse adversarial attack. The former one is linear IP problem, while the latter two are quadratic IP problems. We extend the problem scale from regular size to significantly large size. The extensive experiments reveal the competitiveness of our early fixing framework: the runtime speeds up significantly, while the solution quality does not degrade much, even in some cases it is available to obtain better solutions. Our proposed early fixing framework can be regarded as an acceleration extension of ADMM methods for solving integer programming. The source codes are available at \url{https://github.com/SCLBD/Accelerated-Lpbox-ADMM}." 89,Resource Allocation in Multicore Elastic Optical Networks: A Deep Reinforcement Learning Approach,"A deep reinforcement learning approach is applied, for the first time, to solve the routing, modulation, spectrum and core allocation (RMSCA) problem in dynamic multicore fiber elastic optical networks (MCF-EONs). To do so, a new environment - compatible with OpenAI's Gym - was designed and implemented to emulate the operation of MCF-EONs. The new environment processes the agent actions (selection of route, core and spectrum slot) by considering the network state and physical-layer-related aspects. The latter includes the available modulation formats and their reach and the inter-core crosstalk (XT), an MCF-related impairment. If the resulting quality of the signal is acceptable, the environment allocates the resources selected by the agent. After processing the agent's action, the environment is configured to give the agent a numerical reward and information about the new network state. The blocking performance of four different agents was compared through simulation to 3 baseline heuristics used in MCF-EONs. Results obtained for the NSFNet and COST239 network topologies show that the best-performing agent achieves, on average, up to a four-times decrease in blocking probability concerning the best-performing baseline heuristic methods." 90,Image Amodal Completion: A Survey,"Existing computer vision systems can compete with humans in understanding the visible parts of objects, but still fall far short of humans when it comes to depicting the invisible parts of partially occluded objects. Image amodal completion aims to equip computers with human-like amodal completion functions to understand an intact object despite it being partially occluded. The main purpose of this survey is to provide an intuitive understanding of the research hotspots, key technologies and future trends in the field of image amodal completion. Firstly, we present a comprehensive review of the latest literature in this emerging field, exploring three key tasks in image amodal completion, including amodal shape completion, amodal appearance completion, and order perception. Then we examine popular datasets related to image amodal completion along with their common data collection methods and evaluation metrics. Finally, we discuss real-world applications and future research directions for image amodal completion, facilitating the reader's understanding of the challenges of existing technologies and upcoming research trends." 91,PRoA: A Probabilistic Robustness Assessment against Functional Perturbations,"In safety-critical deep learning applications robustness measurement is a vital pre-deployment phase. However, existing robustness verification methods are not sufficiently practical for deploying machine learning systems in the real world. On the one hand, these methods attempt to claim that no perturbations can ``fool'' deep neural networks (DNNs), which may be too stringent in practice. On the other hand, existing works rigorously consider $L_p$ bounded additive perturbations on the pixel space, although perturbations, such as colour shifting and geometric transformations, are more practically and frequently occurring in the real world. Thus, from the practical standpoint, we present a novel and general {\it probabilistic robustness assessment method} (PRoA) based on the adaptive concentration, and it can measure the robustness of deep learning models against functional perturbations. PRoA can provide statistical guarantees on the probabilistic robustness of a model, \textit{i.e.}, the probability of failure encountered by the trained model after deployment. Our experiments demonstrate the effectiveness and flexibility of PRoA in terms of evaluating the probabilistic robustness against a broad range of functional perturbations, and PRoA can scale well to various large-scale deep neural networks compared to existing state-of-the-art baselines. For the purpose of reproducibility, we release our tool on GitHub: \url{ https://github.com/TrustAI/PRoA}." 92,Robust Reinforcement Learning in Continuous Control Tasks with Uncertainty Set Regularization,"Reinforcement learning (RL) is recognized as lacking generalization and robustness under environmental perturbations, which excessively restricts its application for real-world robotics. Prior work claimed that adding regularization to the value function is equivalent to learning a robust policy with uncertain transitions. Although the regularization-robustness transformation is appealing for its simplicity and efficiency, it is still lacking in continuous control tasks. In this paper, we propose a new regularizer named $\textbf{U}$ncertainty $\textbf{S}$et $\textbf{R}$egularizer (USR), by formulating the uncertainty set on the parameter space of the transition function. In particular, USR is flexible enough to be plugged into any existing RL framework. To deal with unknown uncertainty sets, we further propose a novel adversarial approach to generate them based on the value function. We evaluate USR on the Real-world Reinforcement Learning (RWRL) benchmark, demonstrating improvements in the robust performance for perturbed testing environments." 93,"Towards trustworthy Energy Disaggregation: A review of challenges, methods and perspectives for Non-Intrusive Load Monitoring","Non-intrusive load monitoring (NILM) is the task of disaggregating the total power consumption into its individual sub-components. Over the years, signal processing and machine learning algorithms have been combined to achieve this. A lot of publications and extensive research works are performed on energy disaggregation or NILM for the state-of-the-art methods to reach on the desirable performance. The initial interest of the scientific community to formulate and describe mathematically the NILM problem using machine learning tools has now shifted into a more practical NILM. Nowadays, we are in the mature NILM period where there is an attempt for NILM to be applied in real-life application scenarios. Thus, complexity of the algorithms, transferability, reliability, practicality and in general trustworthiness are the main issues of interest. This review narrows the gap between the early immature NILM era and the mature one. In particular, the paper provides a comprehensive literature review of the NILM methods for residential appliances only. The paper analyzes, summarizes and presents the outcomes of a large number of recently published scholarly articles. Also, the paper discusses the highlights of these methods and introduces the research dilemmas that should be taken into consideration by researchers to apply NILM methods. Finally, we show the need for transferring the traditional disaggregation models into a practical and trustworthy framework." 94,The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions,"In this paper, we propose a novel benchmark called the StarCraft Multi-Agent Challenges+, where agents learn to perform multi-stage tasks and to use environmental factors without precise reward functions. The previous challenges (SMAC) recognized as a standard benchmark of Multi-Agent Reinforcement Learning are mainly concerned with ensuring that all agents cooperatively eliminate approaching adversaries only through fine manipulation with obvious reward functions. This challenge, on the other hand, is interested in the exploration capability of MARL algorithms to efficiently learn implicit multi-stage tasks and environmental factors as well as micro-control. This study covers both offensive and defensive scenarios. In the offensive scenarios, agents must learn to first find opponents and then eliminate them. The defensive scenarios require agents to use topographic features. For example, agents need to position themselves behind protective structures to make it harder for enemies to attack. We investigate MARL algorithms under SMAC+ and observe that recent approaches work well in similar settings to the previous challenges, but misbehave in offensive scenarios. Additionally, we observe that an enhanced exploration approach has a positive effect on performance but is not able to completely solve all scenarios. This study proposes new directions for future research." 95,Disentangling private classes through regularization,"Deep learning models are nowadays broadly deployed to solve an incredibly large variety of tasks. However, little attention has been devoted to connected legal aspects. In 2016, the European Union approved the General Data Protection Regulation which entered into force in 2018. Its main rationale was to protect the privacy and data protection of its citizens by the way of operating of the so-called ""Data Economy"". As data is the fuel of modern Artificial Intelligence, it is argued that the GDPR can be partly applicable to a series of algorithmic decision making tasks before a more structured AI Regulation enters into force. In the meantime, AI should not allow undesired information leakage deviating from the purpose for which is created. In this work we propose DisP, an approach for deep learning models disentangling the information related to some classes we desire to keep private, from the data processed by AI. In particular, DisP is a regularization strategy de-correlating the features belonging to the same private class at training time, hiding the information of private classes membership. Our experiments on state-of-the-art deep learning models show the effectiveness of DisP, minimizing the risk of extraction for the classes we desire to keep private." 96,Correlation between entropy and generalizability in a neural network,"Although neural networks can solve very complex machine-learning problems, the theoretical reason for their generalizability is still not fully understood. Here we use Wang-Landau Mote Carlo algorithm to calculate the entropy (logarithm of the volume of a part of the parameter space) at a given test accuracy, and a given training loss function value or training accuracy. Our results show that entropical forces help generalizability. Although our study is on a very simple application of neural networks (a spiral dataset and a small, fully-connected neural network), our approach should be useful in explaining the generalizability of more complicated neural networks in future works." 97,Local Multi-Label Explanations for Random Forest,"Multi-label classification is a challenging task, particularly in domains where the number of labels to be predicted is large. Deep neural networks are often effective at multi-label classification of images and textual data. When dealing with tabular data, however, conventional machine learning algorithms, such as tree ensembles, appear to outperform competition. Random forest, being a popular ensemble algorithm, has found use in a wide range of real-world problems. Such problems include fraud detection in the financial domain, crime hotspot detection in the legal sector, and in the biomedical field, disease probability prediction when patient records are accessible. Since they have an impact on people's lives, these domains usually require decision-making systems to be explainable. Random Forest falls short on this property, especially when a large number of tree predictors are used. This issue was addressed in a recent research named LionForests, regarding single label classification and regression. In this work, we adapt this technique to multi-label classification problems, by employing three different strategies regarding the labels that the explanation covers. Finally, we provide a set of qualitative and quantitative experiments to assess the efficacy of this approach." 98,Conflicting Interactions Among Protections Mechanisms for Machine Learning Models,"Nowadays, systems based on machine learning (ML) are widely used in different domains. Given their popularity, ML models have become targets for various attacks. As a result, research at the intersection of security and privacy, and ML has flourished. The research community has been exploring the attack vectors and potential mitigations separately. However, practitioners will likely need to deploy defences against several threats simultaneously. A solution that is optimal for a specific concern may interact negatively with solutions intended to address other concerns. In this work, we explore the potential for conflicting interactions between different solutions that enhance the security/privacy of ML-base systems. We focus on model and data ownership; exploring how ownership verification techniques interact with other ML security/privacy techniques like differentially private training, and robustness against model evasion. We provide a framework, and conduct systematic analysis of pairwise interactions. We show that many pairs are incompatible. Where possible, we provide relaxations to the hyperparameters or the techniques themselves that allow for the simultaneous deployment. Lastly, we discuss the implications and provide guidelines for future work." 99,Unsupervised Crowdsourcing with Accuracy and Cost Guarantees,"We consider the problem of cost-optimal utilization of a crowdsourcing platform for binary, unsupervised classification of a collection of items, given a prescribed error threshold. Workers on the crowdsourcing platform are assumed to be divided into multiple classes, based on their skill, experience, and/or past performance. We model each worker class via an unknown confusion matrix, and a (known) price to be paid per label prediction. For this setting, we propose algorithms for acquiring label predictions from workers, and for inferring the true labels of items. We prove that if the number of (unlabeled) items available is large enough, our algorithms satisfy the prescribed error thresholds, incurring a cost that is near-optimal. Finally, we validate our algorithms, and some heuristics inspired by them, through an extensive case study." 100,Query-Efficient Adversarial Attack Based on Latin Hypercube Sampling,"In order to be applicable in real-world scenario, Boundary Attacks (BAs) were proposed and ensured one hundred percent attack success rate with only decision information. However, existing BA methods craft adversarial examples by leveraging a simple random sampling (SRS) to estimate the gradient, consuming a large number of model queries. To overcome the drawback of SRS, this paper proposes a Latin Hypercube Sampling based Boundary Attack (LHS-BA) to save query budget. Compared with SRS, LHS has better uniformity under the same limited number of random samples. Therefore, the average on these random samples is closer to the true gradient than that estimated by SRS. Various experiments are conducted on benchmark datasets including MNIST, CIFAR, and ImageNet-1K. Experimental results demonstrate the superiority of the proposed LHS-BA over the state-of-the-art BA methods in terms of query efficiency. The source codes are publicly available at https://github.com/GZHU-DVL/LHS-BA." 101,Defending against the Label-flipping Attack in Federated Learning,"Federated learning (FL) provides autonomy and privacy by design to participating peers, who cooperatively build a machine learning (ML) model while keeping their private data in their devices. However, that same autonomy opens the door for malicious peers to poison the model by conducting either untargeted or targeted poisoning attacks. The label-flipping (LF) attack is a targeted poisoning attack where the attackers poison their training data by flipping the labels of some examples from one class (i.e., the source class) to another (i.e., the target class). Unfortunately, this attack is easy to perform and hard to detect and it negatively impacts on the performance of the global model. Existing defenses against LF are limited by assumptions on the distribution of the peers' data and/or do not perform well with high-dimensional models. In this paper, we deeply investigate the LF attack behavior and find that the contradicting objectives of attackers and honest peers on the source class examples are reflected in the parameter gradients corresponding to the neurons of the source and target classes in the output layer, making those gradients good discriminative features for the attack detection. Accordingly, we propose a novel defense that first dynamically extracts those gradients from the peers' local updates, and then clusters the extracted gradients, analyzes the resulting clusters and filters out potential bad updates before model aggregation. Extensive empirical analysis on three data sets shows the proposed defense's effectiveness against the LF attack regardless of the data distribution or model dimensionality. Also, the proposed defense outperforms several state-of-the-art defenses by offering lower test error, higher overall accuracy, higher source class accuracy, lower attack success rate, and higher stability of the source class accuracy." 102,A Safe Semi-supervised Graph Convolution Network,"In the semi-supervised learning field, Graph Convolution Network (GCN), as a variant model of GNN, has achieved promising results for non-Euclidean data by introducing convolution into GNN. However, GCN and its variant models fail to safely use the information of risk unlabeled data, which will degrade the performance of semi-supervised learning. Therefore, we propose a Safe GCN framework (Safe-GCN) to improve the learning performance. In the Safe-GCN, we design an iterative process to label the unlabeled data. In each iteration, a GCN and its supervised version(S-GCN) are learned to find the unlabeled data with high confidence. The high-confidence unlabeled data and their pseudo labels are then added to the label set. Finally, both added unlabeled data and labeled ones are used to train a S-GCN which can achieve the safe exploration of the risk unlabeled data and enable safe use of large numbers of unlabeled data. The performance of Safe-GCN is evaluated on three well-known citation network datasets and the obtained results demonstrate the effectiveness of the proposed framework over several graph-based semi-supervised learning methods." 103,Ask-AC: An Initiative Advisor-in-the-Loop Actor-Critic Framework,"Despite the promising results achieved, state-of-the-art interactive reinforcement learning schemes rely on passively receiving supervision signals from advisor experts, in the form of either continuous monitoring or pre-defined rules, which inevitably result in a cumbersome and expensive learning process. In this paper, we introduce a novel initiative advisor-in-the-loop actor-critic framework, termed as Ask-AC, that replaces the unilateral advisor-guidance mechanism with a bidirectional learner-initiative one, and thereby enables a customized and efficacious message exchange between learner and advisor. At the heart of Ask-AC are two complementary components, namely action requester and adaptive state selector, that can be readily incorporated into various discrete actor-critic architectures. The former component allows the agent to initiatively seek advisor intervention in the presence of uncertain states, while the latter identifies the unstable states potentially missed by the former especially when environment changes, and then learns to promote the ask action on such states. Experimental results on both stationary and non-stationary environments and across different actor-critic backbones demonstrate that the proposed framework significantly improves the learning efficiency of the agent, and achieves the performances on par with those obtained by continuous advisor monitoring." 104,Entity Linking in Tabular Data Needs the Right Attention,"Understanding the semantic meaning of tabular data requires Entity Linking (EL), in order to associate each cell value to a real-world entity in a Knowledge Base (KB). In this work, we focus on end-to-end solutions for EL on tabular data that do not rely on fact lookup in the target KB. Tabular data contains heterogeneous and sparse context, including column headers, cell values and table captions. We experiment with various models to generate a vector representation for each cell value to be linked. Our results show that it is critical to apply an attention mechanism as well as an attention mask, so that the model can only attend to the most relevant context and avoid information dilution. The most relevant context includes: same-row cells, same-column cells, headers and caption. Computational complexity, however, grows quadratically with the size of tabular data for such a complex model. We achieve constant memory usage by introducing a Tabular Entity Linking Lite model (TELL ) that generates vector representation for a cell based only on its value, the table headers and the table caption. TELL achieves 80.8% accuracy on Wikipedia tables, which is only 0.1% lower than the state-of-the-art model with quadratic memory usage." 105,Vector Quantisation for Robust Segmentation,"The reliability of segmentation models in the medical domain depends on the model's robustness to perturbations in the input space. Robustness is a particular challenge in medical imaging exhibiting various sources of image noise, corruptions, and domain shifts. Obtaining robustness is often attempted via simulating heterogeneous environments, either heuristically in the form of data augmentation or by learning to generate specific perturbations in an adversarial manner. We propose and justify that learning a discrete representation in a low dimensional embedding space improves robustness of a segmentation model. This is achieved with a dictionary learning method called vector quantisation. We use a set of experiments designed to analyse robustness in both the latent and output space under domain shift and noise perturbations in the input space. We adapt the popular UNet architecture, inserting a quantisation block in the bottleneck. We demonstrate improved segmentation accuracy and better robustness on three segmentation tasks. Code is available at \url{https://github.com/AinkaranSanthi/Vector-Quantisation-for-Robust-Segmentation}" 106,"Explainability in Deep Reinforcement Learning, a Review into Current Methods and Applications","The use of Deep Reinforcement Learning (DRL) schemes has increased dramatically since their first introduction in 2015. Though uses in many different applications are being found they still have a problem with the lack of interpretability. This has bread a lack of understanding and trust in the use of DRL solutions from researchers and the general public. To solve this problem the field of explainable artificial intelligence (XAI) has emerged. This is a variety of different methods that look to open the DRL black boxes, they range from the use of interpretable symbolic decision trees to numerical methods like Shapley Values. This review looks at which methods are being used and what applications they are being used. This is done to identify which models are the best suited to each application or if a method is being underutilised." 107,Multi-Scored Sleep Databases: How to Exploit the Multiple-Labels in Automated Sleep Scoring,"Study Objectives: Inter-scorer variability in scoring polysomnograms is a well-known problem. Most of the existing automated sleep scoring systems are trained using labels annotated by a single scorer, whose subjective evaluation is transferred to the model. When annotations from two or more scorers are available, the scoring models are usually trained on the scorer consensus. The averaged scorer's subjectivity is transferred into the model, losing information about the internal variability among different scorers. In this study, we aim to insert the multiple-knowledge of the different physicians into the training procedure.The goal is to optimize a model training, exploiting the full information that can be extracted from the consensus of a group of scorers. Methods: We train two lightweight deep learning based models on three different multi-scored databases. We exploit the label smoothing technique together with a soft-consensus (LSSC) distribution to insert the multiple-knowledge in the training procedure of the model. We introduce the averaged cosine similarity metric (ACS) to quantify the similarity between the hypnodensity-graph generated by the models with-LSSC and the hypnodensity-graph generated by the scorer consensus. Results: The performance of the models improves on all the databases when we train the models with our LSSC. We found an increase in ACS (up to 6.4%) between the hypnodensity-graph generated by the models trained with-LSSC and the hypnodensity-graph generated by the consensus. Conclusions: Our approach definitely enables a model to better adapt to the consensus of the group of scorers. Future work will focus on further investigations on different scoring architectures." 108,StyleFlow For Content-Fixed Image to Image Translation,"Image-to-image (I2I) translation is a challenging topic in computer vision. We divide this problem into three tasks: strongly constrained translation, normally constrained translation, and weakly constrained translation. The constraint here indicates the extent to which the content or semantic information in the original image is preserved. Although previous approaches have achieved good performance in weakly constrained tasks, they failed to fully preserve the content in both strongly and normally constrained tasks, including photo-realism synthesis, style transfer, and colorization, etc. To achieve content-preserving transfer in strongly constrained and normally constrained tasks, we propose StyleFlow, a new I2I translation model that consists of normalizing flows and a novel Style-Aware Normalization (SAN) module. With the invertible network structure, StyleFlow first projects input images into deep feature space in the forward pass, while the backward pass utilizes the SAN module to perform content-fixed feature transformation and then projects back to image space. Our model supports both image-guided translation and multi-modal synthesis. We evaluate our model in several I2I translation benchmarks, and the results show that the proposed model has advantages over previous methods in both strongly constrained and normally constrained tasks." 109,A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems,"Derivation of the probability density evolution provides invaluable insight into the behavior of many stochastic systems and their performance. However, for most real-time applica-tions, numerical determination of the probability density evolution is a formidable task. The latter is due to the required temporal and spatial discretization schemes that render most computational solutions prohibitive and impractical. In this respect, the development of an efficient computational surrogate model is of paramount importance. Recent studies on the physics-constrained networks show that a suitable surrogate can be achieved by encoding the physical insight into a deep neural network. To this aim, the present work introduces DeepPDEM which utilizes the concept of physics-informed networks to solve the evolution of the probability density via proposing a deep learning method. DeepPDEM learns the General Density Evolution Equation (GDEE) of stochastic structures. This approach paves the way for a mesh-free learning method that can solve the density evolution problem with-out prior simulation data. Moreover, it can also serve as an efficient surrogate for the solu-tion at any other spatiotemporal points within optimization schemes or real-time applica-tions. To demonstrate the potential applicability of the proposed framework, two network architectures with different activation functions as well as two optimizers are investigated. Numerical implementation on three different problems verifies the accuracy and efficacy of the proposed method." 110,"""Even if ..."" -- Diverse Semifactual Explanations of Reject","Machine learning based decision making systems applied in safety critical areas require reliable high certainty predictions. For this purpose, the system can be extended by an reject option which allows the system to reject inputs where only a prediction with an unacceptably low certainty would be possible. While being able to reject uncertain samples is important, it is also of importance to be able to explain why a particular sample was rejected. With the ongoing rise of eXplainable AI (XAI), a lot of explanation methodologies for machine learning based systems have been developed -- explaining reject options, however, is still a novel field where only very little prior work exists. In this work, we propose to explain rejects by semifactual explanations, an instance of example-based explanation methods, which them self have not been widely considered in the XAI community yet. We propose a conceptual modeling of semifactual explanations for arbitrary reject options and empirically evaluate a specific implementation on a conformal prediction based reject option." 111,The Deep Ritz Method for Parametric $p$-Dirichlet Problems,"We establish error estimates for the approximation of parametric $p$-Dirichlet problems deploying the Deep Ritz Method. Parametric dependencies include, e.g., varying geometries and exponents $p\in (1,\infty)$. Combining the derived error estimates with quantitative approximation theorems yields error decay rates and establishes that the Deep Ritz Method retains the favorable approximation capabilities of neural networks in the approximation of high dimensional functions which makes the method attractive for parametric problems. Finally, we present numerical examples to illustrate potential applications." 112,ICE-NODE: Integration of Clinical Embeddings with Neural Ordinary Differential Equations,"Early diagnosis of disease can result in improved health outcomes, such as higher survival rates and lower treatment costs. With the massive amount of information in electronic health records (EHRs), there is great potential to use machine learning (ML) methods to model disease progression aimed at early prediction of disease onset and other outcomes. In this work, we employ recent innovations in neural ODEs to harness the full temporal information of EHRs. We propose ICE-NODE (Integration of Clinical Embeddings with Neural Ordinary Differential Equations), an architecture that temporally integrates embeddings of clinical codes and neural ODEs to learn and predict patient trajectories in EHRs. We apply our method to the publicly available MIMIC-III and MIMIC-IV datasets, reporting improved prediction results compared to state-of-the-art methods, specifically for clinical codes that are not frequently observed in EHRs. We also show that ICE-NODE is more competent at predicting certain medical conditions, like acute renal failure and pulmonary heart disease, and is also able to produce patient risk trajectories over time that can be exploited for further predictions." 113,Bayesian approaches for Quantifying Clinicians' Variability in Medical Image Quantification,"Medical imaging, including MRI, CT, and Ultrasound, plays a vital role in clinical decisions. Accurate segmentation is essential to measure the structure of interest from the image. However, manual segmentation is highly operator-dependent, which leads to high inter and intra-variability of quantitative measurements. In this paper, we explore the feasibility that Bayesian predictive distribution parameterized by deep neural networks can capture the clinicians' inter-intra variability. By exploring and analyzing recently emerged approximate inference schemes, we evaluate whether approximate Bayesian deep learning with the posterior over segmentations can learn inter-intra rater variability both in segmentation and clinical measurements. The experiments are performed with two different imaging modalities: MRI and ultrasound. We empirically demonstrated that Bayesian predictive distribution parameterized by deep neural networks could approximate the clinicians' inter-intra variability. We show a new perspective in analyzing medical images quantitatively by providing clinical measurement uncertainty." 114,Meta-Learning a Real-Time Tabular AutoML Method For Small Data,"We present TabPFN, an AutoML method that is competitive with the state of the art on small tabular datasets while being over 1,000$\times$ faster. Our method is very simple: it is fully entailed in the weights of a single neural network, and a single forward pass directly yields predictions for a new dataset. Our AutoML method is meta-learned using the Transformer-based Prior-Data Fitted Network (PFN) architecture and approximates Bayesian inference with a prior that is based on assumptions of simplicity and causal structures. The prior contains a large space of structural causal models and Bayesian neural networks with a bias for small architectures and thus low complexity. Furthermore, we extend the PFN approach to differentiably calibrate the prior's hyperparameters on real data. By doing so, we separate our abstract prior assumptions from their heuristic calibration on real data. Afterwards, the calibrated hyperparameters are fixed and TabPFN can be applied to any new tabular dataset at the push of a button. Finally, on 30 datasets from the OpenML-CC18 suite we show that our method outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with predictions produced in less than a second. We provide all our code and our final trained TabPFN in the supplementary materials." 115,PoF: Post-Training of Feature Extractor for Improving Generalization,"It has been intensively investigated that the local shape, especially flatness, of the loss landscape near a minimum plays an important role for generalization of deep models. We developed a training algorithm called PoF: Post-Training of Feature Extractor that updates the feature extractor part of an already-trained deep model to search a flatter minimum. The characteristics are two-fold: 1) Feature extractor is trained under parameter perturbations in the higher-layer parameter space, based on observations that suggest flattening higher-layer parameter space, and 2) the perturbation range is determined in a data-driven manner aiming to reduce a part of test loss caused by the positive loss curvature. We provide a theoretical analysis that shows the proposed algorithm implicitly reduces the target Hessian components as well as the loss. Experimental results show that PoF improved model performance against baseline methods on both CIFAR-10 and CIFAR-100 datasets for only 10-epoch post-training, and on SVHN dataset for 50-epoch post-training. Source code is available at: \url{https://github.com/DensoITLab/PoF-v1" 116,Efficient Representation Learning via Adaptive Context Pooling,"Self-attention mechanisms model long-range context by using pairwise attention between all input tokens. In doing so, they assume a fixed attention granularity defined by the individual tokens (e.g., text characters or image pixels), which may not be optimal for modeling complex dependencies at higher levels. In this paper, we propose ContextPool to address this problem by adapting the attention granularity for each token. Inspired by the success of ConvNets that are combined with pooling to capture long-range dependencies, we learn to pool neighboring features for each token before computing attention in a given attention layer. The pooling weights and support size are adaptively determined, allowing the pooled features to encode meaningful context with varying scale. We show that ContextPool makes attention models more expressive, achieving strong performance often with fewer layers and thus significantly reduced cost. Experiments validate that our ContextPool module, when plugged into transformer models, matches or surpasses state-of-the-art performance using less compute on several language and image benchmarks, outperforms recent works with learned context sizes or sparse attention patterns, and is also applicable to ConvNets for efficient feature learning." 117,Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation,"Many works have recently explored Sim-to-real transferable visual model predictive control (MPC). However, such works are limited to one-shot transfer, where real-world data must be collected once to perform the sim-to-real transfer, which remains a significant human effort in transferring the models learned in simulations to new domains in the real world. To alleviate this problem, we first propose a novel model-learning framework called Kalman Randomized-to-Canonical Model (KRC-model). This framework is capable of extracting task-relevant intrinsic features and their dynamics from randomized images. We then propose Kalman Randomized-to-Canonical Model Predictive Control (KRC-MPC) as a zero-shot sim-to-real transferable visual MPC using KRC-model. The effectiveness of our method is evaluated through a valve rotation task by a robot hand in both simulation and the real world, and a block mating task in simulation. The experimental results show that KRC-MPC can be applied to various real domains and tasks in a zero-shot manner." 118,What Do Graph Convolutional Neural Networks Learn?,"Graph neural networks (GNNs) have gained traction over the past few years for their superior performance in numerous machine learning tasks. Graph Convolutional Neural Networks (GCN) are a common variant of GNNs that are known to have high performance in semi-supervised node classification (SSNC), and work well under the assumption of homophily. Recent literature has highlighted that GCNs can achieve strong performance on heterophilous graphs under certain ""special conditions"". These arguments motivate us to understand why, and how, GCNs learn to perform SSNC. We find a positive correlation between similarity of latent node embeddings of nodes within a class and the performance of a GCN. Our investigation on underlying graph structures of a dataset finds that a GCN's SSNC performance is significantly influenced by the consistency and uniqueness in neighborhood structure of nodes within a class." 119,Ensemble feature selection with data-driven thresholding for Alzheimer's disease biomarker discovery,"Healthcare datasets present many challenges to both machine learning and statistics as their data are typically heterogeneous, censored, high-dimensional and have missing information. Feature selection is often used to identify the important features but can produce unstable results when applied to high-dimensional data, selecting a different set of features on each iteration. The stability of feature selection can be improved with the use of feature selection ensembles, which aggregate the results of multiple base feature selectors. A threshold must be applied to the final aggregated feature set to separate the relevant features from the redundant ones. A fixed threshold, which is typically applied, offers no guarantee that the final set of selected features contains only relevant features. This work develops several data-driven thresholds to automatically identify the relevant features in an ensemble feature selector and evaluates their predictive accuracy and stability. To demonstrate the applicability of these methods to clinical data, they are applied to data from two real-world Alzheimer's disease (AD) studies. AD is a progressive neurodegenerative disease with no known cure, that begins at least 2-3 decades before overt symptoms appear, presenting an opportunity for researchers to identify early biomarkers that might identify patients at risk of developing AD. Features identified by applying these methods to both datasets reflect current findings in the AD literature." 120,Multimodal Frame-Scoring Transformer for Video Summarization,"As the number of video content has mushroomed in recent years, automatic video summarization has come useful when we want to just peek at the content of the video. However, there are two underlying limitations in generic video summarization task. First, most previous approaches read in just visual features as input, leaving other modality features behind. Second, existing datasets for generic video summarization are relatively insufficient to train a caption generator and multimodal feature extractors. To address these two problems, this paper proposes the Multimodal Frame-Scoring Transformer (MFST) framework exploiting visual, text and audio features and scoring a video with respect to frames. Our MFST framework first extracts each modality features (visual-text-audio) using pretrained encoders. Then, MFST trains the multimodal frame-scoring transformer that uses video-text-audio representations as inputs and predicts frame-level scores. Our extensive experiments with previous models and ablation studies on TVSum and SumMe datasets demonstrate the effectiveness and superiority of our proposed method." 121,Deriving Surface Resistivity from Polarimetric SAR Data Using Dual-Input UNet,"Traditional survey methods for finding surface resistivity are time-consuming and labor intensive. Very few studies have focused on finding the resistivity/conductivity using remote sensing data and deep learning techniques. In this line of work, we assessed the correlation between surface resistivity and Synthetic Aperture Radar (SAR) by applying various deep learning methods and tested our hypothesis in the Coso Geothermal Area, USA. For detecting the resistivity, L-band full polarimetric SAR data acquired by UAVSAR were used, and MT (Magnetotellurics) inverted resistivity data of the area were used as the ground truth. We conducted experiments to compare various deep learning architectures and suggest the use of Dual Input UNet (DI-UNet) architecture. DI-UNet uses a deep learning architecture to predict the resistivity using full polarimetric SAR data by promising a quick survey addition to the traditional method. Our proposed approach accomplished improved outcomes for the mapping of MT resistivity from SAR data." 122,"Sedentary Behavior Estimation with Hip-worn Accelerometer Data: Segmentation, Classification and Thresholding","Cohort studies are increasingly using accelerometers for physical activity and sedentary behavior estimation. These devices tend to be less error-prone than self-report, can capture activity throughout the day, and are economical. However, previous methods for estimating sedentary behavior based on hip-worn data are often invalid or suboptimal under free-living situations and subject-to-subject variation. In this paper, we propose a local Markov switching model that takes this situation into account, and introduce a general procedure for posture classification and sedentary behavior analysis that fits the model naturally. Our method features changepoint detection methods in time series and also a two stage classification step that labels data into 3 classes(sitting, standing, stepping). Through a rigorous training-testing paradigm, we showed that our approach achieves > 80% accuracy. In addition, our method is robust and easy to interpret." 123,GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot Learning,"Generalized Zero-Shot Learning (GZSL) aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes. It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes. However, due to the generation shifts, the synthesized samples by most existing methods may drift from the real distribution of the unseen data. To address this issue, we propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation. Specifically, we discover and address three potential problems that trigger the generation shifts, i.e., semantic inconsistency, variance collapse, and structure disorder. First, to enhance the reflection of the semantic information in the generated samples, we explicitly embed the semantic information into the transformation in each conditional affine coupling layer. Second, to recover the intrinsic variance of the real unseen features, we introduce a boundary sample mining strategy with entropy maximization to discover more difficult visual variants of semantic prototypes and hereby adjust the decision boundary of the classifiers. Third, a relative positioning strategy is proposed to revise the attribute embeddings, guiding them to fully preserve the inter-class geometric structure and further avoid structure disorder in the semantic space. Extensive experimental results on four GZSL benchmark datasets demonstrate that GSMFlow achieves the state-of-the-art performance on GZSL." 124,Task-agnostic Defense against Adversarial Patch Attacks,"Adversarial patch attacks mislead neural networks by injecting adversarial pixels within a designated local region. Patch attacks can be highly effective in a variety of tasks and physically realizable via attachment (e.g. a sticker) to the real-world objects. Despite the diversity in attack patterns, adversarial patches tend to be highly textured and different in appearance from natural images. We exploit this property and present PatchZero, a task-agnostic defense against white-box adversarial patches. Specifically, our defense detects the adversarial pixels and ""zeros out"" the patch region by repainting with mean pixel values. We formulate the patch detection problem as a semantic segmentation task such that our model can generalize to patches of any size and shape. We further design a two-stage adversarial training scheme to defend against the stronger adaptive attacks. We thoroughly evaluate PatchZero on the image classification (ImageNet, RESISC45), object detection (PASCAL VOC), and video classification (UCF101) datasets. Our method achieves SOTA robust accuracy without any degradation in the benign performance." 125,Features Based Adaptive Augmentation for Graph Contrastive Learning,"Self-Supervised learning aims to eliminate the need for expensive annotation in graph representation learning, where graph contrastive learning (GCL) is trained with the self-supervision signals containing data-data pairs. These data-data pairs are generated with augmentation employing stochastic functions on the original graph. We argue that some features can be more critical than others depending on the downstream task, and applying stochastic function uniformly, will vandalize the influential features, leading to diminished accuracy. To fix this issue, we introduce a Feature Based Adaptive Augmentation (FebAA) approach, which identifies and preserves potentially influential features and corrupts the remaining ones. We implement FebAA as plug and play layer and use it with state-of-the-art Deep Graph Contrastive Learning (GRACE) and Bootstrapped Graph Latents (BGRL). We successfully improved the accuracy of GRACE and BGRL on eight graph representation learning's benchmark datasets." 126,Improved Global Guarantees for the Nonconvex Burer--Monteiro Factorization via Rank Overparameterization,"We consider minimizing a twice-differentiable, $L$-smooth, and $\mu$-strongly convex objective $\phi$ over an $n\times n$ positive semidefinite matrix $M\succeq0$, under the assumption that the minimizer $M^{\star}$ has low rank $r^{\star}\ll n$. Following the Burer--Monteiro approach, we instead minimize the nonconvex objective $f(X)=\phi(XX^{T})$ over a factor matrix $X$ of size $n\times r$. This substantially reduces the number of variables from $O(n^{2})$ to as few as $O(n)$ and also enforces positive semidefiniteness for free, but at the cost of giving up the convexity of the original problem. In this paper, we prove that if the search rank $r\ge r^{\star}$ is overparameterized by a constant factor with respect to the true rank $r^{\star}$, namely as in $r>\frac{1}{4}(L/\mu-1)^{2}r^{\star}$, then despite nonconvexity, local optimization is guaranteed to globally converge from any initial point to the global optimum. This significantly improves upon a previous rank overparameterization threshold of $r\ge n$, which is known to be sharp if $\phi$ is allowed to be nonsmooth and/or non-strongly convex, but would increase the number of variables back up to $O(n^{2})$. Conversely, without rank overparameterization, we prove that such a global guarantee is possible if and only if $\phi$ is almost perfectly conditioned, with a condition number of $L/\mu<3$. Therefore, we conclude that a small amount of overparameterization can lead to large improvements in theoretical guarantees for the nonconvex Burer--Monteiro factorization." 127,A Unified Meta-Learning Framework for Dynamic Transfer Learning,"Transfer learning refers to the transfer of knowledge or information from a relevant source task to a target task. However, most existing works assume both tasks are sampled from a stationary task distribution, thereby leading to the sub-optimal performance for dynamic tasks drawn from a non-stationary task distribution in real scenarios. To bridge this gap, in this paper, we study a more realistic and challenging transfer learning setting with dynamic tasks, i.e., source and target tasks are continuously evolving over time. We theoretically show that the expected error on the dynamic target task can be tightly bounded in terms of source knowledge and consecutive distribution discrepancy across tasks. This result motivates us to propose a generic meta-learning framework L2E for modeling the knowledge transferability on dynamic tasks. It is centered around a task-guided meta-learning problem with a group of meta-pairs of tasks, based on which we are able to learn the prior model initialization for fast adaptation on the newest target task. L2E enjoys the following properties: (1) effective knowledge transferability across dynamic tasks; (2) fast adaptation to the new target task; (3) mitigation of catastrophic forgetting on historical target tasks; and (4) flexibility in incorporating any existing static transfer learning algorithms. Extensive experiments on various image data sets demonstrate the effectiveness of the proposed L2E framework." 128,On A Mallows-type Model For (Ranked) Choices,"In a preference learning setting, every participant chooses an ordered list of $k$ most preferred items among a displayed set of candidates. (The set can be different for every participant.) We identify a distance-based ranking model for the population's preferences and their (ranked) choice behavior. The ranking model resembles the Mallows model but uses a new distance function called Reverse Major Index (RMJ). We find that despite the need to sum over all permutations, the RMJ-based ranking distribution aggregates into (ranked) choice probabilities with simple closed-form expression. We develop effective methods to estimate the model parameters and showcase their generalization power using real data, especially when there is a limited variety of display sets." 129,CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning,"Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose ""CodeRL"", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark." 130,Approximating Discontinuous Nash Equilibrial Values of Two-Player General-Sum Differential Games,"Finding Nash equilibrial policies for two-player differential games requires solving Hamilton-Jacobi-Isaacs PDEs. Recent studies achieved success in circumventing the curse of dimensionality in solving such PDEs with underlying applications to human-robot interactions (HRI), by adopting self-supervised (physics-informed) neural networks as universal value approximators. This paper extends from previous SOTA on zero-sum games with continuous values to general-sum games with discontinuous values, where the discontinuity is caused by that of the players' losses. We show that due to its lack of convergence proof and generalization analysis on discontinuous losses, the existing self-supervised learning technique fails to generalize and raises safety concerns in an autonomous driving application. Our solution is to first pre-train the value network on supervised Nash equilibria, and then refine it by minimizing a loss that combines the supervised data with the PDE and boundary conditions. Importantly, the demonstrated advantage of the proposed learning method against purely supervised and self-supervised approaches requires careful choice of the neural activation function: Among $\texttt{relu}$, $\texttt{sin}$, and $\texttt{tanh}$, we show that $\texttt{tanh}$ is the only choice that achieves optimal generalization and safety performance. Our conjecture is that $\texttt{tanh}$ (similar to $\texttt{sin}$) allows continuity of value and its gradient, which is sufficient for the convergence of learning, and at the same time is expressive enough (similar to $\texttt{relu}$) at approximating discontinuous value landscapes. Lastly, we apply our method to approximating control policies for an incomplete-information interaction and demonstrate its contribution to safe interactions." 131,"A Generative Framework for Personalized Learning and Estimation: Theory, Algorithms, and Privacy","A distinguishing characteristic of federated learning is that the (local) client data could have statistical heterogeneity. This heterogeneity has motivated the design of personalized learning, where individual (personalized) models are trained, through collaboration. There have been various personalization methods proposed in literature, with seemingly very different forms and methods ranging from use of a single global model for local regularization and model interpolation, to use of multiple global models for personalized clustering, etc. In this work, we begin with a generative framework that could potentially unify several different algorithms as well as suggest new algorithms. We apply our generative framework to personalized estimation, and connect it to the classical empirical Bayes' methodology. We develop private personalized estimation under this framework. We then use our generative framework for learning, which unifies several known personalized FL algorithms and also suggests new ones; we propose and study a new algorithm AdaPeD based on a Knowledge Distillation, which numerically outperforms several known algorithms. We also develop privacy for personalized learning methods with guarantees for user-level privacy and composition. We numerically evaluate the performance as well as the privacy for both the estimation and learning problems, demonstrating the advantages of our proposed methods." 132,opPINN: Physics-Informed Neural Network with operator learning to approximate solutions to the Fokker-Planck-Landau equation,"We propose a hybrid framework opPINN: physics-informed neural network (PINN) with operator learning for approximating the solution to the Fokker-Planck-Landau (FPL) equation. The opPINN framework is divided into two steps: Step 1 and Step 2. After the operator surrogate models are trained during Step 1, PINN can effectively approximate the solution to the FPL equation during Step 2 by using the pre-trained surrogate models. The operator surrogate models greatly reduce the computational cost and boost PINN by approximating the complex Landau collision integral in the FPL equation. The operator surrogate models can also be combined with the traditional numerical schemes. It provides a high efficiency in computational time when the number of velocity modes becomes larger. Using the opPINN framework, we provide the neural network solutions for the FPL equation under the various types of initial conditions, and interaction models in two and three dimensions. Furthermore, based on the theoretical properties of the FPL equation, we show that the approximated neural network solution converges to the a priori classical solution of the FPL equation as the pre-defined loss function is reduced." 133,TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing,"Physics-informed neural networks (PINNs) have been increasingly employed due to their capability of modeling complex physics systems. To achieve better expressiveness, increasingly larger network sizes are required in many problems. This has caused challenges when we need to train PINNs on edge devices with limited memory, computing and energy resources. To enable training PINNs on edge devices, this paper proposes an end-to-end compressed PINN based on Tensor-Train decomposition. In solving a Helmholtz equation, our proposed model significantly outperforms the original PINNs with few parameters and achieves satisfactory prediction with up to 15$\times$ overall parameter reduction." 134,Federated Split GANs,"Mobile devices and the immense amount and variety of data they generate are key enablers of machine learning (ML)-based applications. Traditional ML techniques have shifted toward new paradigms such as federated (FL) and split learning (SL) to improve the protection of user's data privacy. However, these paradigms often rely on server(s) located in the edge or cloud to train computationally-heavy parts of a ML model to avoid draining the limited resource on client devices, resulting in exposing device data to such third parties. This work proposes an alternative approach to train computationally-heavy ML models in user's devices themselves, where corresponding device data resides. Specifically, we focus on GANs (generative adversarial networks) and leverage their inherent privacy-preserving attribute. We train the discriminative part of a GAN with raw data on user's devices, whereas the generative model is trained remotely (e.g., server) for which there is no need to access sensor true data. Moreover, our approach ensures that the computational load of training the discriminative model is shared among user's devices-proportional to their computation capabilities-by means of SL. We implement our proposed collaborative training scheme of a computationally-heavy GAN model in real resource-constrained devices. The results show that our system preserves data privacy, keeps a short training time, and yields same accuracy of model training in unconstrained devices (e.g., cloud). Our code can be found on https://github.com/YukariSonz/FSL-GAN" 135,Discrete Tree Flows via Tree-Structured Permutations,"While normalizing flows for continuous data have been extensively researched, flows for discrete data have only recently been explored. These prior models, however, suffer from limitations that are distinct from those of continuous flows. Most notably, discrete flow-based models cannot be straightforwardly optimized with conventional deep learning methods because gradients of discrete functions are undefined or zero. Previous works approximate pseudo-gradients of the discrete functions but do not solve the problem on a fundamental level. In addition to that, backpropagation can be computationally burdensome compared to alternative discrete algorithms such as decision tree algorithms. Our approach seeks to reduce computational burden and remove the need for pseudo-gradients by developing a discrete flow based on decision trees -- building upon the success of efficient tree-based methods for classification and regression for discrete data. We first define a tree-structured permutation (TSP) that compactly encodes a permutation of discrete data where the inverse is easy to compute; thus, we can efficiently compute the density value and sample new data. We then propose a decision tree algorithm to build TSPs that learns the tree structure and permutations at each node via novel criteria. We empirically demonstrate the feasibility of our method on multiple datasets." 136,Anomaly-aware multiple instance learning for rare anemia disorder classification,"Deep learning-based classification of rare anemia disorders is challenged by the lack of training data and instance-level annotations. Multiple Instance Learning (MIL) has shown to be an effective solution, yet it suffers from low accuracy and limited explainability. Although the inclusion of attention mechanisms has addressed these issues, their effectiveness highly depends on the amount and diversity of cells in the training samples. Consequently, the poor machine learning performance on rare anemia disorder classification from blood samples remains unresolved. In this paper, we propose an interpretable pooling method for MIL to address these limitations. By benefiting from instance-level information of negative bags (i.e., homogeneous benign cells from healthy individuals), our approach increases the contribution of anomalous instances. We show that our strategy outperforms standard MIL classification algorithms and provides a meaningful explanation behind its decisions. Moreover, it can denote anomalous instances of rare blood diseases that are not seen during the training phase." 137,Machine Learning in Access Control: A Taxonomy and Survey,"An increasing body of work has recognized the importance of exploiting machine learning (ML) advancements to address the need for efficient automation in extracting access control attributes, policy mining, policy verification, access decisions, etc. In this work, we survey and summarize various ML approaches to solve different access control problems. We propose a novel taxonomy of the ML model's application in the access control domain. We highlight current limitations and open challenges such as lack of public real-world datasets, administration of ML-based access control systems, understanding a black-box ML model's decision, etc., and enumerate future research directions." 138,AutoSpeed: A Linked Autoencoder Approach for Pulse-Echo Speed-of-Sound Imaging for Medical Ultrasound,"Quantitative ultrasound, e.g., speed-of-sound (SoS) in tissues, provides information about tissue properties that have diagnostic value. Recent studies showed the possibility of extracting SoS information from pulse-echo ultrasound raw data (a.k.a. RF data) using deep neural networks that are fully trained on simulated data. These methods take sensor domain data, i.e., RF data, as input and train a network in an end-to-end fashion to learn the implicit mapping between the RF data domain and SoS domain. However, such networks are prone to overfitting to simulated data which results in poor performance and instability when tested on measured data. We propose a novel method for SoS mapping employing learned representations from two linked autoencoders. We test our approach on simulated and measured data acquired from human breast mimicking phantoms. We show that SoS mapping is possible using linked autoencoders. The proposed method has a Mean Absolute Percentage Error (MAPE) of 2.39% on the simulated data. On the measured data, the predictions of the proposed method are close to the expected values with MAPE of 1.1%. Compared to an end-to-end trained network, the proposed method shows higher stability and reproducibility." 139,How Much More Data Do I Need? Estimating Requirements for Downstream Tasks,"Given a small training data set and a learning algorithm, how much more data is necessary to reach a target validation or test performance? This question is of critical importance in applications such as autonomous driving or medical imaging where collecting data is expensive and time-consuming. Overestimating or underestimating data requirements incurs substantial costs that could be avoided with an adequate budget. Prior work on neural scaling laws suggest that the power-law function can fit the validation performance curve and extrapolate it to larger data set sizes. We find that this does not immediately translate to the more difficult downstream task of estimating the required data set size to meet a target performance. In this work, we consider a broad class of computer vision tasks and systematically investigate a family of functions that generalize the power-law function to allow for better estimation of data requirements. Finally, we show that incorporating a tuned correction factor and collecting over multiple rounds significantly improves the performance of the data estimators. Using our guidelines, practitioners can accurately estimate data requirements of machine learning systems to gain savings in both development time and data acquisition costs." 140,A Causal Approach for Business Optimization: Application on an Online Marketplace,"A common sales strategy involves having account executives (AEs) actively reach out and contact potential customers. However, not all contact attempts have a positive effect: some attempts do not change customer decisions, while others might even interfere with the desired outcome. In this work we propose using causal inference to estimate the effect of contacting each potential customer and setting the contact policy accordingly. We demonstrate this approach on data from Worthy.com, an online jewelry marketplace. We examined the Worthy business process to identify relevant decisions and outcomes, and formalized assumptions on how they were made. Using causal tools, we selected a decision point where improving AE contact activity appeared to be promising. We then generated a personalized policy and recommended reaching out only to customers for whom it would be beneficial. Finally, we validated the results in an A\B test over a 3-month period, resulting in an increase in item delivery rate of the targeted population by 22% (p-value=0.026). This policy is now being used on an ongoing basis." 141,Do Not Take It for Granted: Comparing Open-Source Libraries for Software Development Effort Estimation,"In the past two decades, several Machine Learning (ML) libraries have become freely available. Many studies have used such libraries to carry out empirical investigations on predictive Software Engineering (SE) tasks. However, the differences stemming from using one library over another have been overlooked, implicitly assuming that using any of these libraries would provide the user with the same or very similar results. This paper aims at raising awareness of the differences incurred when using different ML libraries for software development effort estimation (SEE), one of most widely studied SE prediction tasks. To this end, we investigate 4 deterministic machine learners as provided by 3 of the most popular ML open-source libraries written in different languages (namely, Scikit-Learn, Caret and Weka). We carry out a thorough empirical study comparing the performance of the machine learners on 5 SEE datasets in the two most common SEE scenarios (i.e., out-of-the-box-ml and tuned-ml) as well as an in-depth analysis of the documentation and code of their APIs. The results of our study reveal that the predictions provided by the 3 libraries differ in 95% of the cases on average across a total of 105 cases studied. These differences are significantly large in most cases and yield misestimations of up to approx. 3,000 hours per project. Moreover, our API analysis reveals that these libraries provide the user with different levels of control on the parameters one can manipulate, and a lack of clarity and consistency, overall, which might mislead users. Our findings highlight that the ML library is an important design choice for SEE studies, which can lead to a difference in performance. However, such a difference is under-documented. We conclude by highlighting open-challenges with suggestions for the developers of libraries as well as for the researchers and practitioners using them." 142,An adaptive music generation architecture for games based on the deep learning Transformer mode,"This paper presents an architecture for generating music for video games based on the Transformer deep learning model. The system generates music in various layers, following the standard layering strategy currently used by composers designing video game music. The music is adaptive to the psychological context of the player, according to the arousal-valence model. Our motivation is to customize music according to the player's tastes, who can select his preferred style of music through a set of training examples of music. We discuss current limitations and prospects for the future, such as collaborative and interactive control of the musical components." 143,FACT: High-Dimensional Random Forests Inference,"Random forests is one of the most widely used machine learning methods over the past decade thanks to its outstanding empirical performance. Yet, because of its black-box nature, the results by random forests can be hard to interpret in many big data applications. Quantifying the usefulness of individual features in random forests learning can greatly enhance its interpretability. Existing studies have shown that some popularly used feature importance measures for random forests suffer from the bias issue. In addition, there lack comprehensive size and power analyses for most of these existing methods. In this paper, we approach the problem via hypothesis testing, and suggest a framework of the self-normalized feature-residual correlation test (FACT) for evaluating the significance of a given feature in the random forests model with bias-resistance property, where our null hypothesis concerns whether the feature is conditionally independent of the response given all other features. Such an endeavor on random forests inference is empowered by some recent developments on high-dimensional random forests consistency. The vanilla version of our FACT test can suffer from the bias issue in the presence of feature dependency. We exploit the techniques of imbalancing and conditioning for bias correction. We further incorporate the ensemble idea into the FACT statistic through feature transformations for the enhanced power. Under a fairly general high-dimensional nonparametric model setting with dependent features, we formally establish that FACT can provide theoretically justified random forests feature p-values and enjoy appealing power through nonasymptotic analyses. The theoretical results and finite-sample advantages of the newly suggested method are illustrated with several simulation examples and an economic forecasting application in relation to COVID-19." 144,Breaking Feedback Loops in Recommender Systems with Causal Inference,"Recommender systems play a key role in shaping modern web ecosystems. These systems alternate between (1) making recommendations (2) collecting user responses to these recommendations, and (3) retraining the recommendation algorithm based on this feedback. During this process the recommender system influences the user behavioral data that is subsequently used to update it, thus creating a feedback loop. Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior, raising ethical and performance concerns when deploying recommender systems. To address these issues, we propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference and can be applied to any recommendation algorithm that optimizes a training loss. Our main observation is that a recommender system does not suffer from feedback loops if it reasons about causal quantities, namely the intervention distributions of recommendations on user ratings. Moreover, we can calculate this intervention distribution from observational data by adjusting for the recommender system's predictions of user preferences. Using simulated environments, we demonstrate that CAFL improves recommendation quality when compared to prior correction methods." 145,Beyond mAP: Re-evaluating and Improving Performance in Instance Segmentation with Semantic Sorting and Contrastive Flow,"Top-down instance segmentation methods improve mAP by hedging bets on low-confidence predictions to match a ground truth. Moreover, the query-key paradigm of top-down methods leads to the instance merging problem. An excessive number of duplicate predictions leads to the (over)counting error, and the independence of category and localization branches leads to the naming error. The de-facto mAP metric doesn't capture these errors, as we show that a trivial dithering scheme can simultaneously increase mAP with hedging errors. To this end, we propose two graph-based metrics that quantifies the amount of hedging both inter-and intra-class. We conjecture the source of the hedging problem is due to feature merging and propose a) Contrastive Flow Field to encode contextual differences between instances as a supervisory signal, and b) Semantic Sorting and NMS step to suppress duplicates and incorrectly categorized prediction. Ablations show that our method encodes contextual information better than baselines, and experiments on COCO our method simultaneously reduces merging and hedging errors compared to state-of-the-art instance segmentation methods." 146,Doubly-Asynchronous Value Iteration: Making Value Iteration Asynchronous in Actions,"Value iteration (VI) is a foundational dynamic programming method, important for learning and planning in optimal control and reinforcement learning. VI proceeds in batches, where the update to the value of each state must be completed before the next batch of updates can begin. Completing a single batch is prohibitively expensive if the state space is large, rendering VI impractical for many applications. Asynchronous VI helps to address the large state space problem by updating one state at a time, in-place and in an arbitrary order. However, Asynchronous VI still requires a maximization over the entire action space, making it impractical for domains with large action space. To address this issue, we propose doubly-asynchronous value iteration (DAVI), a new algorithm that generalizes the idea of asynchrony from states to states and actions. More concretely, DAVI maximizes over a sampled subset of actions that can be of any user-defined size. This simple approach of using sampling to reduce computation maintains similarly appealing theoretical properties to VI without the need to wait for a full sweep through the entire action space in each update. In this paper, we show DAVI converges to the optimal value function with probability one, converges at a near-geometric rate with probability 1-delta, and returns a near-optimal policy in computation time that nearly matches a previously established bound for VI. We also empirically demonstrate DAVI's effectiveness in several experiments." 147,Recommendation Systems with Distribution-Free Reliability Guarantees,"When building recommendation systems, we seek to output a helpful set of items to the user. Under the hood, a ranking model predicts which of two candidate items is better, and we must distill these pairwise comparisons into the user-facing output. However, a learned ranking model is never perfect, so taking its predictions at face value gives no guarantee that the user-facing output is reliable. Building from a pre-trained ranking model, we show how to return a set of items that is rigorously guaranteed to contain mostly good items. Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate (FDR), regardless of the (unknown) data distribution. Moreover, our calibration algorithm enables the easy and principled integration of multiple objectives in recommender systems. As an example, we show how to optimize for recommendation diversity subject to a user-specified level of FDR control, circumventing the need to specify ad hoc weights of a diversity loss against an accuracy loss. Throughout, we focus on the problem of learning to rank a set of possible recommendations, evaluating our methods on the Yahoo! Learning to Rank and MSMarco datasets." 148,Invariant and Transportable Representations for Anti-Causal Domain Shifts,"Real-world classification problems must contend with domain shift, the (potential) mismatch between the domain where a model is deployed and the domain(s) where the training data was gathered. Methods to handle such problems must specify what structure is common between the domains and what varies. A natural assumption is that causal (structural) relationships are invariant in all domains. Then, it is tempting to learn a predictor for label $Y$ that depends only on its causal parents. However, many real-world problems are ""anti-causal"" in the sense that $Y$ is a cause of the covariates $X$ -- in this case, $Y$ has no causal parents and the naive causal invariance is useless. In this paper, we study representation learning under a particular notion of domain shift that both respects causal invariance and that naturally handles the ""anti-causal"" structure. We show how to leverage the shared causal structure of the domains to learn a representation that both admits an invariant predictor and that also allows fast adaptation in new domains. The key is to translate causal assumptions into learning principles that disentangle ""invariant"" and ""non-stable"" features. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed learning algorithm. Code is available at https://github.com/ybjiaang/ACTIR." 149,Deep Learning for Short-term Instant Energy Consumption Forecasting in the Manufacturing Sector,"Electricity is a volatile power source that requires great planning and resource management for both short and long term. More specifically, in the short-term, accurate instant energy consumption forecasting contributes greatly to improve the efficiency of buildings, opening new avenues for the adoption of renewable energy. In that regard, data-driven approaches, namely the ones based on machine learning, are begin to be preferred over more traditional ones since they provide not only more simplified ways of deployment but also state of the art results. In that sense, this work applies and compares the performance of several deep learning algorithms, LSTM, CNN, mixed CNN-LSTM and TCN, in a real testbed within the manufacturing sector. The experimental results suggest that the TCN is the most reliable method for predicting instant energy consumption in the short-term." 150,E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D Structure Prediction,"RNA structure determination and prediction can promote RNA-targeted drug development and engineerable synthetic elements design. But due to the intrinsic structural flexibility of RNAs, all the three mainstream structure determination methods (X-ray crystallography, NMR, and Cryo-EM) encounter challenges when resolving the RNA structures, which leads to the scarcity of the resolved RNA structures. Computational prediction approaches emerge as complementary to the experimental techniques. However, none of the \textit{de novo} approaches is based on deep learning since too few structures are available. Instead, most of them apply the time-consuming sampling-based strategies, and their performance seems to hit the plateau. In this work, we develop the first end-to-end deep learning approach, E2Efold-3D, to accurately perform the \textit{de novo} RNA structure prediction. Several novel components are proposed to overcome the data scarcity, such as a fully-differentiable end-to-end pipeline, secondary structure-assisted self-distillation, and parameter-efficient backbone formulation. Such designs are validated on the independent, non-overlapping RNA puzzle testing dataset and reach an average sub-4 \AA{} root-mean-square deviation, demonstrating its superior performance compared to state-of-the-art approaches. Interestingly, it also achieves promising results when predicting RNA complex structures, a feat that none of the previous systems could accomplish. When E2Efold-3D is coupled with the experimental techniques, the RNA structure prediction field can be greatly advanced." 151,Interpretable Fusion Analytics Framework for fMRI Connectivity: Self-Attention Mechanism and Latent Space Item-Response Model,"There have been several attempts to use deep learning based on brain fMRI signals to classify cognitive impairment diseases. However, deep learning is a hidden black box model that makes it difficult to interpret the process of classification. To address this issue, we propose a novel analytical framework that interprets the classification result from deep learning processes. We first derive the region of interest (ROI) functional connectivity network (FCN) by embedding functions based on their similar signal patterns. Then, using the self-attention equipped deep learning model, we classify diseases based on their FCN. Finally, in order to interpret the classification results, we employ a latent space item-response interaction network model to identify the significant functions that exhibit distinct connectivity patterns when compared to other diseases. The application of this proposed framework to the four types of cognitive impairment shows that our approach is valid for determining the significant ROI functions." 152,Dynamic Spatial Sparsification for Efficient Vision Transformers and Convolutional Neural Networks,"In this paper, we present a new approach for model acceleration by exploiting spatial sparsity in visual data. We observe that the final prediction in vision Transformers is only based on a subset of the most informative tokens, which is sufficient for accurate image recognition. Based on this observation, we propose a dynamic token sparsification framework to prune redundant tokens progressively and dynamically based on the input to accelerate vision Transformers. Specifically, we devise a lightweight prediction module to estimate the importance score of each token given the current features. The module is added to different layers to prune redundant tokens hierarchically. While the framework is inspired by our observation of the sparse attention in vision Transformers, we find the idea of adaptive and asymmetric computation can be a general solution for accelerating various architectures. We extend our method to hierarchical models including CNNs and hierarchical vision Transformers as well as more complex dense prediction tasks that require structured feature maps by formulating a more generic dynamic spatial sparsification framework with progressive sparsification and asymmetric computation for different spatial locations. By applying lightweight fast paths to less informative features and using more expressive slow paths to more important locations, we can maintain the structure of feature maps while significantly reducing the overall computations. Extensive experiments demonstrate the effectiveness of our framework on various modern architectures and different visual recognition tasks. Our results clearly demonstrate that dynamic spatial sparsification offers a new and more effective dimension for model acceleration. Code is available at https://github.com/raoyongming/DynamicViT" 153,Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer for CT Scans,"Computed tomography (CT) imaging could be very practical for diagnosing various diseases. However, the nature of the CT images is even more diverse since the resolution and number of the slices of a CT scan are determined by the machine and its settings. Conventional deep learning models are hard to tickle such diverse data since the essential requirement of the deep neural network is the consistent shape of the input data. In this paper, we propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly. First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks. Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning, leading to spatiotemporal feature representation learning. In this fashion, the proposed two-step LSTM model could prevent overfitting, as well as increase performance. Comprehensive experiments reveal that the proposed two-step method not only shows excellent performance but also could be compensated for each other. More specifically, the two-step LSTM model has a lower false-negative rate, while the 2-step Swin model has a lower false-positive rate. In summary, it is suggested that the model ensemble could be adopted for more stable and promising performance in real-world applications." 154,ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy,"Visual relations form the basis of understanding our compositional world, as relationships between visual objects capture key information in a scene. It is then advantageous to learn relations automatically from the data, as learning with predefined labels cannot capture all possible relations. However, current relation learning methods typically require supervision, and are not designed to generalize to scenes with more complicated relational structures than those seen during training. Here, we introduce ViRel, a method for unsupervised discovery and learning of Visual Relations with graph-level analogy. In a setting where scenes within a task share the same underlying relational subgraph structure, our learning method of contrasting isomorphic and non-isomorphic graphs discovers the relations across tasks in an unsupervised manner. Once the relations are learned, ViRel can then retrieve the shared relational graph structure for each task by parsing the predicted relational structure. Using a dataset based on grid-world and the Abstract Reasoning Corpus, we show that our method achieves above 95% accuracy in relation classification, discovers the relation graph structure for most tasks, and further generalizes to unseen tasks with more complicated relational structures." 155,De-Biasing Generative Models using Counterfactual Methods,"Variational autoencoders (VAEs) and other generative methods have garnered growing interest not just for their generative properties but also for the ability to dis-entangle a low-dimensional latent variable space. However, few existing generative models take causality into account. We propose a new decoder based framework named the Causal Counterfactual Generative Model (CCGM), which includes a partially trainable causal layer in which a part of a causal model can be learned without significantly impacting reconstruction fidelity. By learning the causal relationships between image semantic labels or tabular variables, we can analyze biases, intervene on the generative model, and simulate new scenarios. Furthermore, by modifying the causal structure, we can generate samples outside the domain of the original training data and use such counterfactual models to de-bias datasets. Thus, datasets with known biases can still be used to train the causal generative model and learn the causal relationships, but we can produce de-biased datasets on the generative side. Our proposed method combines a causal latent space VAE model with specific modification to emphasize causal fidelity, enabling finer control over the causal layer and the ability to learn a robust intervention framework. We explore how better disentanglement of causal learning and encoding/decoding generates higher causal intervention quality. We also compare our model against similar research to demonstrate the need for explicit generative de-biasing beyond interventions. Our initial experiments show that our model can generate images and tabular data with high fidelity to the causal framework and accommodate explicit de-biasing to ignore undesired relationships in the causal data compared to the baseline." 156,Goal-Conditioned Generators of Deep Policies,"Goal-conditioned Reinforcement Learning (RL) aims at learning optimal policies, given goals encoded in special command inputs. Here we study goal-conditioned neural nets (NNs) that learn to generate deep NN policies in form of context-specific weight matrices, similar to Fast Weight Programmers and other methods from the 1990s. Using context commands of the form ""generate a policy that achieves a desired expected return,"" our NN generators combine powerful exploration of parameter space with generalization across commands to iteratively find better and better policies. A form of weight-sharing HyperNetworks and policy embeddings scales our method to generate deep NNs. Experiments show how a single learned policy generator can produce policies that achieve any return seen during training. Finally, we evaluate our algorithm on a set of continuous control tasks where it exhibits competitive performance. Our code is public." 157,General Policy Evaluation and Improvement by Learning to Identify Few But Crucial States,"Learning to evaluate and improve policies is a core problem of Reinforcement Learning (RL). Traditional RL algorithms learn a value function defined for a single policy. A recently explored competitive alternative is to learn a single value function for many policies. Here we combine the actor-critic architecture of Parameter-Based Value Functions and the policy embedding of Policy Evaluation Networks to learn a single value function for evaluating (and thus helping to improve) any policy represented by a deep neural network (NN). The method yields competitive experimental results. In continuous control problems with infinitely many states, our value function minimizes its prediction error by simultaneously learning a small set of `probing states' and a mapping from actions produced in probing states to the policy's return. The method extracts crucial abstract knowledge about the environment in form of very few states sufficient to fully specify the behavior of many policies. A policy improves solely by changing actions in probing states, following the gradient of the value function's predictions. Surprisingly, it is possible to clone the behavior of a near-optimal policy in Swimmer-v3 and Hopper-v3 environments only by knowing how to act in 3 and 5 such learned states, respectively. Remarkably, our value function trained to evaluate NN policies is also invariant to changes of the policy architecture: we show that it allows for zero-shot learning of linear policies competitive with the best policy seen during training. Our code is public." 158,Fidelity of Ensemble Aggregation for Saliency Map Explanations using Bayesian Optimization Techniques,"In recent years, an abundance of feature attribution methods for explaining neural networks have been developed. Especially in the field of computer vision, many methods for generating saliency maps providing pixel attributions exist. However, their explanations often contradict each other and it is not clear which explanation to trust. A natural solution to this problem is the aggregation of multiple explanations. We present and compare different pixel-based aggregation schemes with the goal of generating a new explanation, whose fidelity to the model's decision is higher than each individual explanation. Using methods from the field of Bayesian Optimization, we incorporate the variance between the individual explanations into the aggregation process. Additionally, we analyze the effect of multiple normalization techniques on ensemble aggregation." 159,Progressive Latent Replay for efficient Generative Rehearsal,"We introduce a new method for internal replay that modulates the frequency of rehearsal based on the depth of the network. While replay strategies mitigate the effects of catastrophic forgetting in neural networks, recent works on generative replay show that performing the rehearsal only on the deeper layers of the network improves the performance in continual learning. However, the generative approach introduces additional computational overhead, limiting its applications. Motivated by the observation that earlier layers of neural networks forget less abruptly, we propose to update network layers with varying frequency using intermediate-level features during replay. This reduces the computational burden by omitting computations for both deeper layers of the generator and earlier layers of the main model. We name our method Progressive Latent Replay and show that it outperforms Internal Replay while using significantly fewer resources." 160,Selectively increasing the diversity of GAN-generated samples,"Generative Adversarial Networks (GANs) are powerful models able to synthesize data samples closely resembling the distribution of real data, yet the diversity of those generated samples is limited due to the so-called mode collapse phenomenon observed in GANs. Especially prone to mode collapse are conditional GANs, which tend to ignore the input noise vector and focus on the conditional information. Recent methods proposed to mitigate this limitation increase the diversity of generated samples, yet they reduce the performance of the models when similarity of samples is required. To address this shortcoming, we propose a novel method to selectively increase the diversity of GAN-generated samples. By adding a simple, yet effective regularization to the training loss function we encourage the generator to discover new data modes for inputs related to diverse outputs while generating consistent samples for the remaining ones. More precisely, we maximise the ratio of distances between generated images and input latent vectors scaling the effect according to the diversity of samples for a given conditional input. We show the superiority of our method in a synthetic benchmark as well as a real-life scenario of simulating data from the Zero Degree Calorimeter of ALICE experiment in LHC, CERN." 161,High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent,"In this paper, we study differentially private empirical risk minimization (DP-ERM). It has been shown that the (worst-case) utility of DP-ERM reduces as the dimension increases. This is a major obstacle to privately learning large machine learning models. In high dimension, it is common for some model's parameters to carry more information than others. To exploit this, we propose a differentially private greedy coordinate descent (DP-GCD) algorithm. At each iteration, DP-GCD privately performs a coordinate-wise gradient step along the gradients' (approximately) greatest entry. We show theoretically that DP-GCD can improve utility by exploiting structural properties of the problem's solution (such as sparsity or quasi-sparsity), with very fast progress in early iterations. We then illustrate this numerically, both on synthetic and real datasets. Finally, we describe promising directions for future work." 162,Learning from Multiple Unlabeled Datasets with Partial Risk Regularization,"Recent years have witnessed a great success of supervised deep learning, where predictive models were trained from a large amount of fully labeled data. However, in practice, labeling such big data can be very costly and may not even be possible for privacy reasons. Therefore, in this paper, we aim to learn an accurate classifier without any class labels. More specifically, we consider the case where multiple sets of unlabeled data and only their class priors, i.e., the proportions of each class, are available. Under this problem setup, we first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets and theoretically analyze the generalization error of the learned classifier. We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training. To prevent overfitting, we further propose a partial risk regularization that maintains the partial risks with respect to unlabeled datasets and classes to certain levels. Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets." 163,Counterbalancing Teacher: Regularizing Batch Normalized Models for Robustness,"Batch normalization (BN) is a ubiquitous technique for training deep neural networks that accelerates their convergence to reach higher accuracy. However, we demonstrate that BN comes with a fundamental drawback: it incentivizes the model to rely on low-variance features that are highly specific to the training (in-domain) data, hurting generalization performance on out-of-domain examples. In this work, we investigate this phenomenon by first showing that removing BN layers across a wide range of architectures leads to lower out-of-domain and corruption errors at the cost of higher in-domain errors. We then propose Counterbalancing Teacher (CT), a method which leverages a frozen copy of the same model without BN as a teacher to enforce the student network's learning of robust representations by substantially adapting its weights through a consistency loss function. This regularization signal helps CT perform well in unforeseen data shifts, even without information from the target domain as in prior works. We theoretically show in an overparameterized linear regression setting why normalization leads to a model's reliance on such in-domain features, and empirically demonstrate the efficacy of CT by outperforming several baselines on robustness benchmarks such as CIFAR-10-C, CIFAR-100-C, and VLCS." 164,Wild Networks: Exposure of 5G Network Infrastructures to Adversarial Examples,"Fifth Generation (5G) networks must support billions of heterogeneous devices while guaranteeing optimal Quality of Service (QoS). Such requirements are impossible to meet with human effort alone, and Machine Learning (ML) represents a core asset in 5G. ML, however, is known to be vulnerable to adversarial examples; moreover, as our paper will show, the 5G context is exposed to a yet another type of adversarial ML attacks that cannot be formalized with existing threat models. Proactive assessment of such risks is also challenging due to the lack of ML-powered 5G equipment available for adversarial ML research. To tackle these problems, we propose a novel adversarial ML threat model that is particularly suited to 5G scenarios, and is agnostic to the precise function solved by ML. In contrast to existing ML threat models, our attacks do not require any compromise of the target 5G system while still being viable due to the QoS guarantees and the open nature of 5G networks. Furthermore, we propose an original framework for realistic ML security assessments based on public data. We proactively evaluate our threat model on 6 applications of ML envisioned in 5G. Our attacks affect both the training and the inference stages, can degrade the performance of state-of-the-art ML systems, and have a lower entry barrier than previous attacks." 165,Variational Neural Networks,"Bayesian Neural Networks (BNNs) provide a tool to estimate the uncertainty of a neural network by considering a distribution over weights and sampling different models for each input. In this paper, we propose a method for uncertainty estimation in neural networks called Variational Neural Network that, instead of considering a distribution over weights, generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers. In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods." 166,Learning state machines via efficient hashing of future traces,"State machines are popular models to model and visualize discrete systems such as software systems, and to represent regular grammars. Most algorithms that passively learn state machines from data assume all the data to be available from the beginning and they load this data into memory. This makes it hard to apply them to continuously streaming data and results in large memory requirements when dealing with large datasets. In this paper we propose a method to learn state machines from data streams using the count-min-sketch data structure to reduce memory requirements. We apply state merging using the well-known red-blue-framework to reduce the search space. We implemented our approach in an established framework for learning state machines, and evaluated it on a well know dataset to provide experimental data, showing the effectiveness of our approach with respect to quality of the results and run-time." 167,Mix and Match: An Empirical Study on Training Corpus Composition for Polyglot Text-To-Speech (TTS),"Training multilingual Neural Text-To-Speech (NTTS) models using only monolingual corpora has emerged as a popular way for building voice cloning based Polyglot NTTS systems. In order to train these models, it is essential to understand how the composition of the training corpora affects the quality of multilingual speech synthesis. In this context, it is common to hear questions such as ""Would including more Spanish data help my Italian synthesis, given the closeness of both languages?"". Unfortunately, we found existing literature on the topic lacking in completeness in this regard. In the present work, we conduct an extensive ablation study aimed at understanding how various factors of the training corpora, such as language family affiliation, gender composition, and the number of speakers, contribute to the quality of Polyglot synthesis. Our findings include the observation that female speaker data are preferred in most scenarios, and that it is not always beneficial to have more speakers from the target language variant in the training corpus. The findings herein are informative for the process of data procurement and corpora building." 168,Slice-by-slice deep learning aided oropharyngeal cancer segmentation with adaptive thresholding for spatial uncertainty on FDG PET and CT images,"Tumor segmentation is a fundamental step for radiotherapy treatment planning. To define an accurate segmentation of the primary tumor (GTVp) of oropharyngeal cancer patients (OPC), simultaneous assessment of different image modalities is needed, and each image volume is explored slice-by-slice from different orientations. Moreover, the manual fixed boundary of segmentation neglects the spatial uncertainty known to occur in tumor delineation. This study proposes a novel automatic deep learning (DL) model to assist radiation oncologists in a slice-by-slice adaptive GTVp segmentation on registered FDG PET/CT images. We included 138 OPC patients treated with (chemo)radiation in our institute. Our DL framework exploits both inter and intra-slice context. Sequences of 3 consecutive 2D slices of concatenated FDG PET/CT images and GTVp contours were used as input. A 3-fold cross validation was performed three times, training on sequences extracted from the Axial (A), Sagittal (S), and Coronal (C) plane of 113 patients. Since consecutive sequences in a volume contain overlapping slices, each slice resulted in three outcome predictions that were averaged. In the A, S, and C planes, the output shows areas with different probabilities of predicting the tumor. The performance of the models was assessed on 25 patients at different probability thresholds using the mean Dice Score Coefficient (DSC). Predictions were the closest to the ground truth at a probability threshold of 0.9 (DSC of 0.70 in the A, 0.77 in the S, and 0.80 in the C plane). The promising results of the proposed DL model show that the probability maps on registered FDG PET/CT images could guide radiation oncologists in a slice-by-slice adaptive GTVp segmentation." 169,Deep Contrastive One-Class Time Series Anomaly Detection,"The accumulation of time series data and the absence of labels make time-series Anomaly Detection (AD) a self-supervised deep learning task. Single-assumption-based methods may only touch on a certain aspect of the whole normality, not sufficient to detect various anomalies. Among them, contrastive learning methods adopted for AD always choose negative pairs that are both normal to push away, which is objecting to AD tasks' purpose. Existing multi-assumption-based methods are usually two-staged, firstly applying a pre-training process whose target may differ from AD, so the performance is limited by the pre-trained representations. This paper proposes a deep Contrastive One-Class Anomaly detection method of time series (COCA), which combines the normality assumptions of contrastive learning and one-class classification. The key idea is to treat the representation and reconstructed representation as the positive pair of negative-samples-free contrastive learning, and we name it sequence contrast. Then we apply a contrastive one-class loss function composed of invariance and variance terms, the former optimizing loss of the two assumptions simultaneously, and the latter preventing hypersphere collapse. Extensive experiments conducted on four real-world time-series datasets show the superior performance of the proposed method achieves state-of-the-art. The code is publicly available at https://github.com/ruiking04/COCA." 170,Generalisable Methods for Early Prediction in Interactive Simulations for Education,"Interactive simulations allow students to discover the underlying principles of a scientific phenomenon through their own exploration. Unfortunately, students often struggle to learn effectively in these environments. Classifying students' interaction data in the simulations based on their expected performance has the potential to enable adaptive guidance and consequently improve students' learning. Previous research in this field has mainly focused on a-posteriori analyses or investigations limited to one specific predictive model and simulation. In this paper, we investigate the quality and generalisability of models for an early prediction of conceptual understanding based on clickstream data of students across interactive simulations. We first measure the students' conceptual understanding through their in-task performance. Then, we suggest a novel type of features that, starting from clickstream data, encodes both the state of the simulation and the action performed by the student. We finally propose to feed these features into GRU-based models, with and without attention, for prediction. Experiments on two different simulations and with two different populations show that our proposed models outperform shallow learning baselines and better generalise to different learning environments and populations. The inclusion of attention into the model increases interpretability in terms of effective inquiry. The source code is available on Github (https://github.com/epfl-ml4ed/beerslaw-lab.git)." 171,GlowVC: Mel-spectrogram space disentangling model for language-independent text-free voice conversion,"In this paper, we propose GlowVC: a multilingual multi-speaker flow-based model for language-independent text-free voice conversion. We build on Glow-TTS, which provides an architecture that enables use of linguistic features during training without the necessity of using them for VC inference. We consider two versions of our model: GlowVC-conditional and GlowVC-explicit. GlowVC-conditional models the distribution of mel-spectrograms with speaker-conditioned flow and disentangles the mel-spectrogram space into content- and pitch-relevant dimensions, while GlowVC-explicit models the explicit distribution with unconditioned flow and disentangles said space into content-, pitch- and speaker-relevant dimensions. We evaluate our models in terms of intelligibility, speaker similarity and naturalness for intra- and cross-lingual conversion in seen and unseen languages. GlowVC models greatly outperform AutoVC baseline in terms of intelligibility, while achieving just as high speaker similarity in intra-lingual VC, and slightly worse in the cross-lingual setting. Moreover, we demonstrate that GlowVC-explicit surpasses both GlowVC-conditional and AutoVC in terms of naturalness." 172,Solving the Traveling Salesperson Problem with Precedence Constraints by Deep Reinforcement Learning,"This work presents solutions to the Traveling Salesperson Problem with precedence constraints (TSPPC) using Deep Reinforcement Learning (DRL) by adapting recent approaches that work well for regular TSPs. Common to these approaches is the use of graph models based on multi-head attention (MHA) layers. One idea for solving the pickup and delivery problem (PDP) is using heterogeneous attentions to embed the different possible roles each node can take. In this work, we generalize this concept of heterogeneous attentions to the TSPPC. Furthermore, we adapt recent ideas to sparsify attentions for better scalability. Overall, we contribute to the research community through the application and evaluation of recent DRL methods in solving the TSPPC." 173,Comparing Feature Importance and Rule Extraction for Interpretability on Text Data,"Complex machine learning algorithms are used more and more often in critical tasks involving text data, leading to the development of interpretability methods. Among local methods, two families have emerged: those computing importance scores for each feature and those extracting simple logical rules. In this paper we show that using different methods can lead to unexpectedly different explanations, even when applied to simple models for which we would expect qualitative coincidence. To quantify this effect, we propose a new approach to compare explanations produced by different methods." 174,The Neural-Prediction based Acceleration Algorithm of Column Generation for Graph-Based Set Covering Problems,"Set covering problem is an important class of combinatorial optimization problems, which has been widely applied and studied in many fields. In this paper, we propose an improved column generation algorithm with neural prediction (CG-P) for solving graph-based set covering problems. We leverage a graph neural network based neural prediction model to predict the probability to be included in the final solution for each edge. Our CG-P algorithm constructs a reduced graph that only contains the edges with higher predicted probability, and this graph reduction process significantly speeds up the solution process. We evaluate the CG-P algorithm on railway crew scheduling problems and it outperforms the baseline column generation algorithm. We provide two solution modes for our CG-P algorithm. In the optimal mode, we can obtain a solution with an optimality guarantee while reducing the time cost to 63.12%. In the fast mode, we can obtain a sub-optimal solution with a 7.62% optimality gap in only 2.91% computation time." 175,Using contextual sentence analysis models to recognize ESG concepts,"This paper summarizes the joint participation of the Trading Central Labs and the L3i laboratory of the University of La Rochelle on both sub-tasks of the Shared Task FinSim-4 evaluation campaign. The first sub-task aims to enrich the 'Fortia ESG taxonomy' with new lexicon entries while the second one aims to classify sentences to either 'sustainable' or 'unsustainable' with respect to ESG (Environment, Social and Governance) related factors. For the first sub-task, we proposed a model based on pre-trained Sentence-BERT models to project sentences and concepts in a common space in order to better represent ESG concepts. The official task results show that our system yields a significant performance improvement compared to the baseline and outperforms all other submissions on the first sub-task. For the second sub-task, we combine the RoBERTa model with a feed-forward multi-layer perceptron in order to extract the context of sentences and classify them. Our model achieved high accuracy scores (over 92%) and was ranked among the top 5 systems." 176,Hessian-Free Second-Order Adversarial Examples for Adversarial Learning,"Recent studies show deep neural networks (DNNs) are extremely vulnerable to the elaborately designed adversarial examples. Adversarial learning with those adversarial examples has been proved as one of the most effective methods to defend against such an attack. At present, most existing adversarial examples generation methods are based on first-order gradients, which can hardly further improve models' robustness, especially when facing second-order adversarial attacks. Compared with first-order gradients, second-order gradients provide a more accurate approximation of the loss landscape with respect to natural examples. Inspired by this, our work crafts second-order adversarial examples and uses them to train DNNs. Nevertheless, second-order optimization involves time-consuming calculation for Hessian-inverse. We propose an approximation method through transforming the problem into an optimization in the Krylov subspace, which remarkably reduce the computational complexity to speed up the training procedure. Extensive experiments conducted on the MINIST and CIFAR-10 datasets show that our adversarial learning with second-order adversarial examples outperforms other fisrt-order methods, which can improve the model robustness against a wide range of attacks." 177,Autonomous Drug Design with Multi-armed Bandits,"Recent developments in artificial intelligence and automation could potentially enable a new drug design paradigm: autonomous drug design. Under this paradigm, generative models provide suggestions on thousands of molecules with specific properties. However, since only a limited number of molecules can be synthesized and tested, an obvious challenge is how to efficiently select these. We formulate this task as a contextual stochastic multi-armed bandit problem with multiple plays and volatile arms. Then, to solve it, we extend previous work on multi-armed bandits to reflect this setting, and compare our solution with random sampling, greedy selection and decaying-epsilon-greedy selection. To investigate how the different selection strategies affect the cumulative reward and the diversity of the selections, we simulate the drug design process. According to the simulation results, our approach has the potential for better exploring and exploiting the chemical space for autonomous drug design." 178,Task-oriented Self-supervised Learning for Anomaly Detection in Electroencephalography,"Accurate automated analysis of electroencephalography (EEG) would largely help clinicians effectively monitor and diagnose patients with various brain diseases. Compared to supervised learning with labelled disease EEG data which can train a model to analyze specific diseases but would fail to monitor previously unseen statuses, anomaly detection based on only normal EEGs can detect any potential anomaly in new EEGs. Different from existing anomaly detection strategies which do not consider any property of unavailable abnormal data during model development, a task-oriented self-supervised learning approach is proposed here which makes use of available normal EEGs and expert knowledge about abnormal EEGs to train a more effective feature extractor for the subsequent development of anomaly detector. In addition, a specific two branch convolutional neural network with larger kernels is designed as the feature extractor such that it can more easily extract both larger scale and small-scale features which often appear in unavailable abnormal EEGs. The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs for development of anomaly detector based on normal data and future anomaly detection for new EEGs, as demonstrated on three EEG datasets. The code is available at https://github.com/ironing/EEG-AD." 179,GAN-based generation of realistic 3D data: A systematic review and taxonomy,"Data has become the most valuable resource in today's world. With the massive proliferation of data-driven algorithms, such as deep learning-based approaches, the availability of data is of great interest. In this context, high-quality training, validation and testing datasets are particularly needed. Volumetric data is a very important resource in medicine, as it ranges from disease diagnoses to therapy monitoring. When the dataset is sufficient, models can be trained to help doctors with these tasks. Unfortunately, there are scenarios and applications where large amounts of data is unavailable. For example, in the medical field, rare diseases and privacy issues can lead to restricted data availability. In non-medical fields, the high cost of obtaining a sufficient amount of high-quality data can also be a concern. A solution to these problems can be the generation of synthetic data to perform data augmentation in combination with other more traditional methods of data augmentation. Therefore, most of the publications on 3D Generative Adversarial Networks (GANs) are within the medical domain. The existence of mechanisms to generate realistic synthetic data is a good asset to overcome this challenge, especially in healthcare, as the data must be of good quality and close to reality, i.e. realistic, and without privacy issues. In this review, we provide a summary of works that generate realistic 3D synthetic data using GANs. We therefore outline GAN-based methods in these areas with common architectures, advantages and disadvantages. We present a novel taxonomy, evaluations, challenges and research opportunities to provide a holistic overview of the current state of GANs in medicine and other fields." 180,Task Discrepancy Maximization for Fine-grained Few-Shot Classification,"Recognizing discriminative details such as eyes and beaks is important for distinguishing fine-grained classes since they have similar overall appearances. In this regard, we introduce Task Discrepancy Maximization (TDM), a simple module for fine-grained few-shot classification. Our objective is to localize the class-wise discriminative regions by highlighting channels encoding distinct information of the class. Specifically, TDM learns task-specific channel weights based on two novel components: Support Attention Module (SAM) and Query Attention Module (QAM). SAM produces a support weight to represent channel-wise discriminative power for each class. Still, since the SAM is basically only based on the labeled support sets, it can be vulnerable to bias toward such support set. Therefore, we propose QAM which complements SAM by yielding a query weight that grants more weight to object-relevant channels for a given query image. By combining these two weights, a class-wise task-specific channel weight is defined. The weights are then applied to produce task-adaptive feature maps more focusing on the discriminative details. Our experiments validate the effectiveness of TDM and its complementary benefits with prior methods in fine-grained few-shot classification." 181,Probabilistic forecasting for geosteering in fluvial successions using a generative adversarial network,"Quantitative workflows utilizing real-time data to constrain ahead-of-bit uncertainty have the potential to improve geosteering significantly. Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models. However, practical assimilation of real-time data requires effective geological modeling and mathematically robust parameterization. We propose a generative adversarial deep neural network (GAN), trained to reproduce geologically consistent 2D sections of fluvial successions. Offline training produces a fast GAN-based approximation of complex geology parameterized as a 60-dimensional model vector with standard Gaussian distribution of each component. Probabilistic forecasts are generated using an ensemble of equiprobable model vector realizations. A forward-modeling sequence, including a GAN, converts the initial (prior) ensemble of realizations into EM log predictions. An ensemble smoother minimizes statistical misfits between predictions and real-time data, yielding an update of model vectors and reduced uncertainty around the well. Updates can be then translated to probabilistic predictions of facies and resistivities. The present paper demonstrates a workflow for geosteering in an outcrop-based, synthetic fluvial succession. In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit." 182,Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis,"Coronavirus Disease 2019 (COVID-19) has spread globally and become a health crisis faced by humanity since first reported. Radiology imaging technologies such as computer tomography (CT) and chest X-ray imaging (CXR) are effective tools for diagnosing COVID-19. However, in CT and CXR images, the infected area occupies only a small part of the image. Some common deep learning methods that integrate large-scale receptive fields may cause the loss of image detail, resulting in the omission of the region of interest (ROI) in COVID-19 images and are therefore not suitable for further processing. To this end, we propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions, aiming to extract information under different scales of COVID-19 images effectively. Besides, we propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information. Extensive experiments on four CT and CXR datasets have shown that our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images. It can be used as a computer-aided diagnosis tool to help doctors effectively diagnose and screen for COVID-19." 183,Safe Reinforcement Learning via Confidence-Based Filters,"Ensuring safety is a crucial challenge when deploying reinforcement learning (RL) to real-world systems. We develop confidence-based safety filters, a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard RL techniques, based on probabilistic dynamics models. Our approach is based on a reformulation of state constraints in terms of cost functions, reducing safety verification to a standard RL task. By exploiting the concept of hallucinating inputs, we extend this formulation to determine a ""backup"" policy that is safe for the unknown system with high probability. Finally, the nominal policy is minimally adjusted at every time step during a roll-out towards the backup policy, such that safe recovery can be guaranteed afterwards. We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach." 184,Spectral Power Profile Optimization of Field-Deployed WDM Network by Remote Link Modeling,"A digital twin model of a multi-node WDM network is obtained from a single access point. The model is used to predict and optimize the transmit power profile for each link in the network and up to 2.2~dB of margin improvements are obtained w.r.t. unoptimized transmission." 185,The least-control principle for learning at equilibrium,"Equilibrium systems are a powerful way to express neural computations. As special cases, they include models of great current interest in both neuroscience and machine learning, such as equilibrium recurrent neural networks, deep equilibrium models, or meta-learning. Here, we present a new principle for learning such systems with a temporally- and spatially-local rule. Our principle casts learning as a least-control problem, where we first introduce an optimal controller to lead the system towards a solution state, and then define learning as reducing the amount of control needed to reach such a state. We show that incorporating learning signals within a dynamics as an optimal control enables transmitting credit assignment information in previously unknown ways, avoids storing intermediate states in memory, and does not rely on infinitesimal learning signals. In practice, our principle leads to strong performance matching that of leading gradient-based learning methods when applied to an array of problems involving recurrent neural networks and meta-learning. Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems." 186,Assessing the Performance of Automated Prediction and Ranking of Patient Age from Chest X-rays Against Clinicians,"Understanding the internal physiological changes accompanying the aging process is an important aspect of medical image interpretation, with the expected changes acting as a baseline when reporting abnormal findings. Deep learning has recently been demonstrated to allow the accurate estimation of patient age from chest X-rays, and shows potential as a health indicator and mortality predictor. In this paper we present a novel comparative study of the relative performance of radiologists versus state-of-the-art deep learning models on two tasks: (a) patient age estimation from a single chest X-ray, and (b) ranking of two time-separated images of the same patient by age. We train our models with a heterogeneous database of 1.8M chest X-rays with ground truth patient ages and investigate the limitations on model accuracy imposed by limited training data and image resolution, and demonstrate generalisation performance on public data. To explore the large performance gap between the models and humans on these age-prediction tasks compared with other radiological reporting tasks seen in the literature, we incorporate our age prediction model into a conditional Generative Adversarial Network (cGAN) allowing visualisation of the semantic features identified by the prediction model as significant to age prediction, comparing the identified features with those relied on by clinicians." 187,NodeTrans: A Graph Transfer Learning Approach for Traffic Prediction,"Recently, deep learning methods have made great progress in traffic prediction, but their performance depends on a large amount of historical data. In reality, we may face the data scarcity issue. In this case, deep learning models fail to obtain satisfactory performance. Transfer learning is a promising approach to solve the data scarcity issue. However, existing transfer learning approaches in traffic prediction are mainly based on regular grid data, which is not suitable for the inherent graph data in the traffic network. Moreover, existing graph-based models can only capture shared traffic patterns in the road network, and how to learn node-specific patterns is also a challenge. In this paper, we propose a novel transfer learning approach to solve the traffic prediction with few data, which can transfer the knowledge learned from a data-rich source domain to a data-scarce target domain. First, a spatial-temporal graph neural network is proposed, which can capture the node-specific spatial-temporal traffic patterns of different road networks. Then, to improve the robustness of transfer, we design a pattern-based transfer strategy, where we leverage a clustering-based mechanism to distill common spatial-temporal patterns in the source domain, and use these knowledge to further improve the prediction performance of the target domain. Experiments on real-world datasets verify the effectiveness of our approach." 188,A New Index for Clustering Evaluation Based on Density Estimation,"A new index for internal evaluation of clustering is introduced. The index is defined as a mixture of two sub-indices. The first sub-index $ I_a $ is called the Ambiguous Index; the second sub-index $ I_s $ is called the Similarity Index. Calculation of the two sub-indices is based on density estimation to each cluster of a partition of the data. An experiment is conducted to test the performance of the new index, and compared with three popular internal clustering evaluation indices -- Calinski-Harabasz index, Silhouette coefficient, and Davies-Bouldin index, on a set of 145 datasets. The result shows the new index improves the three popular indices by 59\%, 34\%, and 74\%, correspondingly." 189,DiffML: End-to-end Differentiable ML Pipelines,"In this paper, we present our vision of differentiable ML pipelines called DiffML to automate the construction of ML pipelines in an end-to-end fashion. The idea is that DiffML allows to jointly train not just the ML model itself but also the entire pipeline including data preprocessing steps, e.g., data cleaning, feature selection, etc. Our core idea is to formulate all pipeline steps in a differentiable way such that the entire pipeline can be trained using backpropagation. However, this is a non-trivial problem and opens up many new research questions. To show the feasibility of this direction, we demonstrate initial ideas and a general principle of how typical preprocessing steps such as data cleaning, feature selection and dataset selection can be formulated as differentiable programs and jointly learned with the ML model. Moreover, we discuss a research roadmap and core challenges that have to be systematically tackled to enable fully differentiable ML pipelines." 190,CPrune: Compiler-Informed Model Pruning for Efficient Target-Aware DNN Execution,"Mobile devices run deep learning models for various purposes, such as image classification and speech recognition. Due to the resource constraints of mobile devices, researchers have focused on either making a lightweight deep neural network (DNN) model using model pruning or generating an efficient code using compiler optimization. Surprisingly, we found that the straightforward integration between model compression and compiler auto-tuning often does not produce the most efficient model for a target device. We propose CPrune, a compiler-informed model pruning for efficient target-aware DNN execution to support an application with a required target accuracy. CPrune makes a lightweight DNN model through informed pruning based on the structural information of subgraphs built during the compiler tuning process. Our experimental results show that CPrune increases the DNN execution speed up to 2.73x compared to the state-of-the-art TVM auto-tune while satisfying the accuracy requirement." 191,Learning Optimal Transport Between two Empirical Distributions with Normalizing Flows,"Optimal transport (OT) provides effective tools for comparing and mapping probability measures. We propose to leverage the flexibility of neural networks to learn an approximate optimal transport map. More precisely, we present a new and original method to address the problem of transporting a finite set of samples associated with a first underlying unknown distribution towards another finite set of samples drawn from another unknown distribution. We show that a particular instance of invertible neural networks, namely the normalizing flows, can be used to approximate the solution of this OT problem between a pair of empirical distributions. To this aim, we propose to relax the Monge formulation of OT by replacing the equality constraint on the push-forward measure by the minimization of the corresponding Wasserstein distance. The push-forward operator to be retrieved is then restricted to be a normalizing flow which is trained by optimizing the resulting cost function. This approach allows the transport map to be discretized as a composition of functions. Each of these functions is associated to one sub-flow of the network, whose output provides intermediate steps of the transport between the original and target measures. This discretization yields also a set of intermediate barycenters between the two measures of interest. Experiments conducted on toy examples as well as a challenging task of unsupervised translation demonstrate the interest of the proposed method. Finally, some experiments show that the proposed approach leads to a good approximation of the true OT." 192,Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection,"Reliable spatial uncertainty evaluation of object detection models is of special interest and has been subject of recent work. In this work, we review the existing definitions for uncertainty calibration of probabilistic regression tasks. We inspect the calibration properties of common detection networks and extend state-of-the-art recalibration methods. Our methods use a Gaussian process (GP) recalibration scheme that yields parametric distributions as output (e.g. Gaussian or Cauchy). The usage of GP recalibration allows for a local (conditional) uncertainty calibration by capturing dependencies between neighboring samples. The use of parametric distributions such as as Gaussian allows for a simplified adaption of calibration in subsequent processes, e.g., for Kalman filtering in the scope of object tracking. In addition, we use the GP recalibration scheme to perform covariance estimation which allows for post-hoc introduction of local correlations between the output quantities, e.g., position, width, or height in object detection. To measure the joint calibration of multivariate and possibly correlated data, we introduce the quantile calibration error which is based on the Mahalanobis distance between the predicted distribution and the ground truth to determine whether the ground truth is within a predicted quantile. Our experiments show that common detection models overestimate the spatial uncertainty in comparison to the observed error. We show that the simple Isotonic Regression recalibration method is sufficient to achieve a good uncertainty quantification in terms of calibrated quantiles. In contrast, if normal distributions are required for subsequent processes, our GP-Normal recalibration method yields the best results. Finally, we show that our covariance estimation method is able to achieve best calibration results for joint multivariate calibration." 193,Approximate Vanishing Ideal Computations at Scale,"The approximate vanishing ideal of a set of points $X = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}\subseteq [0,1]^n$ is the set of polynomials that approximately evaluate to $0$ over all points $\mathbf{x} \in X$ and admits an efficient representation by a finite set of polynomials called generators. Algorithms that construct this set of generators are extensively studied but ultimately find little practical application because their computational complexities are thought to be superlinear in the number of samples $m$. In this paper, we focus on scaling up the Oracle Approximate Vanishing Ideal algorithm (OAVI), one of the most powerful of these methods. We prove that the computational complexity of OAVI is not superlinear but linear in the number of samples $m$ and polynomial in the number of features $n$, making OAVI an attractive preprocessing technique for large-scale machine learning. To further accelerate OAVI's training time, we propose two changes: First, as the name suggests, OAVI makes repeated oracle calls to convex solvers throughout its execution. By replacing the Pairwise Conditional Gradients algorithm, one of the standard solvers used in OAVI, with the faster Blended Pairwise Conditional Gradients algorithm, we illustrate how OAVI directly benefits from advancements in the study of convex solvers. Second, we propose Inverse Hessian Boosting (IHB): IHB exploits the fact that OAVI repeatedly solves quadratic convex optimization problems that differ only by very little and whose solutions can be written in closed form using inverse Hessian information. By efficiently updating the inverse of the Hessian matrix, the convex optimization problems can be solved almost instantly, accelerating OAVI's training time by up to multiple orders of magnitude. We complement our theoretical analysis with extensive numerical experiments on data sets whose sample numbers are in the millions." 194,Look beyond labels: Incorporating functional summary information in Bayesian neural networks,"Bayesian deep learning offers a principled approach to train neural networks that accounts for both aleatoric and epistemic uncertainty. In variational inference, priors are often specified over the weight parameters, but they do not capture the true prior knowledge in large and complex neural network architectures. We present a simple approach to incorporate summary information about the predicted probability (such as sigmoid or softmax score) outputs in Bayesian neural networks (BNNs). The available summary information is incorporated as augmented data and modeled with a Dirichlet process, and we derive the corresponding \emph{Summary Evidence Lower BOund}. We show how the method can inform the model about task difficulty or class imbalance. Extensive empirical experiments show that, with negligible computational overhead, the proposed method yields a BNN with a better calibration of uncertainty." 195,Masked Self-Supervision for Remaining Useful Lifetime Prediction in Machine Tools,"Prediction of Remaining Useful Lifetime(RUL) in the modern manufacturing and automation workplace for machines and tools is essential in Industry 4.0. This is clearly evident as continuous tool wear, or worse, sudden machine breakdown will lead to various manufacturing failures which would clearly cause economic loss. With the availability of deep learning approaches, the great potential and prospect of utilizing these for RUL prediction have resulted in several models which are designed driven by operation data of manufacturing machines. Current efforts in these which are based on fully-supervised models heavily rely on the data labeled with their RULs. However, the required RUL prediction data (i.e. the annotated and labeled data from faulty and/or degraded machines) can only be obtained after the machine breakdown occurs. The scarcity of broken machines in the modern manufacturing and automation workplace in real-world situations increases the difficulty of getting sufficient annotated and labeled data. In contrast, the data from healthy machines is much easier to be collected. Noting this challenge and the potential for improved effectiveness and applicability, we thus propose (and also fully develop) a method based on the idea of masked autoencoders which will utilize unlabeled data to do self-supervision. In thus the work here, a noteworthy masked self-supervised learning approach is developed and utilized. This is designed to seek to build a deep learning model for RUL prediction by utilizing unlabeled data. The experiments to verify the effectiveness of this development are implemented on the C-MAPSS datasets (which are collected from the data from the NASA turbofan engine). The results rather clearly show that our development and approach here perform better, in both accuracy and effectiveness, for RUL prediction when compared with approaches utilizing a fully-supervised model." 196,WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents,"Existing benchmarks for grounding language in interactive environments either lack real-world linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. To bridge this gap, we develop WebShop -- a simulated e-commerce website environment with $1.18$ million real-world products and $12,087$ crowd-sourced text instructions. Given a text instruction specifying a product requirement, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase an item. WebShop provides several challenges for language grounding including understanding compositional instructions, query (re-)formulation, comprehending and acting on noisy text in webpages, and performing strategic exploration. We collect over $1,600$ human demonstrations for the task, and train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of $29\%$, which outperforms rule-based heuristics ($9.6\%$) but is far lower than human expert performance ($59\%$). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show that agents trained on WebShop exhibit non-trivial sim-to-real transfer when evaluated on amazon.com, indicating the potential value of WebShop in developing practical web-based agents that can operate in the wild." 197,Pareto Optimization for Active Learning under Out-of-Distribution Data Scenarios,"Pool-based Active Learning (AL) has achieved great success in minimizing labeling cost by sequentially selecting informative unlabeled samples from a large unlabeled data pool and querying their labels from oracle/annotators. However, existing AL sampling strategies might not work well in out-of-distribution (OOD) data scenarios, where the unlabeled data pool contains some data samples that do not belong to the classes of the target task. Achieving good AL performance under OOD data scenarios is a challenging task due to the natural conflict between AL sampling strategies and OOD sample detection. AL selects data that are hard to be classified by the current basic classifier (e.g., samples whose predicted class probabilities have high entropy), while OOD samples tend to have more uniform predicted class probabilities (i.e., high entropy) than in-distribution (ID) data. In this paper, we propose a sampling scheme, Monte-Carlo Pareto Optimization for Active Learning (POAL), which selects optimal subsets of unlabeled samples with fixed batch size from the unlabeled data pool. We cast the AL sampling task as a multi-objective optimization problem, and thus we utilize Pareto optimization based on two conflicting objectives: (1) the normal AL data sampling scheme (e.g., maximum entropy), and (2) the confidence of not being an OOD sample. Experimental results show its effectiveness on both classical Machine Learning (ML) and Deep Learning (DL) tasks." 198,Learning node embeddings via summary graphs: a brief theoretical analysis,"Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem. Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph. However, all existing works depend on heuristic designs and lack theoretical analysis. Different from existing works, we contribute an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix, and reveal that learning embeddings via graph summarization is actually learning embeddings on a approximate graph constructed by the configuration model. We also give analysis about approximation error. To the best of our knowledge, this is the first work to give theoretical analysis of this approach. Furthermore, our analysis framework gives interpretation of some existing methods and provides great insights for future work on this problem." 199,ETF Portfolio Construction via Neural Network trained on Financial Statement Data,"Recently, the application of advanced machine learning methods for asset management has become one of the most intriguing topics. Unfortunately, the application of these methods, such as deep neural networks, is difficult due to the data shortage problem. To address this issue, we propose a novel approach using neural networks to construct a portfolio of exchange traded funds (ETFs) based on the financial statement data of their components. Although a number of ETFs and ETF-managed portfolios have emerged in the past few decades, the ability to apply neural networks to manage ETF portfolios is limited since the number and historical existence of ETFs are relatively smaller and shorter, respectively, than those of individual stocks. Therefore, we use the data of individual stocks to train our neural networks to predict the future performance of individual stocks and use these predictions and the portfolio deposit file (PDF) to construct a portfolio of ETFs. Multiple experiments have been performed, and we have found that our proposed method outperforms the baselines. We believe that our approach can be more beneficial when managing recently listed ETFs, such as thematic ETFs, of which there is relatively limited historical data for training advanced machine learning methods." 200,Less Is More: Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP Structures,"Multivariate time series forecasting has seen widely ranging applications in various domains, including finance, traffic, energy, and healthcare. To capture the sophisticated temporal patterns, plenty of research studies designed complex neural network architectures based on many variants of RNNs, GNNs, and Transformers. However, complex models are often computationally expensive and thus face a severe challenge in training and inference efficiency when applied to large-scale real-world datasets. In this paper, we introduce LightTS, a light deep learning architecture merely based on simple MLP-based structures. The key idea of LightTS is to apply an MLP-based structure on top of two delicate down-sampling strategies, including interval sampling and continuous sampling, inspired by a crucial fact that down-sampling time series often preserves the majority of its information. We conduct extensive experiments on eight widely used benchmark datasets. Compared with the existing state-of-the-art methods, LightTS demonstrates better performance on five of them and comparable performance on the rest. Moreover, LightTS is highly efficient. It uses less than 5% FLOPS compared with previous SOTA methods on the largest benchmark dataset. In addition, LightTS is robust and has a much smaller variance in forecasting accuracy than previous SOTA methods in long sequence forecasting tasks." 201,An Improved Probability Propagation Algorithm for Density Peak Clustering Based on Natural Nearest Neighborhood,"Clustering by fast search and find of density peaks (DPC) (Since, 2014) has been proven to be a promising clustering approach that efficiently discovers the centers of clusters by finding the density peaks. The accuracy of DPC depends on the cutoff distance ($d_c$), the cluster number ($k$) and the selection of the centers of clusters. Moreover, the final allocation strategy is sensitive and has poor fault tolerance. The shortcomings above make the algorithm sensitive to parameters and only applicable for some specific datasets. To overcome the limitations of DPC, this paper presents an improved probability propagation algorithm for density peak clustering based on the natural nearest neighborhood (DPC-PPNNN). By introducing the idea of natural nearest neighborhood and probability propagation, DPC-PPNNN realizes the nonparametric clustering process and makes the algorithm applicable for more complex datasets. In experiments on several datasets, DPC-PPNNN is shown to outperform DPC, K-means and DBSCAN." 202,Portuguese Man-of-War Image Classification with Convolutional Neural Networks,"Portuguese man-of-war (PMW) is a gelatinous organism with long tentacles capable of causing severe burns, thus leading to negative impacts on human activities, such as tourism and fishing. There is a lack of information about the spatio-temporal dynamics of this species. Therefore, the use of alternative methods for collecting data can contribute to their monitoring. Given the widespread use of social networks and the eye-catching look of PMW, Instagram posts can be a promising data source for monitoring. The first task to follow this approach is to identify posts that refer to PMW. This paper reports on the use of convolutional neural networks for PMW images classification, in order to automate the recognition of Instagram posts. We created a suitable dataset, and trained three different neural networks: VGG-16, ResNet50, and InceptionV3, with and without a pre-trained step with the ImageNet dataset. We analyzed their results using accuracy, precision, recall, and F1 score metrics. The pre-trained ResNet50 network presented the best results, obtaining 94% of accuracy and 95% of precision, recall, and F1 score. These results show that convolutional neural networks can be very effective for recognizing PMW images from the Instagram social media." 203,How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts,"Increasing concerns have been raised on deep learning fairness in recent years. Existing fairness-aware machine learning methods mainly focus on the fairness of in-distribution data. However, in real-world applications, it is common to have distribution shift between the training and test data. In this paper, we first show that the fairness achieved by existing methods can be easily broken by slight distribution shifts. To solve this problem, we propose a novel fairness learning method termed CUrvature MAtching (CUMA), which can achieve robust fairness generalizable to unseen domains with unknown distributional shifts. Specifically, CUMA enforces the model to have similar generalization ability on the majority and minority groups, by matching the loss curvature distributions of the two groups. We evaluate our method on three popular fairness datasets. Compared with existing methods, CUMA achieves superior fairness under unseen distribution shifts, without sacrificing either the overall accuracy or the in-distribution fairness." 204,Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition,"Existing out-of-distribution (OOD) detection methods are typically benchmarked on training sets with balanced class distributions. However, in real-world applications, it is common for the training sets to have long-tailed distributions. In this work, we first demonstrate that existing OOD detection methods commonly suffer from significant performance degradation when the training set is long-tail distributed. Through analysis, we posit that this is because the models struggle to distinguish the minority tail-class in-distribution samples, from the true OOD samples, making the tail classes more prone to be falsely detected as OOD. To solve this problem, we propose Partial and Asymmetric Supervised Contrastive Learning (PASCL), which explicitly encourages the model to distinguish between tail-class in-distribution samples and OOD samples. To further boost in-distribution classification accuracy, we propose Auxiliary Branch Finetuning, which uses two separate branches of BN and classification layers for anomaly detection and in-distribution classification, respectively. The intuition is that in-distribution and OOD anomaly data have different underlying distributions. Our method outperforms previous state-of-the-art method by $1.29\%$, $1.45\%$, $0.69\%$ anomaly detection false positive rate (FPR) and $3.24\%$, $4.06\%$, $7.89\%$ in-distribution classification accuracy on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT, respectively. Code and pre-trained models are available at https://github.com/amazon-research/long-tailed-ood-detection." 205,Removing Batch Normalization Boosts Adversarial Training,"Adversarial training (AT) defends deep neural networks against adversarial attacks. One challenge that limits its practical application is the performance degradation on clean samples. A major bottleneck identified by previous works is the widely used batch normalization (BN), which struggles to model the different statistics of clean and adversarial training samples in AT. Although the dominant approach is to extend BN to capture this mixture of distribution, we propose to completely eliminate this bottleneck by removing all BN layers in AT. Our normalizer-free robust training (NoFrost) method extends recent advances in normalizer-free networks to AT for its unexplored advantage on handling the mixture distribution challenge. We show that NoFrost achieves adversarial robustness with only a minor sacrifice on clean sample accuracy. On ImageNet with ResNet50, NoFrost achieves $74.06\%$ clean accuracy, which drops merely $2.00\%$ from standard training. In contrast, BN-based AT obtains $59.28\%$ clean accuracy, suffering a significant $16.78\%$ drop from standard training. In addition, NoFrost achieves a $23.56\%$ adversarial robustness against PGD attack, which improves the $13.57\%$ robustness in BN-based AT. We observe better model smoothness and larger decision margins from NoFrost, which make the models less sensitive to input perturbations and thus more robust. Moreover, when incorporating more data augmentations into NoFrost, it achieves comprehensive robustness against multiple distribution shifts. Code and pre-trained models are public at https://github.com/amazon-research/normalizer-free-robust-training." 206,It's all About Consistency: A Study on Memory Composition for Replay-Based Methods in Continual Learning,"Continual Learning methods strive to mitigate Catastrophic Forgetting (CF), where knowledge from previously learned tasks is lost when learning a new one. Among those algorithms, some maintain a subset of samples from previous tasks when training. These samples are referred to as a memory. These methods have shown outstanding performance while being conceptually simple and easy to implement. Yet, despite their popularity, little has been done to understand which elements to be included into the memory. Currently, this memory is often filled via random sampling with no guiding principles that may aid in retaining previous knowledge. In this work, we propose a criterion based on the learning consistency of a sample called Consistency AWare Sampling (CAWS). This criterion prioritizes samples that are easier to learn by deep networks. We perform studies on three different memory-based methods: AGEM, GDumb, and Experience Replay, on MNIST, CIFAR-10 and CIFAR-100 datasets. We show that using the most consistent elements yields performance gains when constrained by a compute budget; when under no such constrain, random sampling is a strong baseline. However, using CAWS on Experience Replay yields improved performance over the random baseline. Finally, we show that CAWS achieves similar results to a popular memory selection method while requiring significantly less computational resources." 207,DecisioNet -- A Binary-Tree Structured Neural Network,"Deep neural networks (DNNs) and decision trees (DTs) are both state-of-the-art classifiers. DNNs perform well due to their representational learning capabilities, while DTs are computationally efficient as they perform inference along one route (root-to-leaf) that is dependent on the input data. In this paper, we present DecisioNet (DN), a binary-tree structured neural network. We propose a systematic way to convert an existing DNN into a DN to create a lightweight version of the original model. DecisioNet takes the best of both worlds - it uses neural modules to perform representational learning and utilizes its tree structure to perform only a portion of the computations. We evaluate various DN architectures, along with their corresponding baseline models on the FashionMNIST, CIFAR10, and CIFAR100 datasets. We show that the DN variants achieve similar accuracy while significantly reducing the computational cost of the original network." 208,Saliency-Regularized Deep Multi-Task Learning,"Multitask learning is a framework that enforces multiple learning tasks to share knowledge to improve their generalization abilities. While shallow multitask learning can learn task relations, it can only handle predefined features. Modern deep multitask learning can jointly learn latent features and task sharing, but they are obscure in task relation. Also, they predefine which layers and neurons should share across tasks and cannot learn adaptively. To address these challenges, this paper proposes a new multitask learning framework that jointly learns latent features and explicit task relations by complementing the strength of existing shallow and deep multitask learning scenarios. Specifically, we propose to model the task relation as the similarity between task input gradients, with a theoretical analysis of their equivalency. In addition, we innovatively propose a multitask learning objective that explicitly learns task relations by a new regularizer. Theoretical analysis shows that the generalizability error has been reduced thanks to the proposed regularizer. Extensive experiments on several multitask learning and image classification benchmarks demonstrate the proposed method effectiveness, efficiency as well as reasonableness in the learned task relation patterns." 209,USHER: Unbiased Sampling for Hindsight Experience Replay,"Dealing with sparse rewards is a long-standing challenge in reinforcement learning (RL). Hindsight Experience Replay (HER) addresses this problem by reusing failed trajectories for one goal as successful trajectories for another. This allows for both a minimum density of reward and for generalization across multiple goals. However, this strategy is known to result in a biased value function, as the update rule underestimates the likelihood of bad outcomes in a stochastic environment. We propose an asymptotically unbiased importance-sampling-based algorithm to address this problem without sacrificing performance on deterministic environments. We show its effectiveness on a range of robotic systems, including challenging high dimensional stochastic environments." 210,Learning Noise with Generative Adversarial Networks: Explorations with Classical Random Process Models,"Random noise arising from physical processes is an inherent characteristic of measurements and a limiting factor for most signal processing tasks. Given the recent interest in generative adversarial networks (GANs) for data-driven signal modeling, it is important to determine to what extent GANs can faithfully reproduce noise in target data sets. In this paper, we present an empirical investigation that aims to shed light on this issue for time series. Namely, we examine the ability of two general-purpose time-series GANs, a direct time-series model and an image-based model using a short-time Fourier transform (STFT) representation, to learn a broad range of noise types commonly encountered in electronics and communication systems: band-limited thermal noise, power law noise, shot noise, and impulsive noise. We find that GANs are capable of learning many noise types, although they predictably struggle when the GAN architecture is not well suited to some aspects of the noise, e.g., impulsive time-series with extreme outliers. Our findings provide insights into the capabilities and potential limitations of current approaches to time-series GANs and highlight areas for further research. In addition, our battery of tests provides a useful benchmark to aid the development of deep generative models for time series." 211,Mathematical Foundations of Graph-Based Bayesian Semi-Supervised Learning,"In recent decades, science and engineering have been revolutionized by a momentous growth in the amount of available data. However, despite the unprecedented ease with which data are now collected and stored, labeling data by supplementing each feature with an informative tag remains to be challenging. Illustrative tasks where the labeling process requires expert knowledge or is tedious and time-consuming include labeling X-rays with a diagnosis, protein sequences with a protein type, texts by their topic, tweets by their sentiment, or videos by their genre. In these and numerous other examples, only a few features may be manually labeled due to cost and time constraints. How can we best propagate label information from a small number of expensive labeled features to a vast number of unlabeled ones? This is the question addressed by semi-supervised learning (SSL). This article overviews recent foundational developments on graph-based Bayesian SSL, a probabilistic framework for label propagation using similarities between features. SSL is an active research area and a thorough review of the extant literature is beyond the scope of this article. Our focus will be on topics drawn from our own research that illustrate the wide range of mathematical tools and ideas that underlie the rigorous study of the statistical accuracy and computational efficiency of graph-based Bayesian SSL." 212,Folding over Neural Networks,"Neural networks are typically represented as data structures that are traversed either through iteration or by manual chaining of method calls. However, a deeper analysis reveals that structured recursion can be used instead, so that traversal is directed by the structure of the network itself. This paper shows how such an approach can be realised in Haskell, by encoding neural networks as recursive data types, and then their training as recursion scheme patterns. In turn, we promote a coherent implementation of neural networks that delineates between their structure and semantics, allowing for compositionality in both how they are built and how they are trained." 213,FasterAI: A Lightweight Library for Creating Sparse Neural Networks,"FasterAI is a PyTorch-based library, aiming to facilitate the utilization of deep neural networks compression techniques such as sparsification, pruning, knowledge distillation, or regularization. The library is built with the purpose of enabling quick implementation and experimentation. More particularly, compression techniques are leveraging Callback systems of libraries such as fastai and Pytorch Lightning to bring a user-friendly and high-level API. The main asset of FasterAI is its lightweight, yet powerful, simplicity of use. Indeed, because it was developed in a very granular way, users can create thousands of unique experiments by using different combinations of parameters. In this paper, we focus on the sparsifying capabilities of FasterAI, which represents the core of the library. Performing sparsification of a neural network in FasterAI only requires a single additional line of code in the traditional training loop, yet allows to perform state-of-the-art techniques such as Lottery Ticket Hypothesis experiments" 214,"Patient-specific modelling, simulation and real time processing for constrictive respiratory diseases","Asthma is a common chronic disease of the respiratory system causing significant disability and societal burden. It affects over 500 million people worldwide and generates costs exceeding $USD 56 billion in 2011 in the United States. Managing asthma involves controlling symptoms, preventing exacerbations, and maintaining lung function. Improving asthma control affects the daily life of patients and is associated with a reduced risk of exacerbations and lung function impairment, reduces the cost of asthma care and indirect costs associated with reduced productivity. Understanding the complex dynamics of the pulmonary system and the lung's response to disease, injury, and treatment is fundamental to the advancement of Asthma treatment. Computational models of the respiratory system seek to provide a theoretical framework to understand the interaction between structure and function. Their application can improve pulmonary medicine by a patient-specific approach to medicinal methodologies optimizing the delivery given the personalized geometry and personalized ventilation patterns while introducing a patient-specific technique that maximizes drug delivery. A three-fold objective addressed within this dissertation becomes prominent at this point. The first part refers to the comprehension of pulmonary pathophysiology and the mechanics of Asthma and subsequently of constrictive pulmonary conditions in general. The second part refers to the design and implementation of tools that facilitate personalized medicine to improve delivery and effectiveness. Finally, the third part refers to the self-management of the condition, meaning that medical personnel and patients have access to tools and methods that allow the first party to easily track the course of the condition and the second party, i.e. the patient to easily self-manage it alleviating the significant burden from the health system." 215,NP-Match: When Neural Processes meet Semi-Supervised Learning,"Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudo-labels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on four public datasets, and NP-Match outperforms state-of-the-art (SOTA) results or achieves competitive results on them, which shows the effectiveness of NP-Match and its potential for SSL." 216,Distributed Online System Identification for LTI Systems Using Reverse Experience Replay,"Identification of linear time-invariant (LTI) systems plays an important role in control and reinforcement learning. Both asymptotic and finite-time offline system identification are well-studied in the literature. For online system identification, the idea of stochastic-gradient descent with reverse experience replay (SGD-RER) was recently proposed, where the data sequence is stored in several buffers and the stochastic-gradient descent (SGD) update performs backward in each buffer to break the time dependency between data points. Inspired by this work, we study distributed online system identification of LTI systems over a multi-agent network. We consider agents as identical LTI systems, and the network goal is to jointly estimate the system parameters by leveraging the communication between agents. We propose DSGD-RER, a distributed variant of the SGD-RER algorithm, and theoretically characterize the improvement of the estimation error with respect to the network size. Our numerical experiments certify the reduction of estimation error as the network size grows." 217,Identifying the Context Shift between Test Benchmarks and Production Data,"Across a wide variety of domains, there exists a performance gap between machine learning models' accuracy on dataset benchmarks and real-world production data. Despite the careful design of static dataset benchmarks to represent the real-world, models often err when the data is out-of-distribution relative to the data the models have been trained on. We can directly measure and adjust for some aspects of distribution shift, but we cannot address sample selection bias, adversarial perturbations, and non-stationarity without knowing the data generation process. In this paper, we outline two methods for identifying changes in context that lead to distribution shifts and model prediction errors: leveraging human intuition and expert knowledge to identify first-order contexts and developing dynamic benchmarks based on desiderata for the data generation process. Furthermore, we present two case-studies to highlight the implicit assumptions underlying applied machine learning models that tend to lead to errors when attempting to generalize beyond test benchmark datasets. By paying close attention to the role of context in each prediction task, researchers can reduce context shift errors and increase generalization performance." 218,Protea: Client Profiling within Federated Systems using Flower,"Federated Learning (FL) has emerged as a prospective solution that facilitates the training of a high-performing centralised model without compromising the privacy of users. While successful, research is currently limited by the possibility of establishing a realistic large-scale FL system at the early stages of experimentation. Simulation can help accelerate this process. To facilitate efficient scalable FL simulation of heterogeneous clients, we design and implement Protea, a flexible and lightweight client profiling component within federated systems using the FL framework Flower. It allows automatically collecting system-level statistics and estimating the resources needed for each client, thus running the simulation in a resource-aware fashion. The results show that our design successfully increases parallelism for 1.66 $\times$ faster wall-clock time and 2.6$\times$ better GPU utilisation, which enables large-scale experiments on heterogeneous clients." 219,Generating gender-ambiguous voices for privacy-preserving speech recognition,"Our voice encodes a uniquely identifiable pattern which can be used to infer private attributes, such as gender or identity, that an individual might wish not to reveal when using a speech recognition service. To prevent attribute inference attacks alongside speech recognition tasks, we present a generative adversarial network, GenGAN, that synthesises voices that conceal the gender or identity of a speaker. The proposed network includes a generator with a U-Net architecture that learns to fool a discriminator. We condition the generator only on gender information and use an adversarial loss between signal distortion and privacy preservation. We show that GenGAN improves the trade-off between privacy and utility compared to privacy-preserving representation learning methods that consider gender information as a sensitive attribute to protect." 220,Learning to Increase the Power of Conditional Randomization Tests,"The model-X conditional randomization test is a generic framework for conditional independence testing, unlocking new possibilities to discover features that are conditionally associated with a response of interest while controlling type-I error rates. An appealing advantage of this test is that it can work with any machine learning model to design powerful test statistics. In turn, the common practice in the model-X literature is to form a test statistic using machine learning models, trained to maximize predictive accuracy with the hope to attain a test with good power. However, the ideal goal here is to drive the model (during training) to maximize the power of the test, not merely the predictive accuracy. In this paper, we bridge this gap by introducing, for the first time, novel model-fitting schemes that are designed to explicitly improve the power of model-X tests. This is done by introducing a new cost function that aims at maximizing the test statistic used to measure violations of conditional independence. Using synthetic and real data sets, we demonstrate that the combination of our proposed loss function with various base predictive models (lasso, elastic net, and deep neural networks) consistently increases the number of correct discoveries obtained, while maintaining type-I error rates under control." 221,Comparative Analysis of Time Series Forecasting Approaches for Household Electricity Consumption Prediction,"As a result of increasing population and globalization, the demand for energy has greatly risen. Therefore, accurate energy consumption forecasting has become an essential prerequisite for government planning, reducing power wastage and stable operation of the energy management system. In this work we present a comparative analysis of major machine learning models for time series forecasting of household energy consumption. Specifically, we use Weka, a data mining tool to first apply models on hourly and daily household energy consumption datasets available from Kaggle data science community. The models applied are: Multilayer Perceptron, K Nearest Neighbor regression, Support Vector Regression, Linear Regression, and Gaussian Processes. Secondly, we also implemented time series forecasting models, ARIMA and VAR, in python to forecast household energy consumption of selected South Korean households with and without weather data. Our results show that the best methods for the forecasting of energy consumption prediction are Support Vector Regression followed by Multilayer Perceptron and Gaussian Process Regression." 222,"Recipe for Fast Large-scale SVM Training: Polishing, Parallelism, and more RAM!","Support vector machines (SVMs) are a standard method in the machine learning toolbox, in particular for tabular data. Non-linear kernel SVMs often deliver highly accurate predictors, however, at the cost of long training times. That problem is aggravated by the exponential growth of data volumes over time. It was tackled in the past mainly by two types of techniques: approximate solvers, and parallel GPU implementations. In this work, we combine both approaches to design an extremely fast dual SVM solver. We fully exploit the capabilities of modern compute servers: many-core architectures, multiple high-end GPUs, and large random access memory. On such a machine, we train a large-margin classifier on the ImageNet data set in 24 minutes." 223,Mental Illness Classification on Social Media Texts using Deep Learning and Transfer Learning,"Given the current social distance restrictions across the world, most individuals now use social media as their major medium of communication. Millions of people suffering from mental diseases have been isolated due to this, and they are unable to get help in person. They have become more reliant on online venues to express themselves and seek advice on dealing with their mental disorders. According to the World health organization (WHO), approximately 450 million people are affected. Mental illnesses, such as depression, anxiety, etc., are immensely common and have affected an individuals' physical health. Recently Artificial Intelligence (AI) methods have been presented to help mental health providers, including psychiatrists and psychologists, in decision making based on patients' authentic information (e.g., medical records, behavioral data, social media utilization, etc.). AI innovations have demonstrated predominant execution in numerous real-world applications broadening from computer vision to healthcare. This study analyzes unstructured user data on the Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD. We trained traditional machine learning, deep learning, and transfer learning multi-class models to detect mental disorders of individuals. This effort will benefit the public health system by automating the detection process and informing appropriate authorities about people who require emergency assistance." 224,Facial Image Reconstruction from Functional Magnetic Resonance Imaging via GAN Inversion with Improved Attribute Consistency,"Neuroscience studies have revealed that the brain encodes visual content and embeds information in neural activity. Recently, deep learning techniques have facilitated attempts to address visual reconstructions by mapping brain activity to image stimuli using generative adversarial networks (GANs). However, none of these studies have considered the semantic meaning of latent code in image space. Omitting semantic information could potentially limit the performance. In this study, we propose a new framework to reconstruct facial images from functional Magnetic Resonance Imaging (fMRI) data. With this framework, the GAN inversion is first applied to train an image encoder to extract latent codes in image space, which are then bridged to fMRI data using linear transformation. Following the attributes identified from fMRI data using an attribute classifier, the direction in which to manipulate attributes is decided and the attribute manipulator adjusts the latent code to improve the consistency between the seen image and the reconstructed image. Our experimental results suggest that the proposed framework accomplishes two goals: (1) reconstructing clear facial images from fMRI data and (2) maintaining the consistency of semantic characteristics." 225,Government Intervention in Catastrophe Insurance Markets: A Reinforcement Learning Approach,"This paper designs a sequential repeated game of a micro-founded society with three types of agents: individuals, insurers, and a government. Nascent to economics literature, we use Reinforcement Learning (RL), closely related to multi-armed bandit problems, to learn the welfare impact of a set of proposed policy interventions per $1 spent on them. The paper rigorously discusses the desirability of the proposed interventions by comparing them against each other on a case-by-case basis. The paper provides a framework for algorithmic policy evaluation using calibrated theoretical models which can assist in feasibility studies." 226,Stabilizing Off-Policy Deep Reinforcement Learning from Pixels,"Off-policy reinforcement learning (RL) from pixel observations is notoriously unstable. As a result, many successful algorithms must combine different domain-specific practices and auxiliary losses to learn meaningful behaviors in complex environments. In this work, we provide novel analysis demonstrating that these instabilities arise from performing temporal-difference learning with a convolutional encoder and low-magnitude rewards. We show that this new visual deadly triad causes unstable training and premature convergence to degenerate solutions, a phenomenon we name catastrophic self-overfitting. Based on our analysis, we propose A-LIX, a method providing adaptive regularization to the encoder's gradients that explicitly prevents the occurrence of catastrophic self-overfitting using a dual objective. By applying A-LIX, we significantly outperform the prior state-of-the-art on the DeepMind Control and Atari 100k benchmarks without any data augmentation or auxiliary losses." 227,SSD-Faster Net: A Hybrid Network for Industrial Defect Inspection,"The quality of industrial components is critical to the production of special equipment such as robots. Defect inspection of these components is an efficient way to ensure quality. In this paper, we propose a hybrid network, SSD-Faster Net, for industrial defect inspection of rails, insulators, commutators etc. SSD-Faster Net is a two-stage network, including SSD for quickly locating defective blocks, and an improved Faster R-CNN for defect segmentation. For the former, we propose a novel slice localization mechanism to help SSD scan quickly. The second stage is based on improved Faster R-CNN, using FPN, deformable kernel(DK) to enhance representation ability. It fuses multi-scale information, and self-adapts the receptive field. We also propose a novel loss function and use ROI Align to improve accuracy. Experiments show that our SSD-Faster Net achieves an average accuracy of 84.03%, which is 13.42% higher than the nearest competitor based on Faster R-CNN, 4.14% better than GAN-based methods, more than 10% higher than that of DNN-based detectors. And the computing speed is improved by nearly 7%, which proves its robustness and superior performance." 228,Advancing protein language models with linguistics: a roadmap for improved interpretability,"Deep neural-network-based language models (LMs) are increasingly applied to large-scale protein sequence data to predict protein function. However, being largely blackbox models and thus challenging to interpret, current protein LM approaches do not contribute to a fundamental understanding of sequence-function mappings, hindering rule-based biotherapeutic drug development. We argue that guidance drawn from linguistics, a field specialized in analytical rule extraction from natural language data, can aid with building more interpretable protein LMs that have learned relevant domain-specific rules. Differences between protein sequence data and linguistic sequence data require the integration of more domain-specific knowledge in protein LMs compared to natural language LMs. Here, we provide a linguistics-based roadmap for protein LM pipeline choices with regard to training data, tokenization, token embedding, sequence embedding, and model interpretation. Combining linguistics with protein LMs enables the development of next-generation interpretable machine learning models with the potential of uncovering the biological mechanisms underlying sequence-function relationships." 229,Renaissance Robot: Optimal Transport Policy Fusion for Learning Diverse Skills,"Deep reinforcement learning (RL) is a promising approach to solving complex robotics problems. However, the process of learning through trial-and-error interactions is often highly time-consuming, despite recent advancements in RL algorithms. Additionally, the success of RL is critically dependent on how well the reward-shaping function suits the task, which is also time-consuming to design. As agents trained on a variety of robotics problems continue to proliferate, the ability to reuse their valuable learning for new domains becomes increasingly significant. In this paper, we propose a post-hoc technique for policy fusion using Optimal Transport theory as a robust means of consolidating the knowledge of multiple agents that have been trained on distinct scenarios. We further demonstrate that this provides an improved weights initialisation of the neural network policy for learning new tasks, requiring less time and computational resources than either retraining the parent policies or training a new policy from scratch. Ultimately, our results on diverse agents commonly used in deep RL show that specialised knowledge can be unified into a ""Renaissance agent"", allowing for quicker learning of new skills." 230,PrUE: Distilling Knowledge from Sparse Teacher Networks,"Although deep neural networks have enjoyed remarkable success across a wide variety of tasks, their ever-increasing size also imposes significant overhead on deployment. To compress these models, knowledge distillation was proposed to transfer knowledge from a cumbersome (teacher) network into a lightweight (student) network. However, guidance from a teacher does not always improve the generalization of students, especially when the size gap between student and teacher is large. Previous works argued that it was due to the high certainty of the teacher, resulting in harder labels that were difficult to fit. To soften these labels, we present a pruning method termed Prediction Uncertainty Enlargement (PrUE) to simplify the teacher. Specifically, our method aims to decrease the teacher's certainty about data, thereby generating soft predictions for students. We empirically investigate the effectiveness of the proposed method with experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet. Results indicate that student networks trained with sparse teachers achieve better performance. Besides, our method allows researchers to distill knowledge from deeper networks to improve students further. Our code is made public at: \url{https://github.com/wangshaopu/prue}." 231,Features of a Splashing Drop on a Solid Surface and the Temporal Evolution extracted through Image-Sequence Classification using an Interpretable Feedforward Neural Network,"This paper reports the features of a splashing drop on a solid surface and the temporal evolution, which are extracted through image-sequence classification using a highly interpretable feedforward neural network (FNN) with zero hidden layer. The image sequences used for training-validation and testing of the FNN show the early-stage deformation of milli-sized ethanol drops that impact a hydrophilic glass substrate with the Weber number ranges between 31-474 (splashing threshold about 173). Specific videographing conditions and digital image processing are performed to ensure the high similarity among the image sequences. As a result, the trained FNNs achieved a test accuracy higher than 96%. Remarkably, the feature extraction shows that the trained FNN identifies the temporal evolution of the ejected secondary droplets around the aerodynamically lifted lamella and the relatively high contour of the main body as the features of a splashing drop, while the relatively short and thick lamella as the feature of a nonsplashing drop. The physical interpretation for these features and their respective temporal evolution have been identified except for the difference in contour height of the main body between splashing and nonsplashing drops. The observation reported in this study is important for the development of a data-driven simulation for modeling the deformation of a splashing drop during the impact on a solid surface." 232,"Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI","This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by integrating the three processes into a joint design. This integrated sensing, computation, and communication (ISCC) design approach, however, leads to a challenging non-convex optimization problem, due to the complicated form of discriminant gain and the device heterogeneity in terms of channel gain, quantization level, and generated feature subsets. Remarkably, the considered non-convex problem can be optimally solved based on the sum-of-ratios method. This gives the optimal ISCC scheme, that jointly determines the transmit power and time allocation at multiple devices for sensing and communication, as well as their quantization bits allocation for computation distortion control. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of our derived optimal ISCC scheme." 233,An Empirical Evaluation of $k$-Means Coresets,"Coresets are among the most popular paradigms for summarizing data. In particular, there exist many high performance coresets for clustering problems such as $k$-means in both theory and practice. Curiously, there exists no work on comparing the quality of available $k$-means coresets. In this paper we perform such an evaluation. There currently is no algorithm known to measure the distortion of a candidate coreset. We provide some evidence as to why this might be computationally difficult. To complement this, we propose a benchmark for which we argue that computing coresets is challenging and which also allows us an easy (heuristic) evaluation of coresets. Using this benchmark and real-world data sets, we conduct an exhaustive evaluation of the most commonly used coreset algorithms from theory and practice." 234,Digital-twin-enhanced metal tube bending forming real-time prediction method based on Multi-source-input MTL,"As one of the most widely used metal tube bending methods, the rotary draw bending (RDB) process enables reliable and high-precision metal tube bending forming (MTBF). The forming accuracy is seriously affected by the springback and other potential forming defects, of which the mechanism analysis is difficult to deal with. At the same time, the existing methods are mainly conducted in offline space, ignoring the real-time information in the physical world, which is unreliable and inefficient. To address this issue, a digital-twin-enhanced (DT-enhanced) metal tube bending forming real-time prediction method based on multi-source-input multi-task learning (MTL) is proposed. The new method can achieve comprehensive MTBF real-time prediction. By sharing the common feature of the multi-close domain and adopting group regularization strategy on feature sharing and accepting layers, the accuracy and efficiency of the multi-source-input MTL can be guaranteed. Enhanced by DT, the physical real-time deformation data is aligned in the image dimension by an improved Grammy Angle Field (GAF) conversion, realizing the reflection of the actual processing. Different from the traditional offline prediction methods, the new method integrates the virtual and physical data to achieve a more efficient and accurate real-time prediction result. and the DT mapping connection between virtual and physical systems can be achieved. To exclude the effects of equipment errors, the effectiveness of the proposed method is verified on the physical experiment-verified FE simulation scenarios. At the same time, the common pre-training networks are compared with the proposed method. The results show that the proposed DT-enhanced prediction method is more accurate and efficient." 235,WaferSegClassNet -- A Light-weight Network for Classification and Segmentation of Semiconductor Wafer Defects,"As the integration density and design intricacy of semiconductor wafers increase, the magnitude and complexity of defects in them are also on the rise. Since the manual inspection of wafer defects is costly, an automated artificial intelligence (AI) based computer-vision approach is highly desired. The previous works on defect analysis have several limitations, such as low accuracy and the need for separate models for classification and segmentation. For analyzing mixed-type defects, some previous works require separately training one model for each defect type, which is non-scalable. In this paper, we present WaferSegClassNet (WSCN), a novel network based on encoder-decoder architecture. WSCN performs simultaneous classification and segmentation of both single and mixed-type wafer defects. WSCN uses a ""shared encoder"" for classification, and segmentation, which allows training WSCN end-to-end. We use N-pair contrastive loss to first pretrain the encoder and then use BCE-Dice loss for segmentation, and categorical cross-entropy loss for classification. Use of N-pair contrastive loss helps in better embedding representation in the latent dimension of wafer maps. WSCN has a model size of only 0.51MB and performs only 0.2M FLOPS. Thus, it is much lighter than other state-of-the-art models. Also, it requires only 150 epochs for convergence, compared to 4,000 epochs needed by a previous work. We evaluate our model on the MixedWM38 dataset, which has 38,015 images. WSCN achieves an average classification accuracy of 98.2% and a dice coefficient of 0.9999. We are the first to show segmentation results on the MixedWM38 dataset. The source code can be obtained from https://github.com/ckmvigil/WaferSegClassNet." 236,On Convergence of Gradient Descent Ascent: A Tight Local Analysis,"Gradient Descent Ascent (GDA) methods are the mainstream algorithms for minimax optimization in generative adversarial networks (GANs). Convergence properties of GDA have drawn significant interest in the recent literature. Specifically, for $\min_{\mathbf{x}} \max_{\mathbf{y}} f(\mathbf{x};\mathbf{y})$ where $f$ is strongly-concave in $\mathbf{y}$ and possibly nonconvex in $\mathbf{x}$, (Lin et al., 2020) proved the convergence of GDA with a stepsize ratio $\eta_{\mathbf{y}}/\eta_{\mathbf{x}}=\Theta(\kappa^2)$ where $\eta_{\mathbf{x}}$ and $\eta_{\mathbf{y}}$ are the stepsizes for $\mathbf{x}$ and $\mathbf{y}$ and $\kappa$ is the condition number for $\mathbf{y}$. While this stepsize ratio suggests a slow training of the min player, practical GAN algorithms typically adopt similar stepsizes for both variables, indicating a wide gap between theoretical and empirical results. In this paper, we aim to bridge this gap by analyzing the \emph{local convergence} of general \emph{nonconvex-nonconcave} minimax problems. We demonstrate that a stepsize ratio of $\Theta(\kappa)$ is necessary and sufficient for local convergence of GDA to a Stackelberg Equilibrium, where $\kappa$ is the local condition number for $\mathbf{y}$. We prove a nearly tight convergence rate with a matching lower bound. We further extend the convergence guarantees to stochastic GDA and extra-gradient methods (EG). Finally, we conduct several numerical experiments to support our theoretical findings." 237,Tricking the Hashing Trick: A Tight Lower Bound on the Robustness of CountSketch to Adaptive Inputs,"CountSketch and Feature Hashing (the ""hashing trick"") are popular randomized dimensionality reduction methods that support recovery of $\ell_2$-heavy hitters (keys $i$ where $v_i^2 > \epsilon \|\boldsymbol{v}\|_2^2$) and approximate inner products. When the inputs are {\em not adaptive} (do not depend on prior outputs), classic estimators applied to a sketch of size $O(\ell/\epsilon)$ are accurate for a number of queries that is exponential in $\ell$. When inputs are adaptive, however, an adversarial input can be constructed after $O(\ell)$ queries with the classic estimator and the best known robust estimator only supports $\tilde{O}(\ell^2)$ queries. In this work we show that this quadratic dependence is in a sense inherent: We design an attack that after $O(\ell^2)$ queries produces an adversarial input vector whose sketch is highly biased. Our attack uses ""natural"" non-adaptive inputs (only the final adversarial input is chosen adaptively) and universally applies with any correct estimator, including one that is unknown to the attacker. In that, we expose inherent vulnerability of this fundamental method." 238,M-Adapter: Modality Adaptation for End-to-End Speech-to-Text Translation,"End-to-end speech-to-text translation models are often initialized with pre-trained speech encoder and pre-trained text decoder. This leads to a significant training gap between pre-training and fine-tuning, largely due to the modality differences between speech outputs from the encoder and text inputs to the decoder. In this work, we aim to bridge the modality gap between speech and text to improve translation quality. We propose M-Adapter, a novel Transformer-based module, to adapt speech representations to text. While shrinking the speech sequence, M-Adapter produces features desired for speech-to-text translation via modelling global and local dependencies of a speech sequence. Our experimental results show that our model outperforms a strong baseline by up to 1 BLEU score on the Must-C En$\rightarrow$DE dataset.\footnote{Our code is available at https://github.com/mingzi151/w2v2-st.}" 239,Interpretable by Design: Learning Predictors by Composing Interpretable Queries,"There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms. Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such as healthcare. We argue that machine learning algorithms should be interpretable by design and that the language in which these interpretations are expressed should be domain- and task-dependent. Consequently, we base our model's prediction on a family of user-defined and task-specific binary functions of the data, each having a clear interpretation to the end-user. We then minimize the expected number of queries needed for accurate prediction on any given input. As the solution is generally intractable, following prior work, we choose the queries sequentially based on information gain. However, in contrast to previous work, we need not assume the queries are conditionally independent. Instead, we leverage a stochastic generative model (VAE) and an MCMC algorithm (Unadjusted Langevin) to select the most informative query about the input based on previous query-answers. This enables the online determination of a query chain of whatever depth is required to resolve prediction ambiguities. Finally, experiments on vision and NLP tasks demonstrate the efficacy of our approach and its superiority over post-hoc explanations." 240,Wireless Channel Prediction in Partially Observed Environments,"Site-specific radio frequency (RF) propagation prediction increasingly relies on models built from visual data such as cameras and LIDAR sensors. When operating in dynamic settings, the environment may only be partially observed. This paper introduces a method to extract statistical channel models, given partial observations of the surrounding environment. We propose a simple heuristic algorithm that performs ray tracing on the partial environment and then uses machine-learning trained predictors to estimate the channel and its uncertainty from features extracted from the partial ray tracing results. It is shown that the proposed method can interpolate between fully statistical models when no partial information is available and fully deterministic models when the environment is completely observed. The method can also capture the degree of uncertainty of the propagation predictions depending on the amount of region that has been explored. The methodology is demonstrated in a robotic navigation application simulated on a set of indoor maps with detailed models constructed using state-of-the-art navigation, simultaneous localization and mapping (SLAM), and computer vision methods." 241,Graph Learning based Generative Design for Resilience of Interdependent Network Systems,"Interconnected complex systems usually undergo disruptions due to internal uncertainties and external negative impacts such as those caused by harsh operating environments or regional natural disaster events. To maintain the operation of interconnected network systems under both internal and external challenges, design for resilience research has been conducted from both enhancing the reliability of the system through better designs and improving the failure recovery capabilities. As for enhancing the designs, challenges have arisen for designing a robust system due to the increasing scale of modern systems and the complicated underlying physical constraints. To tackle these challenges and design a resilient system efficiently, this study presents a generative design method that utilizes graph learning algorithms. The generative design framework contains a performance estimator and a candidate design generator. The generator can intelligently mine good properties from existing systems and output new designs that meet predefined performance criteria. While the estimator can efficiently predict the performance of the generated design for a fast iterative learning process. Case studies results based on power systems from the IEEE dataset have illustrated the applicability of the proposed method for designing resilient interconnected systems." 242,An AlphaZero-Inspired Approach to Solving Search Problems,"AlphaZero and its extension MuZero are computer programs that use machine-learning techniques to play at a superhuman level in chess, go, and a few other games. They achieved this level of play solely with reinforcement learning from self-play, without any domain knowledge except the game rules. It is a natural idea to adapt the methods and techniques used in AlphaZero for solving search problems such as the Boolean satisfiability problem (in its search version). Given a search problem, how to represent it for an AlphaZero-inspired solver? What are the ""rules of solving"" for this search problem? We describe possible representations in terms of easy-instance solvers and self-reductions, and we give examples of such representations for the satisfiability problem. We also describe a version of Monte Carlo tree search adapted for search problems." 243,Accelerating System-Level Debug Using Rule Learning and Subgroup Discovery Techniques,"We propose a root-causing procedure for accelerating system-level debug using rule-based techniques. We describe the procedure and how it provides high quality debug hints for reducing the debug effort. This includes the heuristics for engineering features from logs of many tests, and the data analytics techniques for generating powerful debug hints. As a case study, we used these techniques for root-causing failures of the Power Management (PM) design feature Package-C8 and showed their effectiveness. Furthermore, we propose an approach for mining the root-causing experience and results for reuse, to accelerate future debug activities and reduce dependency on validation experts. We believe that these techniques are beneficial also for other validation activities at different levels of abstraction, for complex hardware, software and firmware systems, both pre-silicon and post-silicon." 244,SKIPP'D: a SKy Images and Photovoltaic Power Generation Dataset for Short-term Solar Forecasting,"Large-scale integration of photovoltaics (PV) into electricity grids is challenged by the intermittent nature of solar power. Sky-image-based solar forecasting using deep learning has been recognized as a promising approach to predicting the short-term fluctuations. However, there are few publicly available standardized benchmark datasets for image-based solar forecasting, which limits the comparison of different forecasting models and the exploration of forecasting methods. To fill these gaps, we introduce SKIPP'D -- a SKy Images and Photovoltaic Power Generation Dataset. The dataset contains three years (2017-2019) of quality-controlled down-sampled sky images and PV power generation data that is ready-to-use for short-term solar forecasting using deep learning. In addition, to support the flexibility in research, we provide the high resolution, high frequency sky images and PV power generation data as well as the concurrent sky video footage. We also include a code base containing data processing scripts and baseline model implementations for researchers to reproduce our previous work and accelerate their research in solar forecasting." 245,A Structured Sparse Neural Network and Its Matrix Calculations Algorithm,"Gradient descent optimizations and backpropagation are the most common methods for training neural networks, but they are computationally expensive for real time applications, need high memory resources, and are difficult to converge for many networks and large datasets. [Pseudo]inverse models for training neural network have emerged as powerful tools to overcome these issues. In order to effectively implement these methods, structured pruning maybe be applied to produce sparse neural networks. Although sparse neural networks are efficient in memory usage, most of their algorithms use the same fully loaded matrix calculation methods which are not efficient for sparse matrices. Tridiagonal matrices are one of the frequently used candidates for structuring neural networks, but they are not flexible enough to handle underfitting and overfitting problems as well as generalization properties. In this paper, we introduce a nonsymmetric, tridiagonal matrix with offdiagonal sparse entries and offset sub and super-diagonals as well algorithms for its [pseudo]inverse and determinant calculations. Traditional algorithms for matrix calculations, specifically inversion and determinant, of these forms are not efficient specially for large matrices, e.g. larger datasets or deeper networks. A decomposition for lower triangular matrices is developed and the original matrix is factorized into a set of matrices where their inverse matrices are calculated. For the cases where the matrix inverse does not exist, a least square type pseudoinverse is provided. The present method is a direct routine, i.e., executes in a predictable number of operations which is tested for randomly generated matrices with varying size. The results show significant improvement in computational costs specially when the size of matrix increases." 246,Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates,"In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time." 247,Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spaces,"Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search, as they achieve good predictive performance with little to no manual tuning, naturally handle discrete feature spaces, and are relatively insensitive to outliers in the training data. Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function. To address both points simultaneously, we propose using the kernel interpretation of tree ensembles as a Gaussian Process prior to obtain model variance estimates, and we develop a compatible optimization formulation for the acquisition function. The latter further allows us to seamlessly integrate known constraints to improve sampling efficiency by considering domain-knowledge in engineering settings and modeling search space symmetries, e.g., hierarchical relationships in neural architecture search. Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints." 248,FL-Defender: Combating Targeted Attacks in Federated Learning,"Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers. This makes it possible i) to train more accurate models due to learning from rich joint training data, and ii) to improve privacy by not sharing the workers' local private data with others. However, the distributed nature of FL makes it vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model while, unfortunately, being difficult to detect. Existing defenses against those attacks are limited by assumptions on the workers' data distribution, may degrade the global model performance on the main task and/or are ill-suited to high-dimensional models. In this paper, we analyze targeted attacks against FL and find that the neurons in the last layer of a deep learning (DL) model that are related to the attacks exhibit a different behavior from the unrelated neurons, making the last-layer gradients valuable features for attack detection. Accordingly, we propose \textit{FL-Defender} as a method to combat FL targeted attacks. It consists of i) engineering more robust discriminative features by calculating the worker-wise angle similarity for the workers' last-layer gradients, ii) compressing the resulting similarity vectors using PCA to reduce redundant information, and iii) re-weighting the workers' updates based on their deviation from the centroid of the compressed similarity vectors. Experiments on three data sets with different DL model sizes and data distributions show the effectiveness of our method at defending against label-flipping and backdoor attacks. Compared to several state-of-the-art defenses, FL-Defender achieves the lowest attack success rates, maintains the performance of the global model on the main task and causes minimal computational overhead on the server." 249,"The Linguistic Blind Spot of Value-Aligned Agency, Natural and Artificial","The value-alignment problem for artificial intelligence (AI) asks how we can ensure that the 'values' (i.e., objective functions) of artificial systems are aligned with the values of humanity. In this paper, I argue that linguistic communication (natural language) is a necessary condition for robust value alignment. I discuss the consequences that the truth of this claim would have for research programmes that attempt to ensure value alignment for AI systems; or, more loftily, designing robustly beneficial or ethical artificial agents." 250,Combinatory Adjoints and Differentiation,"We develop a compositional approach for automatic and symbolic differentiation based on categorical constructions in functional analysis where derivatives are linear functions on abstract vectors rather than being limited to scalars, vectors, matrices or tensors represented as multi-dimensional arrays. We show that both symbolic and automatic differentiation can be performed using a differential calculus for generating linear functions representing Fr\'echet derivatives based on rules for primitive, constant, linear and bilinear functions as well as their sequential and parallel composition. Linear functions are represented in a combinatory domain-specific language. Finally, we provide a calculus for symbolically computing the adjoint of a derivative without using matrices, which are too inefficient to use on high-dimensional spaces. The resulting symbolic representation of a derivative retains the data-parallel operations from the input program. The combination of combinatory differentiation and computing formal adjoints turns out to be behaviorally equivalent to reverse-mode automatic differentiation. In particular, it provides opportunities for optimizations where matrices are too inefficient to represent linear functions." 251,Less Is More: A Comparison of Active Learning Strategies for 3D Medical Image Segmentation,"Since labeling medical image data is a costly and labor-intensive process, active learning has gained much popularity in the medical image segmentation domain in recent years. A variety of active learning strategies have been proposed in the literature, but their effectiveness is highly dependent on the dataset and training scenario. To facilitate the comparison of existing strategies and provide a baseline for evaluating novel strategies, we evaluate the performance of several well-known active learning strategies on three datasets from the Medical Segmentation Decathlon. Additionally, we consider a strided sampling strategy specifically tailored to 3D image data. We demonstrate that both random and strided sampling act as strong baselines and discuss the advantages and disadvantages of the studied methods. To allow other researchers to compare their work to our results, we provide an open-source framework for benchmarking active learning strategies on a variety of medical segmentation datasets." 252,GOF-TTE: Generative Online Federated Learning Framework for Travel Time Estimation,"Estimating the travel time of a path is an essential topic for intelligent transportation systems. It serves as the foundation for real-world applications, such as traffic monitoring, route planning, and taxi dispatching. However, building a model for such a data-driven task requires a large amount of users' travel information, which directly relates to their privacy and thus is less likely to be shared. The non-Independent and Identically Distributed (non-IID) trajectory data across data owners also make a predictive model extremely challenging to be personalized if we directly apply federated learning. Finally, previous work on travel time estimation does not consider the real-time traffic state of roads, which we argue can significantly influence the prediction. To address the above challenges, we introduce GOF-TTE for the mobile user group, Generative Online Federated Learning Framework for Travel Time Estimation, which I) utilizes the federated learning approach, allowing private data to be kept on client devices while training, and designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. II) apart from sharing a base model at the server, adapts a fine-tuned personalized model for every client to study their personal driving habits, making up for the residual error made by localized global model prediction. % III) designs the global model as an online generative model shared by all clients to infer the real-time road traffic state. We also employ a simple privacy attack to our framework and implement the differential privacy mechanism to further guarantee privacy safety. Finally, we conduct experiments on two real-world public taxi datasets of DiDi Chengdu and Xi'an. The experimental results demonstrate the effectiveness of our proposed framework." 253,A Multi-Task BERT Model for Schema-Guided Dialogue State Tracking,"Task-oriented dialogue systems often employ a Dialogue State Tracker (DST) to successfully complete conversations. Recent state-of-the-art DST implementations rely on schemata of diverse services to improve model robustness and handle zero-shot generalization to new domains [1], however such methods [2, 3] typically require multiple large scale transformer models and long input sequences to perform well. We propose a single multi-task BERT-based model that jointly solves the three DST tasks of intent prediction, requested slot prediction and slot filling. Moreover, we propose an efficient and parsimonious encoding of the dialogue history and service schemata that is shown to further improve performance. Evaluation on the SGD dataset shows that our approach outperforms the baseline SGP-DST by a large margin and performs well compared to the state-of-the-art, while being significantly more computationally efficient. Extensive ablation studies are performed to examine the contributing factors to the success of our model." 254,Firenze: Model Evaluation Using Weak Signals,"Data labels in the security field are frequently noisy, limited, or biased towards a subset of the population. As a result, commonplace evaluation methods such as accuracy, precision and recall metrics, or analysis of performance curves computed from labeled datasets do not provide sufficient confidence in the real-world performance of a machine learning (ML) model. This has slowed the adoption of machine learning in the field. In the industry today, we rely on domain expertise and lengthy manual evaluation to build this confidence before shipping a new model for security applications. In this paper, we introduce Firenze, a novel framework for comparative evaluation of ML models' performance using domain expertise, encoded into scalable functions called markers. We show that markers computed and combined over select subsets of samples called regions of interest can provide a robust estimate of their real-world performances. Critically, we use statistical hypothesis testing to ensure that observed differences-and therefore conclusions emerging from our framework-are more prominent than that observable from the noise alone. Using simulations and two real-world datasets for malware and domain-name-service reputation detection, we illustrate our approach's effectiveness, limitations, and insights. Taken together, we propose Firenze as a resource for fast, interpretable, and collaborative model development and evaluation by mixed teams of researchers, domain experts, and business owners." 255,Lane-GNN: Integrating GNN for Predicting Drivers' Lane Change Intention,"Nowadays, intelligent highway traffic network is playing an important role in modern transportation infrastructures. A variable speed limit (VSL) system can be facilitated in the highway traffic network to provide useful and dynamic speed limit information for drivers to travel with enhanced safety. Such system is usually designed with a steady advisory speed in mind so that traffic can move smoothly when drivers follow the speed, rather than speeding up whenever there is a gap and slowing down at congestion. However, little attention has been given to the research of vehicles' behaviours when drivers left the road network governed by a VSL system, which may largely involve unexpected acceleration, deceleration and frequent lane changes, resulting in chaos for the subsequent highway road users. In this paper, we focus on the detection of traffic flow anomaly due to drivers' lane change intention on the highway traffic networks after a VSL system. More specifically, we apply graph modelling on the traffic flow data generated by a popular mobility simulator, SUMO, at road segment levels. We then evaluate the performance of lane changing detection using the proposed Lane-GNN scheme, an attention temporal graph convolutional neural network, and compare its performance with a temporal convolutional neural network (TCNN) as our baseline. Our experimental results show that the proposed Lane-GNN can detect drivers' lane change intention within 90 seconds with an accuracy of 99.42% under certain assumptions. Finally, some interpretation methods are applied to the trained models with a view to further illustrate our findings." 256,PGMG: A Pharmacophore-Guided Deep Learning Approach for Bioactive Molecular Generation,"The rational design of novel molecules with desired bioactivity is a critical but challenging task in drug discovery, especially when treating a novel target family or understudied targets. Here, we propose PGMG, a pharmacophore-guided deep learning approach for bioactivate molecule generation. Through the guidance of pharmacophore, PGMG provides a flexible strategy to generate bioactive molecules with structural diversity in various scenarios using a trained variational autoencoder. We show that PGMG can generate molecules matching given pharmacophore models while maintaining a high level of validity, uniqueness, and novelty. In the case studies, we demonstrate the application of PGMG to generate bioactive molecules in ligand-based and structure-based drug de novo design, as well as in lead optimization scenarios. Overall, the flexibility and effectiveness of PGMG make it a useful tool for accelerating the drug discovery process." 257,Geometric Learning of Hidden Markov Models via a Method of Moments Algorithm,"We present a novel algorithm for learning the parameters of hidden Markov models (HMMs) in a geometric setting where the observations take values in Riemannian manifolds. In particular, we elevate a recent second-order method of moments algorithm that incorporates non-consecutive correlations to a more general setting where observations take place in a Riemannian symmetric space of non-positive curvature and the observation likelihoods are Riemannian Gaussians. The resulting algorithm decouples into a Riemannian Gaussian mixture model estimation algorithm followed by a sequence of convex optimization procedures. We demonstrate through examples that the learner can result in significantly improved speed and numerical accuracy compared to existing learners." 258,Biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data,"In this paper we provide a structured literature analysis focused on Deep Learning (DL) models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. The work focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We discuss representational methodologies for the integration of domain prior knowledge in such models. The paper also provides a critical outlook into contemporary methods for explainability and interpretabiltiy. This analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability." 259,Eliciting and Learning with Soft Labels from Every Annotator,"The labels used to train machine learning (ML) models are of paramount importance. Typically for ML classification tasks, datasets contain hard labels, yet learning using soft labels has been shown to yield benefits for model generalization, robustness, and calibration. Earlier work found success in forming soft labels from multiple annotators' hard labels; however, this approach may not converge to the best labels and necessitates many annotators, which can be expensive and inefficient. We focus on efficiently eliciting soft labels from individual annotators. We collect and release a dataset of soft labels for CIFAR-10 via a crowdsourcing study ($N=242$). We demonstrate that learning with our labels achieves comparable model performance to prior approaches while requiring far fewer annotators. Our elicitation methodology therefore shows promise towards enabling practitioners to enjoy the benefits of improved model performance and reliability with fewer annotators, and serves as a guide for future dataset curators on the benefits of leveraging richer information, such as categorical uncertainty, from individual annotators." 260,On the modern deep learning approaches for precipitation downscaling,"Deep Learning (DL) based downscaling has become a popular tool in earth sciences recently. Increasingly, different DL approaches are being adopted to downscale coarser precipitation data and generate more accurate and reliable estimates at local (~few km or even smaller) scales. Despite several studies adopting dynamical or statistical downscaling of precipitation, the accuracy is limited by the availability of ground truth. A key challenge to gauge the accuracy of such methods is to compare the downscaled data to point-scale observations which are often unavailable at such small scales. In this work, we carry out the DL-based downscaling to estimate the local precipitation data from the India Meteorological Department (IMD), which was created by approximating the value from station location to a grid point. To test the efficacy of different DL approaches, we apply four different methods of downscaling and evaluate their performance. The considered approaches are (i) Deep Statistical Downscaling (DeepSD), augmented Convolutional Long Short Term Memory (ConvLSTM), fully convolutional network (U-NET), and Super-Resolution Generative Adversarial Network (SR-GAN). A custom VGG network, used in the SR-GAN, is developed in this work using precipitation data. The results indicate that SR-GAN is the best method for precipitation data downscaling. The downscaled data is validated with precipitation values at IMD station. This DL method offers a promising alternative to statistical downscaling." 261,An AIoT-enabled Autonomous Dementia Monitoring System,"An autonomous Artificial Internet of Things (AIoT) system for elderly dementia patients monitoring in a smart home is presented. The system mainly implements two functions based on the activity inference of the sensor data, which are real time abnormal activity monitoring and trend prediction of disease related activities. Specifically, CASAS dataset is employed to train a Random Forest (RF) model for activity inference. Then, another RF model trained by the output data of activity inference is used for abnormal activity monitoring. Particularly, RF is chosen for these tasks because of its balanced trade offs between accuracy, time efficiency, flexibility, and interpretability. Moreover, Long Short Term Memory (LSTM) is utilised to forecast the disease related activity trend of a patient. Consequently, the accuracy of two RF classifiers designed for activity inference and abnormal activity detection is greater than 99 percent and 94 percent, respectively. Furthermore, using the duration of sleep as an example, the LSTM model achieves accurate and evident future trends prediction." 262,Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation,"Iterative refinement -- start with a random guess, then iteratively improve the guess -- is a useful paradigm for representation learning because it offers a way to break symmetries among equally plausible explanations for the data. This property enables the application of such methods to infer representations of sets of entities, such as objects in physical scenes, structurally resembling clustering algorithms in latent space. However, most prior works differentiate through the unrolled refinement process, which can make optimization challenging. We observe that such methods can be made differentiable by means of the implicit function theorem, and develop an implicit differentiation approach that improves the stability and tractability of training by decoupling the forward and backward passes. This connection enables us to apply advances in optimizing implicit layers to not only improve the optimization of the slot attention module in SLATE, a state-of-the-art method for learning entity representations, but do so with constant space and time complexity in backpropagation and only one additional line of code." 263,ANEC: An Amharic Named Entity Corpus and Transformer Based Recognizer,"Named Entity Recognition is an information extraction task that serves as a preprocessing step for other natural language processing tasks, such as machine translation, information retrieval, and question answering. Named entity recognition enables the identification of proper names as well as temporal and numeric expressions in an open domain text. For Semitic languages such as Arabic, Amharic, and Hebrew, the named entity recognition task is more challenging due to the heavily inflected structure of these languages. In this paper, we present an Amharic named entity recognition system based on bidirectional long short-term memory with a conditional random fields layer. We annotate a new Amharic named entity recognition dataset (8,070 sentences, which has 182,691 tokens) and apply Synthetic Minority Over-sampling Technique to our dataset to mitigate the imbalanced classification problem. Our named entity recognition system achieves an F_1 score of 93%, which is the new state-of-the-art result for Amharic named entity recognition." 264,Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need,"The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach." 265,Unsupervised Symbolic Music Segmentation using Ensemble Temporal Prediction Errors,"Symbolic music segmentation is the process of dividing symbolic melodies into smaller meaningful groups, such as melodic phrases. We proposed an unsupervised method for segmenting symbolic music. The proposed model is based on an ensemble of temporal prediction error models. During training, each model predicts the next token to identify musical phrase changes. While at test time, we perform a peak detection algorithm to select segment candidates. Finally, we aggregate the predictions of each of the models participating in the ensemble to predict the final segmentation. Results suggest the proposed method reaches state-of-the-art performance on the Essen Folksong dataset under the unsupervised setting when considering F-Score and R-value. We additionally provide an ablation study to better assess the contribution of each of the model components to the final results. As expected, the proposed method is inferior to the supervised setting, which leaves room for improvement in future research considering closing the gap between unsupervised and supervised methods." 266,Abstraction and Refinement: Towards Scalable and Exact Verification of Neural Networks,"As a new programming paradigm, deep neural networks (DNNs) have been increasingly deployed in practice, but the lack of robustness hinders their applications in safety-critical domains. While there are techniques for verifying DNNs with formal guarantees, they are limited in scalability and accuracy. In this paper, we present a novel abstraction-refinement approach for scalable and exact DNN verification. Specifically, we propose a novel abstraction to break down the size of DNNs by over-approximation. The result of verifying the abstract DNN is always conclusive if no spurious counterexample is reported. To eliminate spurious counterexamples introduced by abstraction, we propose a novel counterexample-guided refinement that refines the abstract DNN to exclude a given spurious counterexample while still over-approximating the original one. Our approach is orthogonal to and can be integrated with many existing verification techniques. For demonstration, we implement our approach using two promising and exact tools Marabou and Planet as the underlying verification engines, and evaluate on widely-used benchmarks ACAS Xu, MNIST and CIFAR-10. The results show that our approach can boost their performance by solving more problems and reducing up to 86.3% and 78.0% verification time, respectively. Compared to the most relevant abstraction-refinement approach, our approach is 11.6-26.6 times faster." 267,Unsupervised Recurrent Federated Learning for Edge Popularity Prediction in Privacy-Preserving Mobile Edge Computing Networks,"Nowadays wireless communication is rapidly reshaping entire industry sectors. In particular, mobile edge computing (MEC) as an enabling technology for industrial Internet of things (IIoT) brings powerful computing/storage infrastructure closer to the mobile terminals and, thereby, significant lowers the response latency. To reap the benefit of proactive caching at the network edge, precise knowledge on the popularity pattern among the end devices is essential. However, the complex and dynamic nature of the content popularity over space and time as well as the data-privacy requirements in many IIoT scenarios pose tough challenges to its acquisition. In this article, we propose an unsupervised and privacy-preserving popularity prediction framework for MEC-enabled IIoT. The concepts of local and global popularities are introduced and the time-varying popularity of each user is modelled as a model-free Markov chain. On this basis, a novel unsupervised recurrent federated learning (URFL) algorithm is proposed to predict the distributed popularity while achieve privacy preservation and unsupervised training. Simulations indicate that the proposed framework can enhance the prediction accuracy in terms of a reduced root-mean-squared error by up to $60.5\%-68.7\%$. Additionally, manual labeling and violation of users' data privacy are both avoided." 268,"Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity","By integrating domain knowledge with labeled samples, informed machine learning has been emerging to improve the learning performance for a wide range of applications. Nonetheless, rigorous understanding of the role of injected domain knowledge has been under-explored. In this paper, we consider an informed deep neural network (DNN) with over-parameterization and domain knowledge integrated into its training objective function, and study how and why domain knowledge benefits the performance. Concretely, we quantitatively demonstrate the two benefits of domain knowledge in informed learning - regularizing the label-based supervision and supplementing the labeled samples - and reveal the trade-off between label and knowledge imperfectness in the bound of the population risk. Based on the theoretical analysis, we propose a generalized informed training objective to better exploit the benefits of knowledge and balance the label and knowledge imperfectness, which is validated by the population risk bound. Our analysis on sampling complexity sheds lights on how to choose the hyper-parameters for informed learning, and further justifies the advantages of knowledge informed learning." 269,Scheduling Planting Time Through Developing an Optimization Model and Analysis of Time Series Growing Degree Units,"Producing higher-quality crops within shortened breeding cycles ensures global food availability and security, but this improvement intensifies logistical and productivity challenges for seed industries in the year-round breeding process due to the storage limitations. In the 2021 Syngenta crop challenge in analytics, Syngenta raised the problem to design an optimization model for the planting time scheduling in the 2020 year-round breeding process so that there is a consistent harvest quantity each week. They released a dataset that contained 2569 seed populations with their planting windows, required growing degree units for harvesting, and their harvest quantities at two sites. To address this challenge, we developed a new framework that consists of a weather time series model and an optimization model to schedule the planting time. A deep recurrent neural network was designed to predict the weather into the future, and a Gaussian process model on top of the time-series model was developed to model the uncertainty of forecasted weather. The proposed optimization models also scheduled the seed population's planting time at the fewest number of weeks with a more consistent weekly harvest quantity. Using the proposed optimization models can decrease the required capacity by 69% at site 0 and up to 51% at site 1 compared to the original planting time." 270,PhilaeX: Explaining the Failure and Success of AI Models in Malware Detection,"The explanation to an AI model's prediction used to support decision making in cyber security, is of critical importance. It is especially so when the model's incorrect prediction can lead to severe damages or even losses to lives and critical assets. However, most existing AI models lack the ability to provide explanations on their prediction results, despite their strong performance in most scenarios. In this work, we propose a novel explainable AI method, called PhilaeX, that provides the heuristic means to identify the optimized subset of features to form the complete explanations of AI models' predictions. It identifies the features that lead to the model's borderline prediction, and those with positive individual contributions are extracted. The feature attributions are then quantified through the optimization of a Ridge regression model. We verify the explanation fidelity through two experiments. First, we assess our method's capability in correctly identifying the activated features in the adversarial samples of Android malwares, through the features attribution values from PhilaeX. Second, the deduction and augmentation tests, are used to assess the fidelity of the explanations. The results show that PhilaeX is able to explain different types of classifiers correctly, with higher fidelity explanations, compared to the state-of-the-arts methods such as LIME and SHAP." 271,Deep Learning for Systemic Risk Measures,"The aim of this paper is to study a new methodological framework for systemic risk measures by applying deep learning method as a tool to compute the optimal strategy of capital allocations. Under this new framework, systemic risk measures can be interpreted as the minimal amount of cash that secures the aggregated system by allocating capital to the single institutions before aggregating the individual risks. This problem has no explicit solution except in very limited situations. Deep learning is increasingly receiving attention in financial modelings and risk management and we propose our deep learning based algorithms to solve both the primal and dual problems of the risk measures, and thus to learn the fair risk allocations. In particular, our method for the dual problem involves the training philosophy inspired by the well-known Generative Adversarial Networks (GAN) approach and a newly designed direct estimation of Radon-Nikodym derivative. We close the paper with substantial numerical studies of the subject and provide interpretations of the risk allocations associated to the systemic risk measures. In the particular case of exponential preferences, numerical experiments demonstrate excellent performance of the proposed algorithm, when compared with the optimal explicit solution as a benchmark." 272,SketchCleanNet -- A deep learning approach to the enhancement and correction of query sketches for a 3D CAD model retrieval system,"Search and retrieval remains a major research topic in several domains, including computer graphics, computer vision, engineering design, etc. A search engine requires primarily an input search query and a database of items to search from. In engineering, which is the primary context of this paper, the database consists of 3D CAD models, such as washers, pistons, connecting rods, etc. A query from a user is typically in the form of a sketch, which attempts to capture the details of a 3D model. However, sketches have certain typical defects such as gaps, over-drawn portions (multi-strokes), etc. Since the retrieved results are only as good as the input query, sketches need cleaning-up and enhancement for better retrieval results. In this paper, a deep learning approach is proposed to improve or clean the query sketches. Initially, sketches from various categories are analysed in order to understand the many possible defects that may occur. A dataset of cleaned-up or enhanced query sketches is then created based on an understanding of these defects. Consequently, an end-to-end training of a deep neural network is carried out in order to provide a mapping between the defective and the clean sketches. This network takes the defective query sketch as the input and generates a clean or an enhanced query sketch. Qualitative and quantitative comparisons of the proposed approach with other state-of-the-art techniques show that the proposed approach is effective. The results of the search engine are reported using both the defective and enhanced query sketches, and it is shown that using the enhanced query sketches from the developed approach yields improved search results." 273,q-Learning in Continuous Time,"We study the continuous-time counterpart of Q-learning for reinforcement learning (RL) under the entropy-regularized, exploratory diffusion process formulation introduced by Wang et al. (2020) As the conventional (big) Q-function collapses in continuous time, we consider its first-order approximation and coin the term ""(little) q-function"". This function is related to the instantaneous advantage rate function as well as the Hamiltonian. We develop a ""q-learning"" theory around the q-function that is independent of time discretization. Given a stochastic policy, we jointly characterize the associated q-function and value function by martingale conditions of certain stochastic processes. We then apply the theory to devise different actor-critic algorithms for solving underlying RL problems, depending on whether or not the density function of the Gibbs measure generated from the q-function can be computed explicitly. One of our algorithms interprets the well-known Q-learning algorithm SARSA, and another recovers a policy gradient (PG) based continuous-time algorithm proposed in Jia and Zhou (2021). Finally, we conduct simulation experiments to compare the performance of our algorithms with those of PG-based algorithms in Jia and Zhou (2021) and time-discretized conventional Q-learning algorithms." 274,Parameter efficient dendritic-tree neurons outperform perceptrons,"Biological neurons are more powerful than artificial perceptrons, in part due to complex dendritic input computations. Inspired to empower the perceptron with biologically inspired features, we explore the effect of adding and tuning input branching factors along with input dropout. This allows for parameter efficient non-linear input architectures to be discovered and benchmarked. Furthermore, we present a PyTorch module to replace multi-layer perceptron layers in existing architectures. Our initial experiments on MNIST classification demonstrate the accuracy and generalization improvement of dendritic neurons compared to existing perceptron architectures." 275,UserLibri: A Dataset for ASR Personalization Using Only Text,"Personalization of speech models on mobile devices (on-device personalization) is an active area of research, but more often than not, mobile devices have more text-only data than paired audio-text data. We explore training a personalized language model on text-only data, used during inference to improve speech recognition performance for that user. We experiment on a user-clustered LibriSpeech corpus, supplemented with personalized text-only data for each user from Project Gutenberg. We release this User-Specific LibriSpeech (UserLibri) dataset to aid future personalization research. LibriSpeech audio-transcript pairs are grouped into 55 users from the test-clean dataset and 52 users from test-other. We are able to lower the average word error rate per user across both sets in streaming and nonstreaming models, including an improvement of 2.5 for the harder set of test-other users when streaming." 276,Multivariate Time Series Anomaly Detection with Few Positive Samples,"Given the scarcity of anomalies in real-world applications, the majority of literature has been focusing on modeling normality. The learned representations enable anomaly detection as the normality model is trained to capture certain key underlying data regularities under normal circumstances. In practical settings, particularly industrial time series anomaly detection, we often encounter situations where a large amount of normal operation data is available along with a small number of anomaly events collected over time. This practical situation calls for methodologies to leverage these small number of anomaly events to create a better anomaly detector. In this paper, we introduce two methodologies to address the needs of this practical situation and compared them with recently developed state of the art techniques. Our proposed methods anchor on representative learning of normal operation with autoregressive (AR) model along with loss components to encourage representations that separate normal versus few positive examples. We applied the proposed methods to two industrial anomaly detection datasets and demonstrated effective performance in comparison with approaches from literature. Our study also points out additional challenges with adopting such methods in practical applications." 277,Uncertainty Quantification for Deep Unrolling-Based Computational Imaging,"Deep unrolling is an emerging deep learning-based image reconstruction methodology that bridges the gap between model-based and purely deep learning-based image reconstruction methods. Although deep unrolling methods achieve state-of-the-art performance for imaging problems and allow the incorporation of the observation model into the reconstruction process, they do not provide any uncertainty information about the reconstructed image, which severely limits their use in practice, especially for safety-critical imaging applications. In this paper, we propose a learning-based image reconstruction framework that incorporates the observation model into the reconstruction task and that is capable of quantifying epistemic and aleatoric uncertainties, based on deep unrolling and Bayesian neural networks. We demonstrate the uncertainty characterization capability of the proposed framework on magnetic resonance imaging and computed tomography reconstruction problems. We investigate the characteristics of the epistemic and aleatoric uncertainty information provided by the proposed framework to motivate future research on utilizing uncertainty information to develop more accurate, robust, trustworthy, uncertainty-aware, learning-based image reconstruction and analysis methods for imaging problems. We show that the proposed framework can provide uncertainty information while achieving comparable reconstruction performance to state-of-the-art deep unrolling methods." 278,Efficient Adversarial Training With Data Pruning,"Neural networks are susceptible to adversarial examples-small input perturbations that cause models to fail. Adversarial training is one of the solutions that stops adversarial examples; models are exposed to attacks during training and learn to be resilient to them. Yet, such a procedure is currently expensive-it takes a long time to produce and train models with adversarial samples, and, what is worse, it occasionally fails. In this paper we demonstrate data pruning-a method for increasing adversarial training efficiency through data sub-sampling.We empirically show that data pruning leads to improvements in convergence and reliability of adversarial training, albeit with different levels of utility degradation. For example, we observe that using random sub-sampling of CIFAR10 to drop 40% of data, we lose 8% adversarial accuracy against the strongest attackers, while by using only 20% of data we lose 14% adversarial accuracy and reduce runtime by a factor of 3. Interestingly, we discover that in some settings data pruning brings benefits from both worlds-it both improves adversarial accuracy and training time." 279,Few-shot incremental learning in the context of solar cell quality inspection,"In industry, Deep Neural Networks have shown high defect detection rates surpassing other more traditional manual feature engineering based proposals. This has been achieved mainly through supervised training where a great amount of data is required in order to learn good classification models. However, such amount of data is sometimes hard to obtain in industrial scenarios, as few defective pieces are produced normally. In addition, certain kinds of defects are very rare and usually just appear from time to time, which makes the generation of a proper dataset for training a classification model even harder. Moreover, the lack of available data limits the adaptation of inspection models to new defect types that appear in production as it might require a model retraining in order to incorporate the detects and detect them. In this work, we have explored the technique of weight imprinting in the context of solar cell quality inspection where we have trained a network on three base defect classes, and then we have incorporated new defect classes using few samples. The results have shown that this technique allows the network to extend its knowledge with regard to defect classes with few samples, which can be interesting for industrial practitioners." 280,American == White in Multimodal Language-and-Image AI,"Three state-of-the-art language-and-image AI models, CLIP, SLIP, and BLIP, are evaluated for evidence of a bias previously observed in social and experimental psychology: equating American identity with being White. Embedding association tests (EATs) using standardized images of self-identified Asian, Black, Latina/o, and White individuals from the Chicago Face Database (CFD) reveal that White individuals are more associated with collective in-group words than are Asian, Black, or Latina/o individuals. In assessments of three core aspects of American identity reported by social psychologists, single-category EATs reveal that images of White individuals are more associated with patriotism and with being born in America, but that, consistent with prior findings in psychology, White individuals are associated with being less likely to treat people of all races and backgrounds equally. Three downstream machine learning tasks demonstrate biases associating American with White. In a visual question answering task using BLIP, 97% of White individuals are identified as American, compared to only 3% of Asian individuals. When asked in what state the individual depicted lives in, the model responds China 53% of the time for Asian individuals, but always with an American state for White individuals. In an image captioning task, BLIP remarks upon the race of Asian individuals as much as 36% of the time, but never remarks upon race for White individuals. Finally, provided with an initialization image from the CFD and the text ""an American person,"" a synthetic image generator (VQGAN) using the text-based guidance of CLIP lightens the skin tone of individuals of all races (by 35% for Black individuals, based on pixel brightness). The results indicate that biases equating American identity with being White are learned by language-and-image AI, and propagate to downstream applications of such models." 281,Transforming PageRank into an Infinite-Depth Graph Neural Network,"Popular graph neural networks are shallow models, despite the success of very deep architectures in other application domains of deep learning. This reduces the modeling capacity and leaves models unable to capture long-range relationships. The primary reason for the shallow design results from over-smoothing, which leads node states to become more similar with increased depth. We build on the close connection between GNNs and PageRank, for which personalized PageRank introduces the consideration of a personalization vector. Adopting this idea, we propose the Personalized PageRank Graph Neural Network (PPRGNN), which extends the graph convolutional network to an infinite-depth model that has a chance to reset the neighbor aggregation back to the initial state in each iteration. We introduce a nicely interpretable tweak to the chance of resetting and prove the convergence of our approach to a unique solution without placing any constraints, even when taking infinitely many neighbor aggregations. As in personalized PageRank, our result does not suffer from over-smoothing. While doing so, time complexity remains linear while we keep memory complexity constant, independently of the depth of the network, making it scale well to large graphs. We empirically show the effectiveness of our approach for various node and graph classification tasks. PPRGNN outperforms comparable methods in almost all cases." 282,Infinite-Fidelity Coregionalization for Physical Simulation,"Multi-fidelity modeling and learning are important in physical simulation-related applications. It can leverage both low-fidelity and high-fidelity examples for training so as to reduce the cost of data generation while still achieving good performance. While existing approaches only model finite, discrete fidelities, in practice, the fidelity choice is often continuous and infinite, which can correspond to a continuous mesh spacing or finite element length. In this paper, we propose Infinite Fidelity Coregionalization (IFC). Given the data, our method can extract and exploit rich information within continuous, infinite fidelities to bolster the prediction accuracy. Our model can interpolate and/or extrapolate the predictions to novel fidelities, which can be even higher than the fidelities of training data. Specifically, we introduce a low-dimensional latent output as a continuous function of the fidelity and input, and multiple it with a basis matrix to predict high-dimensional solution outputs. We model the latent output as a neural Ordinary Differential Equation (ODE) to capture the complex relationships within and integrate information throughout the continuous fidelities. We then use Gaussian processes or another ODE to estimate the fidelity-varying bases. For efficient inference, we reorganize the bases as a tensor, and use a tensor-Gaussian variational posterior to develop a scalable inference algorithm for massive outputs. We show the advantage of our method in several benchmark tasks in computational physics." 283,DRESS: Dynamic REal-time Sparse Subnets,"The limited and dynamically varied resources on edge devices motivate us to deploy an optimized deep neural network that can adapt its sub-networks to fit in different resource constraints. However, existing works often build sub-networks through searching different network architectures in a hand-crafted sampling space, which not only can result in a subpar performance but also may cause on-device re-configuration overhead. In this paper, we propose a novel training algorithm, Dynamic REal-time Sparse Subnets (DRESS). DRESS samples multiple sub-networks from the same backbone network through row-based unstructured sparsity, and jointly trains these sub-networks in parallel with weighted loss. DRESS also exploits strategies including parameter reusing and row-based fine-grained sampling for efficient storage consumption and efficient on-device adaptation. Extensive experiments on public vision datasets show that DRESS yields significantly higher accuracy than state-of-the-art sub-networks." 284,Improving Low-Resource Speech Recognition with Pretrained Speech Models: Continued Pretraining vs. Semi-Supervised Training,"Self-supervised Transformer based models, such as wav2vec 2.0 and HuBERT, have produced significant improvements over existing approaches to automatic speech recognition (ASR). This is evident in the performance of the wav2vec 2.0 based pretrained XLSR-53 model across many languages when fine-tuned with available labeled data. However, the performance from finetuning these models can be dependent on the amount of in-language or similar-to-in-language data included in the pretraining dataset. In this paper we investigate continued pretraining (CoPT) with unlabeled in-language audio data on the XLSR-53 pretrained model in several low-resource languages. CoPT is more computationally efficient than semi-supervised training (SST), the standard approach of utilizing unlabeled data in ASR, since it omits the need for pseudo-labeling of the unlabeled data. We show CoPT results in word error rates (WERs), equal to or slightly better than using SST. In addition, we show that using the CoPT model for pseudo-labeling, and using these labels in SST, results in further improvements in WER." 285,Efficient Adaptive Regret Minimization,"In online convex optimization the player aims to minimize her regret against a fixed comparator over the entire repeated game. Algorithms that minimize standard regret may converge to a fixed decision, which is undesireable in changing or dynamic environments. This motivates the stronger metric of adaptive regret, or the maximum regret over any continuous sub-interval in time. Existing adaptive regret algorithms suffer from a computational penalty - typically on the order of a multiplicative factor that grows logarithmically in the number of game iterations. In this paper we show how to reduce this computational penalty to be doubly logarithmic in the number of game iterations, and with minimal degradation to the optimal attainable adaptive regret bounds." 286,Action-modulated midbrain dopamine activity arises from distributed control policies,"Animal behavior is driven by multiple brain regions working in parallel with distinct control policies. We present a biologically plausible model of off-policy reinforcement learning in the basal ganglia, which enables learning in such an architecture. The model accounts for action-related modulation of dopamine activity that is not captured by previous models that implement on-policy algorithms. In particular, the model predicts that dopamine activity signals a combination of reward prediction error (as in classic models) and ""action surprise,"" a measure of how unexpected an action is relative to the basal ganglia's current policy. In the presence of the action surprise term, the model implements an approximate form of Q-learning. On benchmark navigation and reaching tasks, we show empirically that this model is capable of learning from data driven completely or in part by other policies (e.g. from other brain regions). By contrast, models without the action surprise term suffer in the presence of additional policies, and are incapable of learning at all from behavior that is completely externally driven. The model provides a computational account for numerous experimental findings about dopamine activity that cannot be explained by classic models of reinforcement learning in the basal ganglia. These include differing levels of action surprise signals in dorsal and ventral striatum, decreasing amounts movement-modulated dopamine activity with practice, and representations of action initiation and kinematics in dopamine activity. It also provides further predictions that can be tested with recordings of striatal dopamine activity." 287,Offline Policy Optimization with Eligible Actions,"Offline policy optimization could have a large impact on many real-world decision-making problems, as online learning may be infeasible in many applications. Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation, and such estimators typically do not require assumptions on the properties and representational capabilities of value function or decision process model function classes. In this paper, we identify an important overfitting phenomenon in optimizing the importance weighted return, in which it may be possible for the learned policy to essentially avoid making aligned decisions for part of the initial state space. We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint, and provide a theoretical justification of the proposed algorithm. We also show the limitations of previous attempts to this approach. We test our algorithm in a healthcare-inspired simulator, a logged dataset collected from real hospitals and continuous control tasks. These experiments show the proposed method yields less overfitting and better test performance compared to state-of-the-art batch reinforcement learning algorithms." 288,Integral Probability Metrics PAC-Bayes Bounds,"We present a PAC-Bayes-style generalization bound which enables the replacement of the KL-divergence with a variety of Integral Probability Metrics (IPM). We provide instances of this bound with the IPM being the total variation metric and the Wasserstein distance. A notable feature of the obtained bounds is that they naturally interpolate between classical uniform convergence bounds in the worst case (when the prior and posterior are far away from each other), and preferable bounds in better cases (when the posterior and prior are close). This illustrates the possibility of reinforcing classical generalization bounds with algorithm- and data-dependent components, thus making them more suitable to analyze algorithms that use a large hypothesis space." 289,"FAIR principles for AI models, with a practical application for accelerated high energy diffraction microscopy","A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data are transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale system at the ALCF AI-Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery." 290,A Temporal Fusion Transformer for Long-term Explainable Prediction of Emergency Department Overcrowding,"Emergency Departments (EDs) are a fundamental element of the Portuguese National Health Service, serving as an entry point for users with diverse and very serious medical problems. Due to the inherent characteristics of the ED; forecasting the number of patients using the services is particularly challenging. And a mismatch between the affluence and the number of medical professionals can lead to a decrease in the quality of the services provided and create problems that have repercussions for the entire hospital, with the requisition of health care workers from other departments and the postponement of surgeries. ED overcrowding is driven, in part, by non-urgent patients, that resort to emergency services despite not having a medical emergency and which represent almost half of the total number of daily patients. This paper describes a novel deep learning architecture, the Temporal Fusion Transformer, that uses calendar and time-series covariates to forecast prediction intervals and point predictions for a 4 week period. We have concluded that patient volume can be forecasted with a Mean Absolute Percentage Error (MAPE) of 5.90% for Portugal's Health Regional Areas (HRA) and a Root Mean Squared Error (RMSE) of 84.4102 people/day. The paper shows empirical evidence supporting the use of a multivariate approach with static and time-series covariates while surpassing other models commonly found in the literature." 291,On Leave-One-Out Conditional Mutual Information For Generalization,"We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI). Contrary to other CMI bounds, which are black-box bounds that do not exploit the structure of the problem and may be hard to evaluate in practice, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation, stability of the optimization algorithm, and the geometry of the loss-landscape. It applies both to the output of training algorithms as well as their predictions. We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning. In particular, our bounds are non-vacuous on large-scale image-classification tasks." 292,Video + CLIP Baseline for Ego4D Long-term Action Anticipation,"In this report, we introduce our adaptation of image-text models for long-term action anticipation. Our Video + CLIP framework makes use of a large-scale pre-trained paired image-text model: CLIP and a video encoder Slowfast network. The CLIP embedding provides fine-grained understanding of objects relevant for an action whereas the slowfast network is responsible for modeling temporal information within a video clip of few frames. We show that the features obtained from both encoders are complementary to each other, thus outperforming the baseline on Ego4D for the task of long-term action anticipation. Our code is available at github.com/srijandas07/clip_baseline_LTA_Ego4d." 293,How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?,"This paper demonstrates spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN) at estimating scalar parameters of tissue microstructure from diffusion MRI (dMRI). Such microstructure parameters are valuable for identifying pathology and quantifying its extent. However, current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs), limiting the accuracy and precision of estimated microstructure indices. Machine learning (ML) has been proposed to address this challenge. However, existing ML-based methods are not robust to differing dMRI gradient sampling schemes, nor are they rotation equivariant. Lack of robustness to sampling schemes requires a new network to be trained for each scheme, complicating the analysis of data from multiple sources. A possible consequence of the lack of rotational equivariance is that the training dataset must contain a diverse range of microstucture orientations. Here, we show spherical CNNs represent a compelling alternative that is robust to new sampling schemes as well as offering rotational equivariance. We show the latter can be leveraged to decrease the number of training datapoints required." 294,Ultra-low latency recurrent neural network inference on FPGAs for physics applications with hls4ml,"Recurrent neural networks have been shown to be effective architectures for many tasks in high energy physics, and thus have been widely adopted. Their use in low-latency environments has, however, been limited as a result of the difficulties of implementing recurrent architectures on field-programmable gate arrays (FPGAs). In this paper we present an implementation of two types of recurrent neural network layers -- long short-term memory and gated recurrent unit -- within the hls4ml framework. We demonstrate that our implementation is capable of producing effective designs for both small and large models, and can be customized to meet specific design requirements for inference latencies and FPGA resources. We show the performance and synthesized designs for multiple neural networks, many of which are trained specifically for jet identification tasks at the CERN Large Hadron Collider." 295,Learning to correct spectral methods for simulating turbulent flows,"Despite their ubiquity throughout science and engineering, only a handful of partial differential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast amount of classical work on numerical simulation of PDEs and more recently, a whirlwind of research into data-driven techniques leveraging machine learning (ML). A recent line of work indicates that a hybrid of classical numerical techniques with machine learning can offer significant improvements over either approach alone. In this work, we show that the choice of the numerical scheme is crucial when incorporating physics-based priors. We build upon Fourier-based spectral methods, which are considerably more efficient than other numerical schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop ML-augmented spectral solvers for three model PDEs of fluid dynamics, which improve upon the accuracy of standard spectral solvers at the same resolution. We also demonstrate a handful of key design principles for combining machine learning and numerical methods for solving PDEs." 296,FitHuBERT: Going Thinner and Deeper for Knowledge Distillation of Speech Self-Supervised Learning,"Large-scale speech self-supervised learning (SSL) has emerged to the main field of speech processing, however, the problem of computational cost arising from its vast size makes a high entry barrier to academia. In addition, existing distillation techniques of speech SSL models compress the model by reducing layers, which induces performance degradation in linguistic pattern recognition tasks such as phoneme recognition (PR). In this paper, we propose FitHuBERT, which makes thinner in dimension throughout almost all model components and deeper in layer compared to prior speech SSL distillation works. Moreover, we employ a time-reduction layer to speed up inference time and propose a method of hint-based distillation for less performance degradation. Our method reduces the model to 23.8% in size and 35.9% in inference time compared to HuBERT. Also, we achieve 12.1% word error rate and 13.3% phoneme error rate on the SUPERB benchmark which is superior than prior work." 297,Evaluating the Explainers: Black-Box Explainable Machine Learning for Student Success Prediction in MOOCs,"Neural networks are ubiquitous in applied machine learning for education. Their pervasive success in predictive performance comes alongside a severe weakness, the lack of explainability of their decisions, especially relevant in human-centric fields. We implement five state-of-the-art methodologies for explaining black-box machine learning models (LIME, PermutationSHAP, KernelSHAP, DiCE, CEM) and examine the strengths of each approach on the downstream task of student performance prediction for five massive open online courses. Our experiments demonstrate that the families of explainers do not agree with each other on feature importance for the same Bidirectional LSTM models with the same representative set of students. We use Principal Component Analysis, Jensen-Shannon distance, and Spearman's rank-order correlation to quantitatively cross-examine explanations across methods and courses. Furthermore, we validate explainer performance across curriculum-based prerequisite relationships. Our results come to the concerning conclusion that the choice of explainer is an important decision and is in fact paramount to the interpretation of the predictive results, even more so than the course the model is trained on. Source code and models are released at http://github.com/epfl-ml4ed/evaluating-explainers." 298,"The ""AI+R""-tree: An Instance-optimized R-tree","The emerging class of instance-optimized systems has shown potential to achieve high performance by specializing to a specific data and query workloads. Particularly, Machine Learning (ML) techniques have been applied successfully to build various instance-optimized components (e.g., learned indexes). This paper investigates to leverage ML techniques to enhance the performance of spatial indexes, particularly the R-tree, for a given data and query workloads. As the areas covered by the R-tree index nodes overlap in space, upon searching for a specific point in space, multiple paths from root to leaf may potentially be explored. In the worst case, the entire R-tree could be searched. In this paper, we define and use the overlap ratio to quantify the degree of extraneous leaf node accesses required by a range query. The goal is to enhance the query performance of a traditional R-tree for high-overlap range queries as they tend to incur long running-times. We introduce a new AI-tree that transforms the search operation of an R-tree into a multi-label classification task to exclude the extraneous leaf node accesses. Then, we augment a traditional R-tree to the AI-tree to form a hybrid ""AI+R""-tree. The ""AI+R""-tree can automatically differentiate between the high- and low-overlap queries using a learned model. Thus, the ""AI+R""-tree processes high-overlap queries using the AI-tree, and the low-overlap queries using the R-tree. Experiments on real datasets demonstrate that the ""AI+R""-tree can enhance the query performance over a traditional R-tree by up to 500%." 299,Masked Autoencoders for Self-Supervised Learning on Automotive Point Clouds,"Masked autoencoding has become a successful pre-training paradigm for Transformer models for text, images, and recently, point clouds. Raw automotive datasets are a suitable candidate for self-supervised pre-training as they generally are cheap to collect compared to annotations for tasks like 3D object detection (OD). However, development of masked autoencoders for point clouds has focused solely on synthetic and indoor data. Consequently, existing methods have tailored their representations and models toward point clouds which are small, dense and have homogeneous point density. In this work, we study masked autoencoding for point clouds in an automotive setting, which are sparse and for which the point density can vary drastically among objects in the same scene. To this end, we propose Voxel-MAE, a simple masked autoencoding pre-training scheme designed for voxel representations. We pre-train the backbone of a Transformer-based 3D object detector to reconstruct masked voxels and to distinguish between empty and non-empty voxels. Our method improves the 3D OD performance by 1.75 mAP points and 1.05 NDS on the challenging nuScenes dataset. Compared to existing self-supervised methods for automotive data, Voxel-MAE displays up to $2\times$ performance increase. Further, we show that by pre-training with Voxel-MAE, we require only 40% of the annotated data to outperform a randomly initialized equivalent. Code will be released." 300,Deep Learning and Symbolic Regression for Discovering Parametric Equations,"Symbolic regression is a machine learning technique that can learn the governing formulas of data and thus has the potential to transform scientific discovery. However, symbolic regression is still limited in the complexity and dimensionality of the systems that it can analyze. Deep learning on the other hand has transformed machine learning in its ability to analyze extremely complex and high-dimensional datasets. We propose a neural network architecture to extend symbolic regression to parametric systems where some coefficient may vary but the structure of the underlying governing equation remains constant. We demonstrate our method on various analytic expressions, ODEs, and PDEs with varying coefficients and show that it extrapolates well outside of the training domain. The neural network-based architecture can also integrate with other deep learning architectures so that it can analyze high-dimensional data while being trained end-to-end. To this end we integrate our architecture with convolutional neural networks to analyze 1D images of varying spring systems." 301,Behavioral Player Rating in Competitive Online Shooter Games,"Competitive online games use rating systems for matchmaking; progression-based algorithms that estimate the skill level of players with interpretable ratings in terms of the outcome of the games they played. However, the overall experience of players is shaped by factors beyond the sole outcome of their games. In this paper, we engineer several features from in-game statistics to model players and create ratings that accurately represent their behavior and true performance level. We then compare the estimating power of our behavioral ratings against ratings created with three mainstream rating systems by predicting rank of players in four popular game modes from the competitive shooter genre. Our results show that the behavioral ratings present more accurate performance estimations while maintaining the interpretability of the created representations. Considering different aspects of the playing behavior of players and using behavioral ratings for matchmaking can lead to match-ups that are more aligned with players' goals and interests, consequently resulting in a more enjoyable gaming experience." 302,Using Machine Learning to Anticipate Tipping Points and Extrapolate to Post-Tipping Dynamics of Non-Stationary Dynamical Systems,"In this paper we consider the machine learning (ML) task of predicting tipping point transitions and long-term post-tipping-point behavior associated with the time evolution of an unknown (or partially unknown), non-stationary, potentially noisy and chaotic, dynamical system. We focus on the particularly challenging situation where the past dynamical state time series that is available for ML training predominantly lies in a restricted region of the state space, while the behavior to be predicted evolves on a larger state space set not fully observed by the ML model during training. In this situation, it is required that the ML prediction system have the ability to extrapolate to different dynamics past that which is observed during training. We investigate the extent to which ML methods are capable of accomplishing useful results for this task, as well as conditions under which they fail. In general, we found that the ML methods were surprisingly effective even in situations that were extremely challenging, but do (as one would expect) fail when ``too much"" extrapolation is required. For the latter case, we investigate the effectiveness of combining the ML approach with conventional modeling based on scientific knowledge, thus forming a hybrid prediction system which we find can enable useful prediction even when its ML-based and knowledge-based components fail when acting alone. We also found that achieving useful results may require using very carefully selected ML hyperparameters and we propose a hyperparameter optimization strategy to address this problem. The main conclusion of this paper is that ML-based approaches are promising tools for predicting the behavior of non-stationary dynamical systems even in the case where the future evolution (perhaps due to the crossing of a tipping point) includes dynamics on a set outside of that explored by the training data." 303,Enhancing cluster analysis via topological manifold learning,"We discuss topological aspects of cluster analysis and show that inferring the topological structure of a dataset before clustering it can considerably enhance cluster detection: theoretical arguments and empirical evidence show that clustering embedding vectors, representing the structure of a data manifold instead of the observed feature vectors themselves, is highly beneficial. To demonstrate, we combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN. Synthetic and real data results show that this both simplifies and improves clustering in a diverse set of low- and high-dimensional problems including clusters of varying density and/or entangled shapes. Our approach simplifies clustering because topological pre-processing consistently reduces parameter sensitivity of DBSCAN. Clustering the resulting embeddings with DBSCAN can then even outperform complex methods such as SPECTACL and ClusterGAN. Finally, our investigation suggests that the crucial issue in clustering does not appear to be the nominal dimension of the data or how many irrelevant features it contains, but rather how \textit{separable} the clusters are in the ambient observation space they are embedded in, which is usually the (high-dimensional) Euclidean space defined by the features of the data. Our approach is successful because we perform the cluster analysis after projecting the data into a more suitable space that is optimized for separability, in some sense." 304,MotionMixer: MLP-based 3D Human Body Pose Forecasting,"In this work, we present MotionMixer, an efficient 3D human body pose forecasting model based solely on multi-layer perceptrons (MLPs). MotionMixer learns the spatial-temporal 3D body pose dependencies by sequentially mixing both modalities. Given a stacked sequence of 3D body poses, a spatial-MLP extracts fine grained spatial dependencies of the body joints. The interaction of the body joints over time is then modelled by a temporal MLP. The spatial-temporal mixed features are finally aggregated and decoded to obtain the future motion. To calibrate the influence of each time step in the pose sequence, we make use of squeeze-and-excitation (SE) blocks. We evaluate our approach on Human3.6M, AMASS, and 3DPW datasets using the standard evaluation protocols. For all evaluations, we demonstrate state-of-the-art performance, while having a model with a smaller number of parameters. Our code is available at: https://github.com/MotionMLP/MotionMixer" 305,Training Novices: The Role of Human-AI Collaboration and Knowledge Transfer,"Across a multitude of work environments, expert knowledge is imperative for humans to conduct tasks with high performance and ensure business success. These humans possess task-specific expert knowledge (TSEK) and hence, represent subject matter experts (SMEs). However, not only demographic changes but also personnel downsizing strategies lead and will continue to lead to departures of SMEs within organizations, which constitutes the challenge of how to retain that expert knowledge and train novices to keep the competitive advantage elicited by that expert knowledge. SMEs training novices is time- and cost-intensive, which intensifies the need for alternatives. Human-AI collaboration (HAIC) poses a way out of this dilemma, facilitating alternatives to preserve expert knowledge and teach it to novices for tasks conducted by SMEs beforehand. In this workshop paper, we (1) propose a framework on how HAIC can be utilized to train novices on particular tasks, (2) illustrate the role of explicit and tacit knowledge in this training process via HAIC, and (3) outline a preliminary experiment design to assess the ability of AI systems in HAIC to act as a trainer to transfer TSEK to novices who do not possess prior TSEK." 306,Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution,"Dynamic graphs refer to graphs whose structure dynamically changes over time. Despite the benefits of learning vertex representations (i.e., embeddings) for dynamic graphs, existing works merely view a dynamic graph as a sequence of changes within the vertex connections, neglecting the crucial asynchronous nature of such dynamics where the evolution of each local structure starts at different times and lasts for various durations. To maintain asynchronous structural evolutions within the graph, we innovatively formulate dynamic graphs as temporal edge sequences associated with joining time of vertices (ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to embed vertices' dynamic connections and ToEs into the learned vertex representations. Meanwhile, we treat each edge sequence as a whole and embed its ToV of the first vertex to further encode the time-sensitive information. Extensive evaluations on several datasets show that our approach outperforms the state-of-the-art in a wide range of graph mining tasks. At the same time, it is very efficient and scalable for embedding large-scale dynamic graphs." 307,Personalized Diagnostic Tool for Thyroid Cancer Classification using Multi-view Ultrasound,"Over the past decades, the incidence of thyroid cancer has been increasing globally. Accurate and early diagnosis allows timely treatment and helps to avoid over-diagnosis. Clinically, a nodule is commonly evaluated from both transverse and longitudinal views using thyroid ultrasound. However, the appearance of the thyroid gland and lesions can vary dramatically across individuals. Identifying key diagnostic information from both views requires specialized expertise. Furthermore, finding an optimal way to integrate multi-view information also relies on the experience of clinicians and adds further difficulty to accurate diagnosis. To address these, we propose a personalized diagnostic tool that can customize its decision-making process for different patients. It consists of a multi-view classification module for feature extraction and a personalized weighting allocation network that generates optimal weighting for different views. It is also equipped with a self-supervised view-aware contrastive loss to further improve the model robustness towards different patient groups. Experimental results show that the proposed framework can better utilize multi-view information and outperform the competing methods." 308,Simulating financial time series using attention,"Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns." 309,Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes,"A determinantal point process (DPP) is an elegant model that assigns a probability to every subset of a collection of $n$ items. While conventionally a DPP is parameterized by a symmetric kernel matrix, removing this symmetry constraint, resulting in nonsymmetric DPPs (NDPPs), leads to significant improvements in modeling power and predictive performance. Recent work has studied an approximate Markov chain Monte Carlo (MCMC) sampling algorithm for NDPPs restricted to size-$k$ subsets (called $k$-NDPPs). However, the runtime of this approach is quadratic in $n$, making it infeasible for large-scale settings. In this work, we develop a scalable MCMC sampling algorithm for $k$-NDPPs with low-rank kernels, thus enabling runtime that is sublinear in $n$. Our method is based on a state-of-the-art NDPP rejection sampling algorithm, which we enhance with a novel approach for efficiently constructing the proposal distribution. Furthermore, we extend our scalable $k$-NDPP sampling algorithm to NDPPs without size constraints. Our resulting sampling method has polynomial time complexity in the rank of the kernel, while the existing approach has runtime that is exponential in the rank. With both a theoretical analysis and experiments on real-world datasets, we verify that our scalable approximate sampling algorithms are orders of magnitude faster than existing sampling approaches for $k$-NDPPs and NDPPs." 310,Asynchronous Distributed Bayesian Optimization at HPC Scale,"Bayesian optimization (BO) is a widely used approach for computationally expensive black-box optimization such as simulator calibration and hyperparameter optimization of deep learning methods. In BO, a dynamically updated computationally cheap surrogate model is employed to learn the input-output relationship of the black-box function; this surrogate model is used to explore and exploit the promising regions of the input space. Multipoint BO methods adopt a single manager/multiple workers strategy to achieve high-quality solutions in shorter time. However, the computational overhead in multipoint generation schemes is a major bottleneck in designing BO methods that can scale to thousands of workers. We present an asynchronous-distributed BO (ADBO) method wherein each worker runs a search and asynchronously communicates the input-output values of black-box evaluations from all other workers without the manager. We scale our method up to 4,096 workers and demonstrate improvement in the quality of the solution and faster convergence. We demonstrate the effectiveness of our approach for tuning the hyperparameters of neural networks from the Exascale computing project CANDLE benchmarks." 311,Online Reflective Learning for Robust Medical Image Segmentation,"Deep segmentation models often face the failure risks when the testing image presents unseen distributions. Improving model robustness against these risks is crucial for the large-scale clinical application of deep models. In this study, inspired by human learning cycle, we propose a novel online reflective learning framework (RefSeg) to improve segmentation robustness. Based on the reflection-on-action conception, our RefSeg firstly drives the deep model to take action to obtain semantic segmentation. Then, RefSeg triggers the model to reflect itself. Because making deep models realize their segmentation failures during testing is challenging, RefSeg synthesizes a realistic proxy image from the semantic mask to help deep models build intuitive and effective reflections. This proxy translates and emphasizes the segmentation flaws. By maximizing the structural similarity between the raw input and the proxy, the reflection-on-action loop is closed with segmentation robustness improved. RefSeg runs in the testing phase and is general for segmentation models. Extensive validation on three medical image segmentation tasks with a public cardiac MR dataset and two in-house large ultrasound datasets show that our RefSeg remarkably improves model robustness and reports state-of-the-art performance over strong competitors." 312,Agent with Tangent-based Formulation and Anatomical Perception for Standard Plane Localization in 3D Ultrasound,"Standard plane (SP) localization is essential in routine clinical ultrasound (US) diagnosis. Compared to 2D US, 3D US can acquire multiple view planes in one scan and provide complete anatomy with the addition of coronal plane. However, manually navigating SPs in 3D US is laborious and biased due to the orientation variability and huge search space. In this study, we introduce a novel reinforcement learning (RL) framework for automatic SP localization in 3D US. Our contribution is three-fold. First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space and significantly reduce the search space. Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search. Finally, we propose a spatial-anatomical reward to effectively guide learning trajectories by exploiting spatial and anatomical information simultaneously. We explore the efficacy of our approach on localizing four SPs on uterus and fetal brain datasets. The experiments indicate that our approach achieves a high localization accuracy as well as robust performance." 313,Weakly-supervised High-fidelity Ultrasound Video Synthesis with Feature Decoupling,"Ultrasound (US) is widely used for its advantages of real-time imaging, radiation-free and portability. In clinical practice, analysis and diagnosis often rely on US sequences rather than a single image to obtain dynamic anatomical information. This is challenging for novices to learn because practicing with adequate videos from patients is clinically unpractical. In this paper, we propose a novel framework to synthesize high-fidelity US videos. Specifically, the synthesis videos are generated by animating source content images based on the motion of given driving videos. Our highlights are three-fold. First, leveraging the advantages of self- and fully-supervised learning, our proposed system is trained in weakly-supervised manner for keypoint detection. These keypoints then provide vital information for handling complex high dynamic motions in US videos. Second, we decouple content and texture learning using the dual decoders to effectively reduce the model learning difficulty. Last, we adopt the adversarial training strategy with GAN losses for further improving the sharpness of the generated videos, narrowing the gap between real and synthesis videos. We validate our method on a large in-house pelvic dataset with high dynamic motion. Extensive evaluation metrics and user study prove the effectiveness of our proposed method." 314,Reinforcement Learning of Multi-Domain Dialog Policies Via Action Embeddings,"Learning task-oriented dialog policies via reinforcement learning typically requires large amounts of interaction with users, which in practice renders such methods unusable for real-world applications. In order to reduce the data requirements, we propose to leverage data from across different dialog domains, thereby reducing the amount of data required from each given domain. In particular, we propose to learn domain-agnostic action embeddings, which capture general-purpose structure that informs the system how to act given the current dialog context, and are then specialized to a specific domain. We show how this approach is capable of learning with significantly less interaction with users, with a reduction of 35% in the number of dialogs required to learn, and to a higher level of proficiency than training separate policies for each domain on a set of simulated domains." 315,Lifelong Inverse Reinforcement Learning,"Methods for learning from demonstration (LfD) have shown success in acquiring behavior policies by imitating a user. However, even for a single task, LfD may require numerous demonstrations. For versatile agents that must learn many tasks via demonstration, this process would substantially burden the user if each task were learned in isolation. To address this challenge, we introduce the novel problem of lifelong learning from demonstration, which allows the agent to continually build upon knowledge learned from previously demonstrated tasks to accelerate the learning of new tasks, reducing the amount of demonstrations required. As one solution to this problem, we propose the first lifelong learning approach to inverse reinforcement learning, which learns consecutive tasks via demonstration, continually transferring knowledge between tasks to improve performance." 316,A Neural Network Based Novel Test Selector,"Machine learning (ML) has been used to accelerate the progress of functional coverage in simulation-based verification. A supervised ML algorithm, as a prevalent option in the previous work, is used to bias the test generation or filter the generated tests. However, for missing coverage events, these algorithms lack the positive examples to learn from in the training phase. Therefore, the tests generated or filtered by the algorithms cannot effectively fill the coverage holes. This is more severe when verifying large-scale design because the coverage space is larger and the functionalities are more complex. This paper presents a configurable framework of test selection based on neural networks (NN), which can achieve a similar coverage gain as random simulation with far less simulation effort under three configurations of the framework. Moreover, the performance of the framework is not limited by the number of coverage events being hit. A commercial signal processing unit is used in the experiment to demonstrate the effectiveness of the framework. Compared to the random simulation, NNBNTS can reduce up to 53.74% of simulation time to reach 99% coverage level." 317,Implicit adaptation of mesh model of transient heat conduction problem,"Considering high-temperature heating, the equations of transient heat conduction model require an adaptation, i.e. the dependence of thermophysical parameters of the model on the temperature is to be identified for each specific material to be heated. This problem is most often solved by approximation of the tabular data on the measurements of the required parameters, which can be found in the literature, by means of regression equations. But, for example, considering the steel heating process, this approach is difficult to be implemented due to the lack of tabular discrete measurements for many grades of steel, such as alloyed ones. In this paper, the new approach is proposed, which is based on a solution of a related variational problem. Its main idea is to substitute the adaptation process in the classical sense (i.e., to find the dependencies of thermophysical parameters on temperature) with 'supervised learning' of a mesh model on the basis of the technological data received from the plant. The equations to adjust the parameters of the transient heat conduction model, which are related to the thermophysical coefficients, have been derived. A numerical experiment is conducted for steel of a particular group of grades, for which enough both technological as well as tabular data are available. As a result, the 'trained' mesh model, which has not received explicitly any information about the physical and chemical properties of the heated substance, demonstrated an average error of 18.820 C, which is quite close to the average error of the model adapted classically on the basis of the tabular data (18.10 C)." 318,Shai-am: A Machine Learning Platform for Investment Strategies,"The finance industry has adopted machine learning (ML) as a form of quantitative research to support better investment decisions, yet there are several challenges often overlooked in practice. (1) ML code tends to be unstructured and ad hoc, which hinders cooperation with others. (2) Resource requirements and dependencies vary depending on which algorithm is used, so a flexible and scalable system is needed. (3) It is difficult for domain experts in traditional finance to apply their experience and knowledge in ML-based strategies unless they acquire expertise in recent technologies. This paper presents Shai-am, an ML platform integrated with our own Python framework. The platform leverages existing modern open-source technologies, managing containerized pipelines for ML-based strategies with unified interfaces to solve the aforementioned issues. Each strategy implements the interface defined in the core framework. The framework is designed to enhance reusability and readability, facilitating collaborative work in quantitative research. Shai-am aims to be a pure AI asset manager for solving various tasks in financial markets." 319,Modular Lifelong Reinforcement Learning via Neural Composition,"Humans commonly solve complex problems by decomposing them into easier subproblems and then combining the subproblem solutions. This type of compositional reasoning permits reuse of the subproblem solutions when tackling future tasks that share part of the underlying compositional structure. In a continual or lifelong reinforcement learning (RL) setting, this ability to decompose knowledge into reusable components would enable agents to quickly learn new RL tasks by leveraging accumulated compositional structures. We explore a particular form of composition based on neural modules and present a set of RL problems that intuitively admit compositional solutions. Empirically, we demonstrate that neural composition indeed captures the underlying structure of this space of problems. We further propose a compositional lifelong RL method that leverages accumulated neural components to accelerate the learning of future tasks while retaining performance on previous tasks via off-line RL over replayed experiences." 320,Autonomous Intraluminal Navigation of a Soft Robot using Deep-Learning-based Visual Servoing,"Navigation inside luminal organs is an arduous task that requires non-intuitive coordination between the movement of the operator's hand and the information obtained from the endoscopic video. The development of tools to automate certain tasks could alleviate the physical and mental load of doctors during interventions, allowing them to focus on diagnosis and decision-making tasks. In this paper, we present a synergic solution for intraluminal navigation consisting of a 3D printed endoscopic soft robot that can move safely inside luminal structures. Visual servoing, based on Convolutional Neural Networks (CNNs) is used to achieve the autonomous navigation task. The CNN is trained with phantoms and in-vivo data to segment the lumen, and a model-less approach is presented to control the movement in constrained environments. The proposed robot is validated in anatomical phantoms in different path configurations. We analyze the movement of the robot using different metrics such as task completion time, smoothness, error in the steady-state, and mean and maximum error. We show that our method is suitable to navigate safely in hollow environments and conditions which are different than the ones the network was originally trained on." 321,WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer,"Deep learning based solutions are being succesfully implemented for a wide variety of applications. Most notably, clinical use-cases have gained an increased interest and have been the main driver behind some of the cutting-edge data-driven algorithms proposed in the last years. For applications like sparse-view tomographic reconstructions, where the amount of measurement data is small in order to keep acquisition times short and radiation dose low, reduction of the streaking artifacts has prompted the development of data-driven denoising algorithms with the main goal of obtaining diagnostically viable images with only a subset of a full-scan data. We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising. Two encoder-decoder networks perform denoising in both sinogram- and reconstruction-domain simultaneously, while a third layer implementing the Filtered Backprojection algorithm is sandwiched between the first two and takes care of the reconstruction operation. We investigate the performance of the network on sparse-view chest CT scans, and we highlight the added benefit of having a trainable reconstruction layer over the more conventional fixed ones. We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms." 322,"Better Methods and Theory for Federated Learning: Compression, Client Selection and Heterogeneity","Federated learning (FL) is an emerging machine learning paradigm involving multiple clients, e.g., mobile phone devices, with an incentive to collaborate in solving a machine learning problem coordinated by a central server. FL was proposed in 2016 by Kone\v{c}n\'{y} et al. and McMahan et al. as a viable privacy-preserving alternative to traditional centralized machine learning since, by construction, the training data points are decentralized and never transferred by the clients to a central server. Therefore, to a certain degree, FL mitigates the privacy risks associated with centralized data collection. Unfortunately, optimization for FL faces several specific issues that centralized optimization usually does not need to handle. In this thesis, we identify several of these challenges and propose new methods and algorithms to address them, with the ultimate goal of enabling practical FL solutions supported with mathematically rigorous guarantees." 323,Characterizing the Effect of Class Imbalance on the Learning Dynamics,"Data imbalance is a common problem in the machine learning literature that can have a critical effect on the performance of a model. Various solutions exist - such as the ones that focus on resampling or data generation - but their impact on the convergence of gradient-based optimizers used in deep learning is not understood. We here elucidate the significant negative impact of data imbalance on learning, showing that the learning curves for minority and majority classes follow sub-optimal trajectories when training with a gradient-based optimizer. The reason is not only that the gradient signal neglects the minority classes, but also that the minority classes are subject to a larger directional noise, which slows their learning by an amount related to the imbalance ratio. To address this problem, we propose a new algorithmic solution, for which we provide a detailed analysis of its convergence behavior. We show both theoretically and empirically that this new algorithm exhibits a better behavior with more stable learning curves for each class, as well as a better generalization performance." 324,Analysis of Kinetic Models for Label Switching and Stochastic Gradient Descent,"In this paper we provide a novel approach to the analysis of kinetic models for label switching, which are used for particle systems that can randomly switch between gradient flows in different energy landscapes. Besides problems in biology and physics, we also demonstrate that stochastic gradient descent, the most popular technique in machine learning, can be understood in this setting, when considering a time-continuous variant. Our analysis is focusing on the case of evolution in a collection of external potentials, for which we provide analytical and numerical results about the evolution as well as the stationary problem." 325,Rapid training of quantum recurrent neural network,"Time series prediction is the crucial task for many human activities e.g. weather forecasts or predicting stock prices. One solution to this problem is to use Recurrent Neural Networks (RNNs). Although they can yield accurate predictions, their learning process is slow and complex. Here we propose a Quantum Recurrent Neural Network (QRNN) to address these obstacles. The design of the network is based on the continuous-variable quantum computing paradigm. We demonstrate that the network is capable of learning time dependence of a few types of temporal data. Our numerical simulations show that the QRNN converges to optimal weights in fewer epochs than the classical network. Furthermore, for a small number of trainable parameters it can achieve lower loss than the latter." 326,"Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs","There has been a growing interest in the use of Deep Neural Networks (DNNs) to solve Partial Differential Equations (PDEs). Despite the promise that such approaches hold, there are various aspects where they could be improved. Two such shortcomings are (i) their computational inefficiency relative to classical numerical methods, and (ii) the non-interpretability of a trained DNN model. In this work we present ASPINN, an anisotropic extension of our earlier work called SPINN--Sparse, Physics-informed, and Interpretable Neural Networks--to solve PDEs that addresses both these issues. ASPINNs generalize radial basis function networks. We demonstrate using a variety of examples involving elliptic and hyperbolic PDEs that the special architecture we propose is more efficient than generic DNNs, while at the same time being directly interpretable. Further, they improve upon the SPINN models we proposed earlier in that fewer nodes are require to capture the solution using ASPINN than using SPINN, thanks to the anisotropy of the local zones of influence of each node. The interpretability of ASPINN translates to a ready visualization of their weights and biases, thereby yielding more insight into the nature of the trained model. This in turn provides a systematic procedure to improve the architecture based on the quality of the computed solution. ASPINNs thus serve as an effective bridge between classical numerical algorithms and modern DNN based methods to solve PDEs. In the process, we also streamline the training of ASPINNs into a form that is closer to that of supervised learning algorithms." 327,Multi-Objective Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models,"Many real-world problems contain multiple objectives and agents, where a trade-off exists between objectives. Key to solving such problems is to exploit sparse dependency structures that exist between agents. For example, in wind farm control a trade-off exists between maximising power and minimising stress on the systems components. Dependencies between turbines arise due to the wake effect. We model such sparse dependencies between agents as a multi-objective coordination graph (MO-CoG). In multi-objective reinforcement learning a utility function is typically used to model a users preferences over objectives, which may be unknown a priori. In such settings a set of optimal policies must be computed. Which policies are optimal depends on which optimality criterion applies. If the utility function of a user is derived from multiple executions of a policy, the scalarised expected returns (SER) must be optimised. If the utility of a user is derived from a single execution of a policy, the expected scalarised returns (ESR) criterion must be optimised. For example, wind farms are subjected to constraints and regulations that must be adhered to at all times, therefore the ESR criterion must be optimised. For MO-CoGs, the state-of-the-art algorithms can only compute a set of optimal policies for the SER criterion, leaving the ESR criterion understudied. To compute a set of optimal polices under the ESR criterion, also known as the ESR set, distributions over the returns must be maintained. Therefore, to compute a set of optimal policies under the ESR criterion for MO-CoGs, we present a novel distributional multi-objective variable elimination (DMOVE) algorithm. We evaluate DMOVE in realistic wind farm simulations. Given the returns in real-world wind farm settings are continuous, we utilise a model known as real-NVP to learn the continuous return distributions to calculate the ESR set." 328,A geometric framework for outlier detection in high-dimensional data,"Outlier or anomaly detection is an important task in data analysis. We discuss the problem from a geometrical perspective and provide a framework that exploits the metric structure of a data set. Our approach rests on the manifold assumption, i.e., that the observed, nominally high-dimensional data lie on a much lower dimensional manifold and that this intrinsic structure can be inferred with manifold learning methods. We show that exploiting this structure significantly improves the detection of outlying observations in high-dimensional data. We also suggest a novel, mathematically precise, and widely applicable distinction between distributional and structural outliers based on the geometry and topology of the data manifold that clarifies conceptual ambiguities prevalent throughout the literature. Our experiments focus on functional data as one class of structured high-dimensional data, but the framework we propose is completely general and we include image and graph data applications. Our results show that the outlier structure of high-dimensional and non-tabular data can be detected and visualized using manifold learning methods and quantified using standard outlier scoring methods applied to the manifold embedding vectors." 329,Automatic Evaluation of Speaker Similarity,"We introduce a new automatic evaluation method for speaker similarity assessment, that is consistent with human perceptual scores. Modern neural text-to-speech models require a vast amount of clean training data, which is why many solutions switch from single speaker models to solutions trained on examples from many different speakers. Multi-speaker models bring new possibilities, such as a faster creation of new voices, but also a new problem - speaker leakage, where the speaker identity of a synthesized example might not match those of the target speaker. Currently, the only way to discover this issue is through costly perceptual evaluations. In this work, we propose an automatic method for assessment of speaker similarity. For that purpose, we extend the recent work on speaker verification systems and evaluate how different metrics and speaker embeddings models reflect Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) scores. Our experiments show that we can train a model to predict speaker similarity MUSHRA scores from speaker embeddings with 0.96 accuracy and significant correlation up to 0.78 Pearson score at the utterance level." 330,A Deep-Learning-Aided Pipeline for Efficient Post-Silicon Tuning,"In post-silicon validation, tuning is to find the values for the tuning knobs, potentially as a function of process parameters and/or known operating conditions. In this sense, an more efficient tuning requires identifying the most critical tuning knobs and process parameters in terms of a given figure-of-merit for a Device Under Test (DUT). This is often manually conducted by experienced experts. However, with increasingly complex chips, manual inspection on a large amount of raw variables has become more challenging. In this work, we leverage neural networks to efficiently select the most relevant variables and present a corresponding deep-learning-aided pipeline for efficient tuning." 331,Conditional Variable Selection for Intelligent Test,"Intelligent test requires efficient and effective analysis of high-dimensional data in a large scale. Traditionally, the analysis is often conducted by human experts, but it is not scalable in the era of big data. To tackle this challenge, variable selection has been recently introduced to intelligent test. However, in practice, we encounter scenarios where certain variables (e.g. some specific processing conditions for a device under test) must be maintained after variable selection. We call this conditional variable selection, which has not been well investigated for embedded or deep-learning-based variable selection methods. In this paper, we discuss a novel conditional variable selection framework that can select the most important candidate variables given a set of preselected variables." 332,Learning Subject-Invariant Representations from Speech-Evoked EEG Using Variational Autoencoders,"The electroencephalogram (EEG) is a powerful method to understand how the brain processes speech. Linear models have recently been replaced for this purpose with deep neural networks and yield promising results. In related EEG classification fields, it is shown that explicitly modeling subject-invariant features improves generalization of models across subjects and benefits classification accuracy. In this work, we adapt factorized hierarchical variational autoencoders to exploit parallel EEG recordings of the same stimuli. We model EEG into two disentangled latent spaces. Subject accuracy reaches 98.96% and 1.60% on respectively the subject and content latent space, whereas binary content classification experiments reach an accuracy of 51.51% and 62.91% on respectively the subject and content latent space." 333,Identification of Binary Neutron Star Mergers in Gravitational-Wave Data Using YOLO One-Shot Object Detection,"We demonstrate the application of the YOLOv5 model, a general purpose convolution-based single-shot object detection model, in the task of detecting binary neutron star (BNS) coalescence events from gravitational-wave data of current generation interferometer detectors. We also present a thorough explanation of the synthetic data generation and preparation tasks based on approximant waveform models used for the model training, validation and testing steps. Using this approach, we achieve mean average precision ($\text{mAP}_{[0.50]}$) values of 0.945 for a single class validation dataset and as high as 0.978 for test datasets. Moreover, the trained model is successful in identifying the GW170817 event in the LIGO H1 detector data. The identification of this event is also possible for the LIGO L1 detector data with an additional pre-processing step, without the need of removing the large glitch in the final stages of the inspiral. The detection of the GW190425 event is less successful, which attests to performance degradation with the signal-to-noise ratio. Our study indicates that the YOLOv5 model is an interesting approach for first-stage detection alarm pipelines and, when integrated in more complex pipelines, for real-time inference of physical source parameters." 334,Can we learn from developer mistakes? Learning to localize and repair real bugs from real bug fixes,"Real bug fixes found in open source repositories seem to be the perfect source for learning to localize and repair real bugs. However, the absence of large scale bug fix collections has made it difficult to effectively exploit real bug fixes in the training of larger neural models in the past. In contrast, artificial bugs -- produced by mutating existing source code -- can be easily obtained at a sufficient scale and are therefore often preferred in the training of existing approaches. Still, localization and repair models that are trained on artificial bugs usually underperform when faced with real bugs. This raises the question whether bug localization and repair models trained on real bug fixes are more effective in localizing and repairing real bugs. We address this question by introducing RealiT, a pre-train-and-fine-tune approach for effectively learning to localize and repair real bugs from real bug fixes. RealiT is first pre-trained on a large number of artificial bugs produced by traditional mutation operators and then fine-tuned on a smaller set of real bug fixes. Fine-tuning does not require any modifications of the learning algorithm and hence can be easily adopted in various training scenarios for bug localization or repair (even when real training data is scarce). In addition, we found that training on real bug fixes with RealiT is empirically powerful by nearly doubling the localization performance of an existing model on real bugs while maintaining or even improving the repair performance." 335,Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications,"This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification." 336,Distributed Influence-Augmented Local Simulators for Parallel MARL in Large Networked Systems,"Due to its high sample complexity, simulation is, as of today, critical for the successful application of reinforcement learning. Many real-world problems, however, exhibit overly complex dynamics, which makes their full-scale simulation computationally slow. In this paper, we show how to decompose large networked systems of many agents into multiple local components such that we can build separate simulators that run independently and in parallel. To monitor the influence that the different local components exert on one another, each of these simulators is equipped with a learned model that is periodically trained on real trajectories. Our empirical results reveal that distributing the simulation among different processes not only makes it possible to train large multi-agent systems in just a few hours but also helps mitigate the negative effects of simultaneous learning." 337,Learning Lattice Quantum Field Theories with Equivariant Continuous Flows,"We propose a novel machine learning method for sampling from the high-dimensional probability distributions of Lattice Quantum Field Theories. Instead of the deep architectures used so far for this task, our proposal is based on a single neural ODE layer and incorporates the full symmetries of the problem. We test our model on the $\phi^4$ theory, showing that it systematically outperforms previously proposed flow-based methods in sampling efficiency, and the improvement is especially pronounced for larger lattices. Compared to the previous baseline model, we improve a key metric, the effective sample size, from 1% to 91% on a lattice of size $32\times 32$. We also demonstrate that our model can successfully learn a continuous family of theories at once, and the results of learning can be transferred to larger lattices. Such generalization capacities further accentuate the potential advantages of machine learning methods compared to traditional MCMC-based methods." 338,Effect of Homomorphic Encryption on the Performance of Training Federated Learning Generative Adversarial Networks,"A Generative Adversarial Network (GAN) is a deep-learning generative model in the field of Machine Learning (ML) that involves training two Neural Networks (NN) using a sizable data set. In certain fields, such as medicine, the training data may be hospital patient records that are stored across different hospitals. The classic centralized approach would involve sending the data to a centralized server where the model would be trained. However, that would involve breaching the privacy and confidentiality of the patients and their data, which would be unacceptable. Therefore, Federated Learning (FL), an ML technique that trains ML models in a distributed setting without data ever leaving the host device, would be a better alternative to the centralized option. In this ML technique, only parameters and certain metadata would be communicated. In spite of that, there still exist attacks that can infer user data using the parameters and metadata. A fully privacy-preserving solution involves homomorphically encrypting (HE) the data communicated. This paper will focus on the performance loss of training an FL-GAN with three different types of Homomorphic Encryption: Partial Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), and Fully Homomorphic Encryption (FHE). We will also test the performance loss of Multi-Party Computations (MPC), as it has homomorphic properties. The performances will be compared to the performance of training an FL-GAN without encryption as well. Our experiments show that the more complex the encryption method is, the longer it takes, with the extra time taken for HE is quite significant in comparison to the base case of FL." 339,Discriminator-Guided Model-Based Offline Imitation Learning,"Offline imitation learning (IL) is a powerful method to solve decision-making problems from expert demonstrations without reward labels. Existing offline IL methods suffer from severe performance degeneration under limited expert data due to covariate shift. Including a learned dynamics model can potentially improve the state-action space coverage of expert data, however, it also faces challenging issues like model approximation/generalization errors and suboptimality of rollout data. In this paper, we propose the Discriminator-guided Model-based offline Imitation Learning (DMIL) framework, which introduces a discriminator to simultaneously distinguish the dynamics correctness and suboptimality of model rollout data against real expert demonstrations. DMIL adopts a novel cooperative-yet-adversarial learning strategy, which uses the discriminator to guide and couple the learning process of the policy and dynamics model, resulting in improved model performance and robustness. Our framework can also be extended to the case when demonstrations contain a large proportion of suboptimal data. Experimental results show that DMIL and its extension achieve superior performance and robustness compared to state-of-the-art offline IL methods under small datasets." 340,Improving Speech Enhancement through Fine-Grained Speech Characteristics,"While deep learning based speech enhancement systems have made rapid progress in improving the quality of speech signals, they can still produce outputs that contain artifacts and can sound unnatural. We propose a novel approach to speech enhancement aimed at improving perceptual quality and naturalness of enhanced signals by optimizing for key characteristics of speech. We first identify key acoustic parameters that have been found to correlate well with voice quality (e.g. jitter, shimmer, and spectral flux) and then propose objective functions which are aimed at reducing the difference between clean speech and enhanced speech with respect to these features. The full set of acoustic features is the extended Geneva Acoustic Parameter Set (eGeMAPS), which includes 25 different attributes associated with perception of speech. Given the non-differentiable nature of these feature computation, we first build differentiable estimators of the eGeMAPS and then use them to fine-tune existing speech enhancement systems. Our approach is generic and can be applied to any existing deep learning based enhancement systems to further improve the enhanced speech signals. Experimental results conducted on the Deep Noise Suppression (DNS) Challenge dataset shows that our approach can improve the state-of-the-art deep learning based enhancement systems." 341,"Visual Transformer Meets CutMix for Improved Accuracy, Communication Efficiency, and Data Privacy in Split Learning","This article seeks for a distributed learning solution for the visual transformer (ViT) architectures. Compared to convolutional neural network (CNN) architectures, ViTs often have larger model sizes, and are computationally expensive, making federated learning (FL) ill-suited. Split learning (SL) can detour this problem by splitting a model and communicating the hidden representations at the split-layer, also known as smashed data. Notwithstanding, the smashed data of ViT are as large as and as similar as the input data, negating the communication efficiency of SL while violating data privacy. To resolve these issues, we propose a new form of CutSmashed data by randomly punching and compressing the original smashed data. Leveraging this, we develop a novel SL framework for ViT, coined CutMixSL, communicating CutSmashed data. CutMixSL not only reduces communication costs and privacy leakage, but also inherently involves the CutMix data augmentation, improving accuracy and scalability. Simulations corroborate that CutMixSL outperforms baselines such as parallelized SL and SplitFed that integrates FL with SL." 342,"VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations","Vision-Language Pretraining (VLP) models have recently successfully facilitated many cross-modal downstream tasks. Most existing works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method, let alone provides insights on how the community can improve the systems in the future. Inspired by the CheckList for testing natural language processing, we introduce VL-CheckList, a novel framework to understand the capabilities of VLP models. The proposed method divides the image-texting ability of a VLP model into three categories: objects, attributes, and relations, and uses a novel taxonomy to further break down these three aspects. We conduct comprehensive studies to analyze seven recently popular VLP models via the proposed framework. Results confirm the effectiveness of the proposed method by revealing fine-grained differences among the compared models that were not visible from downstream task-only evaluation. Further results show promising research direction in building better VLP models. Data and Code: https://github.com/om-ai-lab/VL-CheckList" 343,e-CLIP: Large-Scale Vision-Language Representation Learning in E-commerce,"Understanding vision and language representations of product content is vital for search and recommendation applications in e-commerce. As a backbone for online shopping platforms and inspired by the recent success in representation learning research, we propose a contrastive learning framework that aligns language and visual models using unlabeled raw product text and images. We present techniques we used to train large-scale representation learning models and share solutions that address domain-specific challenges. We study the performance using our pre-trained model as backbones for diverse downstream tasks, including category classification, attribute extraction, product matching, product clustering, and adult product recognition. Experimental results show that our proposed method outperforms the baseline in each downstream task regarding both single modality and multiple modalities." 344,Studying the impact of magnitude pruning on contrastive learning methods,"We study the impact of different pruning techniques on the representation learned by deep neural networks trained with contrastive loss functions. Our work finds that at high sparsity levels, contrastive learning results in a higher number of misclassified examples relative to models trained with traditional cross-entropy loss. To understand this pronounced difference, we use metrics such as the number of PIEs (Hooker et al., 2019), Q-Score (Kalibhat et al., 2022), and PD-Score (Baldock et al., 2021) to measure the impact of pruning on the learned representation quality. Our analysis suggests the schedule of the pruning method implementation matters. We find that the negative impact of sparsity on the quality of the learned representation is the highest when pruning is introduced early on in the training phase." 345,When Does Differentially Private Learning Not Suffer in High Dimensions?,"Large pretrained models can be privately fine-tuned to achieve performance approaching that of non-private models. A common theme in these results is the surprising observation that high-dimensional models can achieve favorable privacy-utility trade-offs. This seemingly contradicts known results on the model-size dependence of differentially private convex learning and raises the following research question: When does the performance of differentially private learning not degrade with increasing model size? We identify that the magnitudes of gradients projected onto subspaces is a key factor that determines performance. To precisely characterize this for private convex learning, we introduce a condition on the objective that we term restricted Lipschitz continuity and derive improved bounds for the excess empirical and population risks that are dimension-independent under additional conditions. We empirically show that in private fine-tuning of large language models, gradients evaluated near a local optimum are mostly controlled by a few principal components. This behavior is similar to conditions under which we obtain dimension-independent bounds in convex settings. Our theoretical and empirical results together provide a possible explanation for recent successes in large-scale private fine-tuning." 346,Usable Region Estimate for Assessing Practical Usability of Medical Image Segmentation Models,"We aim to quantitatively measure the practical usability of medical image segmentation models: to what extent, how often, and on which samples a model's predictions can be used/trusted. We first propose a measure, Correctness-Confidence Rank Correlation (CCRC), to capture how predictions' confidence estimates correlate with their correctness scores in rank. A model with a high value of CCRC means its prediction confidences reliably suggest which samples' predictions are more likely to be correct. Since CCRC does not capture the actual prediction correctness, it alone is insufficient to indicate whether a prediction model is both accurate and reliable to use in practice. Therefore, we further propose another method, Usable Region Estimate (URE), which simultaneously quantifies predictions' correctness and reliability of confidence assessments in one estimate. URE provides concrete information on to what extent a model's predictions are usable. In addition, the sizes of usable regions (UR) can be utilized to compare models: A model with a larger UR can be taken as a more usable and hence better model. Experiments on six datasets validate that the proposed evaluation methods perform well, providing a concrete and concise measure for the practical usability of medical image segmentation models. Code is made available at https://github.com/yizhezhang2000/ure." 347,Generating Counterfactual Hard Negative Samples for Graph Contrastive Learning,"Graph contrastive learning has emerged as a powerful tool for unsupervised graph representation learning. The key to the success of graph contrastive learning is to acquire high-quality positive and negative samples as contrasting pairs for the purpose of learning underlying structural semantics of the input graph. Recent works usually sample negative samples from the same training batch with the positive samples, or from an external irrelevant graph. However, a significant limitation lies in such strategies, which is the unavoidable problem of sampling false negative samples. In this paper, we propose a novel method to utilize \textbf{C}ounterfactual mechanism to generate artificial hard negative samples for \textbf{G}raph \textbf{C}ontrastive learning, namely \textbf{CGC}, which has a different perspective compared to those sampling-based strategies. We utilize counterfactual mechanism to produce hard negative samples, which ensures that the generated samples are similar to, but have labels that different from the positive sample. The proposed method achieves satisfying results on several datasets compared to some traditional unsupervised graph learning methods and some SOTA graph contrastive learning methods. We also conduct some supplementary experiments to give an extensive illustration of the proposed method, including the performances of CGC with different hard negative samples and evaluations for hard negative samples generated with different similarity measurements." 348,Robustness of Epinets against Distributional Shifts,"Recent work introduced the epinet as a new approach to uncertainty modeling in deep learning. An epinet is a small neural network added to traditional neural networks, which, together, can produce predictive distributions. In particular, using an epinet can greatly improve the quality of joint predictions across multiple inputs, a measure of how well a neural network knows what it does not know. In this paper, we examine whether epinets can offer similar advantages under distributional shifts. We find that, across ImageNet-A/O/C, epinets generally improve robustness metrics. Moreover, these improvements are more significant than those afforded by even very large ensembles at orders of magnitude lower computational costs. However, these improvements are relatively small compared to the outstanding issues in distributionally-robust deep learning. Epinets may be a useful tool in the toolbox, but they are far from the complete solution." 349,Automated Quantum Circuit Design with Nested Monte Carlo Tree Search,"Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions and have found a myriad of applications in the last few years. Despite the adaptability and simplicity, their scalability and the selection of suitable ans\""atzs remain key challenges. In this work, we report an algorithmic framework based on nested Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed bandit (CMAB) model for the automated design of quantum circuits. Through numerical experiments, we demonstrated our algorithm applied to various kinds of problems, including the ground energy problem in quantum chemistry, quantum optimisation on a graph, solving systems of linear equations, and finding encoding circuit for quantum error detection codes. Compared to the existing approaches, the results indicate that our circuit design algorithm can explore larger search spaces and optimise quantum circuits for larger systems, showing both versatility and scalability." 350,Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach,"Unsupervised and semi-supervised ML methods such as variational autoencoders (VAE) have become widely adopted across multiple areas of physics, chemistry, and materials sciences due to their capability in disentangling representations and ability to find latent manifolds for classification and regression of complex experimental data. Like other ML problems, VAEs require hyperparameter tuning, e.g., balancing the Kullback Leibler (KL) and reconstruction terms. However, the training process and resulting manifold topology and connectivity depend not only on hyperparameters, but also their evolution during training. Because of the inefficiency of exhaustive search in a high-dimensional hyperparameter space for the expensive to train models, here we explored a latent Bayesian optimization (zBO) approach for the hyperparameter trajectory optimization for the unsupervised and semi-supervised ML and demonstrate for joint-VAE with rotational invariances. We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system. The performance of the proposed approach has been discussed extensively, where it allows for any high dimensional hyperparameter tuning or trajectory optimization of other ML models." 351,Proteus: A Self-Designing Range Filter,"We introduce Proteus, a novel self-designing approximate range filter, which configures itself based on sampled data in order to optimize its false positive rate (FPR) for a given space requirement. Proteus unifies the probabilistic and deterministic design spaces of state-of-the-art range filters to achieve robust performance across a larger variety of use cases. At the core of Proteus lies our Contextual Prefix FPR (CPFPR) model - a formal framework for the FPR of prefix-based filters across their design spaces. We empirically demonstrate the accuracy of our model and Proteus' ability to optimize over both synthetic workloads and real-world datasets. We further evaluate Proteus in RocksDB and show that it is able to improve end-to-end performance by as much as 5.3x over more brittle state-of-the-art methods such as SuRF and Rosetta. Our experiments also indicate that the cost of modeling is not significant compared to the end-to-end performance gains and that Proteus is robust to workload shifts." 352,ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State,"To train robust deep neural networks (DNNs), we systematically study several target modification approaches, which include output regularisation, self and non-self label correction (LC). Three key issues are discovered: (1) Self LC is the most appealing as it exploits its own knowledge and requires no extra models. However, how to automatically decide the trust degree of a learner as training goes is not well answered in the literature. (2) Some methods penalise while the others reward low-entropy predictions, prompting us to ask which one is better. (3) Using the standard training setting, a trained network is of low confidence when severe noise exists, making it hard to leverage its high-entropy self knowledge. To resolve the issue (1), taking two well-accepted propositions--deep neural networks learn meaningful patterns before fitting noise and minimum entropy regularisation principle--we propose a novel end-to-end method named ProSelfLC, which is designed according to learning time and entropy. Specifically, given a data point, we progressively increase trust in its predicted label distribution versus its annotated one if a model has been trained for enough time and the prediction is of low entropy (high confidence). For the issue (2), according to ProSelfLC, we empirically prove that it is better to redefine a meaningful low-entropy status and optimise the learner toward it. This serves as a defence of entropy minimisation. To address the issue (3), we decrease the entropy of self knowledge using a low temperature before exploiting it to correct labels, so that the revised labels redefine a low-entropy target state. We demonstrate the effectiveness of ProSelfLC through extensive experiments in both clean and noisy settings, and on both image and protein datasets. Furthermore, our source code is available at https://github.com/XinshaoAmosWang/ProSelfLC-AT." 353,Predicting Ulnar Collateral Ligament Injury in Rookie Major League Baseball Pitchers,"In the growing world of machine learning and data analytics, scholars are finding new and innovative ways to solve real-world problems. One solution comes by way of an intersection between healthcare, sports statistics, and data sciences. Within the realm of Major League Baseball (MLB), pitchers are regarded as the most important roster position. They often are among the highest paid players and are crucial to a franchise's success, but they are more at risk to suffer an injury that sidelines them for over a complete season. The ulnar collateral ligament (UCL) is a small ligament in the elbow that controls the strength and stability of a pitcher's throwing arm. Due to repetitive strain, it is not uncommon for pitchers to tear it partially or completely during their careers. Repairing this injury requires UCL reconstruction surgery, as known informally as Tommy John surgery. In this podium abstract, we want to investigate whether we can use machine learning techniques to predict UCL injury by analyzing online pitcher data." 354,Language model compression with weighted low-rank factorization,"Factorizing a large matrix into small matrices is a popular strategy for model compression. Singular value decomposition (SVD) plays a vital role in this compression strategy, approximating a learned matrix with fewer parameters. However, SVD minimizes the squared error toward reconstructing the original matrix without gauging the importance of the parameters, potentially giving a larger reconstruction error for those who affect the task accuracy more. In other words, the optimization objective of SVD is not aligned with the trained model's task accuracy. We analyze this previously unexplored problem, make observations, and address it by introducing Fisher information to weigh the importance of parameters affecting the model prediction. This idea leads to our method: Fisher-Weighted SVD (FWSVD). Although the factorized matrices from our approach do not result in smaller reconstruction errors, we find that our resulting task accuracy is much closer to the original model's performance. We perform analysis with the transformer-based language models, showing our weighted SVD largely alleviates the mismatched optimization objectives and can maintain model performance with a higher compression rate. Our method can directly compress a task-specific model while achieving better performance than other compact model strategies requiring expensive model pre-training. Moreover, the evaluation of compressing an already compact model shows our method can further reduce 9% to 30% parameters with an insignificant impact on task accuracy." 355,Ranking in Contextual Multi-Armed Bandits,"We study a ranking problem in the contextual multi-armed bandit setting. A learning agent selects an ordered list of items at each time step and observes stochastic outcomes for each position. In online recommendation systems, showing an ordered list of the most attractive items would not be the best choice since both position and item dependencies result in a complicated reward function. A very naive example is the lack of diversity when all the most attractive items are from the same category. We model position and item dependencies in the ordered list and design UCB and Thompson Sampling type algorithms for this problem. We prove that the regret bound over $T$ rounds and $L$ positions is $\Tilde{O}(L\sqrt{d T})$, which has the same order as the previous works with respect to $T$ and only increases linearly with $L$. Our work generalizes existing studies in several directions, including position dependencies where position discount is a particular case, and proposes a more general contextual bandit model." 356,Discrimination in machine learning algorithms,"Machine learning algorithms are routinely used for business decisions that may directly affect individuals, for example, because a credit scoring algorithm refuses them a loan. It is then relevant from an ethical (and legal) point of view to ensure that these algorithms do not discriminate based on sensitive attributes (like sex or race), which may occur unwittingly and unknowingly by the operator and the management. Statistical tools and methods are then required to detect and eliminate such potential biases." 357,Modularity Optimization as a Training Criterion for Graph Neural Networks,"Graph convolution is a recent scalable method for performing deep feature learning on attributed graphs by aggregating local node information over multiple layers. Such layers only consider attribute information of node neighbors in the forward model and do not incorporate knowledge of global network structure in the learning task. In particular, the modularity function provides a convenient source of information about the community structure of networks. In this work we investigate the effect on the quality of learned representations by the incorporation of community structure preservation objectives of networks in the graph convolutional model. We incorporate the objectives in two ways, through an explicit regularization term in the cost function in the output layer and as an additional loss term computed via an auxiliary layer. We report the effect of community structure preserving terms in the graph convolutional architectures. Experimental evaluation on two attributed bibilographic networks showed that the incorporation of the community-preserving objective improves semi-supervised node classification accuracy in the sparse label regime." 358,GaitForeMer: Self-Supervised Pre-Training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation,"Parkinson's disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F1 score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer ." 359,Measuring Forgetting of Memorized Training Examples,"Machine learning models exhibit two seemingly contradictory phenomena: training data memorization and various forms of forgetting. In memorization, models overfit specific training examples and become susceptible to privacy attacks. In forgetting, examples which appeared early in training are forgotten by the end. In this work, we connect these phenomena. We propose a technique to measure to what extent models ``forget'' the specifics of training examples, becoming less susceptible to privacy attacks on examples they have not seen recently. We show that, while non-convexity can prevent forgetting from happening in the worst-case, standard image and speech models empirically do forget examples over time. We identify nondeterminism as a potential explanation, showing that deterministically trained models do not forget. Our results suggest that examples seen early when training with extremely large datasets -- for instance those examples used to pre-train a model -- may observe privacy benefits at the expense of examples seen later." 360,Threat Assessment in Machine Learning based Systems,"Machine learning is a field of artificial intelligence (AI) that is becoming essential for several critical systems, making it a good target for threat actors. Threat actors exploit different Tactics, Techniques, and Procedures (TTPs) against the confidentiality, integrity, and availability of Machine Learning (ML) systems. During the ML cycle, they exploit adversarial TTPs to poison data and fool ML-based systems. In recent years, multiple security practices have been proposed for traditional systems but they are not enough to cope with the nature of ML-based systems. In this paper, we conduct an empirical study of threats reported against ML-based systems with the aim to understand and characterize the nature of ML threats and identify common mitigation strategies. The study is based on 89 real-world ML attack scenarios from the MITRE's ATLAS database, the AI Incident Database, and the literature; 854 ML repositories from the GitHub search and the Python Packaging Advisory database, selected based on their reputation. Attacks from the AI Incident Database and the literature are used to identify vulnerabilities and new types of threats that were not documented in ATLAS. Results show that convolutional neural networks were one of the most targeted models among the attack scenarios. ML repositories with the largest vulnerability prominence include TensorFlow, OpenCV, and Notebook. In this paper, we also report the most frequent vulnerabilities in the studied ML repositories, the most targeted ML phases and models, the most used TTPs in ML phases and attack scenarios. This information is particularly important for red/blue teams to better conduct attacks/defenses, for practitioners to prevent threats during ML development, and for researchers to develop efficient defense mechanisms." 361,DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware,"Privacy and security-related concerns are growing as machine learning reaches diverse application domains. The data holders want to train or infer with private data while exploiting accelerators, such as GPUs, that are hosted in the cloud. Cloud systems are vulnerable to attackers that compromise the privacy of data and integrity of computations. Tackling such a challenge requires unifying theoretical privacy algorithms with hardware security capabilities. This paper presents DarKnight, a framework for large DNN training while protecting input privacy and computation integrity. DarKnight relies on cooperative execution between trusted execution environments (TEE) and accelerators, where the TEE provides privacy and integrity verification, while accelerators perform the bulk of the linear algebraic computation to optimize the performance. In particular, DarKnight uses a customized data encoding strategy based on matrix masking to create input obfuscation within a TEE. The obfuscated data is then offloaded to GPUs for fast linear algebraic computation. DarKnight's data obfuscation strategy provides provable data privacy and computation integrity in the cloud servers. While prior works tackle inference privacy and cannot be utilized for training, DarKnight's encoding scheme is designed to support both training and inference." 362,Sustainable Computing -- Without the Hot Air,"The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to reduce their carbon emissions, they understandably focus on their successes, which has the potential to inadvertently convey the false impression that this is now, or will soon be, a solved problem. Such false impressions can be counterproductive if they serve to discourage further research in this area, since, as we discuss, eliminating computing's, and more generally society's, carbon emissions is far from a solved problem. To better understand the problem's scope, this paper distills the fundamental trends that determine computing's carbon footprint and their implications for achieving sustainable computing." 363,Distribution-based Sketching of Single-Cell Samples,"Modern high-throughput single-cell immune profiling technologies, such as flow and mass cytometry and single-cell RNA sequencing can readily measure the expression of a large number of protein or gene features across the millions of cells in a multi-patient cohort. While bioinformatics approaches can be used to link immune cell heterogeneity to external variables of interest, such as, clinical outcome or experimental label, they often struggle to accommodate such a large number of profiled cells. To ease this computational burden, a limited number of cells are typically \emph{sketched} or subsampled from each patient. However, existing sketching approaches fail to adequately subsample rare cells from rare cell-populations, or fail to preserve the true frequencies of particular immune cell-types. Here, we propose a novel sketching approach based on Kernel Herding that selects a limited subsample of all cells while preserving the underlying frequencies of immune cell-types. We tested our approach on three flow and mass cytometry datasets and on one single-cell RNA sequencing dataset and demonstrate that the sketched cells (1) more accurately represent the overall cellular landscape and (2) facilitate increased performance in downstream analysis tasks, such as classifying patients according to their clinical outcome. An implementation of sketching with Kernel Herding is publicly available at \url{https://github.com/vishalathreya/Set-Summarization}." 364,Fast computation of rankings from pairwise comparisons,"We study the ranking of individuals, teams, or objects on the basis of pairwise comparisons using the Bradley-Terry model. Maximum-likelihood estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that solves the same problem much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive some results regarding its convergence." 365,Advances in Prediction of Readmission Rates Using Long Term Short Term Memory Networks on Healthcare Insurance Data,"30-day hospital readmission is a long standing medical problem that affects patients' morbidity and mortality and costs billions of dollars annually. Recently, machine learning models have been created to predict risk of inpatient readmission for patients with specific diseases, however no model exists to predict this risk across all patients. We developed a bi-directional Long Short Term Memory (LSTM) Network that is able to use readily available insurance data (inpatient visits, outpatient visits, and drug prescriptions) to predict 30 day re-admission for any admitted patient, regardless of reason. The top-performing model achieved an ROC AUC of 0.763 (0.011) when using historical, inpatient, and post-discharge data. The LSTM model significantly outperformed a baseline random forest classifier, indicating that understanding the sequence of events is important for model prediction. Incorporation of 30-days of historical data also significantly improved model performance compared to inpatient data alone, indicating that a patients clinical history prior to admission, including outpatient visits and pharmacy data is a strong contributor to readmission. Our results demonstrate that a machine learning model is able to predict risk of inpatient readmission with reasonable accuracy for all patients using structured insurance billing data. Because billing data or equivalent surrogates can be extracted from sites, such a model could be deployed to identify patients at risk for readmission before they are discharged, or to assign more robust follow up (closer follow up, home health, mailed medications) to at-risk patients after discharge." 366,MultiViz: An Analysis Benchmark for Visualizing and Understanding Multimodal Models,"The promise of multimodal models for real-world applications has inspired research in visualizing and understanding their internal mechanics with the end goal of empowering stakeholders to visualize model behavior, perform model debugging, and promote trust in machine learning models. However, modern multimodal models are typically black-box neural networks, which makes it challenging to understand their internal mechanics. How can we visualize the internal modeling of multimodal interactions in these models? Our paper aims to fill this gap by proposing MultiViz, a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages: (1) unimodal importance: how each modality contributes towards downstream modeling and prediction, (2) cross-modal interactions: how different modalities relate with each other, (3) multimodal representations: how unimodal and cross-modal interactions are represented in decision-level features, and (4) multimodal prediction: how decision-level features are composed to make a prediction. MultiViz is designed to operate on diverse modalities, models, tasks, and research areas. Through experiments on 8 trained models across 6 real-world tasks, we show that the complementary stages in MultiViz together enable users to (1) simulate model predictions, (2) assign interpretable concepts to features, (3) perform error analysis on model misclassifications, and (4) use insights from error analysis to debug models. MultiViz is publicly available, will be regularly updated with new interpretation tools and metrics, and welcomes inputs from the community." 367,Visual Pre-training for Navigation: What Can We Learn from Noise?,"A powerful paradigm for sensorimotor control is to predict actions from observations directly. Training such an end-to-end system allows representations that are useful for the downstream tasks to emerge automatically. In visual navigation, an agent can learn to navigate without any manual designs by correlating how its views change with the actions being taken. However, the lack of inductive bias makes this system data-inefficient and impractical in scenarios like search and rescue, where interacting with the environment to collect data is costly. We hypothesize a sufficient representation of the current view and the goal view for a navigation policy can be learned by predicting the location and size of a crop of the current view that corresponds to the goal. We further show that training such random crop prediction in a self-supervised fashion purely on random noise images transfers well to natural home images. The learned representation can then be bootstrapped to learn a navigation policy efficiently with little interaction data. Code is available at https://github.com/yanweiw/noise2ptz." 368,Privacy-preserving Graph Analytics: Secure Generation and Federated Learning,"Directly motivated by security-related applications from the Homeland Security Enterprise, we focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships. In particular, we discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data. For each direction, we identify both ""quick wins"" and ""hard problems"". Towards the end, we demonstrate a user interface that can facilitate model explanation, interpretation, and visualization. We believe that the techniques developed in these directions will significantly enhance the capabilities of the Homeland Security Enterprise to tackle and mitigate the various security risks." 369,Performative Reinforcement Learning,"We introduce the framework of performative reinforcement learning where the policy chosen by the learner affects the underlying reward and transition dynamics of the environment. Following the recent literature on performative prediction~\cite{Perdomo et. al., 2020}, we introduce the concept of performatively stable policy. We then consider a regularized version of the reinforcement learning problem and show that repeatedly optimizing this objective converges to a performatively stable policy under reasonable assumptions on the transition dynamics. Our proof utilizes the dual perspective of the reinforcement learning problem and may be of independent interest in analyzing the convergence of other algorithms with decision-dependent environments. We then extend our results for the setting where the learner just performs gradient ascent steps instead of fully optimizing the objective, and for the setting where the learner has access to a finite number of trajectories from the changed environment. For both the settings, we leverage the dual formulation of performative reinforcement learning and establish convergence to a stable solution. Finally, through extensive experiments on a grid-world environment, we demonstrate the dependence of convergence on various parameters e.g. regularization, smoothness, and the number of samples." 370,DP$^2$-NILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring,"Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in disaggregating smart meter readings from the household-level into appliance-level consumption, can help analyze electricity consumption behaviours of users and enable practical smart energy and smart grid applications. Recent studies have proposed many novel NILM frameworks based on federated deep learning (FL). However, there lacks comprehensive research exploring the utility optimization schemes and the privacy-preserving schemes in different FL-based NILM application scenarios. In this paper, we make the first attempt to conduct FL-based NILM focusing on both the utility optimization and the privacy-preserving by developing a distributed and privacy-preserving NILM (DP2-NILM) framework and carrying out comparative experiments on practical NILM scenarios based on real-world smart meter datasets. Specifically, two alternative federated learning strategies are examined in the utility optimization schemes, i.e., the FedAvg and the FedProx. Moreover, different levels of privacy guarantees, i.e., the local differential privacy federated learning and the global differential privacy federated learning are provided in the DP2-NILM. Extensive comparison experiments are conducted on three real-world datasets to evaluate the proposed framework." 371,DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale,"The past several years have witnessed the success of transformer-based models, and their scale and application scenarios continue to grow aggressively. The current landscape of transformer models is increasingly diverse: the model size varies drastically with the largest being of hundred-billion parameters; the model characteristics differ due to the sparsity introduced by the Mixture-of-Experts; the target application scenarios can be latency-critical or throughput-oriented; the deployment hardware could be single- or multi-GPU systems with different types of memory and storage, etc. With such increasing diversity and the fast-evolving pace of transformer models, designing a highly performant and efficient inference system is extremely challenging. In this paper, we present DeepSpeed Inference, a comprehensive system solution for transformer model inference to address the above-mentioned challenges. DeepSpeed Inference consists of (1) a multi-GPU inference solution to minimize latency while maximizing the throughput of both dense and sparse transformer models when they fit in aggregate GPU memory, and (2) a heterogeneous inference solution that leverages CPU and NVMe memory in addition to the GPU memory and compute to enable high inference throughput with large models which do not fit in aggregate GPU memory. DeepSpeed Inference reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios. Moreover, it enables trillion parameter scale inference under real-time latency constraints by leveraging hundreds of GPUs, an unprecedented scale for inference. It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over $50\%$ of A6000 peak)." 372,LaserMix for Semi-Supervised LiDAR Semantic Segmentation,"Densely annotating LiDAR point clouds is costly, which restrains the scalability of fully-supervised learning methods. In this work, we study the underexplored semi-supervised learning (SSL) in LiDAR segmentation. Our core idea is to leverage the strong spatial cues of LiDAR point clouds to better exploit unlabeled data. We propose LaserMix to mix laser beams from different LiDAR scans, and then encourage the model to make consistent and confident predictions before and after mixing. Our framework has three appealing properties: 1) Generic: LaserMix is agnostic to LiDAR representations (e.g., range view and voxel), and hence our SSL framework can be universally applied. 2) Statistically grounded: We provide a detailed analysis to theoretically explain the applicability of the proposed framework. 3) Effective: Comprehensive experimental analysis on popular LiDAR segmentation datasets (nuScenes, SemanticKITTI, and ScribbleKITTI) demonstrates our effectiveness and superiority. Notably, we achieve competitive results over fully-supervised counterparts with 2x to 5x fewer labels and improve the supervised-only baseline significantly by 10.8% on average. We hope this concise yet high-performing framework could facilitate future research in semi-supervised LiDAR segmentation. Code will be publicly available." 373,On the Learning and Learnablity of Quasimetrics,"Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines." 374,Denoised MDPs: Learning World Models Better Than the World Itself,"The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors.How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression." 375,AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection,"Analyzing the distribution shift of data is a growing research direction in nowadays Machine Learning, leading to emerging new benchmarks that focus on providing a suitable scenario for studying the generalization properties of ML models. The existing benchmarks are focused on supervised learning, and to the best of our knowledge, there is none for unsupervised learning. Therefore, we introduce an unsupervised anomaly detection benchmark with data that shifts over time, built over Kyoto-2006+, a traffic dataset for network intrusion detection. This kind of data meets the premise of shifting the input distribution: it covers a large time span ($10$ years), with naturally occurring changes over time (\eg users modifying their behavior patterns, and software updates). We first highlight the non-stationary nature of the data, using a basic per-feature analysis, t-SNE, and an Optimal Transport approach for measuring the overall distribution distances between years. Next, we propose AnoShift, a protocol splitting the data in IID, NEAR, and FAR testing splits. We validate the performance degradation over time with diverse models (MLM to classical Isolation Forest). Finally, we show that by acknowledging the distribution shift problem and properly addressing it, the performance can be improved compared to the classical IID training (by up to $3\%$, on average). Dataset and code are available at https://github.com/bit-ml/AnoShift/." 376,Causal Machine Learning: A Survey and Open Problems,"Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work." 377,Forecasting Future World Events with Neural Networks,"Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits." 378,Watch and Match: Supercharging Imitation with Regularized Optimal Transport,"Imitation learning holds tremendous promise in learning policies efficiently for complex decision making problems. Current state-of-the-art algorithms often use inverse reinforcement learning (IRL), where given a set of expert demonstrations, an agent alternatively infers a reward function and the associated optimal policy. However, such IRL approaches often require substantial online interactions for complex control problems. In this work, we present Regularized Optimal Transport (ROT), a new imitation learning algorithm that builds on recent advances in optimal transport based trajectory-matching. Our key technical insight is that adaptively combining trajectory-matching rewards with behavior cloning can significantly accelerate imitation even with only a few demonstrations. Our experiments on 20 visual control tasks across the DeepMind Control Suite, the OpenAI Robotics Suite, and the Meta-World Benchmark demonstrate an average of 7.8X faster imitation to reach 90% of expert performance compared to prior state-of-the-art methods. On real-world robotic manipulation, with just one demonstration and an hour of online training, ROT achieves an average success rate of 90.1% across 14 tasks." 379,"Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values","Machine learning (ML) interpretability techniques can reveal undesirable patterns in data that models exploit to make predictions--potentially causing harms once deployed. However, how to take action to address these patterns is not always clear. In a collaboration between ML and human-computer interaction researchers, physicians, and data scientists, we develop GAM Changer, the first interactive system to help domain experts and data scientists easily and responsibly edit Generalized Additive Models (GAMs) and fix problematic patterns. With novel interaction techniques, our tool puts interpretability into action--empowering users to analyze, validate, and align model behaviors with their knowledge and values. Physicians have started to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an evaluation with 7 data scientists working in diverse domains highlights that our tool is easy to use, meets their model editing needs, and fits into their current workflows. Built with modern web technologies, our tool runs locally in users' web browsers or computational notebooks, lowering the barrier to use. GAM Changer is available at the following public demo link: https://interpret.ml/gam-changer." 380,Practical Black Box Hamiltonian Learning,"We study the problem of learning the parameters for the Hamiltonian of a quantum many-body system, given limited access to the system. In this work, we build upon recent approaches to Hamiltonian learning via derivative estimation. We propose a protocol that improves the scaling dependence of prior works, particularly with respect to parameters relating to the structure of the Hamiltonian (e.g., its locality $k$). Furthermore, by deriving exact bounds on the performance of our protocol, we are able to provide a precise numerical prescription for theoretically optimal settings of hyperparameters in our learning protocol, such as the maximum evolution time (when learning with unitary dynamics) or minimum temperature (when learning with Gibbs states). Thanks to these improvements, our protocol is practical for large problems: we demonstrate this with a numerical simulation of our protocol on an 80-qubit system." 381,QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration,"As the machine learning and systems communities strive to achieve higher energy-efficiency through custom deep neural network (DNN) accelerators, varied precision or quantization levels, and model compression techniques, there is a need for design space exploration frameworks that incorporate quantization-aware processing elements into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QUIDAM, a highly parameterized quantization-aware DNN accelerator and model co-exploration framework. Our framework can facilitate future research on design space exploration of DNN accelerators for various design choices such as bit precision, processing element type, scratchpad sizes of processing elements, global buffer size, number of total processing elements, and DNN configurations. Our results show that different bit precisions and processing element types lead to significant differences in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where performance per area and energy varies more than 5x and 35x, respectively. With the proposed framework, we show that lightweight processing elements achieve on par accuracy results and up to 5.7x more performance per area and energy improvement when compared to the best INT16 based implementation. Finally, due to the efficiency of the pre-characterized power, performance, and area models, QUIDAM can speed up the design exploration process by 3-4 orders of magnitude as it removes the need for expensive synthesis and characterization of each design." 382,Improving Visual Grounding by Encouraging Consistent Gradient-based Explanations,"We propose a margin-based loss for vision-language model pretraining that encourages gradient-based explanations that are consistent with region-level annotations. We refer to this objective as Attention Mask Consistency (AMC) and demonstrate that it produces superior visual grounding performance compared to models that rely instead on region-level annotations for explicitly training an object detector such as Faster R-CNN. AMC works by encouraging gradient-based explanation masks that focus their attention scores mostly within annotated regions of interest for images that contain such annotations. Particularly, a model trained with AMC on top of standard vision-language modeling objectives obtains a state-of-the-art accuracy of 86.59% in the Flickr30k visual grounding benchmark, an absolute improvement of 5.48% when compared to the best previous model. Our approach also performs exceedingly well on established benchmarks for referring expression comprehension and offers the added benefit by design of gradient-based explanations that better align with human annotations." 383,PhySRNet: Physics informed super-resolution network for application in computational solid mechanics,"Traditional approaches based on finite element analyses have been successfully used to predict the macro-scale behavior of heterogeneous materials (composites, multicomponent alloys, and polycrystals) widely used in industrial applications. However, this necessitates the mesh size to be smaller than the characteristic length scale of the microstructural heterogeneities in the material leading to computationally expensive and time-consuming calculations. The recent advances in deep learning based image super-resolution (SR) algorithms open up a promising avenue to tackle this computational challenge by enabling researchers to enhance the spatio-temporal resolution of data obtained from coarse mesh simulations. However, technical challenges still remain in developing a high-fidelity SR model for application to computational solid mechanics, especially for materials undergoing large deformation. This work aims at developing a physics-informed deep learning based super-resolution framework (PhySRNet) which enables reconstruction of high-resolution deformation fields (displacement and stress) from their low-resolution counterparts without requiring high-resolution labeled data. We design a synthetic case study to illustrate the effectiveness of the proposed framework and demonstrate that the super-resolved fields match the accuracy of an advanced numerical solver running at 400 times the coarse mesh resolution while simultaneously satisfying the (highly nonlinear) governing laws. The approach opens the door to applying machine learning and traditional numerical approaches in tandem to reduce computational complexity accelerate scientific discovery and engineering design." 384,Learning Iterative Reasoning through Energy Minimization,"Deep learning has excelled on complex pattern recognition tasks such as image classification and object recognition. However, it struggles with tasks requiring nontrivial reasoning, such as algorithmic computation. Humans are able to solve such tasks through iterative reasoning -- spending more time thinking about harder tasks. Most existing neural networks, however, exhibit a fixed computational budget controlled by the neural network architecture, preventing additional computational processing on harder tasks. In this work, we present a new framework for iterative reasoning with neural networks. We train a neural network to parameterize an energy landscape over all outputs, and implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution. By formulating reasoning as an energy minimization problem, for harder problems that lead to more complex energy landscapes, we may then adjust our underlying computational budget by running a more complex optimization procedure. We empirically illustrate that our iterative reasoning approach can solve more accurate and generalizable algorithmic reasoning tasks in both graph and continuous domains. Finally, we illustrate that our approach can recursively solve algorithmic problems requiring nested reasoning" 385,Learning Functions on Multiple Sets using Multi-Set Transformers,"We propose a general deep architecture for learning functions on multiple permutation-invariant sets. We also show how to generalize this architecture to sets of elements of any dimension by dimension equivariance. We demonstrate that our architecture is a universal approximator of these functions, and show superior results to existing methods on a variety of tasks including counting tasks, alignment tasks, distinguishability tasks and statistical distance measurements. This last task is quite important in Machine Learning. Although our approach is quite general, we demonstrate that it can generate approximate estimates of KL divergence and mutual information that are more accurate than previous techniques that are specifically designed to approximate those statistical distances." 386,Classical and learned MR to pseudo-CT mappings for accurate transcranial ultrasound simulation,"Model-based treatment planning for transcranial ultrasound therapy typically involves mapping the acoustic properties of the skull from an x-ray computed tomography (CT) image of the head. Here, three methods for generating pseudo-CT images from magnetic resonance (MR) images were compared as an alternative to CT. A convolutional neural network (U-Net) was trained on paired MR-CT images to generate pseudo-CT images from either T1-weighted or zero-echo time (ZTE) MR images (denoted tCT and zCT, respectively). A direct mapping from ZTE to pseudo-CT was also implemented (denoted cCT). When comparing the pseudo-CT and ground truth CT images for the test set, the mean absolute error was 133, 83, and 145 Hounsfield units (HU) across the whole head, and 398, 222, and 336 HU within the skull for the tCT, zCT, and cCT images, respectively. Ultrasound simulations were also performed using the generated pseudo-CT images and compared to simulations based on CT. An annular array transducer was used targeting the visual or motor cortex. The mean differences in the simulated focal pressure, focal position, and focal volume were 9.9%, 1.5 mm, and 15.1% for simulations based on the tCT images, 5.7%, 0.6 mm, and 5.7% for the zCT, and 6.7%, 0.9 mm, and 12.1% for the cCT. The improved results for images mapped from ZTE highlight the advantage of using imaging sequences which improve contrast of the skull bone. Overall, these results demonstrate that acoustic simulations based on MR images can give comparable accuracy to those based on CT." 387,Understanding Instance-Level Impact of Fairness Constraints,"A variety of fairness constraints have been proposed in the literature to mitigate group-level statistical bias. Their impacts have been largely evaluated for different groups of populations corresponding to a set of sensitive attributes, such as race or gender. Nonetheless, the community has not observed sufficient explorations for how imposing fairness constraints fare at an instance level. Building on the concept of influence function, a measure that characterizes the impact of a training example on the target model and its predictive performance, this work studies the influence of training examples when fairness constraints are imposed. We find out that under certain assumptions, the influence function with respect to fairness constraints can be decomposed into a kernelized combination of training examples. One promising application of the proposed fairness influence function is to identify suspicious training examples that may cause model discrimination by ranking their influence scores. We demonstrate with extensive experiments that training on a subset of weighty data examples leads to lower fairness violations with a trade-off of accuracy." 388,Implicit Neural Spatial Filtering for Multichannel Source Separation in the Waveform Domain,"We present a single-stage casual waveform-to-waveform multichannel model that can separate moving sound sources based on their broad spatial locations in a dynamic acoustic scene. We divide the scene into two spatial regions containing, respectively, the target and the interfering sound sources. The model is trained end-to-end and performs spatial processing implicitly, without any components based on traditional processing or use of hand-crafted spatial features. We evaluate the proposed model on a real-world dataset and show that the model matches the performance of an oracle beamformer followed by a state-of-the-art single-channel enhancement network." 389,Shifts 2.0: Extending The Dataset of Real Distributional Shifts,"Distributional shift, or the mismatch between training and deployment data, is a significant obstacle to the usage of machine learning in high-stakes industrial applications, such as autonomous driving and medicine. This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates. Standard ML baseline datasets do not allow these properties to be assessed, as the training, validation and test data are often identically distributed. Recently, a range of dedicated benchmarks have appeared, featuring both distributionally matched and shifted data. Among these benchmarks, the Shifts dataset stands out in terms of the diversity of tasks as well as the data modalities it features. While most of the benchmarks are heavily dominated by 2D image classification tasks, Shifts contains tabular weather forecasting, machine translation, and vehicle motion prediction tasks. This enables the robustness properties of models to be assessed on a diverse set of industrial-scale tasks and either universal or directly applicable task-specific conclusions to be reached. In this paper, we extend the Shifts Dataset with two datasets sourced from industrial, high-risk applications of high societal importance. Specifically, we consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels. Both tasks feature ubiquitous distributional shifts and a strict safety requirement due to the high cost of errors. These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations. In this work, we provide a description of the dataset and baseline results for both tasks." 390,Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting,"In this paper, we propose a novel end-to-end user-defined keyword spotting method that utilizes linguistically corresponding patterns between speech and text sequences. Unlike previous approaches requiring speech keyword enrollment, our method compares input queries with an enrolled text keyword sequence. To place the audio and text representations within a common latent space, we adopt an attention-based cross-modal matching approach that is trained in an end-to-end manner with monotonic matching loss and keyword classification loss. We also utilize a de-noising loss for the acoustic embedding network to improve robustness in noisy environments. Additionally, we introduce the LibriPhrase dataset, a new short-phrase dataset based on LibriSpeech for efficiently training keyword spotting models. Our proposed method achieves competitive results on various evaluation sets compared to other single-modal and cross-modal baselines." 391,Randomized K-FACs: Speeding up K-FAC with Randomized Numerical Linear Algebra,"K-FAC is a successful tractable implementation of Natural Gradient for Deep Learning, which nevertheless suffers from the requirement to compute the inverse of the Kronecker factors (through an eigen-decomposition). This can be very time-consuming (or even prohibitive) when these factors are large. In this paper, we theoretically show that, owing to the exponential-average construction paradigm of the Kronecker factors that is typically used, their eigen-spectrum must decay. We show numerically that in practice this decay is very rapid, leading to the idea that we could save substantial computation by only focusing on the first few eigen-modes when inverting the Kronecker-factors. Randomized Numerical Linear Algebra provides us with the necessary tools to do so. Numerical results show we obtain $\approx2.5\times$ reduction in per-epoch time and $\approx3.3\times$ reduction in time to target accuracy. We compare our proposed K-FAC sped-up versions with a more computationally efficient NG implementation, SENG, and observe we perform on par with it." 392,j-Wave: An open-source differentiable wave simulator,"We present an open-source differentiable acoustic simulator, j-Wave, which can solve time-varying and time-harmonic acoustic problems. It supports automatic differentiation, which is a program transformation technique that has many applications, especially in machine learning and scientific computing. j-Wave is composed of modular components that can be easily customized and reused. At the same time, it is compatible with some of the most popular machine learning libraries, such as JAX and TensorFlow. The accuracy of the simulation results for known configurations is evaluated against the widely used k-Wave toolbox and a cohort of acoustic simulation software. j-Wave is available from https://github.com/ucl-bug/jwave." 393,Where to Begin? Exploring the Impact of Pre-Training and Initialization in Federated Learning,"An oft-cited challenge of federated learning is the presence of data heterogeneity -- the data at different clients may follow very different distributions. Several federated optimization methods have been proposed to address these challenges. In the literature, empirical evaluations usually start federated training from a random initialization. However, in many practical applications of federated learning, the server has access to proxy data for the training task which can be used to pre-train a model before starting federated training. We empirically study the impact of starting from a pre-trained model in federated learning using four common federated learning benchmark datasets. Unsurprisingly, starting from a pre-trained model reduces the training time required to reach a target error rate and enables training more accurate models (by up to 40\%) than is possible than when starting from a random initialization. Surprisingly, we also find that the effect of data heterogeneity is much less significant when starting federated training from a pre-trained initialization. Rather, when starting from a pre-trained model, using an adaptive optimizer at the server, such as \textsc{FedAdam}, consistently leads to the best accuracy. We recommend that future work proposing and evaluating federated optimization methods consider the performance when starting both random and pre-trained initializations. We also believe this study raises several questions for further work on understanding the role of heterogeneity in federated optimization." 394,Verification and search algorithms for causal DAGs,"We study two problems related to recovering causal graphs from interventional data: (i) $\textit{verification}$, where the task is to check if a purported causal graph is correct, and (ii) $\textit{search}$, where the task is to recover the correct causal graph. For both, we wish to minimize the number of interventions performed. For the first problem, we give a characterization of a minimal sized set of atomic interventions that is necessary and sufficient to check the correctness of a claimed causal graph. Our characterization uses the notion of $\textit{covered edges}$, which enables us to obtain simple proofs and also easily reason about earlier results. We also generalize our results to the settings of bounded size interventions and node-dependent interventional costs. For all the above settings, we provide the first known provable algorithms for efficiently computing (near)-optimal verifying sets on general graphs. For the second problem, we give a simple adaptive algorithm based on graph separators that produces an atomic intervention set which fully orients any essential graph while using $\mathcal{O}(\log n)$ times the optimal number of interventions needed to $\textit{verify}$ (verifying size) the underlying DAG on $n$ vertices. This approximation is tight as $\textit{any}$ search algorithm on an essential line graph has worst case approximation ratio of $\Omega(\log n)$ with respect to the verifying size. With bounded size interventions, each of size $\leq k$, our algorithm gives an $\mathcal{O}(\log n \cdot \log \log k)$ factor approximation. Our result is the first known algorithm that gives a non-trivial approximation guarantee to the verifying size on general unweighted graphs and with bounded size interventions." 395,Improving the Generalization of Supervised Models,"We consider the problem of training a deep neural network on a given classification task, e.g., ImageNet-1K (IN1K), so that it excels at that task as well as at other (future) transfer tasks. These two seemingly contradictory properties impose a trade-off between improving the model's generalization while maintaining its performance on the original task. Models trained with self-supervised learning (SSL) tend to generalize better than their supervised counterparts for transfer learning; yet, they still lag behind supervised models on IN1K. In this paper, we propose a supervised learning setup that leverages the best of both worlds. We enrich the common supervised training framework using two key components of recent SSL models: multi-scale crops for data augmentation and the use of an expendable projector head. We replace the last layer of class weights with class prototypes computed on the fly using a memory bank. We show that these three improvements lead to a more favorable trade-off between the IN1K training task and 13 transfer tasks. Over all the explored configurations, we single out two models: t-ReX that achieves a new state of the art for transfer learning and outperforms top methods such as DINO and PAWS on IN1K, and t-ReX* that matches the highly optimized RSB-A1 model on IN1K while performing better on transfer tasks. Project page and pretrained models: https://europe.naverlabs.com/t-rex" 396,Online TSP with Predictions,"We initiate the study of online routing problems with predictions, inspired by recent exciting results in the area of learning-augmented algorithms. A learning-augmented online algorithm which incorporates predictions in a black-box manner to outperform existing algorithms if the predictions are accurate while otherwise maintaining theoretical guarantees even when the predictions are extremely erroneous is a popular framework for overcoming pessimistic worst-case competitive analysis. In this study, we particularly begin investigating the classical online traveling salesman problem (OLTSP), where future requests are augmented with predictions. Unlike the prediction models in other previous studies, each actual request in the OLTSP, associated with its arrival time and position, may not coincide with the predicted ones, which, as imagined, leads to a troublesome situation. Our main result is to study different prediction models and design algorithms to improve the best-known results in the different settings. Moreover, we generalize the proposed results to the online dial-a-ride problem." 397,Why we do need Explainable AI for Healthcare,"The recent spike in certified Artificial Intelligence (AI) tools for healthcare has renewed the debate around adoption of this technology. One thread of such debate concerns Explainable AI and its promise to render AI devices more transparent and trustworthy. A few voices active in the medical AI space have expressed concerns on the reliability of Explainable AI techniques, questioning their use and inclusion in guidelines and standards. Revisiting such criticisms, this article offers a balanced and comprehensive perspective on the utility of Explainable AI, focusing on the specificity of clinical applications of AI and placing them in the context of healthcare interventions. Against its detractors and despite valid concerns, we argue that the Explainable AI research program is still central to human-machine interaction and ultimately our main tool against loss of control, a danger that cannot be prevented by rigorous clinical validation alone." 398,Learning Underrepresented Classes from Decentralized Partially Labeled Medical Images,"Using decentralized data for federated training is one promising emerging research direction for alleviating data scarcity in the medical domain. However, in contrast to large-scale fully labeled data commonly seen in general object recognition tasks, the local medical datasets are more likely to only have images annotated for a subset of classes of interest due to high annotation costs. In this paper, we consider a practical yet under-explored problem, where underrepresented classes only have few labeled instances available and only exist in a few clients of the federated system. We show that standard federated learning approaches fail to learn robust multi-label classifiers with extreme class imbalance and address it by proposing a novel federated learning framework, FedFew. FedFew consists of three stages, where the first stage leverages federated self-supervised learning to learn class-agnostic representations. In the second stage, the decentralized partially labeled data are exploited to learn an energy-based multi-label classifier for the common classes. Finally, the underrepresented classes are detected based on the energy and a prototype-based nearest-neighbor model is proposed for few-shot matching. We evaluate FedFew on multi-label thoracic disease classification tasks and demonstrate that it outperforms the federated baselines by a large margin." 399,Learning Citywide Patterns of Life from Trajectory Monitoring,"The recent proliferation of real-world human mobility datasets has catalyzed geospatial and transportation research in trajectory prediction, demand forecasting, travel time estimation, and anomaly detection. However, these datasets also enable, more broadly, a descriptive analysis of intricate systems of human mobility. We formally define patterns of life analysis as a natural, explainable extension of online unsupervised anomaly detection, where we not only monitor a data stream for anomalies but also explicitly extract normal patterns over time. To learn patterns of life, we adapt Grow When Required (GWR) episodic memory from research in computational biology and neurorobotics to a new domain of geospatial analysis. This biologically-inspired neural network, related to self-organizing maps (SOM), constructs a set of ""memories"" or prototype traffic patterns incrementally as it iterates over the GPS stream. It then compares each new observation to its prior experiences, inducing an online, unsupervised clustering and anomaly detection on the data. We mine patterns-of-interest from the Porto taxi dataset, including both major public holidays and newly-discovered transportation anomalies, such as festivals and concerts which, to our knowledge, have not been previously acknowledged or reported in prior work. We anticipate that the capability to incrementally learn normal and abnormal road transportation behavior will be useful in many domains, including smart cities, autonomous vehicles, and urban planning and management." 400,Revisiting Competitive Coding Approach for Palmprint Recognition: A Linear Discriminant Analysis Perspective,"The competitive Coding approach (CompCode) is one of the most promising methods for palmprint recognition. Due to its high performance and simple formulation, it has been continuously studied for many years. However, although numerous variations of CompCode have been proposed, a detailed analysis of the method is still absent. In this paper, we provide a detailed analysis of CompCode from the perspective of linear discriminant analysis (LDA) for the first time. A non-trivial sufficient condition under which the CompCode is optimal in the sense of Fisher's criterion is presented. Based on our analysis, we examined the statistics of palmprints and concluded that CompCode deviates from the optimal condition. To mitigate the deviation, we propose a new method called Class-Specific CompCode that improves CompCode by excluding non-palm-line areas from matching. A nonlinear mapping of the competitive code is also applied in this method to further enhance accuracy. Experiments on two public databases demonstrate the effectiveness of the proposed method." 401,GitHub Copilot AI pair programmer: Asset or Liability?,"Automatic program synthesis is a long-lasting dream in software engineering. Recently, a promising Deep Learning (DL) based solution, called Copilot, has been proposed by Open AI and Microsoft as an industrial product. Although some studies evaluate the correctness of Copilot solutions and report its issues, more empirical evaluations are necessary to understand how developers can benefit from it effectively. In this paper, we study the capabilities of Copilot in two different programming tasks: (1) generating (and reproducing) correct and efficient solutions for fundamental algorithmic problems, and (2) comparing Copilot's proposed solutions with those of human programmers on a set of programming tasks. For the former, we assess the performance and functionality of Copilot in solving selected fundamental problems in computer science, like sorting and implementing basic data structures. In the latter, a dataset of programming problems with human-provided solutions is used. The results show that Copilot is capable of providing solutions for almost all fundamental algorithmic problems, however, some solutions are buggy and non-reproducible. Moreover, Copilot has some difficulties in combining multiple methods to generate a solution. Comparing Copilot to humans, our results show that the correct ratio of human solutions is greater than Copilot's correct ratio, while the buggy solutions generated by Copilot require less effort to be repaired. While Copilot shows limitations as an assistant for developers especially in advanced programming tasks, as highlighted in this study and previous ones, it can generate preliminary solutions for basic programming tasks." 402,Neural Annotation Refinement: Development of a New 3D Dataset for Adrenal Gland Analysis,"The human annotations are imperfect, especially when produced by junior practitioners. Multi-expert consensus is usually regarded as golden standard, while this annotation protocol is too expensive to implement in many real-world projects. In this study, we propose a method to refine human annotation, named Neural Annotation Refinement (NeAR). It is based on a learnable implicit function, which decodes a latent vector into represented shape. By integrating the appearance as an input of implicit functions, the appearance-aware NeAR fixes the annotation artefacts. Our method is demonstrated on the application of adrenal gland analysis. We first show that the NeAR can repair distorted golden standards on a public adrenal gland segmentation dataset. Besides, we develop a new Adrenal gLand ANalysis (ALAN) dataset with the proposed NeAR, where each case consists of a 3D shape of adrenal gland and its diagnosis label (normal vs. abnormal) assigned by experts. We show that models trained on the shapes repaired by the NeAR can diagnose adrenal glands better than the original ones. The ALAN dataset will be open-source, with 1,594 shapes for adrenal gland diagnosis, which serves as a new benchmark for medical shape analysis. Code and dataset are available at https://github.com/M3DV/NeAR." 403,Interpretable Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models,"We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn different variants of a variational latent trajectory model (TVAE). The models are trained on the healthy samples of an in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shonecomplex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders on the task of detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method provides interpretable explanations of its output through heatmaps which highlight the regions corresponding to anomalous heart structures." 404,FL-Tuning: Layer Tuning for Feed-Forward Network in Transformer,"Prompt tuning is an emerging way of adapting pre-trained language models to downstream tasks. However, the existing studies are mainly to add prompts to the input sequence. This way would not work as expected due to the intermediate multi-head self-attention and feed-forward network computation, making model optimization not very smooth. Hence, we propose a novel tuning way called layer tuning, aiming to add learnable parameters in Transformer layers. Specifically, we focus on layer tuning for feed-forward network in the Transformer, namely FL-tuning. It introduces additional units into the hidden layer of each feed-forward network. We conduct extensive experiments on the public CLUE benchmark. The results show that: 1) Our FL-tuning outperforms prompt tuning methods under both full-data and few-shot settings in almost all cases. In particular, it improves accuracy by 17.93% (full-data setting) on WSC 1.0 and F1 by 16.142% (few-shot setting) on CLUENER over P-tuning v2. 2) Our FL-tuning is more stable and converges about 1.17 times faster than P-tuning v2. 3) With only about 3% of Transformer's parameters to be trained, FL-tuning is comparable with fine-tuning on most datasets, and significantly outperforms fine-tuning (e.g., accuracy improved by 12.9% on WSC 1.1) on several datasets. The source codes are available at https://github.com/genggui001/FL-Tuning." 405,Transfer Learning with Deep Tabular Models,"Recent work on deep learning for tabular data demonstrates the strong performance of deep tabular models, often bridging the gap between gradient boosted decision trees and neural networks. Accuracy aside, a major advantage of neural models is that they learn reusable features and are easily fine-tuned in new domains. This property is often exploited in computer vision and natural language applications, where transfer learning is indispensable when task-specific training data is scarce. In this work, we demonstrate that upstream data gives tabular neural networks a decisive advantage over widely used GBDT models. We propose a realistic medical diagnosis benchmark for tabular transfer learning, and we present a how-to guide for using upstream data to boost performance with a variety of tabular neural network architectures. Finally, we propose a pseudo-feature method for cases where the upstream and downstream feature sets differ, a tabular-specific problem widespread in real-world applications. Our code is available at https://github.com/LevinRoman/tabular-transfer-learning ." 406,Physics-informed machine learning for Structural Health Monitoring,"The use of machine learning in Structural Health Monitoring is becoming more common, as many of the inherent tasks (such as regression and classification) in developing condition-based assessment fall naturally into its remit. This chapter introduces the concept of physics-informed machine learning, where one adapts ML algorithms to account for the physical insight an engineer will often have of the structure they are attempting to model or assess. The chapter will demonstrate how grey-box models, that combine simple physics-based models with data-driven ones, can improve predictive capability in an SHM setting. A particular strength of the approach demonstrated here is the capacity of the models to generalise, with enhanced predictive capability in different regimes. This is a key issue when life-time assessment is a requirement, or when monitoring data do not span the operational conditions a structure will undergo. The chapter will provide an overview of physics-informed ML, introducing a number of new approaches for grey-box modelling in a Bayesian setting. The main ML tool discussed will be Gaussian process regression, we will demonstrate how physical assumptions/models can be incorporated through constraints, through the mean function and kernel design, and finally in a state-space setting. A range of SHM applications will be demonstrated, from loads monitoring tasks for off-shore and aerospace structures, through to performance monitoring for long-span bridges." 407,Machine learning for automated quality control in injection moulding manufacturing,"Machine learning (ML) may improve and automate quality control (QC) in injection moulding manufacturing. As the labelling of extensive, real-world process data is costly, however, the use of simulated process data may offer a first step towards a successful implementation. In this study, simulated data was used to develop a predictive model for the product quality of an injection moulded sorting container. The achieved accuracy, specificity and sensitivity on the test set was $99.4\%$, $99.7\%$ and $94.7\%$, respectively. This study thus shows the potential of ML towards automated QC in injection moulding and encourages the extension to ML models trained on real-world data." 408,QuASK -- Quantum Advantage Seeker with Kernels,"QuASK is a quantum machine learning software written in Python that supports researchers in designing, experimenting, and assessing different quantum and classical kernels performance. This software is package agnostic and can be integrated with all major quantum software packages (e.g. IBM Qiskit, Xanadu's Pennylane, Amazon Braket). QuASK guides the user through a simple preprocessing of input data, definition and calculation of quantum and classical kernels, either custom or pre-defined ones. From this evaluation the package provides an assessment about potential quantum advantage and prediction bounds on generalization error. Moreover, it allows for the generation of parametric quantum kernels that can be trained using gradient-descent-based optimization, grid search, or genetic algorithms. Projected quantum kernels, an effective solution to mitigate the curse of dimensionality induced by the exponential scaling dimension of large Hilbert spaces, are also calculated. QuASK can furthermore generate the observable values of a quantum model and use them to study the prediction capabilities of the quantum and classical kernels." 409,TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes,"Recent contrastive learning methods achieved state-of-the-art in low label regimes. However, the training requires large batch sizes and heavy augmentations to create multiple views of an image. With non-contrastive methods, the negatives are implicitly incorporated in the loss, allowing different images and modalities as pairs. Although the meta-information (i.e., age, sex) in medical imaging is abundant, the annotations are noisy and prone to class imbalance. In this work, we exploited already existing temporal information (different visits from a patient) in a longitudinal optical coherence tomography (OCT) dataset using temporally informed non-contrastive loss (TINC) without increasing complexity and need for negative pairs. Moreover, our novel pair-forming scheme can avoid heavy augmentations and implicitly incorporates the temporal information in the pairs. Finally, these representations learned from the pretraining are more successful in predicting disease progression where the temporal information is crucial for the downstream task. More specifically, our model outperforms existing models in predicting the risk of conversion within a time frame from intermediate age-related macular degeneration (AMD) to the late wet-AMD stage." 410,R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS,"This paper introduces R-MelNet, a two-part autoregressive architecture with a frontend based on the first tier of MelNet and a backend WaveRNN-style audio decoder for neural text-to-speech synthesis. Taking as input a mixed sequence of characters and phonemes, with an optional audio priming sequence, this model produces low-resolution mel-spectral features which are interpolated and used by a WaveRNN decoder to produce an audio waveform. Coupled with half precision training, R-MelNet uses under 11 gigabytes of GPU memory on a single commodity GPU (NVIDIA 2080Ti). We detail a number of critical implementation details for stable half precision training, including an approximate, numerically stable mixture of logistics attention. Using a stochastic, multi-sample per step inference scheme, the resulting model generates highly varied audio, while enabling text and audio based controls to modify output waveforms. Qualitative and quantitative evaluations of an R-MelNet system trained on a single speaker TTS dataset demonstrate the effectiveness of our approach." 411,Invariance Properties of the Natural Gradient in Overparametrised Systems,"The natural gradient field is a vector field that lives on a model equipped with a distinguished Riemannian metric, e.g. the Fisher-Rao metric, and represents the direction of steepest ascent of an objective function on the model with respect to this metric. In practice, one tries to obtain the corresponding direction on the parameter space by multiplying the ordinary gradient by the inverse of the Gram matrix associated with the metric. We refer to this vector on the parameter space as the natural parameter gradient. In this paper we study when the pushforward of the natural parameter gradient is equal to the natural gradient. Furthermore we investigate the invariance properties of the natural parameter gradient. Both questions are addressed in an overparametrised setting." 412,Deep Reinforcement Learning with Swin Transformer,"Transformers are neural network models that utilize multiple layers of self-attention heads. Attention is implemented in transformers as the contextual embeddings of the 'key' and 'query'. Transformers allow the re-combination of attention information from different layers and the processing of all inputs at once, which are more convenient than recurrent neural networks when dealt with a large number of data. Transformers have exhibited great performances on natural language processing tasks in recent years. Meanwhile, there have been tremendous efforts to adapt transformers into other fields of machine learning, such as Swin Transformer and Decision Transformer. Swin Transformer is a promising neural network architecture that splits image pixels into small patches and applies local self-attention operations inside the (shifted) windows of fixed sizes. Decision Transformer has successfully applied transformers to off-line reinforcement learning and showed that random-walk samples from Atari games are sufficient to let an agent learn optimized behaviors. However, it is considerably more challenging to combine online reinforcement learning with transformers. In this article, we further explore the possibility of not modifying the reinforcement learning policy, but only replacing the convolutional neural network architecture with the self-attention architecture from Swin Transformer. Namely, we target at changing how an agent views the world, but not how an agent plans about the world. We conduct our experiment on 49 games in Arcade Learning Environment. The results show that using Swin Transformer in reinforcement learning achieves significantly higher evaluation scores across the majority of games in Arcade Learning Environment. Thus, we conclude that online reinforcement learning can benefit from exploiting self-attentions with spatial token embeddings." 413,Benchmark Dataset for Precipitation Forecasting by Post-Processing the Numerical Weather Prediction,"Precipitation forecasting is an important scientific challenge that has wide-reaching impacts on society. Historically, this challenge has been tackled using numerical weather prediction (NWP) models, grounded on physics-based simulations. Recently, many works have proposed an alternative approach, using end-to-end deep learning (DL) models to replace physics-based NWP. While these DL methods show improved performance and computational efficiency, they exhibit limitations in long-term forecasting and lack the explainability of NWP models. In this work, we present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches. Under this workflow, the NWP output is fed into a deep model, which post-processes the data to yield a refined precipitation forecast. The deep model is trained with supervision, using Automatic Weather Station (AWS) observations as ground-truth labels. This can achieve the best of both worlds, and can even benefit from future improvements in NWP technology. To facilitate study in this direction, we present a novel dataset focused on the Korean Peninsula, termed KoMet (Korea Meteorological Dataset), comprised of NWP predictions and AWS observations. For NWP, we use the Global Data Assimilation and Prediction Systems-Korea Integrated Model (GDAPS-KIM)." 414,Learning Nonparametric Ordinary differential Equations: Application to Sparse and Noisy Data,"Learning nonparametric systems of Ordinary Differential Equations (ODEs) $\dot x = f(t,x)$ from noisy and sparse data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for $f$ for which the solution of the ODE exists and is unique. Learning $f$ consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the $L^2$ distance between $x$ and its estimator. Experiments are provided for the FitzHugh Nagumo oscillator and for the prediction of the Amyloid level in the cortex of aging subjects. In both cases, we show competitive results when compared with the state of the art." 415,When an Active Learner Meets a Black-box Teacher,"Active learning maximizes the hypothesis updates to find those desired unlabeled data. An inherent assumption is that this learning manner can derive those updates into the optimal hypothesis. However, its convergence may not be guaranteed well if those incremental updates are negative and disordered. In this paper, we introduce a machine teacher who provides a black-box teaching hypothesis for an active learner, where the teaching hypothesis is an effective approximation for the optimal hypothesis. Theoretically, we prove that, under the guidance of this teaching hypothesis, the learner can converge into a tighter generalization error and label complexity bound than those non-educated learners who do not receive any guidance from a teacher. We further consider two teaching scenarios: teaching a white-box and black-box learner, where self-improvement of teaching is firstly proposed to improve the teaching performance. Experiments verify this idea and show better performance than the fundamental active learning strategies, such as IWAL, IWAL-D, etc." 416,Data-Efficient Learning via Minimizing Hyperspherical Energy,"Deep learning on large-scale data is dominant nowadays. The unprecedented scale of data has been arguably one of the most important driving forces for the success of deep learning. However, there still exist scenarios where collecting data or labels could be extremely expensive, e.g., medical imaging and robotics. To fill up this gap, this paper considers the problem of data-efficient learning from scratch using a small amount of representative data. First, we characterize this problem by active learning on homeomorphic tubes of spherical manifolds. This naturally generates feasible hypothesis class. With homologous topological properties, we identify an important connection -- finding tube manifolds is equivalent to minimizing hyperspherical energy (MHE) in physical geometry. Inspired by this connection, we propose a MHE-based active learning (MHEAL) algorithm, and provide comprehensive theoretical guarantees for MHEAL, covering convergence and generalization analysis. Finally, we demonstrate the empirical performance of MHEAL in a wide range of applications on data-efficient learning, including deep clustering, distribution matching, version space sampling and deep active learning." 417,A Rare Topic Discovery Model for Short Texts Based on Co-occurrence word Network,"We provide a simple and general solution for the discovery of scarce topics in unbalanced short-text datasets, namely, a word co-occurrence network-based model CWIBTD, which can simultaneously address the sparsity and unbalance of short-text topics and attenuate the effect of occasional pairwise occurrences of words, allowing the model to focus more on the discovery of scarce topics. Unlike previous approaches, CWIBTD uses co-occurrence word networks to model the topic distribution of each word, which improves the semantic density of the data space and ensures its sensitivity in identify-ing rare topics by improving the way node activity is calculated and normal-izing scarce topics and large topics to some extent. In addition, using the same Gibbs sampling as LDA makes CWIBTD easy to be extended to vari-ous application scenarios. Extensive experimental validation in the unbal-anced short text dataset confirms the superiority of CWIBTD over the base-line approach in discovering rare topics. Our model can be used for early and accurate discovery of emerging topics or unexpected events on social platforms." 418,The Topological BERT: Transforming Attention into Topology for Natural Language Processing,"In recent years, the introduction of the Transformer models sparked a revolution in natural language processing (NLP). BERT was one of the first text encoders using only the attention mechanism without any recurrent parts to achieve state-of-the-art results on many NLP tasks. This paper introduces a text classifier using topological data analysis. We use BERT's attention maps transformed into attention graphs as the only input to that classifier. The model can solve tasks such as distinguishing spam from ham messages, recognizing whether a sentence is grammatically correct, or evaluating a movie review as negative or positive. It performs comparably to the BERT baseline and outperforms it on some tasks. Additionally, we propose a new method to reduce the number of BERT's attention heads considered by the topological classifier, which allows us to prune the number of heads from 144 down to as few as ten with no reduction in performance. Our work also shows that the topological model displays higher robustness against adversarial attacks than the original BERT model, which is maintained during the pruning process. To the best of our knowledge, this work is the first to confront topological-based models with adversarial attacks in the context of NLP." 419,Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach,"Load forecasting is very essential in the analysis and grid planning of power systems. For this reason, we first propose a household load forecasting method based on federated deep learning and non-intrusive load monitoring (NILM). For all we know, this is the first research on federated learning (FL) in household load forecasting based on NILM. In this method, the integrated power is decomposed into individual device power by non-intrusive load monitoring, and the power of individual appliances is predicted separately using a federated deep learning model. Finally, the predicted power values of individual appliances are aggregated to form the total power prediction. Specifically, by separately predicting the electrical equipment to obtain the predicted power, it avoids the error caused by the strong time dependence in the power signal of a single device. And in the federated deep learning prediction model, the household owners with the power data share the parameters of the local model instead of the local power data, guaranteeing the privacy of the household user data. The case results demonstrate that the proposed approach provides a better prediction effect than the traditional methodology that directly predicts the aggregated signal as a whole. In addition, experiments in various federated learning environments are designed and implemented to validate the validity of this methodology." 420,Classification of network topology and dynamics via sequence characterization,"Sequences arise in many real-world scenarios; thus, identifying the mechanisms behind symbol generation is essential to understanding many complex systems. This paper analyzes sequences generated by agents walking on a networked topology. Given that in many real scenarios, the underlying processes generating the sequence is hidden, we investigate whether the reconstruction of the network via the co-occurrence method is useful to recover both the network topology and agent dynamics generating sequences. We found that the characterization of reconstructed networks provides valuable information regarding the process and topology used to create the sequences. In a machine learning approach considering 16 combinations of network topology and agent dynamics as classes, we obtained an accuracy of 87% with sequences generated with less than 40% of nodes visited. Larger sequences turned out to generate improved machine learning models. Our findings suggest that the proposed methodology could be extended to classify sequences and understand the mechanisms behind sequence generation." 421,Simulating reaction time for Eureka effect in visual object recognition using artificial neural network,"The human brain can recognize objects hidden in even severely degraded images after observing them for a while, which is known as a type of Eureka effect, possibly associated with human creativity. A previous psychological study suggests that the basis of this ""Eureka recognition"" is neural processes of coincidence of multiple stochastic activities. Here we constructed an artificial-neural-network-based model that simulated the characteristics of the human Eureka recognition." 422,Out-of-Distribution Detection for Long-tailed and Fine-grained Skin Lesion Images,"Recent years have witnessed a rapid development of automated methods for skin lesion diagnosis and classification. Due to an increasing deployment of such systems in clinics, it has become important to develop a more robust system towards various Out-of-Distribution(OOD) samples (unknown skin lesions and conditions). However, the current deep learning models trained for skin lesion classification tend to classify these OOD samples incorrectly into one of their learned skin lesion categories. To address this issue, we propose a simple yet strategic approach that improves the OOD detection performance while maintaining the multi-class classification accuracy for the known categories of skin lesion. To specify, this approach is built upon a realistic scenario of a long-tailed and fine-grained OOD detection task for skin lesion images. Through this approach, 1) First, we target the mixup amongst middle and tail classes to address the long-tail problem. 2) Later, we combine the above mixup strategy with prototype learning to address the fine-grained nature of the dataset. The unique contribution of this paper is two-fold, justified by extensive experiments. First, we present a realistic problem setting of OOD task for skin lesion. Second, we propose an approach to target the long-tailed and fine-grained aspects of the problem setting simultaneously to increase the OOD performance." 423,Neural Network Assisted Depth Map Packing for Compression Using Standard Hardware Video Codecs,"Depth maps are needed by various graphics rendering and processing operations. Depth map streaming is often necessary when such operations are performed in a distributed system and it requires in most cases fast performing compression, which is why video codecs are often used. Hardware implementations of standard video codecs enable relatively high resolution and framerate combinations, even on resource constrained devices, but unfortunately those implementations do not currently support RGB+depth extensions. However, they can be used for depth compression by first packing the depth maps into RGB or YUV frames. We investigate depth map compression using a combination of depth map packing followed by encoding with a standard video codec. We show that the precision at which depth maps are packed has a large and nontrivial impact on the resulting error caused by the combination of the packing scheme and lossy compression when bitrate is constrained. Consequently, we propose a variable precision packing scheme assisted by a neural network model that predicts the optimal precision for each depth map given a bitrate constraint. We demonstrate that the model yields near optimal predictions and that it can be integrated into a game engine with very low overhead using modern hardware." 424,A Medical Image Fusion Method based on MDLatLRRv2,"Since MDLatLRR only considers detailed parts (salient features) of input images extracted by latent low-rank representation (LatLRR), it doesn't use base parts (principal features) extracted by LatLRR effectively. Therefore, we proposed an improved multi-level decomposition method called MDLatLRRv2 which effectively analyzes and utilizes all the image features obtained by LatLRR. Then we apply MDLatLRRv2 to medical image fusion. The base parts are fused by average strategy and the detail parts are fused by nuclear-norm operation. The comparison with the existing methods demonstrates that the proposed method can achieve state-of-the-art fusion performance in objective and subjective assessment." 425,A note on large deviations for interacting particle dynamics for finding mixed equilibria in zero-sum games,"Finding equilibria points in continuous minimax games has become a key problem within machine learning, in part due to its connection to the training of generative adversarial networks. Because of existence and robustness issues, recent developments have shifted from pure equilibria to focusing on mixed equilibria points. In this note we consider a method proposed by Domingo-Enrich et al. for finding mixed equilibria in two-layer zero-sum games. The method is based on entropic regularisation and the two competing strategies are represented by two sets of interacting particles. We show that the sequence of empirical measures of the particle system satisfies a large deviation principle as the number of particles grows to infinity, and how this implies convergence of the empirical measure and the associated Nikaid\^o-Isoda error, complementing existing law of large numbers results." 426,Graph-Time Convolutional Neural Networks: Architecture and Theoretical Analysis,"Devising and analyzing learning models for spatiotemporal network data is of importance for tasks including forecasting, anomaly detection, and multi-agent coordination, among others. Graph Convolutional Neural Networks (GCNNs) are an established approach to learn from time-invariant network data. The graph convolution operation offers a principled approach to aggregate multiresolution information. However, extending the convolution principled learning and respective analysis to the spatiotemporal domain is challenging because spatiotemporal data have more intrinsic dependencies. Hence, a higher flexibility to capture jointly the spatial and the temporal dependencies is required to learn meaningful higher-order representations. Here, we leverage product graphs to represent the spatiotemporal dependencies in the data and introduce Graph-Time Convolutional Neural Networks (GTCNNs) as a principled architecture to aid learning. The proposed approach can work with any type of product graph and we also introduce a parametric product graph to learn also the spatiotemporal coupling. The convolution principle further allows a similar mathematical tractability as for GCNNs. In particular, the stability result shows GTCNNs are stable to spatial perturbations but there is an implicit trade-off between discriminability and robustness; i.e., the more complex the model, the less stable. Extensive numerical results on benchmark datasets corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions. We anticipate the GTCNN to be a starting point for more sophisticated models that achieve good performance but are also fundamentally grounded." 427,Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN,"Benefiting from the message passing mechanism, Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data. However, recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure. A straightforward solution to remedy this issue is to model the edge weights by learning a metric function between pairwise representations of two end nodes, which attempts to assign low weights to adversarial edges. The existing methods use either raw features or representations learned by supervised GNNs to model the edge weights. However, both strategies are faced with some immediate problems: raw features cannot represent various properties of nodes (e.g., structure information), and representations learned by supervised GNN may suffer from the poor performance of the classifier on the poisoned graph. We need representations that carry both feature information and as mush correct structure information as possible and are insensitive to structural perturbations. To this end, we propose an unsupervised pipeline, named STABLE, to optimize the graph structure. Finally, we input the well-refined graph into a downstream classifier. For this part, we design an advanced GCN that significantly enhances the robustness of vanilla GCN without increasing the time complexity. Extensive experiments on four real-world graph benchmarks demonstrate that STABLE outperforms the state-of-the-art methods and successfully defends against various attacks." 428,Using Person Embedding to Enrich Features and Data Augmentation for Classification,"Today, machine learning is applied in almost any field. In machine learning, where there are numerous methods, classification is one of the most basic and crucial ones. Various problems can be solved by classification. The feature selection for model setup is extremely important, and producing new features via feature engineering also has a vital place in the success of the model. In our study, fraud detection classification models are built on a labeled and imbalanced dataset as a case-study. Although it is a natural language processing method, a customer space has been created with word embedding, which has been used in different areas, especially for recommender systems. The customer vectors in the created space are fed to the classification model as a feature. Moreover, to increase the number of positive labels, rows with similar characteristics are re-labeled as positive by using customer similarity determined by embedding. The model in which embedding methods are included in the classification, which provides a better representation of customers, has been compared with other models. Considering the results, it is observed that the customer embedding method had a positive effect on the success of the classification models." 429,HRFuser: A Multi-resolution Sensor Fusion Architecture for 2D Object Detection,"Besides standard cameras, autonomous vehicles typically include multiple additional sensors, such as lidars and radars, which help acquire richer information for perceiving the content of the driving scene. While several recent works focus on fusing certain pairs of sensors - such as camera and lidar or camera and radar - by using architectural components specific to the examined setting, a generic and modular sensor fusion architecture is missing from the literature. In this work, we focus on 2D object detection, a fundamental high-level task which is defined on the 2D image domain, and propose HRFuser, a multi-resolution sensor fusion architecture that scales straightforwardly to an arbitrary number of input modalities. The design of HRFuser is based on state-of-the-art high-resolution networks for image-only dense prediction and incorporates a novel multi-window cross-attention block as the means to perform fusion of multiple modalities at multiple resolutions. Even though cameras alone provide very informative features for 2D detection, we demonstrate via extensive experiments on the nuScenes and Seeing Through Fog datasets that our model effectively leverages complementary features from additional modalities, substantially improving upon camera-only performance and consistently outperforming state-of-the-art fusion methods for 2D detection both in normal and adverse conditions. The source code will be made publicly available." 430,Pulse Shape Simulation and Discrimination using Machine-Learning Techniques,"An essential metric for the quality of a particle-identification experiment is its statistical power to discriminate between signal and background. Pulse shape discrimination (PSD) is a basic method for this purpose in many nuclear, high-energy, and rare-event search experiments where scintillator detectors are used. Conventional techniques exploit the difference between decay-times of the pulse from signal and background events or pulse signals caused by different types of radiation quanta to achieve good discrimination. However, such techniques are efficient only when the total light-emission is sufficient to get a proper pulse profile. This is only possible when there is significant recoil energy due to the incident particle in the detector. But, rare-event search experiments like neutrino or dark-matter direct search experiments don't always satisfy these conditions. Hence, it becomes imperative to have a method that can deliver very efficient discrimination in these scenarios. Neural network-based machine-learning algorithms have been used for classification problems in many areas of physics, especially in high-energy experiments, and have given better results compared to conventional techniques. We present the results of our investigations of two network-based methods viz. Dense Neural Network and Recurrent Neural Network, for pulse shape discrimination and compare the same with conventional methods." 431,Neural Networks can Learn Representations with Gradient Descent,"Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form $f^\star(x) = g(Ux)$ where $U: \R^d \to \R^r$ with $d \gg r$. When the degree of $f^\star$ is $p$, it is known that $n \asymp d^p$ samples are necessary to learn $f^\star$ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to $f^\star$. This results in an improved sample complexity of $n\asymp d^2 r + dr^p$. Furthermore, in a transfer learning setup where the data distributions in the source and target domain share the same representation $U$ but have different polynomial heads we show that a popular heuristic for transfer learning has a target sample complexity independent of $d$." 432,Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning,"The second-order optimization methods, notably the D-KFAC (Distributed Kronecker Factored Approximate Curvature) algorithms, have gained traction on accelerating deep neural network (DNN) training on GPU clusters. However, existing D-KFAC algorithms require to compute and communicate a large volume of second-order information, i.e., Kronecker factors (KFs), before preconditioning gradients, resulting in large computation and communication overheads as well as a high memory footprint. In this paper, we propose DP-KFAC, a novel distributed preconditioning scheme that distributes the KF constructing tasks at different DNN layers to different workers. DP-KFAC not only retains the convergence property of the existing D-KFAC algorithms but also enables three benefits: reduced computation overhead in constructing KFs, no communication of KFs, and low memory footprint. Extensive experiments on a 64-GPU cluster show that DP-KFAC reduces the computation overhead by 1.55x-1.65x, the communication cost by 2.79x-3.15x, and the memory footprint by 1.14x-1.47x in each second-order update compared to the state-of-the-art D-KFAC methods." 433,Personalized Detection of Cognitive Biases in Actions of Users from Their Logs: Anchoring and Recency Biases,"Cognitive biases are mental shortcuts humans use in dealing with information and the environment, and which result in biased actions and behaviors (or, actions), unbeknownst to themselves. Biases take many forms, with cognitive biases occupying a central role that inflicts fairness, accountability, transparency, ethics, law, medicine, and discrimination. Detection of biases is considered a necessary step toward their mitigation. Herein, we focus on two cognitive biases - anchoring and recency. The recognition of cognitive bias in computer science is largely in the domain of information retrieval, and bias is identified at an aggregate level with the help of annotated data. Proposing a different direction for bias detection, we offer a principled approach along with Machine Learning to detect these two cognitive biases from Web logs of users' actions. Our individual user level detection makes it truly personalized, and does not rely on annotated data. Instead, we start with two basic principles established in cognitive psychology, use modified training of an attention network, and interpret attention weights in a novel way according to those principles, to infer and distinguish between these two biases. The personalized approach allows detection for specific users who are susceptible to these biases when performing their tasks, and can help build awareness among them so as to undertake bias mitigation." 434,The maximum capability of a topological feature in link prediction,"Link prediction aims to predict links of a network that are not directly visible, with profound applications in biological and social systems. Despite intensive utilization of the topological feature in this task, it is unclear to what extent a particular feature can be leveraged to infer missing links. Here, we show that the maximum capability of a topological feature follows a simple mathematical expression, which is independent of how an index gauges the feature. Hence, a family of indexes associated with one topological feature shares the same performance limit. A feature's capability is lifted in the supervised prediction, which in general gives rise to better results compared with unsupervised prediction. The universality of the pattern uncovered is empirically verified by 550 structurally diverse networks, which can be applied to feature selection and the analysis of network characteristics associated with a topological feature in link prediction." 435,Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis,"Human brains lie at the core of complex neurobiological systems, where the neurons, circuits, and subsystems interact in enigmatic ways. Understanding the structural and functional mechanisms of the brain has long been an intriguing pursuit for neuroscience research and clinical disorder therapy. Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience. Graph Neural Networks (GNNs) have recently emerged as a potential method for modeling complex network data. Deep models, on the other hand, have low interpretability, which prevents their usage in decision-critical contexts like healthcare. To bridge this gap, we propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections. The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator that highlights disorder-specific biomarkers including salient ROIs and important connections. We conduct experiments on three real-world datasets of brain disorders. The results verify that our framework can obtain outstanding performance and also identify meaningful biomarkers. All code for this work is available at https://github.com/HennyJie/IBGNN.git." 436,Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models,"Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems and learning analytics, indicators of such behavior can be detected, enabling predictions of future procrastination and other dilatory behavior. However, research focusing on such predictions is scarce. Moreover, studies involving different types of predictors and comparisons between the predictive performance of various methods are virtually non-existent. In this study, we aim to fill these research gaps by analyzing the performance of multiple machine learning algorithms when predicting the delayed or timely submission of online assignments in a higher education setting with two categories of predictors: subjective, questionnaire-based variables and objective, log-data based indicators extracted from a learning management system. The results show that models with objective predictors consistently outperform models with subjective predictors, and a combination of both variable types perform slightly better. For each of these three options, a different approach prevailed (Gradient Boosting Machines for the subjective, Bayesian multilevel models for the objective, and Random Forest for the combined predictors). We conclude that careful attention should be paid to the selection of predictors and algorithms before implementing such models in learning management systems." 437,Laplacian Autoencoders for Learning Stochastic Representations,"Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks." 438,A note on Linear Bottleneck networks and their Transition to Multilinearity,"Randomly initialized wide neural networks transition to linear functions of weights as the width grows, in a ball of radius $O(1)$ around initialization. A necessary condition for this result is that all layers of the network are wide enough, i.e., all widths tend to infinity. However, the transition to linearity breaks down when this infinite width assumption is violated. In this work we show that linear networks with a bottleneck layer learn bilinear functions of the weights, in a ball of radius $O(1)$ around initialization. In general, for $B-1$ bottleneck layers, the network is a degree $B$ multilinear function of weights. Importantly, the degree only depends on the number of bottlenecks and not the total depth of the network." 439,FeaRLESS: Feature Refinement Loss for Ensembling Self-Supervised Learning Features in Robust End-to-end Speech Recognition,"Self-supervised learning representations (SSLR) have resulted in robust features for downstream tasks in many fields. Recently, several SSLRs have shown promising results on automatic speech recognition (ASR) benchmark corpora. However, previous studies have only shown performance for solitary SSLRs as an input feature for ASR models. In this study, we propose to investigate the effectiveness of diverse SSLR combinations using various fusion methods within end-to-end (E2E) ASR models. In addition, we will show there are correlations between these extracted SSLRs. As such, we further propose a feature refinement loss for decorrelation to efficiently combine the set of input features. For evaluation, we show that the proposed 'FeaRLESS learning features' perform better than systems without the proposed feature refinement loss for both the WSJ and Fearless Steps Challenge (FSC) corpora." 440,Group-invariant tensor train networks for supervised learning,"Invariance has recently proven to be a powerful inductive bias in machine learning models. One such class of predictive or generative models are tensor networks. We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations of an arbitrary discrete group. This method can be up to several orders of magnitude faster than previous approaches. The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model. We applied this model to a protein binding classification problem, taking into account problem-specific invariances, and obtained prediction accuracy in line with state-of-the-art deep learning approaches." 441,ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time,"Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner. Given a high-level, symbolic description of a novel concept in terms of previously learned visual concepts and their relations, humans can recognize novel concepts without seeing any examples. Moreover, they can acquire new concepts by parsing and communicating symbolic structures using learned visual concepts and relations. Endowing these capabilities in machines is pivotal in improving their generalization capability at inference time. In this work, we introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way. ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). To allow inference time composition, we employ energy-based models (EBMs) to model concepts and relations. We design ZeroC architecture so that it allows a one-to-one mapping between a symbolic graph structure of a concept and its corresponding EBM, which for the first time, allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time. We introduce algorithms for learning and inference with ZeroC. We evaluate ZeroC on a challenging grid-world dataset which is designed to probe zero-shot concept recognition and acquisition, and demonstrate its capability." 442,Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation,"Ensembles of deep neural networks have demonstrated superior performance, but their heavy computational cost hinders applying them for resource-limited environments. It motivates distilling knowledge from the ensemble teacher into a smaller student network, and there are two important design choices for this ensemble distillation: 1) how to construct the student network, and 2) what data should be shown during training. In this paper, we propose a weight averaging technique where a student with multiple subnetworks is trained to absorb the functional diversity of ensemble teachers, but then those subnetworks are properly averaged for inference, giving a single student network with no additional inference cost. We also propose a perturbation strategy that seeks inputs from which the diversities of teachers can be better transferred to the student. Combining these two, our method significantly improves upon previous methods on various image classification tasks." 443,Causality-Based Multivariate Time Series Anomaly Detection,"Anomaly detection in multivariate time series plays an important role in monitoring the behaviors of various real-world systems, e.g., IT system operations or manufacturing industry. Previous approaches model the joint distribution without considering the underlying mechanism of multivariate time series, making them complicated and computationally hungry. In this paper, we formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data. We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism to generate each variable from its direct causes, whose conditional distribution can be directly estimated from data. In light of the modularity property of causal systems, the original problem is divided into a series of separate low-dimensional anomaly detection problems so that where an anomaly happens can be directly identified. We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications, showing its efficacy, robustness, and practical feasibility." 444,CoVaxNet: An Online-Offline Data Repository for COVID-19 Vaccine Hesitancy Research,"Despite the astonishing success of COVID-19 vaccines against the virus, a substantial proportion of the population is still hesitant to be vaccinated, undermining governmental efforts to control the virus. To address this problem, we need to understand the different factors giving rise to such a behavior, including social media discourses, news media propaganda, government responses, demographic and socioeconomic statuses, and COVID-19 statistics, etc. However, existing datasets fail to cover all these aspects, making it difficult to form a complete picture in inferencing about the problem of vaccine hesitancy. In this paper, we construct a multi-source, multi-modal, and multi-feature online-offline data repository CoVaxNet. We provide descriptive analyses and insights to illustrate critical patterns in CoVaxNet. Moreover, we propose a novel approach for connecting online and offline data so as to facilitate the inference tasks that exploit complementary information sources." 445,Stochastic Bilevel Distributed Optimization over a Network,"Bilevel optimization has been applied to a wide variety of machine learning models. Numerous stochastic bilevel optimization algorithms have been developed in recent years. However, most of them restrict their focus on the single-machine setting so that they are incapable of handling the distributed data. To address this issue, under the setting where all participants compose a network and perform the peer-to-peer communication in this network, we developed two novel distributed stochastic bilevel optimization algorithms based on the gradient tracking communication mechanism and two different gradient estimators. Additionally, we show that they can achieve $O(\frac{1}{\epsilon^{2}(1-\lambda)^2})$ and $O(\frac{1}{\epsilon^{3/2}(1-\lambda)^2})$ convergence rate respectively to obtain the $\epsilon$-accuracy solution, where $1-\lambda$ denotes the spectral gap of the communication network. To our knowledge, this is the first work achieving these theoretical results. Finally, we applied our algorithms to practical machine learning models, and the experimental results confirmed the efficacy of our algorithms." 446,GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language,"Helping end users comprehend the abstract distribution shifts can greatly facilitate AI deployment. Motivated by this, we propose a novel task, dataset explanation. Given two image data sets, dataset explanation aims to automatically point out their dataset-level distribution shifts with natural language. Current techniques for monitoring distribution shifts provide inadequate information to understand datasets with the goal of improving data quality. Therefore, we introduce GSCLIP, a training-free framework to solve the dataset explanation task. In GSCLIP, we propose the selector as the first quantitative evaluation method to identify explanations that are proper to summarize dataset shifts. Furthermore, we leverage this selector to demonstrate the superiority of a generator based on language model generation. Systematic evaluation on natural data shift verifies that GSCLIP, a combined system of a hybrid generator group and an efficient selector is not only easy-to-use but also powerful for dataset explanation at scale." 447,Non-Parametric Inference of Relational Dependence,"Independence testing plays a central role in statistical and causal inference from observational data. Standard independence tests assume that the data samples are independent and identically distributed (i.i.d.) but that assumption is violated in many real-world datasets and applications centered on relational systems. This work examines the problem of estimating independence in data drawn from relational systems by defining sufficient representations for the sets of observations influencing individual instances. Specifically, we define marginal and conditional independence tests for relational data by considering the kernel mean embedding as a flexible aggregation function for relational variables. We propose a consistent, non-parametric, scalable kernel test to operationalize the relational independence test for non-i.i.d. observational data under a set of structural assumptions. We empirically evaluate our proposed method on a variety of synthetic and semi-synthetic networks and demonstrate its effectiveness compared to state-of-the-art kernel-based independence tests." 448,Continuous-Time and Multi-Level Graph Representation Learning for Origin-Destination Demand Prediction,"Traffic demand forecasting by deep neural networks has attracted widespread interest in both academia and industry society. Among them, the pairwise Origin-Destination (OD) demand prediction is a valuable but challenging problem due to several factors: (i) the large number of possible OD pairs, (ii) implicitness of spatial dependence, and (iii) complexity of traffic states. To address the above issues, this paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD). Firstly, a continuous-time dynamic graph representation learning framework is constructed, which maintains a dynamic state vector for each traffic node (metro stations or taxi zones). The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions. Secondly, a multi-level structure learning module is proposed to model the spatial dependency of station-level nodes. It can not only exploit relations between nodes adaptively from data, but also share messages and representations via cluster-level and area-level virtual nodes. Lastly, a cross-level fusion module is designed to integrate multi-level memories and generate comprehensive node representations for the final prediction. Extensive experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches." 449,Bridging Mean-Field Games and Normalizing Flows with Trajectory Regularization,"Mean-field games (MFGs) are a modeling framework for systems with a large number of interacting agents. They have applications in economics, finance, and game theory. Normalizing flows (NFs) are a family of deep generative models that compute data likelihoods by using an invertible mapping, which is typically parameterized by using neural networks. They are useful for density modeling and data generation. While active research has been conducted on both models, few noted the relationship between the two. In this work, we unravel the connections between MFGs and NFs by contextualizing the training of an NF as solving the MFG. This is achieved by reformulating the MFG problem in terms of agent trajectories and parameterizing a discretization of the resulting MFG with flow architectures. With this connection, we explore two research directions. First, we employ expressive NF architectures to accurately solve high-dimensional MFGs, sidestepping the curse of dimensionality in traditional numerical methods. Compared with other deep learning approaches, our trajectory-based formulation encodes the continuity equation in the neural network, resulting in a better approximation of the population dynamics. Second, we regularize the training of NFs with transport costs and show the effectiveness on controlling the model's Lipschitz bound, resulting in better generalization performance. We demonstrate numerical results through comprehensive experiments on a variety of synthetic and real-life datasets." 450,Towards Federated Long-Tailed Learning,"Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks. Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data. However, both assumptions might hold in practical applications, while an effective method to simultaneously alleviate both issues is yet under development. In this paper, we focus on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework. We characterize three scenarios with different local or global long-tailed data distributions in the FL framework, and highlight the corresponding challenges. The preliminary results under different scenarios reveal that substantial future work are of high necessity to better resolve the characterized federated long-tailed learning tasks." 451,Lookback for Learning to Branch,"The expressive and computationally inexpensive bipartite Graph Neural Networks (GNN) have been shown to be an important component of deep learning based Mixed-Integer Linear Program (MILP) solvers. Recent works have demonstrated the effectiveness of such GNNs in replacing the branching (variable selection) heuristic in branch-and-bound (B&B) solvers. These GNNs are trained, offline and on a collection of MILPs, to imitate a very good but computationally expensive branching heuristic, strong branching. Given that B&B results in a tree of sub-MILPs, we ask (a) whether there are strong dependencies exhibited by the target heuristic among the neighboring nodes of the B&B tree, and (b) if so, whether we can incorporate them in our training procedure. Specifically, we find that with the strong branching heuristic, a child node's best choice was often the parent's second-best choice. We call this the ""lookback"" phenomenon. Surprisingly, the typical branching GNN of Gasse et al. (2019) often misses this simple ""answer"". To imitate the target behavior more closely by incorporating the lookback phenomenon in GNNs, we propose two methods: (a) target smoothing for the standard cross-entropy loss function, and (b) adding a Parent-as-Target (PAT) Lookback regularizer term. Finally, we propose a model selection framework to incorporate harder-to-formulate objectives such as solving time in the final models. Through extensive experimentation on standard benchmark instances, we show that our proposal results in up to 22% decrease in the size of the B&B tree and up to 15% improvement in the solving times." 452,A Validity Perspective on Evaluating the Justified Use of Data-driven Decision-making Algorithms,"This work seeks to center validity considerations in deliberations around whether and how to build data-driven algorithms in high-stakes domains. Toward this end, we translate key concepts from validity theory to predictive algorithms. We describe common challenges in problem formulation and data issues that jeopardize the validity of predictive algorithms. We distill these issues into a series of high-level questions intended to promote and document reflections on the legitimacy of the predictive task and the suitability of the data. This contribution lays the foundation for co-designing a validity protocol, in collaboration with real-world stakeholders, including decision-makers, modelers, and members of potentially impacted communities, to critically evaluate the justifiability of specific designs and uses of data-driven algorithmic systems." 453,Randomized Coordinate Subgradient Method for Nonsmooth Optimization,"Nonsmooth optimization finds wide applications in many engineering fields. In this work, we propose to utilize the {Randomized Coordinate Subgradient Method} (RCS) for solving both nonsmooth convex and nonsmooth nonconvex (nonsmooth weakly convex) optimization problems. At each iteration, RCS randomly selects one block coordinate rather than all the coordinates to update. Motivated by practical applications, we consider the {linearly bounded subgradients assumption} for the objective function, which is much more general than the Lipschitz continuity assumption. Under such a general assumption, we conduct thorough convergence analysis for RCS in both convex and nonconvex cases and establish both expected convergence rate and almost sure asymptotic convergence results. In order to derive these convergence results, we establish a convergence lemma and the relationship between the global metric subregularity properties of a weakly convex function and its Moreau envelope, which are fundamental and of independent interests. Finally, we conduct several experiments to show the possible superiority of RCS over the subgradient method." 454,Semi-Supervised Generative Adversarial Network for Stress Detection Using Partially Labeled Physiological Data,"Physiological measurements involves observing variables that attribute to the normative functioning of human systems and subsystems directly or indirectly. The measurements can be used to detect affective states of a person with aims such as improving human-computer interactions. There are several methods of collecting physiological data, but wearable sensors are a common, non-invasive tool for accurate readings. However, valuable information is hard to extract from the raw physiological data, especially for affective state detection. Machine Learning techniques are used to detect the affective state of a person through labeled physiological data. A clear problem with using labeled data is creating accurate labels. An expert is needed to analyze a form of recording of participants and mark sections with different states such as stress and calm. While expensive, this method delivers a complete dataset with labeled data that can be used in any number of supervised algorithms. An interesting question arises from the expensive labeling: how can we reduce the cost while maintaining high accuracy? Semi-Supervised learning (SSL) is a potential solution to this problem. These algorithms allow for machine learning models to be trained with only a small subset of labeled data (unlike unsupervised which use no labels). They provide a way of avoiding expensive labeling. This paper compares a fully supervised algorithm to a SSL on the public WESAD (Wearable Stress and Affect Detection) Dataset for stress detection. This paper shows that Semi-Supervised algorithms are a viable method for inexpensive affective state detection systems with accurate results." 455,Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective,"Nowadays, Breast cancer has risen to become one of the most prominent causes of death in recent years. Among all malignancies, this is the most frequent and the major cause of death for women globally. Manually diagnosing this disease requires a good amount of time and expertise. Breast cancer detection is time-consuming, and the spread of the disease can be reduced by developing machine-based breast cancer predictions. In Machine learning, the system can learn from prior instances and find hard-to-detect patterns from noisy or complicated data sets using various statistical, probabilistic, and optimization approaches. This work compares several machine learning algorithm's classification accuracy, precision, sensitivity, and specificity on a newly collected dataset. In this work Decision tree, Random Forest, Logistic Regression, Naive Bayes, and XGBoost, these five machine learning approaches have been implemented to get the best performance on our dataset. This study focuses on finding the best algorithm that can forecast breast cancer with maximum accuracy in terms of its classes. This work evaluated the quality of each algorithm's data classification in terms of efficiency and effectiveness. And also compared with other published work on this domain. After implementing the model, this study achieved the best model accuracy, 94% on Random Forest and XGBoost." 456,Masked Part-Of-Speech Model: Does Modeling Long Context Help Unsupervised POS-tagging?,"Previous Part-Of-Speech (POS) induction models usually assume certain independence assumptions (e.g., Markov, unidirectional, local dependency) that do not hold in real languages. For example, the subject-verb agreement can be both long-term and bidirectional. To facilitate flexible dependency modeling, we propose a Masked Part-of-Speech Model (MPoSM), inspired by the recent success of Masked Language Models (MLM). MPoSM can model arbitrary tag dependency and perform POS induction through the objective of masked POS reconstruction. We achieve competitive results on both the English Penn WSJ dataset as well as the universal treebank containing 10 diverse languages. Though modeling the long-term dependency should ideally help this task, our ablation study shows mixed trends in different languages. To better understand this phenomenon, we design a novel synthetic experiment that can specifically diagnose the model's ability to learn tag agreement. Surprisingly, we find that even strong baselines fail to solve this problem consistently in a very simplified setting: the agreement between adjacent words. Nonetheless, MPoSM achieves overall better performance. Lastly, we conduct a detailed error analysis to shed light on other remaining challenges. Our code is available at https://github.com/owenzx/MPoSM" 457,Decision Forest Based EMG Signal Classification with Low Volume Dataset Augmented with Random Variance Gaussian Noise,"Electromyography signals can be used as training data by machine learning models to classify various gestures. We seek to produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience while comparing the effect of our feature extraction results on model accuracy to other more conventional methods such as the use of AR parameters on a sliding window across the channels of a signal. We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting where EMG classification is being conducted, as opposed to more complicated methods such as the use of the Fourier Transform. To augment our limited training data, we used a standard technique, known as jitter, where random noise is added to each observation in a channel wise manner. Once all datasets were produced using the above methods, we performed a grid search with Random Forest and XGBoost to ultimately create a high accuracy model. For human computer interface purposes, high accuracy classification of EMG signals is of particular importance to their functioning and given the difficulty and cost of amassing any sort of biomedical data in a high volume, it is valuable to have techniques that can work with a low amount of high-quality samples with less expensive feature extraction methods that can reliably be carried out in an online application." 458,Variational Inference for Additive Main and Multiplicative Interaction Effects Models,"In plant breeding the presence of a genotype by environment (GxE) interaction has a strong impact on cultivation decision making and the introduction of new crop cultivars. The combination of linear and bilinear terms has been shown to be very useful in modelling this type of data. A widely-used approach to identify GxE is the Additive Main Effects and Multiplicative Interaction Effects (AMMI) model. However, as data frequently can be high-dimensional, Markov chain Monte Carlo (MCMC) approaches can be computationally infeasible. In this article, we consider a variational inference approach for such a model. We derive variational approximations for estimating the parameters and we compare the approximations to MCMC using both simulated and real data. The new inferential framework we propose is on average two times faster whilst maintaining the same predictive performance as MCMC." 459,Manifold Interpolating Optimal-Transport Flows for Trajectory Inference,"Here, we present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schr\""odinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment." 460,AFAFed -- Protocol analysis,"In this paper, we design, analyze the convergence properties and address the implementation aspects of AFAFed. This is a novel Asynchronous Fair Adaptive Federated learning framework for stream-oriented IoT application environments, which are featured by time-varying operating conditions, heterogeneous resource-limited devices (i.e., coworkers), non-i.i.d. local training data and unreliable communication links. The key new of AFAFed is the synergic co-design of: (i) two sets of adaptively tuned tolerance thresholds and fairness coefficients at the coworkers and central server, respectively; and, (ii) a distributed adaptive mechanism, which allows each coworker to adaptively tune own communication rate. The convergence properties of AFAFed under (possibly) non-convex loss functions is guaranteed by a set of new analytical bounds, which formally unveil the impact on the resulting AFAFed convergence rate of a number of Federated Learning (FL) parameters, like, first and second moments of the per-coworker number of consecutive model updates, data skewness, communication packet-loss probability, and maximum/minimum values of the (adaptively tuned) mixing coefficient used for model aggregation." 461,ComDensE : Combined Dense Embedding of Relation-aware and Common Features for Knowledge Graph Completion,"Real-world knowledge graphs (KG) are mostly incomplete. The problem of recovering missing relations, called KG completion, has recently become an active research area. Knowledge graph (KG) embedding, a low-dimensional representation of entities and relations, is the crucial technique for KG completion. Convolutional neural networks in models such as ConvE, SACN, InteractE, and RGCN achieve recent successes. This paper takes a different architectural view and proposes ComDensE which combines relation-aware and common features using dense neural networks. In the relation-aware feature extraction, we attempt to create relational inductive bias by applying an encoding function specific to each relation. In the common feature extraction, we apply the common encoding function to all input embeddings. These encoding functions are implemented using dense layers in ComDensE. ComDensE achieves the state-of-the-art performance in the link prediction in terms of MRR, HIT@1 on FB15k-237 and HIT@1 on WN18RR compared to the previous baseline approaches. We conduct an extensive ablation study to examine the effects of the relation-aware layer and the common layer of the ComDensE. Experimental results illustrate that the combined dense architecture as implemented in ComDensE achieves the best performance." 462,On Non-Random Missing Labels in Semi-Supervised Learning,"Semi-Supervised Learning (SSL) is fundamentally a missing label problem, in which the label Missing Not At Random (MNAR) problem is more realistic and challenging, compared to the widely-adopted yet naive Missing Completely At Random assumption where both labeled and unlabeled data share the same class distribution. Different from existing SSL solutions that overlook the role of ""class"" in causing the non-randomness, e.g., users are more likely to label popular classes, we explicitly incorporate ""class"" into SSL. Our method is three-fold: 1) We propose Class-Aware Propensity (CAP) that exploits the unlabeled data to train an improved classifier using the biased labeled data. 2) To encourage rare class training, whose model is low-recall but high-precision that discards too many pseudo-labeled data, we propose Class-Aware Imputation (CAI) that dynamically decreases (or increases) the pseudo-label assignment threshold for rare (or frequent) classes. 3) Overall, we integrate CAP and CAI into a Class-Aware Doubly Robust (CADR) estimator for training an unbiased SSL model. Under various MNAR settings and ablations, our method not only significantly outperforms existing baselines but also surpasses other label bias removal SSL methods. Please check our code at: https://github.com/JoyHuYY1412/CADR-FixMatch." 463,Towards out of distribution generalization for problems in mechanics,"There has been a massive increase in research interest towards applying data driven methods to problems in mechanics. While traditional machine learning (ML) methods have enabled many breakthroughs, they rely on the assumption that the training (observed) data and testing (unseen) data are independent and identically distributed (i.i.d). Thus, traditional ML approaches often break down when applied to real world mechanics problems with unknown test environments and data distribution shifts. In contrast, out-of-distribution (OOD) generalization assumes that the test data may shift (i.e., violate the i.i.d. assumption). To date, multiple methods have been proposed to improve the OOD generalization of ML methods. However, because of the lack of benchmark datasets for OOD regression problems, the efficiency of these OOD methods on regression problems, which dominate the mechanics field, remains unknown. To address this, we investigate the performance of OOD generalization methods for regression problems in mechanics. Specifically, we identify three OOD problems: covariate shift, mechanism shift, and sampling bias. For each problem, we create two benchmark examples that extend the Mechanical MNIST dataset collection, and we investigate the performance of popular OOD generalization methods on these mechanics-specific regression problems. Our numerical experiments show that in most cases, while the OOD generalization algorithms perform better compared to traditional ML methods on these OOD problems, there is a compelling need to develop more robust OOD generalization methods that are effective across multiple OOD scenarios. Overall, we expect that this study, as well as the associated open access benchmark datasets, will enable further development of OOD generalization methods for mechanics specific regression problems." 464,Best of Both Worlds Model Selection,"We study the problem of model selection in bandit scenarios in the presence of nested policy classes, with the goal of obtaining simultaneous adversarial and stochastic (""best of both worlds"") high-probability regret guarantees. Our approach requires that each base learner comes with a candidate regret bound that may or may not hold, while our meta algorithm plays each base learner according to a schedule that keeps the base learner's candidate regret bounds balanced until they are detected to violate their guarantees. We develop careful mis-specification tests specifically designed to blend the above model selection criterion with the ability to leverage the (potentially benign) nature of the environment. We recover the model selection guarantees of the CORRAL algorithm for adversarial environments, but with the additional benefit of achieving high probability regret bounds, specifically in the case of nested adversarial linear bandits. More importantly, our model selection results also hold simultaneously in stochastic environments under gap assumptions. These are the first theoretical results that achieve best of both world (stochastic and adversarial) guarantees while performing model selection in (linear) bandit scenarios." 465,A Best-of-Both-Worlds Algorithm for Bandits with Delayed Feedback,"We present a modified tuning of the algorithm of Zimmert and Seldin [2020] for adversarial multiarmed bandits with delayed feedback, which in addition to the minimax optimal adversarial regret guarantee shown by Zimmert and Seldin simultaneously achieves a near-optimal regret guarantee in the stochastic setting with fixed delays. Specifically, the adversarial regret guarantee is $\mathcal{O}(\sqrt{TK} + \sqrt{dT\log K})$, where $T$ is the time horizon, $K$ is the number of arms, and $d$ is the fixed delay, whereas the stochastic regret guarantee is $\mathcal{O}\left(\sum_{i \neq i^*}(\frac{1}{\Delta_i} \log(T) + \frac{d}{\Delta_{i}\log K}) + d K^{1/3}\log K\right)$, where $\Delta_i$ are the suboptimality gaps. We also present an extension of the algorithm to the case of arbitrary delays, which is based on an oracle knowledge of the maximal delay $d_{max}$ and achieves $\mathcal{O}(\sqrt{TK} + \sqrt{D\log K} + d_{max}K^{1/3} \log K)$ regret in the adversarial regime, where $D$ is the total delay, and $\mathcal{O}\left(\sum_{i \neq i^*}(\frac{1}{\Delta_i} \log(T) + \frac{\sigma_{max}}{\Delta_{i}\log K}) + d_{max}K^{1/3}\log K\right)$ regret in the stochastic regime, where $\sigma_{max}$ is the maximal number of outstanding observations. Finally, we present a lower bound that matches regret upper bound achieved by the skipping technique of Zimmert and Seldin [2020] in the adversarial setting." 466,Discrete Langevin Sampler via Wasserstein Gradient Flow,"Recently, a family of locally balanced (LB) samplers has demonstrated excellent performance at sampling and learning energy-based models (EBMs) in discrete spaces. However, the theoretical understanding of this success is limited. In this work, we show how LB functions give rise to LB dynamics corresponding to Wasserstein gradient flow in a discrete space. From first principles, previous LB samplers can then be seen as discretizations of the LB dynamics with respect to Hamming distance. Based on this observation, we propose a new algorithm, the Locally Balanced Jump (LBJ), by discretizing the LB dynamics with respect to simulation time. As a result, LBJ has a location-dependent ""velocity"" that allows it to make proposals with larger distances. Additionally, LBJ decouples each dimension into independent sub-processes, enabling convenient parallel implementation. We demonstrate the advantages of LBJ for sampling and learning in various binary and categorical distributions." 467,Semantic Unfolding of StyleGAN Latent Space,"Generative adversarial networks (GANs) have proven to be surprisingly efficient for image editing by inverting and manipulating the latent code corresponding to an input real image. This editing property emerges from the disentangled nature of the latent space. In this paper, we identify that the facial attribute disentanglement is not optimal, thus facial editing relying on linear attribute separation is flawed. We thus propose to improve semantic disentanglement with supervision. Our method consists in learning a proxy latent representation using normalizing flows, and we show that this leads to a more efficient space for face image editing." 468,LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood,"Most of the existing methods for estimating the local intrinsic dimension of a data distribution do not scale well to high-dimensional data. Many of them rely on a non-parametric nearest neighbors approach which suffers from the curse of dimensionality. We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL). Our method relies on an arbitrary density estimation method as its subroutine and hence tries to sidestep the dimensionality challenge by making use of the recent progress in parametric neural methods for likelihood estimation. We carefully investigate the empirical properties of the proposed method, compare them with our theoretical predictions, and show that LIDL yields competitive results on the standard benchmarks for this problem and that it scales to thousands of dimensions. What is more, we anticipate this approach to improve further with the continuing advances in the density estimation literature." 469,Continual Learning for Human State Monitoring,"Continual Learning (CL) on time series data represents a promising but under-studied avenue for real-world applications. We propose two new CL benchmarks for Human State Monitoring. We carefully designed the benchmarks to mirror real-world environments in which new subjects are continuously added. We conducted an empirical evaluation to assess the ability of popular CL strategies to mitigate forgetting in our benchmarks. Our results show that, possibly due to the domain-incremental properties of our benchmarks, forgetting can be easily tackled even with a simple finetuning and that existing strategies struggle in accumulating knowledge over a fixed, held-out, test subject." 470,Teach me how to Interpolate a Myriad of Embeddings,"Mixup refers to interpolation-based data augmentation, originally motivated as a way to go beyond empirical risk minimization (ERM). Yet, its extensions focus on the definition of interpolation and the space where it takes place, while the augmentation itself is less studied: For a mini-batch of size $m$, most methods interpolate between $m$ pairs with a single scalar interpolation factor $\lambda$. In this work, we make progress in this direction by introducing MultiMix, which interpolates an arbitrary number $n$ of tuples, each of length $m$, with one vector $\lambda$ per tuple. On sequence data, we further extend to dense interpolation and loss computation over all spatial positions. Overall, we increase the number of tuples per mini-batch by orders of magnitude at little additional cost. This is possible by interpolating at the very last layer before the classifier. Finally, to address inconsistencies due to linear target interpolation, we introduce a self-distillation approach to generate and interpolate synthetic targets. We empirically show that our contributions result in significant improvement over state-of-the-art mixup methods on four benchmarks. By analyzing the embedding space, we observe that the classes are more tightly clustered and uniformly spread over the embedding space, thereby explaining the improved behavior." 471,Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks,"Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs). However, they often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias. In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under stochastic gradient descent with momentum (SGDM). This demonstrates SGDM significantly reduces the effect of spectral bias. We have also examined why training a model via the Adam optimizer can accelerate the convergence while reducing the spectral bias. Moreover, our numerical experiments have confirmed that wide-enough networks using SGDM still converge to desirable solutions, even in the presence of high-frequency features. In fact, we show that the width of a network plays a critical role in convergence." 472,Solving Quantitative Reasoning Problems with Language Models,"Language models have achieved remarkable performance on a wide range of tasks that require natural language understanding. Nevertheless, state-of-the-art models have generally struggled with tasks that require quantitative reasoning, such as solving mathematics, science, and engineering problems at the college level. To help close this gap, we introduce Minerva, a large language model pretrained on general natural language data and further trained on technical content. The model achieves state-of-the-art performance on technical benchmarks without the use of external tools. We also evaluate our model on over two hundred undergraduate-level problems in physics, biology, chemistry, economics, and other sciences that require quantitative reasoning, and find that the model can correctly answer nearly a third of them." 473,Fairness via In-Processing in the Over-parameterized Regime: A Cautionary Tale,"The success of DNNs is driven by the counter-intuitive ability of over-parameterized networks to generalize, even when they perfectly fit the training data. In practice, test error often continues to decrease with increasing over-parameterization, referred to as double descent. This allows practitioners to instantiate large models without having to worry about over-fitting. Despite its benefits, however, prior work has shown that over-parameterization can exacerbate bias against minority subgroups. Several fairness-constrained DNN training methods have been proposed to address this concern. Here, we critically examine MinDiff, a fairness-constrained training procedure implemented within TensorFlow's Responsible AI Toolkit, that aims to achieve Equality of Opportunity. We show that although MinDiff improves fairness for under-parameterized models, it is likely to be ineffective in the over-parameterized regime. This is because an overfit model with zero training loss is trivially group-wise fair on training data, creating an ""illusion of fairness,"" thus turning off the MinDiff optimization (this will apply to any disparity-based measures which care about errors or accuracy. It won't apply to demographic parity). Within specified fairness constraints, under-parameterized MinDiff models can even have lower error compared to their over-parameterized counterparts (despite baseline over-parameterized models having lower error). We further show that MinDiff optimization is very sensitive to choice of batch size in the under-parameterized regime. Thus, fair model training using MinDiff requires time-consuming hyper-parameter searches. Finally, we suggest using previously proposed regularization techniques, viz. L2, early stopping and flooding in conjunction with MinDiff to train fair over-parameterized models." 474,Provably Efficient Reinforcement Learning for Online Adaptive Influence Maximization,"Online influence maximization aims to maximize the influence spread of a content in a social network with unknown network model by selecting a few seed nodes. Recent studies followed a non-adaptive setting, where the seed nodes are selected before the start of the diffusion process and network parameters are updated when the diffusion stops. We consider an adaptive version of content-dependent online influence maximization problem where the seed nodes are sequentially activated based on real-time feedback. In this paper, we formulate the problem as an infinite-horizon discounted MDP under a linear diffusion process and present a model-based reinforcement learning solution. Our algorithm maintains a network model estimate and selects seed users adaptively, exploring the social network while improving the optimal policy optimistically. We establish $\widetilde O(\sqrt{T})$ regret bound for our algorithm. Empirical evaluations on synthetic network demonstrate the efficiency of our algorithm." 475,Causality for Inherently Explainable Transformers: CAT-XPLAIN,"There have been several post-hoc explanation approaches developed to explain pre-trained black-box neural networks. However, there is still a gap in research efforts toward designing neural networks that are inherently explainable. In this paper, we utilize a recently proposed instance-wise post-hoc causal explanation method to make an existing transformer architecture inherently explainable. Once trained, our model provides an explanation in the form of top-$k$ regions in the input space of the given instance contributing to its decision. We evaluate our method on binary classification tasks using three image datasets: MNIST, FMNIST, and CIFAR. Our results demonstrate that compared to the causality-based post-hoc explainer model, our inherently explainable model achieves better explainability results while eliminating the need of training a separate explainer model. Our code is available at https://github.com/mvrl/CAT-XPLAIN." 476,Strong Lensing Source Reconstruction Using Continuous Neural Fields,"From the nature of dark matter to the rate of expansion of our Universe, observations of distant galaxies distorted through strong gravitational lensing have the potential to answer some of the major open questions in astrophysics. Modeling galaxy-galaxy strong lensing observations presents a number of challenges as the exact configuration of both the background source and foreground lens galaxy is unknown. A timely call, prompted by a number of upcoming surveys anticipating high-resolution lensing images, demands methods that can efficiently model lenses at their full complexity. In this work, we introduce a method that uses continuous neural fields to non-parametrically reconstruct the complex morphology of a source galaxy while simultaneously inferring a distribution over foreground lens galaxy configurations. We demonstrate the efficacy of our method through experiments on simulated data targeting high-resolution lensing images similar to those anticipated in near-future astrophysical surveys." 477,Visual Foresight With a Local Dynamics Model,"Model-free policy learning has been shown to be capable of learning manipulation policies which can solve long-time horizon tasks using single-step manipulation primitives. However, training these policies is a time-consuming process requiring large amounts of data. We propose the Local Dynamics Model (LDM) which efficiently learns the state-transition function for these manipulation primitives. By combining the LDM with model-free policy learning, we can learn policies which can solve complex manipulation tasks using one-step lookahead planning. We show that the LDM is both more sample-efficient and outperforms other model architectures. When combined with planning, we can outperform other model-based and model-free policies on several challenging manipulation tasks in simulation." 478,Meta-Learning over Time for Destination Prediction Tasks,"A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain, including urban planning and management, ride-sharing services, and intelligent transportation systems. Individuals' preferences and intended destinations vary throughout the day, week, and year: for example, bars are most popular in the evenings, and beaches are most popular in the summer. Despite this principle, we note that recent studies on a popular benchmark dataset from Porto, Portugal have found, at best, only marginal improvements in predictive performance from incorporating temporal information. We propose an approach based on hypernetworks, a variant of meta-learning (""learning to learn"") in which a neural network learns to change its own weights in response to an input. In our case, the weights responsible for destination prediction vary with the metadata, in particular the time, of the input trajectory. The time-conditioned weights notably improve the model's error relative to ablation studies and comparable prior work, and we confirm our hypothesis that knowledge of time should improve prediction of a vehicle's intended destination." 479,Understanding Generalization via Leave-One-Out Conditional Mutual Information,"We study the mutual information between (certain summaries of) the output of a learning algorithm and its $n$ training data, conditional on a supersample of $n+1$ i.i.d. data from which the training data is chosen at random without replacement. These leave-one-out variants of the conditional mutual information (CMI) of an algorithm (Steinke and Zakynthinou, 2020) are also seen to control the mean generalization error of learning algorithms with bounded loss functions. For learning algorithms achieving zero empirical risk under 0-1 loss (i.e., interpolating algorithms), we provide an explicit connection between leave-one-out CMI and the classical leave-one-out error estimate of the risk. Using this connection, we obtain upper and lower bounds on risk in terms of the (evaluated) leave-one-out CMI. When the limiting risk is constant or decays polynomially, the bounds converge to within a constant factor of two. As an application, we analyze the population risk of the one-inclusion graph algorithm, a general-purpose transductive learning algorithm for VC classes in the realizable setting. Using leave-one-out CMI, we match the optimal bound for learning VC classes in the realizable setting, answering an open challenge raised by Steinke and Zakynthinou (2020). Finally, in order to understand the role of leave-one-out CMI in studying generalization, we place leave-one-out CMI in a hierarchy of measures, with a novel unconditional mutual information at the root. For 0-1 loss and interpolating learning algorithms, this mutual information is observed to be precisely the risk." 480,Generalized Permutants and Graph GENEOs,"In this paper we establish a bridge between Topological Data Analysis and Geometric Deep Learning, adapting the topological theory of group equivariant non-expansive operators (GENEOs) to act on the space of all graphs weighted on vertices or edges. This is done by showing how the general concept of GENEO can be used to transform graphs and to give information about their structure. This requires the introduction of the new concepts of generalized permutant and generalized permutant measure and the mathematical proof that these concepts allow us to build GENEOs between graphs. An experimental section concludes the paper, illustrating the possible use of our operators to extract information from graphs. This paper is part of a line of research devoted to developing a compositional and geometric theory of GENEOs for Geometric Deep Learning." 481,3D-Aware Video Generation,"Generative models have emerged as an essential building block for many image synthesis and editing tasks. Recent advances in this field have also enabled high-quality 3D or video content to be generated that exhibits either multi-view or temporal consistency. With our work, we explore 4D generative adversarial networks (GANs) that learn unconditional generation of 3D-aware videos. By combining neural implicit representations with time-aware discriminator, we develop a GAN framework that synthesizes 3D video supervised only with monocular videos. We show that our method learns a rich embedding of decomposable 3D structures and motions that enables new visual effects of spatio-temporal renderings while producing imagery with quality comparable to that of existing 3D or video GANs." 482,On the Robustness of Dialogue History Representation in Conversational Question Answering: A Comprehensive Study and a New Prompt-based Method,"Most works on modeling the conversation history in Conversational Question Answering (CQA) report a single main result on a common CQA benchmark. While existing models show impressive results on CQA leaderboards, it remains unclear whether they are robust to shifts in setting (sometimes to more realistic ones), training data size (e.g. from large to small sets) and domain. In this work, we design and conduct the first large-scale robustness study of history modeling approaches for CQA. We find that high benchmark scores do not necessarily translate to strong robustness, and that various methods can perform extremely differently under different settings. Equipped with the insights from our study, we design a novel prompt-based history modeling approach, and demonstrate its strong robustness across various settings. Our approach is inspired by existing methods that highlight historic answers in the passage. However, instead of highlighting by modifying the passage token embeddings, we add textual prompts directly in the passage text. Our approach is simple, easy-to-plug into practically any model, and highly effective, thus we recommend it as a starting point for future model developers. We also hope that our study and insights will raise awareness to the importance of robustness-focused evaluation, in addition to obtaining high leaderboard scores, leading to better CQA systems." 483,ENS-10: A Dataset For Post-Processing Ensemble Weather Forecast,"Post-processing ensemble prediction systems can improve weather forecasting, especially for extreme event prediction. In recent years, different machine learning models have been developed to improve the quality of the post-processing step. However, these models heavily rely on the data and generating such ensemble members requires multiple runs of numerical weather prediction models, at high computational cost. This paper introduces the ENS-10 dataset, consisting of ten ensemble members spread over 20 years (1998-2017). The ensemble members are generated by perturbing numerical weather simulations to capture the chaotic behavior of the Earth. To represent the three-dimensional state of the atmosphere, ENS-10 provides the most relevant atmospheric variables in 11 distinct pressure levels as well as the surface at 0.5-degree resolution. The dataset targets the prediction correction task at 48-hour lead time, which is essentially improving the forecast quality by removing the biases of the ensemble members. To this end, ENS-10 provides the weather variables for forecast lead times T=0, 24, and 48 hours (two data points per week). We provide a set of baselines for this task on ENS-10 and compare their performance in correcting the prediction of different weather variables. We also assess our baselines for predicting extreme events using our dataset. The ENS-10 dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence." 484,IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound,"Recent works have tried to increase the verifiability of adversarially trained networks by running the attacks over domains larger than the original perturbations and adding various regularization terms to the objective. However, these algorithms either underperform or require complex and expensive stage-wise training procedures, hindering their practical applicability. We present IBP-R, a novel verified training algorithm that is both simple and effective. IBP-R induces network verifiability by coupling adversarial attacks on enlarged domains with a regularization term, based on inexpensive interval bound propagation, that minimizes the gap between the non-convex verification problem and its approximations. By leveraging recent branch-and-bound frameworks, we show that IBP-R obtains state-of-the-art verified robustness-accuracy trade-offs for small perturbations on CIFAR-10 while training significantly faster than relevant previous work. Additionally, we present UPB, a novel branching strategy that, relying on a simple heuristic based on $\beta$-CROWN, reduces the cost of state-of-the-art branching algorithms while yielding splits of comparable quality." 485,Distilling Model Failures as Directions in Latent Space,"Existing methods for isolating hard subpopulations and spurious correlations in datasets often require human intervention. This can make these methods labor-intensive and dataset-specific. To address these shortcomings, we present a scalable method for automatically distilling a model's failure modes. Specifically, we harness linear classifiers to identify consistent error patterns, and, in turn, induce a natural representation of these failure modes as directions within the feature space. We demonstrate that this framework allows us to discover and automatically caption challenging subpopulations within the training dataset, and intervene to improve the model's performance on these subpopulations. Code available at https://github.com/MadryLab/failure-directions" 486,An Auto-Regressive Formulation for Smoothing and Moving Mean with Exponentially Tapered Windows,"We investigate an auto-regressive formulation for the problem of smoothing time-series by manipulating the inherent objective function of the traditional moving mean smoothers. Not only the auto-regressive smoothers enforce a higher degree of smoothing, they are just as efficient as the traditional moving means and can be optimized accordingly with respect to the input dataset. Interestingly, the auto-regressive models result in moving means with exponentially tapered windows." 487,Modeling Teams Performance Using Deep Representational Learning on Graphs,"The large majority of human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model designed to predict a team's performance while identifying the drivers that determine such an outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual which capture different factors potentially shaping teams' success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on a wide range of domains outperforming most of the classical and neural baselines considered. Moreover, we include synthetic datasets specifically designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines." 488,Private Graph Extraction via Feature Explanations,"Privacy and interpretability are two of the important ingredients for achieving trustworthy machine learning. We study the interplay of these two aspects in graph machine learning through graph reconstruction attacks. The goal of the adversary here is to reconstruct the graph structure of the training data given access to model explanations. Based on the different kinds of auxiliary information available to the adversary, we propose several graph reconstruction attacks. We show that additional knowledge of post-hoc feature explanations substantially increases the success rate of these attacks. Further, we investigate in detail the differences between attack performance with respect to three different classes of explanation methods for graph neural networks: gradient-based, perturbation-based, and surrogate model-based methods. While gradient-based explanations reveal the most in terms of the graph structure, we find that these explanations do not always score high in utility. For the other two classes of explanations, privacy leakage increases with an increase in explanation utility. Finally, we propose a defense based on a randomized response mechanism for releasing the explanations which substantially reduces the attack success rate. Our anonymized code is available." 489,DrumGAN VST: A Plugin for Drum Sound Analysis/Synthesis With Autoencoding Generative Adversarial Networks,"In contemporary popular music production, drum sound design is commonly performed by cumbersome browsing and processing of pre-recorded samples in sound libraries. One can also use specialized synthesis hardware, typically controlled through low-level, musically meaningless parameters. Today, the field of Deep Learning offers methods to control the synthesis process via learned high-level features and allows generating a wide variety of sounds. In this paper, we present DrumGAN VST, a plugin for synthesizing drum sounds using a Generative Adversarial Network. DrumGAN VST operates on 44.1 kHz sample-rate audio, offers independent and continuous instrument class controls, and features an encoding neural network that maps sounds into the GAN's latent space, enabling resynthesis and manipulation of pre-existing drum sounds. We provide numerous sound examples and a demo of the proposed VST plugin." 490,Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision,"Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shot clinical trial retrieval method, Trial2Vec, which learns through self-supervision without annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base https://www.nlm.nih.gov/research/umls/index.html) are leveraged to automatically generate contrastive samples. Besides, Trial2Vec encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets a 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pre-trained embeddings benefit the downstream trial outcome prediction task over 240k trials." 491,An extensible Benchmarking Graph-Mesh dataset for studying Steady-State Incompressible Navier-Stokes Equations,"Recent progress in \emph{Geometric Deep Learning} (GDL) has shown its potential to provide powerful data-driven models. This gives momentum to explore new methods for learning physical systems governed by \emph{Partial Differential Equations} (PDEs) from Graph-Mesh data. However, despite the efforts and recent achievements, several research directions remain unexplored and progress is still far from satisfying the physical requirements of real-world phenomena. One of the major impediments is the absence of benchmarking datasets and common physics evaluation protocols. In this paper, we propose a 2-D graph-mesh dataset to study the airflow over airfoils at high Reynolds regime (from $10^6$ and beyond). We also introduce metrics on the stress forces over the airfoil in order to evaluate GDL models on important physical quantities. Moreover, we provide extensive GDL baselines." 492,An Embedding Framework for the Design and Analysis of Consistent Polyhedral Surrogates,"We formalize and study the natural approach of designing convex surrogate loss functions via embeddings, for problems such as classification, ranking, or structured prediction. In this approach, one embeds each of the finitely many predictions (e.g. rankings) as a point in $R^d$, assigns the original loss values to these points, and ""convexifies"" the loss in some way to obtain a surrogate. We establish a strong connection between this approach and polyhedral (piecewise-linear convex) surrogate losses: every discrete loss is embedded by some polyhedral loss, and every polyhedral loss embeds some discrete loss. Moreover, an embedding gives rise to a consistent link function as well as linear surrogate regret bounds. Our results are constructive, as we illustrate with several examples. In particular, our framework gives succinct proofs of consistency or inconsistency for various polyhedral surrogates in the literature, and for inconsistent surrogates, it further reveals the discrete losses for which these surrogates are consistent. We go on to show additional structure of embeddings, such as the equivalence of embedding and matching Bayes risks, and the equivalence of various notions of non-redudancy. Using these results, we establish that indirect elicitation, a necessary condition for consistency, is also sufficient when working with polyhedral surrogates." 493,Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios,"Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is rarely the case in real-world scenarios. Many control applications often exhibit tasks with similar but not identical dynamics which can be modeled as a latent variable. We introduce the Hidden Parameter Recurrent State Space Models (HiP-RSSMs), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors. We present a simple and effective way of learning and performing inference over this Gaussian graphical model that avoids approximations like variational inference. We show that HiP-RSSMs outperforms RSSMs and competing multi-task models on several challenging robotic benchmarks both on real-world systems and simulations." 494,Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators,"Representing physical signals at different scales is among the most challenging problems in engineering. Several multi-scale modeling tools have been developed to describe physical systems governed by \emph{Partial Differential Equations} (PDEs). These tools are at the crossroad of principled physical models and numerical schema. Recently, data-driven models have been introduced to speed-up the approximation of PDE solutions compared to numerical solvers. Among these recent data-driven methods, neural integral operators are a class that learn a mapping between function spaces. These functions are discretized on graphs (meshes) which are appropriate for modeling interactions in physical phenomena. In this work, we study three multi-resolution schema with integral kernel operators that can be approximated with \emph{Message Passing Graph Neural Networks} (MPGNNs). To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs." 495,Computer-aided diagnosis and prediction in brain disorders,"Computer-aided methods have shown added value for diagnosing and predicting brain disorders and can thus support decision making in clinical care and treatment planning. This chapter will provide insight into the type of methods, their working, their input data - such as cognitive tests, imaging and genetic data - and the types of output they provide. We will focus on specific use cases for diagnosis, i.e. estimating the current 'condition' of the patient, such as early detection and diagnosis of dementia, differential diagnosis of brain tumours, and decision making in stroke. Regarding prediction, i.e. estimation of the future 'condition' of the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and predicting patient outcomes after treatment in brain cancer. Furthermore, based on these use cases, we will assess the current state-of-the-art methodology and highlight current efforts on benchmarking of these methods and the importance of open science therein. Finally, we assess the current clinical impact of computer-aided methods and discuss the required next steps to increase clinical impact." 496,BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes,"Fetal growth assessment from ultrasound is based on a few biometric measurements that are performed manually and assessed relative to the expected gestational age. Reliable biometry estimation depends on the precise detection of landmarks in standard ultrasound planes. Manual annotation can be time-consuming and operator dependent task, and may results in high measurements variability. Existing methods for automatic fetal biometry rely on initial automatic fetal structure segmentation followed by geometric landmark detection. However, segmentation annotations are time-consuming and may be inaccurate, and landmark detection requires developing measurement-specific geometric methods. This paper describes BiometryNet, an end-to-end landmark regression framework for fetal biometry estimation that overcomes these limitations. It includes a novel Dynamic Orientation Determination (DOD) method for enforcing measurement-specific orientation consistency during network training. DOD reduces variabilities in network training, increases landmark localization accuracy, thus yields accurate and robust biometric measurements. To validate our method, we assembled a dataset of 3,398 ultrasound images from 1,829 subjects acquired in three clinical sites with seven different ultrasound devices. Comparison and cross-validation of three different biometric measurements on two independent datasets shows that BiometryNet is robust and yields accurate measurements whose errors are lower than the clinically permissible errors, outperforming other existing automated biometry estimation methods. Code is available at https://github.com/netanellavisdris/fetalbiometry." 497,Signature Methods in Machine Learning,"Signature-based techniques give mathematical insight into the interactions between complex streams of evolving data. These insights can be quite naturally translated into numerical approaches to understanding streamed data, and perhaps because of their mathematical precision, have proved useful in analysing streamed data in situations where the data is irregular, and not stationary, and the dimension of the data and the sample sizes are both moderate. Understanding streamed multi-modal data is exponential: a word in $n$ letters from an alphabet of size $d$ can be any one of $d^n$ messages. Signatures remove the exponential amount of noise that arises from sampling irregularity, but an exponential amount of information still remain. This survey aims to stay in the domain where that exponential scaling can be managed directly. Scalability issues are an important challenge in many problems but would require another survey article and further ideas. This survey describes a range of contexts where the data sets are small enough to remove the possibility of massive machine learning, and the existence of small sets of context free and principled features can be used effectively. The mathematical nature of the tools can make their use intimidating to non-mathematicians. The examples presented in this article are intended to bridge this communication gap and provide tractable working examples drawn from the machine learning context. Notebooks are available online for several of these examples. This survey builds on the earlier paper of Ilya Chevryev and Andrey Kormilitzin which had broadly similar aims at an earlier point in the development of this machinery. This article illustrates how the theoretical insights offered by signatures are simply realised in the analysis of application data in a way that is largely agnostic to the data type." 498,Ensemble CNN models for Covid-19 Recognition and Severity Perdition From 3D CT-scan,"Since the appearance of Covid-19 in late 2019, Covid-19 has become an active research topic for the artificial intelligence (AI) community. One of the most interesting AI topics is Covid-19 analysis of medical imaging. CT-scan imaging is the most informative tool about this disease. This work is part of the 2nd COV19D competition, where two challenges are set: Covid-19 Detection and Covid-19 Severity Detection from the CT-scans. For Covid-19 detection from CT-scans, we proposed an ensemble of 2D Convolution blocks with Densenet-161 models. Here, each 2D convolutional block with Densenet-161 architecture is trained separately and in testing phase, the ensemble model is based on the average of their probabilities. On the other hand, we proposed an ensemble of Convolutional Layers with Inception models for Covid-19 severity detection. In addition to the Convolutional Layers, three Inception variants were used, namely Inception-v3, Inception-v4 and Inception-Resnet. Our proposed approaches outperformed the baseline approach in the validation data of the 2nd COV19D competition by 11% and 16% for Covid-19 detection and Covid-19 severity detection, respectively." 499,Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning,"We propose a novel framework to solve risk-sensitive reinforcement learning (RL) problems where the agent optimises time-consistent dynamic spectral risk measures. Based on the notion of conditional elicitability, our methodology constructs (strictly consistent) scoring functions that are used as penalizers in the estimation procedure. Our contribution is threefold: we (i) devise an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks, (ii) prove that these dynamic spectral risk measures may be approximated to any arbitrary accuracy using deep neural networks, and (iii) develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions. We compare our conceptually improved reinforcement learning algorithm with the nested simulation approach and illustrate its performance in two settings: statistical arbitrage and portfolio allocation on both simulated and real data." 500,Online vs. Offline Adaptive Domain Randomization Benchmark,"Physics simulators have shown great promise for conveniently learning reinforcement learning policies in safe, unconstrained environments. However, transferring the acquired knowledge to the real world can be challenging due to the reality gap. To this end, several methods have been recently proposed to automatically tune simulator parameters with posterior distributions given real data, for use with domain randomization at training time. These approaches have been shown to work for various robotic tasks under different settings and assumptions. Nevertheless, existing literature lacks a thorough comparison of existing adaptive domain randomization methods with respect to transfer performance and real-data efficiency. In this work, we present an open benchmark for both offline and online methods (SimOpt, BayRn, DROID, DROPO), to shed light on which are most suitable for each setting and task at hand. We found that online methods are limited by the quality of the currently learned policy for the next iteration, while offline methods may sometimes fail when replaying trajectories in simulation with open-loop commands. The code used will be released at https://github.com/gabrieletiboni/adr-benchmark." 501,Cut Inner Layers: A Structured Pruning Strategy for Efficient U-Net GANs,"Pruning effectively compresses overparameterized models. Despite the success of pruning methods for discriminative models, applying them for generative models has been relatively rarely approached. This study conducts structured pruning on U-Net generators of conditional GANs. A per-layer sensitivity analysis confirms that many unnecessary filters exist in the innermost layers near the bottleneck and can be substantially pruned. Based on this observation, we prune these filters from multiple inner layers or suggest alternative architectures by completely eliminating the layers. We evaluate our approach with Pix2Pix for image-to-image translation and Wav2Lip for speech-driven talking face generation. Our method outperforms global pruning baselines, demonstrating the importance of properly considering where to prune for U-Net generators." 502,DDKtor: Automatic Diadochokinetic Speech Analysis,"Diadochokinetic speech tasks (DDK), in which participants repeatedly produce syllables, are commonly used as part of the assessment of speech motor impairments. These studies rely on manual analyses that are time-intensive, subjective, and provide only a coarse-grained picture of speech. This paper presents two deep neural network models that automatically segment consonants and vowels from unannotated, untranscribed speech. Both models work on the raw waveform and use convolutional layers for feature extraction. The first model is based on an LSTM classifier followed by fully connected layers, while the second model adds more convolutional layers followed by fully connected layers. These segmentations predicted by the models are used to obtain measures of speech rate and sound duration. Results on a young healthy individuals dataset show that our LSTM model outperforms the current state-of-the-art systems and performs comparably to trained human annotators. Moreover, the LSTM model also presents comparable results to trained human annotators when evaluated on unseen older individuals with Parkinson's Disease dataset." 503,From Kernel Methods to Neural Networks: A Unifying Variational Formulation,"The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator and on a generic Radon-domain norm. We establish the existence of a minimizer and give the parametric form of the solution(s) under very mild assumptions. When the norm is Hilbertian, the proposed formulation yields a solution that involves radial-basis functions and is compatible with the classical methods of machine learning. By contrast, for the total-variation norm, the solution takes the form of a two-layer neural network with an activation function that is determined by the regularization operator. In particular, we retrieve the popular ReLU networks by letting the operator be the Laplacian. We also characterize the solution for the intermediate regularization norms $\|\cdot\|=\|\cdot\|_{L_p}$ with $p\in(1,2]$. Our framework offers guarantees of universal approximation for a broad family of regularization operators or, equivalently, for a wide variety of shallow neural networks, including the cases (such as ReLU) where the activation function is increasing polynomially. It also explains the favorable role of bias and skip connections in neural architectures." 504,SALO: An Efficient Spatial Accelerator Enabling Hybrid Sparse Attention Mechanisms for Long Sequences,"The attention mechanisms of transformers effectively extract pertinent information from the input sequence. However, the quadratic complexity of self-attention w.r.t the sequence length incurs heavy computational and memory burdens, especially for tasks with long sequences. Existing accelerators face performance degradation in these tasks. To this end, we propose SALO to enable hybrid sparse attention mechanisms for long sequences. SALO contains a data scheduler to map hybrid sparse attention patterns onto hardware and a spatial accelerator to perform the efficient attention computation. We show that SALO achieves 17.66x and 89.33x speedup on average compared to GPU and CPU implementations, respectively, on typical workloads, i.e., Longformer and ViL." 505,Comparative Study of Inference Methods for Interpolative Decomposition,"In this paper, we propose a probabilistic model with automatic relevance determination (ARD) for learning interpolative decomposition (ID), which is commonly used for low-rank approximation, feature selection, and identifying hidden patterns in data, where the matrix factors are latent variables associated with each data dimension. Prior densities with support on the specified subspace are used to address the constraint for the magnitude of the factored component of the observed matrix. Bayesian inference procedure based on Gibbs sampling is employed. We evaluate the model on a variety of real-world datasets including CCLE $EC50$, CCLE $IC50$, Gene Body Methylation, and Promoter Methylation datasets with different sizes, and dimensions, and show that the proposed Bayesian ID algorithms with automatic relevance determination lead to smaller reconstructive errors even compared to vanilla Bayesian ID algorithms with fixed latent dimension set to matrix rank." 506,Why patient data cannot be easily forgotten?,"Rights provisioned within data protection regulations, permit patients to request that knowledge about their information be eliminated by data holders. With the advent of AI learned on data, one can imagine that such rights can extent to requests for forgetting knowledge of patient's data within AI models. However, forgetting patients' imaging data from AI models, is still an under-explored problem. In this paper, we study the influence of patient data on model performance and formulate two hypotheses for a patient's data: either they are common and similar to other patients or form edge cases, i.e. unique and rare cases. We show that it is not possible to easily forget patient data. We propose a targeted forgetting approach to perform patient-wise forgetting. Extensive experiments on the benchmark Automated Cardiac Diagnosis Challenge dataset showcase the improved performance of the proposed targeted forgetting approach as opposed to a state-of-the-art method." 507,When Does Group Invariant Learning Survive Spurious Correlations?,"By inferring latent groups in the training data, recent works introduce invariant learning to the case where environment annotations are unavailable. Typically, learning group invariance under a majority/minority split is empirically shown to be effective in improving out-of-distribution generalization on many datasets. However, theoretical guarantee for these methods on learning invariant mechanisms is lacking. In this paper, we reveal the insufficiency of existing group invariant learning methods in preventing classifiers from depending on spurious correlations in the training set. Specifically, we propose two criteria on judging such sufficiency. Theoretically and empirically, we show that existing methods can violate both criteria and thus fail in generalizing to spurious correlation shifts. Motivated by this, we design a new group invariant learning method, which constructs groups with statistical independence tests, and reweights samples by group label proportion to meet the criteria. Experiments on both synthetic and real data demonstrate that the new method significantly outperforms existing group invariant learning methods in generalizing to spurious correlation shifts." 508,Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing?,"This work investigates the compatibility between label smoothing (LS) and knowledge distillation (KD). Contemporary findings addressing this thesis statement take dichotomous standpoints: Muller et al. (2019) and Shen et al. (2021b). Critically, there is no effort to understand and resolve these contradictory findings, leaving the primal question -- to smooth or not to smooth a teacher network? -- unanswered. The main contributions of our work are the discovery, analysis and validation of systematic diffusion as the missing concept which is instrumental in understanding and resolving these contradictory findings. This systematic diffusion essentially curtails the benefits of distilling from an LS-trained teacher, thereby rendering KD at increased temperatures ineffective. Our discovery is comprehensively supported by large-scale experiments, analyses and case studies including image classification, neural machine translation and compact student distillation tasks spanning across multiple datasets and teacher-student architectures. Based on our analysis, we suggest practitioners to use an LS-trained teacher with a low-temperature transfer to achieve high performance students. Code and models are available at https://keshik6.github.io/revisiting-ls-kd-compatibility/" 509,Imaging the time series of one single referenced EEG electrode for Epileptic Seizures Risk Analysis,"The time series captured by a single scalp electrode (plus the reference electrode) of refractory epileptic patients is used to forecast seizures susceptibility. The time series is preprocessed, segmented, and each segment transformed into an image, using three different known methods: Recurrence Plot, Gramian Angular Field, Markov Transition Field. The likelihood of the occurrence of a seizure in a future predefined time window is computed by averaging the output of the softmax layer of a CNN, differently from the usual consideration of the output of the classification layer. By thresholding this likelihood, seizure forecasting has better performance. Interestingly, for almost every patient, the best threshold was different from 50%. The results show that this technique can predict with good results for some seizures and patients. However, more tests, namely more patients and more seizures, are needed to better understand the real potential of this technique." 510,Variational Quantum Approximate Support Vector Machine With Inference Transfer,"A kernel-based quantum classifier is the most interesting and powerful quantum machine learning technique for hyperlinear classification of complex data, which can be easily realized in shallow-depth quantum circuits such as a SWAP test classifier. Surprisingly, a support vector machine can be realized inherently and explicitly on these circuits by introduction of a variational scheme to map the quadratic optimization problem of the SVM theory to a quantum-classical variational optimization problem. This scheme is realized with parameterized quantum circuits (PQC) to create a nonuniform weight vector to index qubits that can evaluate training loss and classification score in a linear time. We train the classical parameters of this Variational Quantum Approximate Support Vector Machine (VQASVM), which can be transferred to many copies of other VQASVM decision inference circuits for classification of new query data. Our VQASVM algorithm is experimented with toy example data sets on cloud-based quantum machines for feasibility evaluation, and numerically investigated to evaluate its performance on a standard iris flower data set. The accuracy of iris data classification reached 98.8%." 511,GERNERMED++: Transfer Learning in German Medical NLP,"We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp" 512,RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness,"We show that the effectiveness of the well celebrated Mixup [Zhang et al., 2018] can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only provides much improved accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, because of its tendency to learn models that exhibit high-entropy throughout; making it difficult to differentiate in-distribution samples from out-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation." 513,Auto-Encoder-Extreme Learning Machine Model for Boiler NOx Emission Concentration Prediction,"An automatic encoder (AE) extreme learning machine (ELM)-AE-ELM model is proposed to predict the NOx emission concentration based on the combination of mutual information algorithm (MI), AE, and ELM. First, the importance of practical variables is computed by the MI algorithm, and the mechanism is analyzed to determine the variables related to the NOx emission concentration. Then, the time delay correlations between the selected variables and NOx emission concentration are further analyzed to reconstruct the modeling data. Subsequently, the AE is applied to extract hidden features within the input variables. Finally, an ELM algorithm establishes the relationship between the NOx emission concentration and deep features. The experimental results on practical data indicate that the proposed model shows promising performance compared to state-of-art models." 514,Beyond neural scaling laws: beating power law scaling via data pruning,"Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how both in theory and practice we can break beyond power law scaling and reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this new exponential scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling performance on ResNets trained on CIFAR-10, SVHN, and ImageNet. Given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning." 515,Data augmentation for learning predictive models on EEG: a systematic comparison,"The use of deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years, yet its application has been limited by the relatively small size of EEG datasets. Data augmentation, which consists in artificially increasing the size of the dataset during training, has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech. While a few augmentation transformations for EEG data have been proposed in the literature, their positive impact on performance across tasks remains elusive. In this work, we propose a unified and exhaustive analysis of the main existing EEG augmentations, which are compared in a common experimental setting. Our results highlight the best data augmentations to consider for sleep stage classification and motor imagery brain computer interfaces, showing predictive power improvements greater than 10% in some cases." 516,Adversarial Ensemble Training by Jointly Learning Label Dependencies and Member Models,"Training an ensemble of different sub-models has empirically proven to be an effective strategy to improve deep neural networks' adversarial robustness. Current ensemble training methods for image recognition usually encode the image labels by one-hot vectors, which neglect dependency relationships between the labels. Here we propose a novel adversarial ensemble training approach to jointly learn the label dependencies and the member models. Our approach adaptively exploits the learned label dependencies to promote the diversity of the member models. We test our approach on widely used datasets MNIST, FasionMNIST, and CIFAR-10. Results show that our approach is more robust against black-box attacks compared with the state-of-the-art methods. Our code is available at https://github.com/ZJLAB-AMMI/LSD." 517,Can Push-forward Generative Models Fit Multimodal Distributions?,"Many generative models synthesize data by transforming a standard Gaussian random variable using a deterministic neural network. Among these models are the Variational Autoencoders and the Generative Adversarial Networks. In this work, we call them ""push-forward"" models and study their expressivity. We show that the Lipschitz constant of these generative networks has to be large in order to fit multimodal distributions. More precisely, we show that the total variation distance and the Kullback-Leibler divergence between the generated and the data distribution are bounded from below by a constant depending on the mode separation and the Lipschitz constant. Since constraining the Lipschitz constants of neural networks is a common way to stabilize generative models, there is a provable trade-off between the ability of push-forward models to approximate multimodal distributions and the stability of their training. We validate our findings on one-dimensional and image datasets and empirically show that generative models consisting of stacked networks with stochastic input at each step, such as diffusion models do not suffer of such limitations." 518,SPI-GAN: Distilling Score-based Generative Models with Straight-Path Interpolations,"Score-based generative models (SGMs) are a recently proposed paradigm for deep generative tasks and now show the state-of-the-art sampling performance. It is known that the original SGM design solves the two problems of the generative trilemma: i) sampling quality, and ii) sampling diversity. However, the last problem of the trilemma was not solved, i.e., their training/sampling complexity is notoriously high. To this end, distilling SGMs into simpler models, e.g., generative adversarial networks (GANs), is gathering much attention currently. We present an enhanced distillation method, called straight-path interpolation GAN (SPI-GAN), which can be compared to the state-of-the-art shortcut-based distillation method, called denoising diffusion GAN (DD-GAN). However, our method corresponds to an extreme method that does not use any intermediate shortcut information of the reverse SDE path, in which case DD-GAN fails to obtain good results. Nevertheless, our straight-path interpolation method greatly stabilizes the overall training process. As a result, SPI-GAN is one of the best models in terms of the sampling quality/diversity/time for CIFAR-10, CelebA-HQ-256, and LSUN-Church-256." 519,Deep Multiple Instance Learning For Forecasting Stock Trends Using Financial News,"A major source of information can be taken from financial news articles, which have some correlations about the fluctuation of stock trends. In this paper, we investigate the influences of financial news on the stock trends, from a multi-instance view. The intuition behind this is based on the news uncertainty of varying intervals of news occurrences and the lack of annotation in every single financial news. Under the scenario of Multiple Instance Learning (MIL) where training instances are arranged in bags, and a label is assigned for the entire bag instead of instances, we develop a flexible and adaptive multi-instance learning model and evaluate its ability in directional movement forecast of Standard & Poors 500 index on financial news dataset. Specifically, we treat each trading day as one bag, with certain amounts of news happening on each trading day as instances in each bag. Experiment results demonstrate that our proposed multi-instance-based framework gains outstanding results in terms of the accuracy of trend prediction, compared with other state-of-art approaches and baselines." 520,Off-the-grid learning of sparse mixtures from a continuous dictionary,"We consider a general non-linear model where the signal is a finite mixture of an unknown, possibly increasing, number of features issued from a continuous dictionary parameterized by a real nonlinear parameter. The signal is observed with Gaussian (possibly correlated) noise in either a continuous or a discrete setup. We propose an off-the-grid optimization method, that is, a method which does not use any discretization scheme on the parameter space, to estimate both the non-linear parameters of the features and the linear parameters of the mixture. We use recent results on the geometry of off-the-grid methods to give minimal separation on the true underlying non-linear parameters such that interpolating certificate functions can be constructed. Using also tail bounds for suprema of Gaussian processes we bound the prediction error with high probability. Assuming that the certificate functions can be constructed, our prediction error bound is up to log --factors similar to the rates attained by the Lasso predictor in the linear regression model. We also establish convergence rates that quantify with high probability the quality of estimation for both the linear and the non-linear parameters." 521,Approximate Data Deletion in Generative Models,"Users have the right to have their data deleted by third-party learned systems, as codified by recent legislation such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Such data deletion can be accomplished by full re-training, but this incurs a high computational cost for modern machine learning models. To avoid this cost, many approximate data deletion methods have been developed for supervised learning. Unsupervised learning, in contrast, remains largely an open problem when it comes to (approximate or exact) efficient data deletion. In this paper, we propose a density-ratio-based framework for generative models. Using this framework, we introduce a fast method for approximate data deletion and a statistical test for estimating whether or not training points have been deleted. We provide theoretical guarantees under various learner assumptions and empirically demonstrate our methods across a variety of generative methods." 522,Open Problem: Properly learning decision trees in polynomial time?,"The authors recently gave an $n^{O(\log\log n)}$ time membership query algorithm for properly learning decision trees under the uniform distribution (Blanc et al., 2021). The previous fastest algorithm for this problem ran in $n^{O(\log n)}$ time, a consequence of Ehrenfeucht and Haussler (1989)'s classic algorithm for the distribution-free setting. In this article we highlight the natural open problem of obtaining a polynomial-time algorithm, discuss possible avenues towards obtaining it, and state intermediate milestones that we believe are of independent interest." 523,Cyclical Kernel Adaptive Metropolis,"We propose cKAM, cyclical Kernel Adaptive Metropolis, which incorporates a cyclical stepsize scheme to allow control for exploration and sampling. We show that on a crafted bimodal distribution, existing Adaptive Metropolis type algorithms would fail to converge to the true posterior distribution. We point out that this is because adaptive samplers estimates the local/global covariance structure using past history of the chain, which will lead to adaptive algorithms be trapped in a local mode. We demonstrate that cKAM encourages exploration of the posterior distribution and allows the sampler to escape from a local mode, while maintaining the high performance of adaptive methods." 524,Optimization-Induced Graph Implicit Nonlinear Diffusion,"Due to the over-smoothing issue, most existing graph neural networks can only capture limited dependencies with their inherently finite aggregation layers. To overcome this limitation, we propose a new kind of graph convolution, called Graph Implicit Nonlinear Diffusion (GIND), which implicitly has access to infinite hops of neighbors while adaptively aggregating features with nonlinear diffusion to prevent over-smoothing. Notably, we show that the learned representation can be formalized as the minimizer of an explicit convex optimization objective. With this property, we can theoretically characterize the equilibrium of our GIND from an optimization perspective. More interestingly, we can induce new structural variants by modifying the corresponding optimization objective. To be specific, we can embed prior properties to the equilibrium, as well as introducing skip connections to promote training stability. Extensive experiments show that GIND is good at capturing long-range dependencies, and performs well on both homophilic and heterophilic graphs with nonlinear diffusion. Moreover, we show that the optimization-induced variants of our models can boost the performance and improve training stability and efficiency as well. As a result, our GIND obtains significant improvements on both node-level and graph-level tasks." 525,Fair Machine Learning in Healthcare: A Review,"Benefiting from the digitization of healthcare data and the development of computing power, machine learning methods are increasingly used in the healthcare domain. Fairness problems have been identified in machine learning for healthcare, resulting in an unfair allocation of limited healthcare resources or excessive health risks for certain groups. Therefore, addressing the fairness problems has recently attracted increasing attention from the healthcare community. However, the intersection of machine learning for healthcare and fairness in machine learning remains understudied. In this review, we build the bridge by exposing fairness problems, summarizing possible biases, sorting out mitigation methods and pointing out challenges along with opportunities for the future." 526,Forgetting Data from Pre-trained GANs,"Large pre-trained generative models are known to occasionally provide samples that may be undesirable for various reasons. The standard way to mitigate this is to re-train the models differently. In this work, we take a different, more compute-friendly approach and investigate how to post-edit a model after training so that it forgets certain kinds of samples. We provide three different algorithms for GANs that differ on how the samples to be forgotten are described. Extensive evaluations on real-world image datasets show that our algorithms are capable of forgetting data while retaining high generation quality at a fraction of the cost of full re-training." 527,Framing Algorithmic Recourse for Anomaly Detection,"The problem of algorithmic recourse has been explored for supervised machine learning models, to provide more interpretable, transparent and robust outcomes from decision support systems. An unexplored area is that of algorithmic recourse for anomaly detection, specifically for tabular data with only discrete feature values. Here the problem is to present a set of counterfactuals that are deemed normal by the underlying anomaly detection model so that applications can utilize this information for explanation purposes or to recommend countermeasures. We present an approach -- Context preserving Algorithmic Recourse for Anomalies in Tabular data (CARAT), that is effective, scalable, and agnostic to the underlying anomaly detection model. CARAT uses a transformer based encoder-decoder model to explain an anomaly by finding features with low likelihood. Subsequently semantically coherent counterfactuals are generated by modifying the highlighted features, using the overall context of features in the anomalous instance(s). Extensive experiments help demonstrate the efficacy of CARAT." 528,Overview of Deep Learning-based CSI Feedback in Massive MIMO Systems,"Many performance gains achieved by massive multiple-input and multiple-output depend on the accuracy of the downlink channel state information (CSI) at the transmitter (base station), which is usually obtained by estimating at the receiver (user terminal) and feeding back to the transmitter. The overhead of CSI feedback occupies substantial uplink bandwidth resources, especially when the number of the transmit antennas is large. Deep learning (DL)-based CSI feedback refers to CSI compression and reconstruction by a DL-based autoencoder and can greatly reduce feedback overhead. In this paper, a comprehensive overview of state-of-the-art research on this topic is provided, beginning with basic DL concepts widely used in CSI feedback and then categorizing and describing some existing DL-based feedback works. The focus is on novel neural network architectures and utilization of communication expert knowledge to improve CSI feedback accuracy. Works on bit-level CSI feedback and joint design of CSI feedback with other communication modules are also introduced, and some practical issues, including training dataset collection, online training, complexity, generalization, and standardization effect, are discussed. At the end of the paper, some challenges and potential research directions associated with DL-based CSI feedback in future wireless communication systems are identified." 529,Exploiting Semantic Role Contextualized Video Features for Multi-Instance Text-Video Retrieval EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2022,"In this report, we present our approach for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2022. We first parse sentences into semantic roles corresponding to verbs and nouns; then utilize self-attentions to exploit semantic role contextualized video features along with textual features via triplet losses in multiple embedding spaces. Our method overpasses the strong baseline in normalized Discounted Cumulative Gain (nDCG), which is more valuable for semantic similarity. Our submission is ranked 3rd for nDCG and ranked 4th for mAP." 530,Theoretical Perspectives on Deep Learning Methods in Inverse Problems,"In recent years, there have been significant advances in the use of deep learning methods in inverse problems such as denoising, compressive sensing, inpainting, and super-resolution. While this line of works has predominantly been driven by practical algorithms and experiments, it has also given rise to a variety of intriguing theoretical problems. In this paper, we survey some of the prominent theoretical developments in this line of works, focusing in particular on generative priors, untrained neural network priors, and unfolding algorithms. In addition to summarizing existing results in these topics, we highlight several ongoing challenges and open problems." 531,Matryoshka: Stealing Functionality of Private ML Data by Hiding Models in Model,"In this paper, we present a novel insider attack called Matryoshka, which employs an irrelevant scheduled-to-publish DNN model as a carrier model for covert transmission of multiple secret models which memorize the functionality of private ML data stored in local data centers. Instead of treating the parameters of the carrier model as bit strings and applying conventional steganography, we devise a novel parameter sharing approach which exploits the learning capacity of the carrier model for information hiding. Matryoshka simultaneously achieves: (i) High Capacity -- With almost no utility loss of the carrier model, Matryoshka can hide a 26x larger secret model or 8 secret models of diverse architectures spanning different application domains in the carrier model, neither of which can be done with existing steganography techniques; (ii) Decoding Efficiency -- once downloading the published carrier model, an outside colluder can exclusively decode the hidden models from the carrier model with only several integer secrets and the knowledge of the hidden model architecture; (iii) Effectiveness -- Moreover, almost all the recovered models have similar performance as if it were trained independently on the private data; (iv) Robustness -- Information redundancy is naturally implemented to achieve resilience against common post-processing techniques on the carrier before its publishing; (v) Covertness -- A model inspector with different levels of prior knowledge could hardly differentiate a carrier model from a normal model." 532,TE2Rules: Extracting Rule Lists from Tree Ensembles,"Tree Ensemble (TE) models (e.g. Gradient Boosted Trees and Random Forests) often provide higher prediction performance compared to single decision trees. However, TE models generally lack transparency and interpretability, as humans have difficulty understanding their decision logic. This paper presents a novel approach to convert a TE trained for a binary classification task, to a rule list (RL) that is a global equivalent to the TE and is comprehensible for a human. This RL captures all necessary and sufficient conditions for decision making by the TE. Experiments on benchmark datasets demonstrate that, compared to state-of-the-art methods, (i) predictions from the RL generated by TE2Rules have high fidelity with respect to the original TE, (ii) the RL from TE2Rules has high interpretability measured by the number and the length of the decision rules, (iii) the run-time of TE2Rules algorithm can be reduced significantly at the cost of a slightly lower fidelity, and (iv) the RL is a fast alternative to the state-of-the-art rule-based instance-level outcome explanation techniques." 533,Using Twitter Data to Understand Public Perceptions of Approved versus Off-label Use for COVID-19-related Medications,"Understanding public discourse on emergency use of unproven therapeutics is essential to monitor safe use and combat misinformation. We developed a natural language processing (NLP)-based pipeline to understand public perceptions of and stances on COVID-19-related drugs on Twitter across time. This retrospective study included 609,189 US-based tweets between January 29th, 2020 and November 30th, 2021 on four drugs that gained wide public attention during the COVID-19 pandemic: 1) Hydroxychloroquine and Ivermectin, drug therapies with anecdotal evidence; and 2) Molnupiravir and Remdesivir, FDA-approved treatment options for eligible patients. Time-trend analysis was used to understand the popularity and related events. Content and demographic analyses were conducted to explore potential rationales of people's stances on each drug. Time-trend analysis revealed that Hydroxychloroquine and Ivermectin received much more discussion than Molnupiravir and Remdesivir, particularly during COVID-19 surges. Hydroxychloroquine and Ivermectin were highly politicized, related to conspiracy theories, hearsay, celebrity effects, etc. The distribution of stance between the two major US political parties was significantly different (p<0.001); Republicans were much more likely to support Hydroxychloroquine (+55%) and Ivermectin (+30%) than Democrats. People with healthcare backgrounds tended to oppose Hydroxychloroquine (+7%) more than the general population; in contrast, the general population was more likely to support Ivermectin (+14%). We make all the data, code, and models available at https://github.com/ningkko/COVID-drug." 534,EBMs vs. CL: Exploring Self-Supervised Visual Pretraining for Visual Question Answering,"The availability of clean and diverse labeled data is a major roadblock for training models on complex tasks such as visual question answering (VQA). The extensive work on large vision-and-language models has shown that self-supervised learning is effective for pretraining multimodal interactions. In this technical report, we focus on visual representations. We review and evaluate self-supervised methods to leverage unlabeled images and pretrain a model, which we then fine-tune on a custom VQA task that allows controlled evaluation and diagnosis. We compare energy-based models (EBMs) with contrastive learning (CL). While EBMs are growing in popularity, they lack an evaluation on downstream tasks. We find that both EBMs and CL can learn representations from unlabeled images that enable training a VQA model on very little annotated data. In a simple setting similar to CLEVR, we find that CL representations also improve systematic generalization, and even match the performance of representations from a larger, supervised, ImageNet-pretrained model. However, we find EBMs to be difficult to train because of instabilities and high variability in their results. Although EBMs prove useful for OOD detection, other results on supervised energy-based training and uncertainty calibration are largely negative. Overall, CL currently seems a preferable option over EBMs." 535,Hardness and Algorithms for Robust and Sparse Optimization,"We explore algorithms and limitations for sparse optimization problems such as sparse linear regression and robust linear regression. The goal of the sparse linear regression problem is to identify a small number of key features, while the goal of the robust linear regression problem is to identify a small number of erroneous measurements. Specifically, the sparse linear regression problem seeks a $k$-sparse vector $x\in\mathbb{R}^d$ to minimize $\|Ax-b\|_2$, given an input matrix $A\in\mathbb{R}^{n\times d}$ and a target vector $b\in\mathbb{R}^n$, while the robust linear regression problem seeks a set $S$ that ignores at most $k$ rows and a vector $x$ to minimize $\|(Ax-b)_S\|_2$. We first show bicriteria, NP-hardness of approximation for robust regression building on the work of [OWZ15] which implies a similar result for sparse regression. We further show fine-grained hardness of robust regression through a reduction from the minimum-weight $k$-clique conjecture. On the positive side, we give an algorithm for robust regression that achieves arbitrarily accurate additive error and uses runtime that closely matches the lower bound from the fine-grained hardness result, as well as an algorithm for sparse regression with similar runtime. Both our upper and lower bounds rely on a general reduction from robust linear regression to sparse regression that we introduce. Our algorithms, inspired by the 3SUM problem, use approximate nearest neighbor data structures and may be of independent interest for solving sparse optimization problems. For instance, we demonstrate that our techniques can also be used for the well-studied sparse PCA problem." 536,Convolutional Neural Network Based Partial Face Detection,"Due to the massive explanation of artificial intelligence, machine learning technology is being used in various areas of our day-to-day life. In the world, there are a lot of scenarios where a simple crime can be prevented before it may even happen or find the person responsible for it. A face is one distinctive feature that we have and can differentiate easily among many other species. But not just different species, it also plays a significant role in determining someone from the same species as us, humans. Regarding this critical feature, a single problem occurs most often nowadays. When the camera is pointed, it cannot detect a person's face, and it becomes a poor image. On the other hand, where there was a robbery and a security camera installed, the robber's identity is almost indistinguishable due to the low-quality camera. But just making an excellent algorithm to work and detecting a face reduces the cost of hardware, and it doesn't cost that much to focus on that area. Facial recognition, widget control, and such can be done by detecting the face correctly. This study aims to create and enhance a machine learning model that correctly recognizes faces. Total 627 Data have been collected from different Bangladeshi people's faces on four angels. In this work, CNN, Harr Cascade, Cascaded CNN, Deep CNN & MTCNN are these five machine learning approaches implemented to get the best accuracy of our dataset. After creating and running the model, Multi-Task Convolutional Neural Network (MTCNN) achieved 96.2% best model accuracy with training data rather than other machine learning models." 537,What Can Secondary Predictions Tell Us? An Exploration on Question-Answering with SQuAD-v2.0,"Performance in natural language processing, and specifically for the question-answer task, is typically measured by comparing a model\'s most confident (primary) prediction to golden answers (the ground truth). We are making the case that it is also useful to quantify how close a model came to predicting a correct answer even for examples that failed. We define the Golden Rank (GR) of an example as the rank of its most confident prediction that exactly matches a ground truth, and show why such a match always exists. For the 16 transformer models we analyzed, the majority of exactly matched golden answers in secondary prediction space hover very close to the top rank. We refer to secondary predictions as those ranking above 0 in descending confidence probability order. We demonstrate how the GR can be used to classify questions and visualize their spectrum of difficulty, from persistent near successes to persistent extreme failures. We derive a new aggregate statistic over entire test sets, named the Golden Rank Interpolated Median (GRIM) that quantifies the proximity of failed predictions to the top choice made by the model. To develop some intuition and explore the applicability of these metrics we use the Stanford Question Answering Dataset (SQuAD-2) and a few popular transformer models from the Hugging Face hub. We first demonstrate that the GRIM is not directly correlated with the F1 and exact match (EM) scores. We then calculate and visualize these scores for various transformer architectures, probe their applicability in error analysis by clustering failed predictions, and compare how they relate to other training diagnostics such as the EM and F1 scores. We finally suggest various research goals, such as broadening data collection for these metrics and their possible use in adversarial training." 538,Intrinsic Anomaly Detection for Multi-Variate Time Series,"We introduce a novel, practically relevant variation of the anomaly detection problem in multi-variate time series: intrinsic anomaly detection. It appears in diverse practical scenarios ranging from DevOps to IoT, where we want to recognize failures of a system that operates under the influence of a surrounding environment. Intrinsic anomalies are changes in the functional dependency structure between time series that represent an environment and time series that represent the internal state of a system that is placed in said environment. We formalize this problem, provide under-studied public and new purpose-built data sets for it, and present methods that handle intrinsic anomaly detection. These address the short-coming of existing anomaly detection methods that cannot differentiate between expected changes in the system's state and unexpected ones, i.e., changes in the system that deviate from the environment's influence. Our most promising approach is fully unsupervised and combines adversarial learning and time series representation learning, thereby addressing problems such as label sparsity and subjectivity, while allowing to navigate and improve notoriously problematic anomaly detection data sets." 539,Deformable Graph Transformer,"Transformer-based models have been widely used and achieved state-of-the-art performance in various domains such as natural language processing and computer vision. Recent works show that Transformers can also be generalized to graph-structured data. However, the success is limited to small-scale graphs due to technical challenges such as the quadratic complexity in regards to the number of nodes and non-local aggregation that often leads to inferior generalization performance to conventional graph neural networks. In this paper, to address these issues, we propose Deformable Graph Transformer (DGT) that performs sparse attention with dynamically sampled key and value pairs. Specifically, our framework first constructs multiple node sequences with various criteria to consider both structural and semantic proximity. Then, the sparse attention is applied to the node sequences for learning node representations with a reduced computational cost. We also design simple and effective positional encodings to capture structural similarity and distance between nodes. Experiments demonstrate that our novel graph Transformer consistently outperforms existing Transformer-based models and shows competitive performance compared to state-of-the-art models on 8 graph benchmark datasets including large-scale graphs." 540,Active Exploration via Experiment Design in Markov Chains,"A key challenge in science and engineering is to design experiments to learn about some unknown quantity of interest. Classical experimental design optimally allocates the experimental budget to maximize a notion of utility (e.g., reduction in uncertainty about the unknown quantity). We consider a rich setting, where the experiments are associated with states in a {\em Markov chain}, and we can only choose them by selecting a {\em policy} controlling the state transitions. This problem captures important applications, from exploration in reinforcement learning to spatial monitoring tasks. We propose an algorithm -- \textsc{markov-design} -- that efficiently selects policies whose measurement allocation \emph{provably converges to the optimal one}. The algorithm is sequential in nature, adapting its choice of policies (experiments) informed by past measurements. In addition to our theoretical analysis, we showcase our framework on applications in ecological surveillance and pharmacology." 541,Spherical Channels for Modeling Atomic Interactions,"Modeling the energy and forces of atomic systems is a fundamental problem in computational chemistry with the potential to help address many of the world's most pressing problems, including those related to energy scarcity and climate change. These calculations are traditionally performed using Density Functional Theory, which is computationally very expensive. Machine learning has the potential to dramatically improve the efficiency of these calculations from days or hours to seconds. We propose the Spherical Channel Network (SCN) to model atomic energies and forces. The SCN is a graph neural network where nodes represent atoms and edges their neighboring atoms. The atom embeddings are a set of spherical functions, called spherical channels, represented using spherical harmonics. We demonstrate, that by rotating the embeddings based on the 3D edge orientation, more information may be utilized while maintaining the rotational equivariance of the messages. While equivariance is a desirable property, we find that by relaxing this constraint in both message passing and aggregation, improved accuracy may be achieved. We demonstrate state-of-the-art results on the large-scale Open Catalyst 2020 dataset in both energy and force prediction for numerous tasks and metrics." 542,On the Rényi Cross-Entropy,"The R\'{e}nyi cross-entropy measure between two distributions, a generalization of the Shannon cross-entropy, was recently used as a loss function for the improved design of deep learning generative adversarial networks. In this work, we examine the properties of this measure and derive closed-form expressions for it when one of the distributions is fixed and when both distributions belong to the exponential family. We also analytically determine a formula for the cross-entropy rate for stationary Gaussian processes and for finite-alphabet Markov sources." 543,An Empirical Study of Challenges in Converting Deep Learning Models,"There is an increase in deploying Deep Learning (DL)-based software systems in real-world applications. Usually DL models are developed and trained using DL frameworks that have their own internal mechanisms/formats to represent and train DL models, and usually those formats cannot be recognized by other frameworks. Moreover, trained models are usually deployed in environments different from where they were developed. To solve the interoperability issue and make DL models compatible with different frameworks/environments, some exchange formats are introduced for DL models, like ONNX and CoreML. However, ONNX and CoreML were never empirically evaluated by the community to reveal their prediction accuracy, performance, and robustness after conversion. Poor accuracy or non-robust behavior of converted models may lead to poor quality of deployed DL-based software systems. We conduct, in this paper, the first empirical study to assess ONNX and CoreML for converting trained DL models. In our systematic approach, two popular DL frameworks, Keras and PyTorch, are used to train five widely used DL models on three popular datasets. The trained models are then converted to ONNX and CoreML and transferred to two runtime environments designated for such formats, to be evaluated. We investigate the prediction accuracy before and after conversion. Our results unveil that the prediction accuracy of converted models are at the same level of originals. The performance (time cost and memory consumption) of converted models are studied as well. The size of models are reduced after conversion, which can result in optimized DL-based software deployment. Converted models are generally assessed as robust at the same level of originals. However, obtained results show that CoreML models are more vulnerable to adversarial attacks compared to ONNX." 544,Bottleneck Low-rank Transformers for Low-resource Spoken Language Understanding,"End-to-end spoken language understanding (SLU) systems benefit from pretraining on large corpora, followed by fine-tuning on application-specific data. The resulting models are too large for on-edge applications. For instance, BERT-based systems contain over 110M parameters. Observing the model is overparameterized, we propose lean transformer structure where the dimension of the attention mechanism is automatically reduced using group sparsity. We propose a variant where the learned attention subspace is transferred to an attention bottleneck layer. In a low-resource setting and without pre-training, the resulting compact SLU model achieves accuracies competitive with pre-trained large models." 545,Multistep Automated Data Labelling Procedure (MADLaP) for Thyroid Nodules on Ultrasound: An Artificial Intelligence Approach for Automating Image Annotation,"Machine learning (ML) for diagnosis of thyroid nodules on ultrasound is an active area of research. However, ML tools require large, well-labelled datasets, the curation of which is time-consuming and labor-intensive. The purpose of our study was to develop and test a deep-learning-based tool to facilitate and automate the data annotation process for thyroid nodules; we named our tool Multistep Automated Data Labelling Procedure (MADLaP). MADLaP was designed to take multiple inputs included pathology reports, ultrasound images, and radiology reports. Using multiple step-wise modules including rule-based natural language processing, deep-learning-based imaging segmentation, and optical character recognition, MADLaP automatically identified images of a specific thyroid nodule and correctly assigned a pathology label. The model was developed using a training set of 378 patients across our health system and tested on a separate set of 93 patients. Ground truths for both sets were selected by an experienced radiologist. Performance metrics including yield (how many labeled images the model produced) and accuracy (percentage correct) were measured using the test set. MADLaP achieved a yield of 63% and an accuracy of 83%. The yield progressively increased as the input data moved through each module, while accuracy peaked part way through. Error analysis showed that inputs from certain examination sites had lower accuracy (40%) than the other sites (90%, 100%). MADLaP successfully created curated datasets of labeled ultrasound images of thyroid nodules. While accurate, the relatively suboptimal yield of MADLaP exposed some challenges when trying to automatically label radiology images from heterogeneous sources. The complex task of image curation and annotation could be automated, allowing for enrichment of larger datasets for use in machine learning development." 546,"Reinforcement Learning in Medical Image Analysis: Concepts, Applications, Challenges, and Future Directions","Motivation: Medical image analysis involves tasks to assist physicians in qualitative and quantitative analysis of lesions or anatomical structures, significantly improving the accuracy and reliability of diagnosis and prognosis. Traditionally, these tasks are finished by physicians or medical physicists and lead to two major problems: (i) low efficiency; (ii) biased by personal experience. In the past decade, many machine learning methods have been applied to accelerate and automate the image analysis process. Compared to the enormous deployments of supervised and unsupervised learning models, attempts to use reinforcement learning in medical image analysis are scarce. This review article could serve as the stepping-stone for related research. Significance: From our observation, though reinforcement learning has gradually gained momentum in recent years, many researchers in the medical analysis field find it hard to understand and deploy in clinics. One cause is lacking well-organized review articles targeting readers lacking professional computer science backgrounds. Rather than providing a comprehensive list of all reinforcement learning models in medical image analysis, this paper may help the readers to learn how to formulate and solve their medical image analysis research as reinforcement learning problems. Approach & Results: We selected published articles from Google Scholar and PubMed. Considering the scarcity of related articles, we also included some outstanding newest preprints. The papers are carefully reviewed and categorized according to the type of image analysis task. We first review the basic concepts and popular models of reinforcement learning. Then we explore the applications of reinforcement learning models in landmark detection. Finally, we conclude the article by discussing the reviewed reinforcement learning approaches' limitations and possible improvements." 547,Learning Time Delay Systems with Neural Ordinary Differential Equations,"A novel way of using neural networks to learn the dynamics of time delay systems from sequential data is proposed. A neural network with trainable delays is used to approximate the right hand side of a delay differential equation. We relate the delay differential equation to an ordinary differential equation by discretizing the time history and train the corresponding neural ordinary differential equation (NODE) to learn the dynamics. An example on learning the dynamics of the Mackey-Glass equation using data from chaotic behavior is given. After learning both the nonlinearity and the time delay, we demonstrate that the bifurcation diagram of the neural network matches that of the original system." 548,TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s,"This paper presents a novel nearest neighbor search algorithm achieving TPU (Google Tensor Processing Unit) peak performance, outperforming state-of-the-art GPU algorithms with similar level of recall. The design of the proposed algorithm is motivated by an accurate accelerator performance model that takes into account both the memory and instruction bottlenecks. Our algorithm comes with an analytical guarantee of recall in expectation and does not require maintaining sophisticated index data structure or tuning, making it suitable for applications with frequent updates. Our work is available in the open-source package of Jax and Tensorflow on TPU." 549,Optimal Estimation of Generic Dynamics by Path-Dependent Neural Jump ODEs,"This paper studies the problem of forecasting general stochastic processes using an extension of the Neural Jump ODE (NJ-ODE) framework. While NJ-ODE was the first framework to establish convergence guarantees for the prediction of irregularly observed time-series, these results were limited to data stemming from It\^o-diffusions with complete observations, in particular Markov processes where all coordinates are observed simultaneously. In this work, we generalise these results to generic, possibly non-Markovian or discontinuous, stochastic processes with incomplete observations, by utilising the reconstruction properties of the signature transform. These theoretical results are supported by empirical studies, where it is shown that the path-dependent NJ-ODE outperforms the original NJ-ODE framework in the case of non-Markovian data." 550,Neural Integro-Differential Equations,"Modeling continuous dynamical systems from discretely sampled observations is a fundamental problem in data science. Often, such dynamics are the result of non-local processes that present an integral over time. As such, these systems are modeled with Integro-Differential Equations (IDEs); generalizations of differential equations that comprise both an integral and a differential component. For example, brain dynamics are not accurately modeled by differential equations since their behavior is non-Markovian, i.e. dynamics are in part dictated by history. Here, we introduce the Neural IDE (NIDE), a framework that models ordinary and integral components of IDEs using neural networks. We test NIDE on several toy and brain activity datasets and demonstrate that NIDE outperforms other models, including Neural ODE. These tasks include time extrapolation as well as predicting dynamics from unseen initial conditions, which we test on whole-cortex activity recordings in freely behaving mice. Further, we show that NIDE can decompose dynamics into its Markovian and non-Markovian constituents, via the learned integral operator, which we test on fMRI brain activity recordings of people on ketamine. Finally, the integrand of the integral operator provides a latent space that gives insight into the underlying dynamics, which we demonstrate on wide-field brain imaging recordings. Altogether, NIDE is a novel approach that enables modeling of complex non-local dynamics with neural networks." 551,A Perturbation Bound on the Subspace Estimator from Canonical Projections,"This paper derives a perturbation bound on the optimal subspace estimator obtained from a subset of its canonical projections contaminated by noise. This fundamental result has important implications in matrix completion, subspace clustering, and related problems." 552,NumS: Scalable Array Programming for the Cloud,"Scientists increasingly rely on Python tools to perform scalable distributed memory array operations using rich, NumPy-like expressions. However, many of these tools rely on dynamic schedulers optimized for abstract task graphs, which often encounter memory and network bandwidth-related bottlenecks due to sub-optimal data and operator placement decisions. Tools built on the message passing interface (MPI), such as ScaLAPACK and SLATE, have better scaling properties, but these solutions require specialized knowledge to use. In this work, we present NumS, an array programming library which optimizes NumPy-like expressions on task-based distributed systems. This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS). LSHS is a local search method which optimizes operator placement by minimizing maximum memory and network load on any given node within a distributed system. Coupled with a heuristic for load balanced data layouts, our approach is capable of attaining communication lower bounds on some common numerical operations, and our empirical study shows that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem. On terabyte-scale data, NumS achieves competitive performance to SLATE on DGEMM, up to 20x speedup over Dask on a key operation for tensor factorization, and a 2x speedup on logistic regression compared to Dask ML and Spark's MLlib." 553,Collecting high-quality adversarial data for machine reading comprehension tasks with humans and models in the loop,"We present our experience as annotators in the creation of high-quality, adversarial machine-reading-comprehension data for extractive QA for Task 1 of the First Workshop on Dynamic Adversarial Data Collection (DADC). DADC is an emergent data collection paradigm with both models and humans in the loop. We set up a quasi-experimental annotation design and perform quantitative analyses across groups with different numbers of annotators focusing on successful adversarial attacks, cost analysis, and annotator confidence correlation. We further perform a qualitative analysis of our perceived difficulty of the task given the different topics of the passages in our dataset and conclude with recommendations and suggestions that might be of value to people working on future DADC tasks and related annotation interfaces." 554,Applications of Reinforcement Learning in Finance -- Trading with a Double Deep Q-Network,"This paper presents a Double Deep Q-Network algorithm for trading single assets, namely the E-mini S&P 500 continuous futures contract. We use a proven setup as the foundation for our environment with multiple extensions. The features of our trading agent are constantly being expanded to include additional assets such as commodities, resulting in four models. We also respond to environmental conditions, including costs and crises. Our trading agent is first trained for a specific time period and tested on new data and compared with the long-and-hold strategy as a benchmark (market). We analyze the differences between the various models and the in-sample/out-of-sample performance with respect to the environment. The experimental results show that the trading agent follows an appropriate behavior. It can adjust its policy to different circumstances, such as more extensive use of the neutral position when trading costs are present. Furthermore, the net asset value exceeded that of the benchmark, and the agent outperformed the market in the test set. We provide initial insights into the behavior of an agent in a financial domain using a DDQN algorithm. The results of this study can be used for further development." 555,Online Anomaly Detection Based On Reservoir Sampling and LOF for IoT devices,"The growing number of IoT devices and their use to monitor the operation of machines and equipment increases interest in anomaly detection algorithms running on devices. However, the difficulty is the limitations of the available computational and memory resources on the devices. In the case of microcontrollers (MCUs), these are single megabytes of program and several hundred kilobytes of working memory. Consequently, algorithms must be appropriately matched to the capabilities of the devices. In the paper, we analyse the processing pipeline for anomaly detection and implementation of the Local Outliner Factor (LOF) algorithm on a MCU. We also show that it is possible to train such an algorithm directly on the device, which gives great potential to use the solution in real devices." 556,Supervised Training of Conditional Monge Maps,"Optimal transport (OT) theory describes general principles to define and select, among many possible choices, the most efficient way to map a probability measure onto another. That theory has been mostly used to estimate, given a pair of source and target probability measures $(\mu,\nu)$, a parameterized map $T_\theta$ that can efficiently map $\mu$ onto $\nu$. In many applications, such as predicting cell responses to treatments, the data measures $\mu,\nu$ (features of untreated/treated cells) that define optimal transport problems do not arise in isolation but are associated with a context $c$ (the treatment). To account for and incorporate that context in OT estimation, we introduce CondOT, an approach to estimate OT maps conditioned on a context variable, using several pairs of measures $(\mu_i, \nu_i)$ tagged with a context label $c_i$. Our goal is to % extract from a dataset of labeled pairs $\{(c_i, (\mu_i, \nu_i))\}$ learn a global map $\mathcal{T}_{\theta}$ which is not only expected to fit em all pairs in the dataset $\{(c_i, (\mu_i, \nu_i))\}$, i.e., $\mathcal{T}_{\theta}(c_i) \sharp\mu_i \approx \nu_i$, but should generalize to produce meaningful maps $\mathcal{T}_{\theta}(c_{\text{new}})$ conditioned on unseen contexts $c_{\text{new}}$. Our approach harnesses and provides a novel usage for partially input convex neural networks, for which we introduce a robust and efficient initialization strategy inspired by Gaussian approximations. We demonstrate the ability of CondOT to infer the effect of an arbitrary combination of genetic or therapeutic perturbations on single cells, using only observations of the effects of said perturbations separately." 557,Semi-supervised Contrastive Outlier removal for Pseudo Expectation Maximization (SCOPE),"Semi-supervised learning is the problem of training an accurate predictive model by combining a small labeled dataset with a presumably much larger unlabeled dataset. Many methods for semi-supervised deep learning have been developed, including pseudolabeling, consistency regularization, and contrastive learning techniques. Pseudolabeling methods however are highly susceptible to confounding, in which erroneous pseudolabels are assumed to be true labels in early iterations, thereby causing the model to reinforce its prior biases and thereby fail to generalize to strong predictive performance. We present a new approach to suppress confounding errors through a method we describe as Semi-supervised Contrastive Outlier removal for Pseudo Expectation Maximization (SCOPE). Like basic pseudolabeling, SCOPE is related to Expectation Maximization (EM), a latent variable framework which can be extended toward understanding cluster-assumption deep semi-supervised algorithms. However, unlike basic pseudolabeling which fails to adequately take into account the probability of the unlabeled samples given the model, SCOPE introduces an outlier suppression term designed to improve the behavior of EM iteration given a discrimination DNN backbone in the presence of outliers. Our results show that SCOPE greatly improves semi-supervised classification accuracy over a baseline, and furthermore when combined with consistency regularization achieves the highest reported accuracy for the semi-supervised CIFAR-10 classification task using 250 and 4000 labeled samples. Moreover, we show that SCOPE reduces the prevalence of confounding errors during pseudolabeling iterations by pruning erroneous high-confidence pseudolabeled samples that would otherwise contaminate the labeled set in subsequent retraining iterations." 558,GAN-based Intrinsic Exploration For Sample Efficient Reinforcement Learning,"In this study, we address the problem of efficient exploration in reinforcement learning. Most common exploration approaches depend on random action selection, however these approaches do not work well in environments with sparse or no rewards. We propose Generative Adversarial Network-based Intrinsic Reward Module that learns the distribution of the observed states and sends an intrinsic reward that is computed as high for states that are out of distribution, in order to lead agent to unexplored states. We evaluate our approach in Super Mario Bros for a no reward setting and in Montezuma's Revenge for a sparse reward setting and show that our approach is indeed capable of exploring efficiently. We discuss a few weaknesses and conclude by discussing future works." 559,Target alignment in truncated kernel ridge regression,"Kernel ridge regression (KRR) has recently attracted renewed interest due to its potential for explaining the transient effects, such as double descent, that emerge during neural network training. In this work, we study how the alignment between the target function and the kernel affects the performance of the KRR. We focus on the truncated KRR (TKRR) which utilizes an additional parameter that controls the spectral truncation of the kernel matrix. We show that for polynomial alignment, there is an \emph{over-aligned} regime, in which TKRR can achieve a faster rate than what is achievable by full KRR. The rate of TKRR can improve all the way to the parametric rate, while that of full KRR is capped at a sub-optimal value. This shows that target alignemnt can be better leveraged by utilizing spectral truncation in kernel methods. We also consider the bandlimited alignment setting and show that the regularization surface of TKRR can exhibit transient effects including multiple descent and non-monotonic behavior. Our results show that there is a strong and quantifable relation between the shape of the \emph{alignment spectrum} and the generalization performance of kernel methods, both in terms of rates and in finite samples." 560,No imputation without representation,"By filling in missing values in datasets, imputation allows these datasets to be used with algorithms that cannot handle missing values by themselves. However, missing values may in principle contribute useful information that is lost through imputation. The missing-indicator approach can be used in combination with imputation to instead represent this information as a part of the dataset. There are several theoretical considerations why missing-indicators may or may not be beneficial, but there has not been any large-scale practical experiment on real-life datasets to test this question for machine learning predictions. We perform this experiment for three imputation strategies and a range of different classification algorithms, on the basis of twenty real-life datasets. We find that on these datasets, missing-indicators generally increase classification performance. In addition, we find no evidence for most algorithms that nearest neighbour and iterative imputation lead to better performance than simple mean/mode imputation. Therefore, we recommend the use of missing-indicators with mean/mode imputation as a safe default, with the caveat that for decision trees, pruning is necessary to prevent overfitting. In a follow-up experiment, we determine attribute-specific missingness thresholds for each classifier above which missing-indicators are more likely than not to increase classification performance, and observe that these thresholds are much lower for categorical than for numerical attributes. Finally, we argue that mean imputation of numerical attributes may preserve some of the information from missing values, and we show that in the absence of missing-indicators, it can similarly be useful to apply mean imputation to one-hot encoded categorical attributes instead of mode imputation." 561,Masked World Models for Visual Control,"Visual model-based reinforcement learning (RL) has the potential to enable sample-efficient robot learning from visual observations. Yet the current approaches typically train a single model end-to-end for learning both visual representations and dynamics, making it difficult to accurately model the interaction between robots and small objects. In this work, we introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning. Specifically, we train an autoencoder with convolutional layers and vision transformers (ViT) to reconstruct pixels given masked convolutional features, and learn a latent dynamics model that operates on the representations from the autoencoder. Moreover, to encode task-relevant information, we introduce an auxiliary reward prediction objective for the autoencoder. We continually update both autoencoder and dynamics model using online samples collected from environment interaction. We demonstrate that our decoupling approach achieves state-of-the-art performance on a variety of visual robotic tasks from Meta-world and RLBench, e.g., we achieve 81.7% success rate on 50 visual robotic manipulation tasks from Meta-world, while the baseline achieves 67.9%. Code is available on the project website: https://sites.google.com/view/mwm-rl." 562,PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for Linear and Integer Programming,"In deterministic optimization, it is typically assumed that all parameters of the problem are fixed and known. In practice, however, some parameters may be a priori unknown but can be estimated from historical data. A typical predict-then-optimize approach separates predictions and optimization into two stages. Recently, end-to-end predict-then-optimize has become an attractive alternative. In this work, we present the PyEPO package, a PyTorch-based end-to-end predict-then-optimize library in Python. To the best of our knowledge, PyEPO (pronounced like ""pineapple"" with a silent ""n"") is the first such generic tool for linear and integer programming with predicted objective function coefficients. It provides two base algorithms: the first is based on the convex surrogate loss function from the seminal work of Elmachtoub & Grigas (2021), and the second is based on the differentiable black-box solver approach of Vlastelica et al. (2019). PyEPO provides a simple interface for the definition of new optimization problems, the implementation of state-of-the-art predict-then-optimize training algorithms, the use of custom neural network architectures, and the comparison of end-to-end approaches with the two-stage approach. PyEPO enables us to conduct a comprehensive set of experiments comparing a number of end-to-end and two-stage approaches along axes such as prediction accuracy, decision quality, and running time on problems such as Shortest Path, Multiple Knapsack, and the Traveling Salesperson Problem. We discuss some empirical insights from these experiments which could guide future research. PyEPO and its documentation are available at https://github.com/khalil-research/PyEPO." 563,Gaussian Latent Dirichlet Allocation for Discrete Human State Discovery,"In this article we propose and validate an unsupervised probabilistic model, Gaussian Latent Dirichlet Allocation (GLDA), for the problem of discrete state discovery from repeated, multivariate psychophysiological samples collected from multiple, inherently distinct, individuals. Psychology and medical research heavily involves measuring potentially related but individually inconclusive variables from a cohort of participants to derive diagnosis, necessitating clustering analysis. Traditional probabilistic clustering models such as Gaussian Mixture Model (GMM) assume a global mixture of component distributions, which may not be realistic for observations from different patients. The GLDA model borrows the individual-specific mixture structure from a popular topic model Latent Dirichlet Allocation (LDA) in Natural Language Processing and merges it with the Gaussian component distributions of GMM to suit continuous type data. We implemented GLDA using STAN (a probabilistic modeling language) and applied it on two datasets, one containing Ecological Momentary Assessments (EMA) and the other heart measures from electrocardiogram and impedance cardiograph. We found that in both datasets the GLDA-learned class weights achieved significantly higher correlations with clinically assessed depression, anxiety, and stress scores than those produced by the baseline GMM. Our findings demonstrate the advantage of GLDA over conventional finite mixture models for human state discovery from repeated multivariate data, likely due to better characterization of potential underlying between-participant differences. Future work is required to validate the utility of this model on a broader range of applications." 564,Zero-Shot Building Control,"Heating and cooling systems in buildings account for 31% of global energy use, much of which are regulated by Rule Based Controllers (RBCs) that neither maximise energy efficiency nor minimise emissions by interacting optimally with the grid. Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency, but existing solutions require pre-training in simulators that are prohibitively expensive to obtain for every building in the world. In response, we show it is possible to perform safe, zero-shot control of buildings by combining ideas from system identification and model-based RL. We call this combination PEARL (Probabilistic Emission-Abating Reinforcement Learning) and show it reduces emissions without pre-training, needing only a three hour commissioning period. In experiments across three varied building energy simulations, we show PEARL outperforms an existing RBC once, and popular RL baselines in all cases, reducing building emissions by as much as 31% whilst maintaining thermal comfort." 565,Latent Combinational Game Design,"We present an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We refer to this approach as latent combinational game design -- latent since we use learned latent representations to perform blending, combinational since game blending is a combinational creativity process and game design since the approach generates novel, playable games. We use Gaussian Mixture Variational Autoencoders (GMVAEs), which use a mixture of Gaussians to model the VAE latent space. Through supervised training, each component learns to encode levels from one game and lets us define new, blended games as linear combinations of these learned components. This enables generating new games that blend the input games as well as control the relative proportions of each game in the blend. We also extend prior work using conditional VAEs to perform blending and compare against the GMVAE. Our results show that both models can generate playable blended games that blend the input games in the desired proportions." 566,Evaluating Understanding on Conceptual Abstraction Benchmarks,"A long-held objective in AI is to build systems that understand concepts in a humanlike way. Setting aside the difficulty of building such a system, even trying to evaluate one is a challenge, due to present-day AI's relative opacity and its proclivity for finding shortcut solutions. This is exacerbated by humans' tendency to anthropomorphize, assuming that a system that can recognize one instance of a concept must also understand other instances, as a human would. In this paper, we argue that understanding a concept requires the ability to use it in varied contexts. Accordingly, we propose systematic evaluations centered around concepts, by probing a system's ability to use a given concept in many different instantiations. We present case studies of such an evaluations on two domains -- RAVEN (inspired by Raven's Progressive Matrices) and the Abstraction and Reasoning Corpus (ARC) -- that have been used to develop and assess abstraction abilities in AI systems. Our concept-based approach to evaluation reveals information about AI systems that conventional test sets would have left hidden." 567,Integral Transforms in a Physics-Informed (Quantum) Neural Network setting: Applications & Use-Cases,"In many computational problems in engineering and science, function or model differentiation is essential, but also integration is needed. An important class of computational problems include so-called integro-differential equations which include both integrals and derivatives of a function. In another example, stochastic differential equations can be written in terms of a partial differential equation of a probability density function of the stochastic variable. To learn characteristics of the stochastic variable based on the density function, specific integral transforms, namely moments, of the density function need to be calculated. Recently, the machine learning paradigm of Physics-Informed Neural Networks emerged with increasing popularity as a method to solve differential equations by leveraging automatic differentiation. In this work, we propose to augment the paradigm of Physics-Informed Neural Networks with automatic integration in order to compute complex integral transforms on trained solutions, and to solve integro-differential equations where integrals are computed on-the-fly during training. Furthermore, we showcase the techniques in various application settings, numerically simulating quantum computer-based neural networks as well as classical neural networks." 568,DayDreamer: World Models for Physical Robot Learning,"To solve tasks in complex environments, robots need to learn from experience. Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn, limiting its deployment in the physical world. As a consequence, many advances in robot learning rely on simulators. On the other hand, learning inside of simulators fails to capture the complexity of the real world, is prone to simulator inaccuracies, and the resulting behaviors do not adapt to changes in the world. The Dreamer algorithm has recently shown great promise for learning from small amounts of interaction by planning within a learned world model, outperforming pure reinforcement learning in video games. Learning a world model to predict the outcomes of potential actions enables planning in imagination, reducing the amount of trial and error needed in the real environment. However, it is unknown whether Dreamer can facilitate faster learning on physical robots. In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without simulators. Dreamer trains a quadruped robot to roll off its back, stand up, and walk from scratch and without resets in only 1 hour. We then push the robot and find that Dreamer adapts within 10 minutes to withstand perturbations or quickly roll over and stand back up. On two different robotic arms, Dreamer learns to pick and place multiple objects directly from camera images and sparse rewards, approaching human performance. On a wheeled robot, Dreamer learns to navigate to a goal position purely from camera images, automatically resolving ambiguity about the robot orientation. Using the same hyperparameters across all experiments, we find that Dreamer is capable of online learning in the real world, establishing a strong baseline. We release our infrastructure for future applications of world models to robot learning." 569,Risk Perspective Exploration in Distributional Reinforcement Learning,"Distributional reinforcement learning demonstrates state-of-the-art performance in continuous and discrete control settings with the features of variance and risk, which can be used to explore. However, the exploration method employing the risk property is hard to find, although numerous exploration methods in Distributional RL employ the variance of return distribution per action. In this paper, we present risk scheduling approaches that explore risk levels and optimistic behaviors from a risk perspective. We demonstrate the performance enhancement of the DMIX algorithm using risk scheduling in a multi-agent setting with comprehensive experiments." 570,Verifiable Goal Recognition for Autonomous Driving with Occlusions,"When used in autonomous driving, goal recognition allows the future behaviour of other vehicles to be more accurately predicted. A recent goal recognition method for autonomous vehicles, GRIT, has been shown to be fast, accurate, interpretable and verifiable. In autonomous driving, vehicles can encounter novel scenarios that were unseen during training, and the environment is partially observable due to occlusions. However, GRIT can only operate in fixed frame scenarios, with full observability. We present a novel goal recognition method named Goal Recognition with Interpretable Trees under Occlusion (OGRIT), which solves these shortcomings of GRIT. We demonstrate that OGRIT can generalise between different scenarios and handle missing data due to occlusions, while still being fast, accurate, interpretable and verifiable." 571,Rethinking Optimization with Differentiable Simulation from a Global Perspective,"Differentiable simulation is a promising toolkit for fast gradient-based policy optimization and system identification. However, existing approaches to differentiable simulation have largely tackled scenarios where obtaining smooth gradients has been relatively easy, such as systems with mostly smooth dynamics. In this work, we study the challenges that differentiable simulation presents when it is not feasible to expect that a single descent reaches a global optimum, which is often a problem in contact-rich scenarios. We analyze the optimization landscapes of diverse scenarios that contain both rigid bodies and deformable objects. In dynamic environments with highly deformable objects and fluids, differentiable simulators produce rugged landscapes with nonetheless useful gradients in some parts of the space. We propose a method that combines Bayesian optimization with semi-local 'leaps' to obtain a global search method that can use gradients effectively, while also maintaining robust performance in regions with noisy gradients. We show that our approach outperforms several gradient-based and gradient-free baselines on an extensive set of experiments in simulation, and also validate the method using experiments with a real robot and deformables. Videos and supplementary materials are available at https://tinyurl.com/globdiff" 572,Generative Anomaly Detection for Time Series Datasets,"Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings." 573,Building Matters: Spatial Variability in Machine Learning Based Thermal Comfort Prediction in Winters,"Thermal comfort in indoor environments has an enormous impact on the health, well-being, and performance of occupants. Given the focus on energy efficiency and Internet-of-Things enabled smart buildings, machine learning (ML) is being increasingly used for data-driven thermal comfort (TC) prediction. Generally, ML-based solutions are proposed for air-conditioned or HVAC ventilated buildings and the models are primarily designed for adults. On the other hand, naturally ventilated (NV) buildings are the norm in most countries. They are also ideal for energy conservation and long-term sustainability goals. However, the indoor environment of NV buildings lacks thermal regulation and varies significantly across spatial contexts. These factors make TC prediction extremely challenging. Thus, determining the impact of the building environment on the performance of TC models is important. Further, the generalization capability of TC prediction models across different NV indoor spaces needs to be studied. This work addresses these problems. Data is gathered through month-long field experiments conducted in 5 naturally ventilated school buildings, involving 512 primary school students. The impact of spatial variability on student comfort is demonstrated through variation in prediction accuracy (by as much as 71%). The influence of building environment on TC prediction is also demonstrated through variation in feature importance. Further, a comparative analysis of spatial variability in model performance is done for children (our dataset) and adults (ASHRAE-II database). Finally, the generalization capability of thermal comfort models in NV classrooms is assessed and major challenges are highlighted." 574,How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection,"Model stealing attacks present a dilemma for public machine learning APIs. To protect financial investments, companies may be forced to withhold important information about their models that could facilitate theft, including uncertainty estimates and prediction explanations. This compromise is harmful not only to users but also to external transparency. Model stealing defenses seek to resolve this dilemma by making models harder to steal while preserving utility for benign users. However, existing defenses have poor performance in practice, either requiring enormous computational overheads or severe utility trade-offs. To meet these challenges, we present a new approach to model stealing defenses called gradient redirection. At the core of our approach is a provably optimal, efficient algorithm for steering an adversary's training updates in a targeted manner. Combined with improvements to surrogate networks and a novel coordinated defense strategy, our gradient redirection defense, called GRAD${}^2$, achieves small utility trade-offs and low computational overhead, outperforming the best prior defenses. Moreover, we demonstrate how gradient redirection enables reprogramming the adversary with arbitrary behavior, which we hope will foster work on new avenues of defense." 575,Memory Safe Computations with XLA Compiler,"Software packages like TensorFlow and PyTorch are designed to support linear algebra operations, and their speed and usability determine their success. However, by prioritising speed, they often neglect memory requirements. As a consequence, the implementations of memory-intensive algorithms that are convenient in terms of software design can often not be run for large problems due to memory overflows. Memory-efficient solutions require complex programming approaches with significant logic outside the computational framework. This impairs the adoption and use of such algorithms. To address this, we developed an XLA compiler extension that adjusts the computational data-flow representation of an algorithm according to a user-specified memory limit. We show that k-nearest neighbour and sparse Gaussian process regression methods can be run at a much larger scale on a single device, where standard implementations would have failed. Our approach leads to better use of hardware resources. We believe that further focus on removing memory constraints at a compiler level will widen the range of machine learning methods that can be developed in the future." 576,Learning Variable Impedance Control for Aerial Sliding on Uneven Heterogeneous Surfaces by Proprioceptive and Tactile Sensing,"The recent development of novel aerial vehicles capable of physically interacting with the environment leads to new applications such as contact-based inspection. These tasks require the robotic system to exchange forces with partially-known environments, which may contain uncertainties including unknown spatially-varying friction properties and discontinuous variations of the surface geometry. Finding a control strategy that is robust against these environmental uncertainties remains an open challenge. This paper presents a learning-based adaptive control strategy for aerial sliding tasks. In particular, the gains of a standard impedance controller are adjusted in real-time by a policy based on the current control signals, proprioceptive measurements, and tactile sensing. This policy is trained in simulation with simplified actuator dynamics in a student-teacher learning setup. The real-world performance of the proposed approach is verified using a tilt-arm omnidirectional flying vehicle. The proposed controller structure combines data-driven and model-based control methods, enabling our approach to successfully transfer directly and without adaptation from simulation to the real platform. Compared to fine-tuned state of the art interaction control methods we achieve reduced tracking error and improved disturbance rejection." 577,Quantum Neural Architecture Search with Quantum Circuits Metric and Bayesian Optimization,"Quantum neural networks are promising for a wide range of applications in the Noisy Intermediate-Scale Quantum era. As such, there is an increasing demand for automatic quantum neural architecture search. We tackle this challenge by designing a quantum circuits metric for Bayesian optimization with Gaussian process. To this goal, we propose a new quantum gates distance that characterizes the gates' action over every quantum state and provide a theoretical perspective on its geometrical properties. Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems including training a quantum generative adversarial network, solving combinatorial optimization in the MaxCut problem, and simulating quantum Fourier transform. Our method can be extended to characterize behaviors of various quantum machine learning models." 578,On the universality of the volatility formation process: when machine learning and rough volatility agree,"We train an LSTM network based on a pooled dataset made of hundreds of liquid stocks aiming to forecast the next daily realized volatility for all stocks. Showing the consistent outperformance of this universal LSTM relative to other asset-specific parametric models, we uncover nonparametric evidences of a universal volatility formation mechanism across assets relating past market realizations, including daily returns and volatilities, to current volatilities. A parsimonious parametric forecasting device combining the rough fractional stochastic volatility and quadratic rough Heston models with fixed parameters results in the same level of performance as the universal LSTM, which confirms the universality of the volatility formation process from a parametric perspective." 579,RevBiFPN: The Fully Reversible Bidirectional Feature Pyramid Network,"This work introduces the RevSilo, the first reversible module for bidirectional multi-scale feature fusion. Like other reversible methods, RevSilo eliminates the need to store hidden activations by recomputing them. Existing reversible methods, however, do not apply to multi-scale feature fusion and are therefore not applicable to a large class of networks. Bidirectional multi-scale feature fusion promotes local and global coherence and has become a de facto design principle for networks targeting spatially sensitive tasks e.g. HRNet and EfficientDet. When paired with high-resolution inputs, these networks achieve state-of-the-art results across various computer vision tasks, but training them requires substantial accelerator memory for saving large, multi-resolution activations. These memory requirements cap network size and limit progress. Using reversible recomputation, the RevSilo alleviates memory issues while still operating across resolution scales. Stacking RevSilos, we create RevBiFPN, a fully reversible bidirectional feature pyramid network. For classification, RevBiFPN is competitive with networks such as EfficientNet while using up to 19.8x lesser training memory. When fine-tuned on COCO, RevBiFPN provides up to a 2.5% boost in AP over HRNet using fewer MACs and a 2.4x reduction in training-time memory." 580,Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks,"As an alternative to classical numerical solvers for partial differential equations (PDEs) subject to boundary value constraints, there has been a surge of interest in investigating neural networks that can solve such problems efficiently. In this work, we design a general solution operator for two different time-independent PDEs using graph neural networks (GNNs) and spectral graph convolutions. We train the networks on simulated data from a finite elements solver on a variety of shapes and inhomogeneities. In contrast to previous works, we focus on the ability of the trained operator to generalize to previously unseen scenarios. Specifically, we test generalization to meshes with different shapes and superposition of solutions for a different number of inhomogeneities. We find that training on a diverse dataset with lots of variation in the finite element meshes is a key ingredient for achieving good generalization results in all cases. With this, we believe that GNNs can be used to learn solution operators that generalize over a range of properties and produce solutions much faster than a generic solver. Our dataset, which we make publicly available, can be used and extended to verify the robustness of these models under varying conditions." 581,Continual Learning with Transformers for Image Classification,"In many real-world scenarios, data to train machine learning models become available over time. However, neural network models struggle to continually learn new concepts without forgetting what has been learnt in the past. This phenomenon is known as catastrophic forgetting and it is often difficult to prevent due to practical constraints, such as the amount of data that can be stored or the limited computation sources that can be used. Moreover, training large neural networks, such as Transformers, from scratch is very costly and requires a vast amount of training data, which might not be available in the application domain of interest. A recent trend indicates that dynamic architectures based on an expansion of the parameters can reduce catastrophic forgetting efficiently in continual learning, but this needs complex tuning to balance the growing number of parameters and barely share any information across tasks. As a result, they struggle to scale to a large number of tasks without significant overhead. In this paper, we validate in the computer vision domain a recent solution called Adaptive Distillation of Adapters (ADA), which is developed to perform continual learning using pre-trained Transformers and Adapters on text classification tasks. We empirically demonstrate on different classification tasks that this method maintains a good predictive performance without retraining the model or increasing the number of model parameters over the time. Besides it is significantly faster at inference time compared to the state-of-the-art methods." 582,Equivariant Priors for Compressed Sensing with Unknown Orientation,"In compressed sensing, the goal is to reconstruct the signal from an underdetermined system of linear measurements. Thus, prior knowledge about the signal of interest and its structure is required. Additionally, in many scenarios, the signal has an unknown orientation prior to measurements. To address such recovery problems, we propose using equivariant generative models as a prior, which encapsulate orientation information in their latent space. Thereby, we show that signals with unknown orientations can be recovered with iterative gradient descent on the latent space of these models and provide additional theoretical recovery guarantees. We construct an equivariant variational autoencoder and use the decoder as generative prior for compressed sensing. We discuss additional potential gains of the proposed approach in terms of convergence and latency." 583,Safe Exploration Incurs Nearly No Additional Sample Complexity for Reward-free RL,"While the primary goal of the exploration phase in reward-free reinforcement learning (RF-RL) is to reduce the uncertainty in the estimated model with minimum number of trajectories, in practice, the agent often needs to abide by certain safety constraint at the same time. It remains unclear how such safe exploration requirement would affect the corresponding sample complexity to achieve the desired optimality of the obtained policy in planning. In this work, we make a first attempt to answer this question. In particular, we consider the scenario where a safe baseline policy is known beforehand, and propose a unified Safe reWard-frEe ExploraTion (SWEET) framework. We then particularize the SWEET framework to the tabular and the low-rank MDP settings, and develop algorithms coined Tabular-SWEET and Low-rank-SWEET, respectively. Both algorithms leverage the concavity and continuity of the newly introduced truncated value functions, and are guaranteed to achieve zero constraint violation during exploration with high probability. Furthermore, both algorithms can provably find a near-optimal policy subject to any constraint in the planning phase. Remarkably, the sample complexities under both algorithms match or even outperform the state of the art in their constraint-free counterparts up to some constant factors, proving that safety constraint hardly increases the sample complexity for RF-RL." 584,Deep Neural Networks pruning via the Structured Perspective Regularization,"In Machine Learning, Artificial Neural Networks (ANNs) are a very powerful tool, broadly used in many applications. Often, the selected (deep) architectures include many layers, and therefore a large amount of parameters, which makes training, storage and inference expensive. This motivated a stream of research about compressing the original networks into smaller ones without excessively sacrificing performances. Among the many proposed compression approaches, one of the most popular is \emph{pruning}, whereby entire elements of the ANN (links, nodes, channels, \ldots) and the corresponding weights are deleted. Since the nature of the problem is inherently combinatorial (what elements to prune and what not), we propose a new pruning method based on Operational Research tools. We start from a natural Mixed-Integer-Programming model for the problem, and we use the Perspective Reformulation technique to strengthen its continuous relaxation. Projecting away the indicator variables from this reformulation yields a new regularization term, which we call the Structured Perspective Regularization, that leads to structured pruning of the initial architecture. We test our method on some ResNet architectures applied to CIFAR-10, CIFAR-100 and ImageNet datasets, obtaining competitive performances w.r.t.~the state of the art for structured pruning." 585,Modeling Extraneous Activity Delays in Business Process Simulation,"Business Process Simulation (BPS) is a common approach to estimate the impact of changes to a business process on its performance measures. For example, BPS allows us to estimate what would be the cycle time of a process if we automated one of its activities. The starting point of BPS is a business process model annotated with simulation parameters (a BPS model). Several studies have proposed methods to automatically discover BPS models from event logs via process mining. However, current techniques in this space discover BPS models that only capture waiting times caused by resource contention or resource unavailability. Oftentimes, a considerable portion of the waiting time in a business process is caused by extraneous delays, e.g. a resource waits for the customer to return a phone call. This paper proposes a method that discovers extraneous delays from input data, and injects timer events into a BPS model to capture the discovered delays. An empirical evaluation involving synthetic and real-life logs shows that the approach produces BPS models that better reflect the temporal dynamics of the process, relative to BPS models that do not capture extraneous delays." 586,Short-Term Plasticity Neurons Learning to Learn and Forget,"Short-term plasticity (STP) is a mechanism that stores decaying memories in synapses of the cerebral cortex. In computing practice, STP has been used, but mostly in the niche of spiking neurons, even though theory predicts that it is the optimal solution to certain dynamic tasks. Here we present a new type of recurrent neural unit, the STP Neuron (STPN), which indeed turns out strikingly powerful. Its key mechanism is that synapses have a state, propagated through time by a self-recurrent connection-within-the-synapse. This formulation enables training the plasticity with backpropagation through time, resulting in a form of learning to learn and forget in the short term. The STPN outperforms all tested alternatives, i.e. RNNs, LSTMs, other models with fast weights, and differentiable plasticity. We confirm this in both supervised and reinforcement learning (RL), and in tasks such as Associative Retrieval, Maze Exploration, Atari video games, and MuJoCo robotics. Moreover, we calculate that, in neuromorphic or biological circuits, the STPN minimizes energy consumption across models, as it depresses individual synapses dynamically. Based on these, biological STP may have been a strong evolutionary attractor that maximizes both efficiency and computational power. The STPN now brings these neuromorphic advantages also to a broad spectrum of machine learning practice. Code is available at https://github.com/NeuromorphicComputing/stpn" 587,On the amplification of security and privacy risks by post-hoc explanations in machine learning models,"A variety of explanation methods have been proposed in recent years to help users gain insights into the results returned by neural networks, which are otherwise complex and opaque black-boxes. However, explanations give rise to potential side-channels that can be leveraged by an adversary for mounting attacks on the system. In particular, post-hoc explanation methods that highlight input dimensions according to their importance or relevance to the result also leak information that weakens security and privacy. In this work, we perform the first systematic characterization of the privacy and security risks arising from various popular explanation techniques. First, we propose novel explanation-guided black-box evasion attacks that lead to 10 times reduction in query count for the same success rate. We show that the adversarial advantage from explanations can be quantified as a reduction in the total variance of the estimated gradient. Second, we revisit the membership information leaked by common explanations. Contrary to observations in prior studies, via our modified attacks we show significant leakage of membership information (above 100% improvement over prior results), even in a much stricter black-box setting. Finally, we study explanation-guided model extraction attacks and demonstrate adversarial gains through a large reduction in query count." 588,Learning Symmetric Rules with SATNet,"SATNet is a differentiable constraint solver with a custom backpropagation algorithm, which can be used as a layer in a deep-learning system. It is a promising proposal for bridging deep learning and logical reasoning. In fact, SATNet has been successfully applied to learn, among others, the rules of a complex logical puzzle, such as Sudoku, just from input and output pairs where inputs are given as images. In this paper, we show how to improve the learning of SATNet by exploiting symmetries in the target rules of a given but unknown logical puzzle or more generally a logical formula. We present SymSATNet, a variant of SATNet that translates the given symmetries of the target rules to a condition on the parameters of SATNet and requires that the parameters should have a particular parametric form that guarantees the condition. The requirement dramatically reduces the number of parameters to learn for the rules with enough symmetries, and makes the parameter learning of SymSATNet much easier than that of SATNet. We also describe a technique for automatically discovering symmetries of the target rules from examples. Our experiments with Sudoku and Rubik's cube show the substantial improvement of SymSATNet over the baseline SATNet." 589,Stain Isolation-based Guidance for Improved Stain Translation,"Unsupervised and unpaired domain translation using generative adversarial neural networks, and more precisely CycleGAN, is state of the art for the stain translation of histopathology images. It often, however, suffers from the presence of cycle-consistent but non structure-preserving errors. We propose an alternative approach to the set of methods which, relying on segmentation consistency, enable the preservation of pathology structures. Focusing on immunohistochemistry (IHC) and multiplexed immunofluorescence (mIF), we introduce a simple yet effective guidance scheme as a loss function that leverages the consistency of stain translation with stain isolation. Qualitative and quantitative experiments show the ability of the proposed approach to improve translation between the two domains." 590,Increasing Confidence in Adversarial Robustness Evaluations,"Hundreds of defenses have been proposed to make deep neural networks robust against minimal (adversarial) input perturbations. However, only a handful of these defenses held up their claims because correctly evaluating robustness is extremely challenging: Weak attacks often fail to find adversarial examples even if they unknowingly exist, thereby making a vulnerable network look robust. In this paper, we propose a test to identify weak attacks, and thus weak defense evaluations. Our test slightly modifies a neural network to guarantee the existence of an adversarial example for every sample. Consequentially, any correct attack must succeed in breaking this modified network. For eleven out of thirteen previously-published defenses, the original evaluation of the defense fails our test, while stronger attacks that break these defenses pass it. We hope that attack unit tests - such as ours - will be a major component in future robustness evaluations and increase confidence in an empirical field that is currently riddled with skepticism." 591,Fundamental Limits of Communication Efficiency for Model Aggregation in Distributed Learning: A Rate-Distortion Approach,"One of the main focuses in distributed learning is communication efficiency, since model aggregation at each round of training can consist of millions to billions of parameters. Several model compression methods, such as gradient quantization and sparsification, have been proposed to improve the communication efficiency of model aggregation. However, the information-theoretic minimum communication cost for a given distortion of gradient estimators is still unknown. In this paper, we study the fundamental limit of communication cost of model aggregation in distributed learning from a rate-distortion perspective. By formulating the model aggregation as a vector Gaussian CEO problem, we derive the rate region bound and sum-rate-distortion function for the model aggregation problem, which reveals the minimum communication rate at a particular gradient distortion upper bound. We also analyze the communication cost at each iteration and total communication cost based on the sum-rate-distortion function with the gradient statistics of real-world datasets. It is found that the communication gain by exploiting the correlation between worker nodes is significant for SignSGD, and a high distortion of gradient estimator can achieve low total communication cost in gradient compression." 592,BAGEL: A Benchmark for Assessing Graph Neural Network Explanations,"The problem of interpreting the decisions of machine learning is a well-researched and important. We are interested in a specific type of machine learning model that deals with graph data called graph neural networks. Evaluating interpretability approaches for graph neural networks (GNN) specifically are known to be challenging due to the lack of a commonly accepted benchmark. Given a GNN model, several interpretability approaches exist to explain GNN models with diverse (sometimes conflicting) evaluation methodologies. In this paper, we propose a benchmark for evaluating the explainability approaches for GNNs called Bagel. In Bagel, we firstly propose four diverse GNN explanation evaluation regimes -- 1) faithfulness, 2) sparsity, 3) correctness. and 4) plausibility. We reconcile multiple evaluation metrics in the existing literature and cover diverse notions for a holistic evaluation. Our graph datasets range from citation networks, document graphs, to graphs from molecules and proteins. We conduct an extensive empirical study on four GNN models and nine post-hoc explanation approaches for node and graph classification tasks. We open both the benchmarks and reference implementations and make them available at https://github.com/Mandeep-Rathee/Bagel-benchmark." 593,Improving Disease Classification Performance and Explainability of Deep Learning Models in Radiology with Heatmap Generators,"As deep learning is widely used in the radiology field, the explainability of such models is increasingly becoming essential to gain clinicians' trust when using the models for diagnosis. In this research, three experiment sets were conducted with a U-Net architecture to improve the classification performance while enhancing the heatmaps corresponding to the model's focus through incorporating heatmap generators during training. All of the experiments used the dataset that contained chest radiographs, associated labels from one of the three conditions (""normal"", ""congestive heart failure (CHF)"", and ""pneumonia""), and numerical information regarding a radiologist's eye-gaze coordinates on the images. The paper (A. Karargyris and Moradi, 2021) that introduced this dataset developed a U-Net model, which was treated as the baseline model for this research, to show how the eye-gaze data can be used in multi-modal training for explainability improvement. To compare the classification performances, the 95% confidence intervals (CI) of the area under the receiver operating characteristic curve (AUC) were measured. The best method achieved an AUC of 0.913 (CI: 0.860-0.966). The greatest improvements were for the ""pneumonia"" and ""CHF"" classes, which the baseline model struggled most to classify, resulting in AUCs of 0.859 (CI: 0.732-0.957) and 0.962 (CI: 0.933-0.989), respectively. The proposed method's decoder was also able to produce probability masks that highlight the determining image parts in model classifications, similarly as the radiologist's eye-gaze data. Hence, this work showed that incorporating heatmap generators and eye-gaze information into training can simultaneously improve disease classification and provide explainable visuals that align well with how the radiologist viewed the chest radiographs when making diagnosis." 594,Towards a Grounded Theory of Causation for Embodied AI,"There exist well-developed frameworks for causal modelling, but these require rather a lot of human domain expertise to define causal variables and perform interventions. In order to enable autonomous agents to learn abstract causal models through interactive experience, the existing theoretical foundations need to be extended and clarified. Existing frameworks give no guidance regarding variable choice / representation, and more importantly, give no indication as to which behaviour policies or physical transformations of state space shall count as interventions. The framework sketched in this paper describes actions as transformations of state space, for instance induced by an agent running a policy. This makes it possible to describe in a uniform way both transformations of the micro-state space and abstract models thereof, and say when the latter is veridical / grounded / natural. We then introduce (causal) variables, define a mechanism as an invariant predictor, and say when an action can be viewed as a ``surgical intervention'', thus bringing the objective of causal representation & intervention skill learning into clearer focus." 595,Smart Application for Fall Detection Using Wearable ECG & Accelerometer Sensors,"Timely and reliable detection of falls is a large and rapidly growing field of research due to the medical and financial demand of caring for a constantly growing elderly population. Within the past 2 decades, the availability of high-quality hardware (high-quality sensors and AI microchips) and software (machine learning algorithms) technologies has served as a catalyst for this research by giving developers the capabilities to develop such systems. This study developed multiple application components in order to investigate the development challenges and choices for fall detection systems, and provide materials for future research. The smart application developed using this methodology was validated by the results from fall detection modelling experiments and model mobile deployment. The best performing model overall was the ResNet152 on a standardised, and shuffled dataset with a 2s window size which achieved 92.8% AUC, 7.28% sensitivity, and 98.33% specificity. Given these results it is evident that accelerometer and ECG sensors are beneficial for fall detection, and allow for the discrimination between falls and other activities. This study leaves a significant amount of room for improvement due to weaknesses identified in the resultant dataset. These improvements include using a labelling protocol for the critical phase of a fall, increasing the number of dataset samples, improving the test subject representation, and experimenting with frequency domain preprocessing." 596,Information Entropy Initialized Concrete Autoencoder for Optimal Sensor Placement and Reconstruction of Geophysical Fields,"We propose a new approach to the optimal placement of sensors for the problem of reconstructing geophysical fields from sparse measurements. Our method consists of two stages. In the first stage, we estimate the variability of the physical field as a function of spatial coordinates by approximating its information entropy through the Conditional PixelCNN network. To calculate the entropy, a new ordering of a two-dimensional data array (spiral ordering) is proposed, which makes it possible to obtain the entropy of a physical field simultaneously for several spatial scales. In the second stage, the entropy of the physical field is used to initialize the distribution of optimal sensor locations. This distribution is further optimized with the Concrete Autoencoder architecture with the straight-through gradient estimator and adversarial loss to simultaneously minimize the number of sensors and maximize reconstruction accuracy. Our method scales linearly with data size, unlike commonly used Principal Component Analysis. We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands. For these examples, we compute the reconstruction error of our method and a few baselines. We test our approach against two baselines (1) PCA with QR factorization and (2) climatology. We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents." 597,Dynamic Memory for Interpretable Sequential Optimisation,"Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale, to provide business operators with automated adaptive optimisation. Our solution aims to provide interpretable learning that can be trusted by humans, whilst responding to non-stationarity to minimise regret. To this end, we develop an adaptive Bayesian learning agent that employs a novel form of dynamic memory. It enables interpretability through statistical hypothesis testing, by targeting a set point of statistical power when comparing rewards and adjusting its memory dynamically to achieve this power. By design, the agent is agnostic to different kinds of non-stationarity. Using numerical simulations, we compare its performance against an existing proposal and show that, under multiple non-stationary scenarios, our agent correctly adapts to real changes in the true rewards. In all bandit solutions, there is an explicit trade-off between learning and achieving maximal performance. Our solution sits on a different point on this trade-off when compared to another similarly robust approach: we prioritise interpretability, which relies on more learning, at the cost of some regret. We describe the architecture of a large-scale deployment of automatic optimisation-as-a-service where our agent achieves interpretability whilst adapting to changing circumstances." 598,RAW-GNN: RAndom Walk Aggregation based Graph Neural Network,"Graph-Convolution-based methods have been successfully applied to representation learning on homophily graphs where nodes with the same label or similar attributes tend to connect with one another. Due to the homophily assumption of Graph Convolutional Networks (GCNs) that these methods use, they are not suitable for heterophily graphs where nodes with different labels or dissimilar attributes tend to be adjacent. Several methods have attempted to address this heterophily problem, but they do not change the fundamental aggregation mechanism of GCNs because they rely on summation operators to aggregate information from neighboring nodes, which is implicitly subject to the homophily assumption. Here, we introduce a novel aggregation mechanism and develop a RAndom Walk Aggregation-based Graph Neural Network (called RAW-GNN) method. The proposed approach integrates the random walk strategy with graph neural networks. The new method utilizes breadth-first random walk search to capture homophily information and depth-first search to collect heterophily information. It replaces the conventional neighborhoods with path-based neighborhoods and introduces a new path-based aggregator based on Recurrent Neural Networks. These designs make RAW-GNN suitable for both homophily and heterophily graphs. Extensive experimental results showed that the new method achieved state-of-the-art performance on a variety of homophily and heterophily graphs." 599,Robustifying Vision Transformer without Retraining from Scratch by Test-Time Class-Conditional Feature Alignment,"Vision Transformer (ViT) is becoming more popular in image processing. Specifically, we investigate the effectiveness of test-time adaptation (TTA) on ViT, a technique that has emerged to correct its prediction during test-time by itself. First, we benchmark various test-time adaptation approaches on ViT-B16 and ViT-L16. It is shown that the TTA is effective on ViT and the prior-convention (sensibly selecting modulation parameters) is not necessary when using proper loss function. Based on the observation, we propose a new test-time adaptation method called class-conditional feature alignment (CFA), which minimizes both the class-conditional distribution differences and the whole distribution differences of the hidden representation between the source and target in an online manner. Experiments of image classification tasks on common corruption (CIFAR-10-C, CIFAR-100-C, and ImageNet-C) and domain adaptation (digits datasets and ImageNet-Sketch) show that CFA stably outperforms the existing baselines on various datasets. We also verify that CFA is model agnostic by experimenting on ResNet, MLP-Mixer, and several ViT variants (ViT-AugReg, DeiT, and BeiT). Using BeiT backbone, CFA achieves 19.8% top-1 error rate on ImageNet-C, outperforming the existing test-time adaptation baseline 44.0%. This is a state-of-the-art result among TTA methods that do not need to alter training phase." 600,SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier,"Deep neural networks present impressive performance, yet they cannot reliably estimate their predictive confidence, limiting their applicability in high-risk domains. We show that applying a multi-label one-vs-all loss reveals classification ambiguity and reduces model overconfidence. The introduced SLOVA (Single Label One-Vs-All) model redefines typical one-vs-all predictive probabilities to a single label situation, where only one class is the correct answer. The proposed classifier is confident only if a single class has a high probability and other probabilities are negligible. Unlike the typical softmax function, SLOVA naturally detects out-of-distribution samples if the probabilities of all other classes are small. The model is additionally fine-tuned with exponential calibration, which allows us to precisely align the confidence score with model accuracy. We verify our approach on three tasks. First, we demonstrate that SLOVA is competitive with the state-of-the-art on in-distribution calibration. Second, the performance of SLOVA is robust under dataset shifts. Finally, our approach performs extremely well in the detection of out-of-distribution samples. Consequently, SLOVA is a tool that can be used in various applications where uncertainty modeling is required." 601,QTI Submission to DCASE 2021: residual normalization for device-imbalanced acoustic scene classification with efficient design,"This technical report describes the details of our TASK1A submission of the DCASE2021 challenge. The goal of the task is to design an audio scene classification system for device-imbalanced datasets under the constraints of model complexity. This report introduces four methods to achieve the goal. First, we propose Residual Normalization, a novel feature normalization method that uses instance normalization with a shortcut path to discard unnecessary device-specific information without losing useful information for classification. Second, we design an efficient architecture, BC-ResNet-Mod, a modified version of the baseline architecture with a limited receptive field. Third, we exploit spectrogram-to-spectrogram translation from one to multiple devices to augment training data. Finally, we utilize three model compression schemes: pruning, quantization, and knowledge distillation to reduce model complexity. The proposed system achieves an average test accuracy of 76.3% in TAU Urban Acoustic Scenes 2020 Mobile, development dataset with 315k parameters, and average test accuracy of 75.3% after compression to 61.0KB of non-zero parameters." 602,Feature Learning for Dimensionality Reduction toward Maximal Extraction of Hidden Patterns,"Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are strongly distorted or hidden by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate an optimized set of data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, called neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALM's effectiveness through experiments using synthetic datasets and multiple case studies on real-world datasets." 603,Parallel Instance Filtering for Malware Detection,"Machine learning algorithms are widely used in the area of malware detection. With the growth of sample amounts, training of classification algorithms becomes more and more expensive. In addition, training data sets may contain redundant or noisy instances. The problem to be solved is how to select representative instances from large training data sets without reducing the accuracy. This work presents a new parallel instance selection algorithm called Parallel Instance Filtering (PIF). The main idea of the algorithm is to split the data set into non-overlapping subsets of instances covering the whole data set and apply a filtering process for each subset. Each subset consists of instances that have the same nearest enemy. As a result, the PIF algorithm is fast since subsets are processed independently of each other using parallel computation. We compare the PIF algorithm with several state-of-the-art instance selection algorithms on a large data set of 500,000 malicious and benign samples. The feature set was extracted using static analysis, and it includes metadata from the portable executable file format. Our experimental results demonstrate that the proposed instance selection algorithm reduces the size of a training data set significantly with the only slightly decreased accuracy. The PIF algorithm outperforms existing instance selection methods used in the experiments in terms of the ratio between average classification accuracy and storage percentage." 604,Explaining Any ML Model? -- On Goals and Capabilities of XAI,"An increasing ubiquity of machine learning (ML) motivates research on algorithms to explain ML models and their predictions -- so-called eXplainable Artificial Intelligence (XAI). Despite many survey papers and discussions, the goals and capabilities of XAI algorithms are far from being well understood. We argue that this is because of a problematic reasoning scheme in XAI literature: XAI algorithms are said to complement ML models with desired properties, such as ""interpretability"", or ""explainability"". These properties are in turn assumed to contribute to a goal, like ""trust"" in an ML system. But most properties lack precise definitions and their relationship to such goals is far from obvious. The result is a reasoning scheme that obfuscates research results and leaves an important question unanswered: What can one expect from XAI algorithms? In this article, we clarify the goals and capabilities of XAI algorithms from a concrete perspective: that of their users. Explaining ML models is only necessary if users have questions about them. We show that users can ask diverse questions, but that only one of them can be answered by current XAI algorithms. Answering this core question can be trivial, difficult or even impossible, depending on the ML application. Based on these insights, we outline which capabilities policymakers, researchers and society can reasonably expect from XAI algorithms." 605,Disentangling Embedding Spaces with Minimal Distributional Assumptions,"Interest in understanding and factorizing learned embedding spaces is growing. For instance, recent concept-based explanation techniques analyze a machine learning model in terms of interpretable latent components. Such components have to be discovered in the model's embedding space, e.g., through independent component analysis (ICA) or modern disentanglement learning techniques. While these unsupervised approaches offer a sound formal framework, they either require access to a data generating function or impose rigid assumptions on the data distribution, such as independence of components, that are often violated in practice. In this work, we link conceptual explainability for vision models with disentanglement learning and ICA. This enables us to provide first theoretical results on how components can be identified without requiring any distributional assumptions. From these insights, we derive the disjoint attributions (DA) concept discovery method that is applicable to a broader class of problems than current approaches but yet possesses a formal identifiability guarantee. In an extensive comparison against component analysis and over 300 state-of-the-art disentanglement models, DA stably maintains superior performance, even under varying distributions and correlation strengths." 606,LiteCON: An All-Photonic Neuromorphic Accelerator for Energy-efficient Deep Learning (Preprint),"Deep learning is highly pervasive in today's data-intensive era. In particular, convolutional neural networks (CNNs) are being widely adopted in a variety of fields for superior accuracy. However, computing deep CNNs on traditional CPUs and GPUs brings several performance and energy pitfalls. Several novel approaches based on ASIC, FPGA, and resistive-memory devices have been recently demonstrated with promising results. Most of them target only the inference (testing) phase of deep learning. There have been very limited attempts to design a full-fledged deep learning accelerator capable of both training and inference. It is due to the highly compute and memory-intensive nature of the training phase. In this paper, we propose LiteCON, a novel analog photonics CNN accelerator. LiteCON uses silicon microdisk-based convolution, memristor-based memory, and dense-wavelength-division-multiplexing for energy-efficient and ultrafast deep learning. We evaluate LiteCON using a commercial CAD framework (IPKISS) on deep learning benchmark models including LeNet and VGG-Net. Compared to the state-of-the-art, LiteCON improves the CNN throughput, energy efficiency, and computational efficiency by up to 32x, 37x, and 5x respectively with trivial accuracy degradation." 607,Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting,"Recent studies have shown great promise in applying graph neural networks for multivariate time series forecasting, where the interactions of time series are described as a graph structure and the variables are represented as the graph nodes. Along this line, existing methods usually assume that the graph structure (or the adjacency matrix), which determines the aggregation manner of graph neural network, is fixed either by definition or self-learning. However, the interactions of variables can be dynamic and evolutionary in real-world scenarios. Furthermore, the interactions of time series are quite different if they are observed at different time scales. To equip the graph neural network with a flexible and practical graph structure, in this paper, we investigate how to model the evolutionary and multi-scale interactions of time series. In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations among time series. Then, a series of adjacency matrices are constructed under a recurrent manner to represent the evolving correlations at each layer. Moreover, a unified neural network is provided to integrate the components above to get the final prediction. In this way, we can capture the pair-wise correlations and temporal dependency simultaneously. Finally, experiments on both single-step and multi-step forecasting tasks demonstrate the superiority of our method over the state-of-the-art approaches." 608,Sublinear-Time Clustering Oracle for Signed Graphs,"Social networks are often modeled using signed graphs, where vertices correspond to users and edges have a sign that indicates whether an interaction between users was positive or negative. The arising signed graphs typically contain a clear community structure in the sense that the graph can be partitioned into a small number of polarized communities, each defining a sparse cut and indivisible into smaller polarized sub-communities. We provide a local clustering oracle for signed graphs with such a clear community structure, that can answer membership queries, i.e., ""Given a vertex $v$, which community does $v$ belong to?"", in sublinear time by reading only a small portion of the graph. Formally, when the graph has bounded maximum degree and the number of communities is at most $O(\log n)$, then with $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ preprocessing time, our oracle can answer each membership query in $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ time, and it correctly classifies a $(1-\varepsilon)$-fraction of vertices w.r.t. a set of hidden planted ground-truth communities. Our oracle is desirable in applications where the clustering information is needed for only a small number of vertices. Previously, such local clustering oracles were only known for unsigned graphs; our generalization to signed graphs requires a number of new ideas and gives a novel spectral analysis of the behavior of random walks with signs. We evaluate our algorithm for constructing such an oracle and answering membership queries on both synthetic and real-world datasets, validating its performance in practice." 609,Improving Correlation Capture in Generating Imbalanced Data using Differentially Private Conditional GANs,"Despite the remarkable success of Generative Adversarial Networks (GANs) on text, images, and videos, generating high-quality tabular data is still under development owing to some unique challenges such as capturing dependencies in imbalanced data, optimizing the quality of synthetic patient data while preserving privacy. In this paper, we propose DP-CGANS, a differentially private conditional GAN framework consisting of data transformation, sampling, conditioning, and networks training to generate realistic and privacy-preserving tabular data. DP-CGANS distinguishes categorical and continuous variables and transforms them to latent space separately. Then, we structure a conditional vector as an additional input to not only presents the minority class in the imbalanced data, but also capture the dependency between variables. We inject statistical noise to the gradients in the networking training process of DP-CGANS to provide a differential privacy guarantee. We extensively evaluate our model with state-of-the-art generative models on three public datasets and two real-world personal health datasets in terms of statistical similarity, machine learning performance, and privacy measurement. We demonstrate that our model outperforms other comparable models, especially in capturing dependency between variables. Finally, we present the balance between data utility and privacy in synthetic data generation considering the different data structure and characteristics of real-world datasets such as imbalance variables, abnormal distributions, and sparsity of data." 610,Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems,"Detecting beneficial feature interactions is essential in recommender systems, and existing approaches achieve this by examining all the possible feature interactions. However, the cost of examining all the possible higher-order feature interactions is prohibitive (exponentially growing with the order increasing). Hence existing approaches only detect limited order (e.g., combinations of up to four features) beneficial feature interactions, which may miss beneficial feature interactions with orders higher than the limitation. In this paper, we propose a hypergraph neural network based model named HIRS. HIRS is the first work that directly generates beneficial feature interactions of arbitrary orders and makes recommendation predictions accordingly. The number of generated feature interactions can be specified to be much smaller than the number of all the possible interactions and hence, our model admits a much lower running time. To achieve an effective algorithm, we exploit three properties of beneficial feature interactions, and propose deep-infomax-based methods to guide the interaction generation. Our experimental results show that HIRS outperforms state-of-the-art algorithms by up to 5% in terms of recommendation accuracy." 611,Classification of ADHD Patients Using Kernel Hierarchical Extreme Learning Machine,"Recently, the application of deep learning models to diagnose neuropsychiatric diseases from brain imaging data has received more and more attention. However, in practice, exploring interactions in brain functional connectivity based on operational magnetic resonance imaging data is critical for studying mental illness. Since Attention-Deficit and Hyperactivity Disorder (ADHD) is a type of chronic disease that is very difficult to diagnose in the early stages, it is necessary to improve the diagnosis accuracy of such illness using machine learning models treating patients before the critical condition. In this study, we utilize the dynamics of brain functional connectivity to model features from medical imaging data, which can extract the differences in brain function interactions between Normal Control (NC) and ADHD. To meet that requirement, we employ the Bayesian connectivity change-point model to detect brain dynamics using the local binary encoding approach and kernel hierarchical extreme learning machine for classifying features. To verify our model, we experimented with it on several real-world children's datasets, and our results achieved superior classification rates compared to the state-of-the-art models." 612,Exploring linguistic feature and model combination for speech recognition based automatic AD detection,"Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and delay progression. Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques. Scarcity of such specialist data leads to uncertainty in both model selection and feature learning when developing such systems. To this end, this paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders on limited data, before the resulting embedding features being fed into an ensemble of backend classifiers to produce the final AD detection decision via majority voting. Experiments conducted on the ADReSS20 Challenge dataset suggest consistent performance improvements were obtained using model and feature combination in system development. State-of-the-art AD detection accuracies of 91.67 percent and 93.75 percent were obtained using manual and ASR speech transcripts respectively on the ADReSS20 test set consisting of 48 elderly speakers." 613,ECG Heartbeat classification using deep transfer learning with Convolutional Neural Network and STFT technique,"Electrocardiogram (ECG) is a simple non-invasive measure to identify heart-related issues such as irregular heartbeats known as arrhythmias. While artificial intelligence and machine learning is being utilized in a wide range of healthcare related applications and datasets, many arrhythmia classifiers using deep learning methods have been proposed in recent years. However, sizes of the available datasets from which to build and assess machine learning models is often very small and the lack of well-annotated public ECG datasets is evident. In this paper, we propose a deep transfer learning framework that is aimed to perform classification on a small size training dataset. The proposed method is to fine-tune a general-purpose image classifier ResNet-18 with MIT-BIH arrhythmia dataset in accordance with the AAMI EC57 standard. This paper further investigates many existing deep learning models that have failed to avoid data leakage against AAMI recommendations. We compare how different data split methods impact the model performance. This comparison study implies that future work in arrhythmia classification should follow the AAMI EC57 standard when using any including MIT-BIH arrhythmia dataset." 614,DistSPECTRL: Distributing Specifications in Multi-Agent Reinforcement Learning Systems,"While notable progress has been made in specifying and learning objectives for general cyber-physical systems, applying these methods to distributed multi-agent systems still pose significant challenges. Among these are the need to (a) craft specification primitives that allow expression and interplay of both local and global objectives, (b) tame explosion in the state and action spaces to enable effective learning, and (c) minimize coordination frequency and the set of engaged participants for global objectives. To address these challenges, we propose a novel specification framework that allows natural composition of local and global objectives used to guide training of a multi-agent system. Our technique enables learning expressive policies that allow agents to operate in a coordination-free manner for local objectives, while using a decentralized communication protocol for enforcing global ones. Experimental results support our claim that sophisticated multi-agent distributed planning problems can be effectively realized using specification-guided learning." 615,Adaptive Multi-view Rule Discovery for Weakly-Supervised Compatible Products Prediction,"On e-commerce platforms, predicting if two products are compatible with each other is an important functionality to achieve trustworthy product recommendation and search experience for consumers. However, accurately predicting product compatibility is difficult due to the heterogeneous product data and the lack of manually curated training data. We study the problem of discovering effective labeling rules that can enable weakly-supervised product compatibility prediction. We develop AMRule, a multi-view rule discovery framework that can (1) adaptively and iteratively discover novel rulers that can complement the current weakly-supervised model to improve compatibility prediction; (2) discover interpretable rules from both structured attribute tables and unstructured product descriptions. AMRule adaptively discovers labeling rules from large-error instances via a boosting-style strategy, the high-quality rules can remedy the current model's weak spots and refine the model iteratively. For rule discovery from structured product attributes, we generate composable high-order rules from decision trees; and for rule discovery from unstructured product descriptions, we generate prompt-based rules from a pre-trained language model. Experiments on 4 real-world datasets show that AMRule outperforms the baselines by 5.98% on average and improves rule quality and rule proposal efficiency." 616,Cooperative Retriever and Ranker in Deep Recommenders,"Deep recommender systems jointly leverage the retrieval and ranking operations to generate the recommendation result. The retriever targets selecting a small set of relevant candidates from the entire items with high efficiency; while the ranker, usually more precise but time-consuming, is supposed to identify the best items out of the retrieved candidates with high precision. However, the retriever and ranker are usually trained in poorly-cooperative ways, leading to limited recommendation performances when working as an entirety. In this work, we propose a novel DRS training framework CoRR(short for Cooperative Retriever and Ranker), where the retriever and ranker can be mutually reinforced. On one hand, the retriever is learned from recommendation data and the ranker via knowledge distillation; knowing that the ranker is more precise, the knowledge distillation may provide extra weak-supervision signals for the improvement of retrieval quality. On the other hand, the ranker is trained by learning to discriminate the truth positive items from hard negative candidates sampled from the retriever. With the iteration going on, the ranker may become more precise, which in return gives rise to informative training signals for the retriever; meanwhile, with the improvement of retriever, harder negative candidates can be sampled, which contributes to a higher discriminative capability of the ranker. To facilitate the effective conduct of CoRR, an asymptotic-unbiased approximation of KL divergence is introduced for the knowledge distillation over sampled items; besides, a scalable and adaptive strategy is developed to efficiently sample from the retriever. Comprehensive experimental studies are performed over four large-scale benchmark datasets, where CoRR improves the overall recommendation quality resulting from the cooperation between retriever and ranker." 617,H-GCN: A Graph Convolutional Network Accelerator on Versal ACAP Architecture,"Graph Neural Networks (GNNs) have drawn tremendous attention due to their unique capability to extend Machine Learning (ML) approaches to applications broadly-defined as having unstructured data, especially graphs. Compared with other Machine Learning (ML) modalities, the acceleration of Graph Neural Networks (GNNs) is more challenging due to the irregularity and heterogeneity derived from graph typologies. Existing efforts, however, have focused mainly on handling graphs' irregularity and have not studied their heterogeneity. To this end we propose H-GCN, a PL (Programmable Logic) and AIE (AI Engine) based hybrid accelerator that leverages the emerging heterogeneity of Xilinx Versal Adaptive Compute Acceleration Platforms (ACAPs) to achieve high-performance GNN inference. In particular, H-GCN partitions each graph into three subgraphs based on its inherent heterogeneity, and processes them using PL and AIE, respectively. To further improve performance, we explore the sparsity support of AIE and develop an efficient density-aware method to automatically map tiles of sparse matrix-matrix multiplication (SpMM) onto the systolic tensor array. Compared with state-of-the-art GCN accelerators, H-GCN achieves, on average, speedups of 1.1~2.3X." 618,Persistent homology-based descriptor for machine-learning potential,"Constructing efficient descriptors that represent atomic configurations is crucial for developing a superior machine-learning potential. Widely used conventional descriptors are based on two- or three-body correlations of atomic distribution. Recently, several limitations of these many-body descriptors in classifying different configurations were revealed, which have detrimental effects on the prediction of physical properties. We proposed a new class of descriptors based on persistent homology. We focused on the two-dimensional visualization of persistent homology, that is, a persistence diagram, as a descriptor of atomic configurations in the form of an image. We demonstrated that convolutional neural network models based on this descriptor provide sufficient accuracy in predicting the mean energies per atom of amorphous graphene and amorphous carbon. Our results provide an avenue for improving machine-learning potential using descriptors that depict both topological and geometric information." 619,Secure Forward Aggregation for Vertical Federated Neural Networks,"Vertical federated learning (VFL) is attracting much attention because it enables cross-silo data cooperation in a privacy-preserving manner. While most research works in VFL focus on linear and tree models, deep models (e.g., neural networks) are not well studied in VFL. In this paper, we focus on SplitNN, a well-known neural network framework in VFL, and identify a trade-off between data security and model performance in SplitNN. Briefly, SplitNN trains the model by exchanging gradients and transformed data. On the one hand, SplitNN suffers from the loss of model performance since multiply parties jointly train the model using transformed data instead of raw data, and a large amount of low-level feature information is discarded. On the other hand, a naive solution of increasing the model performance through aggregating at lower layers in SplitNN (i.e., the data is less transformed and more low-level feature is preserved) makes raw data vulnerable to inference attacks. To mitigate the above trade-off, we propose a new neural network protocol in VFL called Security Forward Aggregation (SFA). It changes the way of aggregating the transformed data and adopts removable masks to protect the raw data. Experiment results show that networks with SFA achieve both data security and high model performance." 620,SHELS: Exclusive Feature Sets for Novelty Detection and Continual Learning Without Class Boundaries,"While deep neural networks (DNNs) have achieved impressive classification performance in closed-world learning scenarios, they typically fail to generalize to unseen categories in dynamic open-world environments, in which the number of concepts is unbounded. In contrast, human and animal learners have the ability to incrementally update their knowledge by recognizing and adapting to novel observations. In particular, humans characterize concepts via exclusive (unique) sets of essential features, which are used for both recognizing known classes and identifying novelty. Inspired by natural learners, we introduce a Sparse High-level-Exclusive, Low-level-Shared feature representation (SHELS) that simultaneously encourages learning exclusive sets of high-level features and essential, shared low-level features. The exclusivity of the high-level features enables the DNN to automatically detect out-of-distribution (OOD) data, while the efficient use of capacity via sparse low-level features permits accommodating new knowledge. The resulting approach uses OOD detection to perform class-incremental continual learning without known class boundaries. We show that using SHELS for novelty detection results in statistically significant improvements over state-of-the-art OOD detection approaches over a variety of benchmark datasets. Further, we demonstrate that the SHELS model mitigates catastrophic forgetting in a class-incremental learning setting,enabling a combined novelty detection and accommodation framework that supports learning in open-world settings" 621,Generalized Policy Improvement Algorithms with Theoretically Supported Sample Reuse,"Real-world sequential decision making requires data-driven algorithms that provide practical guarantees on performance throughout training while also making efficient use of data. Model-free deep reinforcement learning represents a framework for such data-driven decision making, but existing algorithms typically only focus on one of these goals while sacrificing performance with respect to the other. On-policy algorithms guarantee policy improvement throughout training but suffer from high sample complexity, while off-policy algorithms make efficient use of data through sample reuse but lack theoretical guarantees. In order to balance these competing goals, we develop a class of Generalized Policy Improvement algorithms that combines the policy improvement guarantees of on-policy methods with the efficiency of theoretically supported sample reuse. We demonstrate the benefits of this new class of algorithms through extensive experimental analysis on a variety of continuous control tasks from the DeepMind Control Suite." 622,Personalized Keyword Spotting through Multi-task Learning,"Keyword spotting (KWS) plays an essential role in enabling speech-based user interaction on smart devices, and conventional KWS (C-KWS) approaches have concentrated on detecting user-agnostic pre-defined keywords. However, in practice, most user interactions come from target users enrolled in the device which motivates to construct personalized keyword spotting. We design two personalized KWS tasks; (1) Target user Biased KWS (TB-KWS) and (2) Target user Only KWS (TO-KWS). To solve the tasks, we propose personalized keyword spotting through multi-task learning (PK-MTL) that consists of multi-task learning and task-adaptation. First, we introduce applying multi-task learning on keyword spotting and speaker verification to leverage user information to the keyword spotting system. Next, we design task-specific scoring functions to adapt to the personalized KWS tasks thoroughly. We evaluate our framework on conventional and personalized scenarios, and the results show that PK-MTL can dramatically reduce the false alarm rate, especially in various practical scenarios." 623,Traffic Management of Autonomous Vehicles using Policy Based Deep Reinforcement Learning and Intelligent Routing,"Deep Reinforcement Learning (DRL) uses diverse, unstructured data and makes RL capable of learning complex policies in high dimensional environments. Intelligent Transportation System (ITS) based on Autonomous Vehicles (AVs) offers an excellent playground for policy-based DRL. Deep learning architectures solve computational challenges of traditional algorithms while helping in real-world adoption and deployment of AVs. One of the main challenges in AVs implementation is that it can worsen traffic congestion on roads if not reliably and efficiently managed. Considering each vehicle's holistic effect and using efficient and reliable techniques could genuinely help optimise traffic flow management and congestion reduction. For this purpose, we proposed a intelligent traffic control system that deals with complex traffic congestion scenarios at intersections and behind the intersections. We proposed a DRL-based signal control system that dynamically adjusts traffic signals according to the current congestion situation on intersections. To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks. To achieve the actual benefits of the proposed approach, we break down the data silos and use all the data coming from sensors, detectors, vehicles and roads in combination to achieve sustainable results. We used SUMO micro-simulator for our simulations. The significance of our proposed approach is manifested from the results." 624,Domain Agnostic Few-shot Learning for Speaker Verification,"Deep learning models for verification systems often fail to generalize to new users and new environments, even though they learn highly discriminative features. To address this problem, we propose a few-shot domain generalization framework that learns to tackle distribution shift for new users and new domains. Our framework consists of domain-specific and domain-aggregation networks, which are the experts on specific and combined domains, respectively. By using these networks, we generate episodes that mimic the presence of both novel users and novel domains in the training phase to eventually produce better generalization. To save memory, we reduce the number of domain-specific networks by clustering similar domains together. Upon extensive evaluation on artificially generated noise domains, we can explicitly show generalization ability of our framework. In addition, we apply our proposed methods to the existing competitive architecture on the standard benchmark, which shows further performance improvements." 625,Graph Condensation via Receptive Field Distribution Matching,"Graph neural networks (GNNs) enable the analysis of graphs using deep learning, with promising results in capturing structured information in graphs. This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions. We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution. Thus, we propose Graph Condesation via Receptive Field Distribution Matching (GCDM), which is accomplished by optimizing the synthetic graph through the use of a distribution matching loss quantified by maximum mean discrepancy (MMD). Additionally, we demonstrate that the synthetic graph generated by GCDM is highly generalizable to a variety of models in evaluation phase and that the condensing speed is significantly improved using this framework." 626,Dummy Prototypical Networks for Few-Shot Open-Set Keyword Spotting,"Keyword spotting is the task of detecting a keyword in streaming audio. Conventional keyword spotting targets predefined keywords classification, but there is growing attention in few-shot (query-by-example) keyword spotting, e.g., N-way classification given M-shot support samples. Moreover, in real-world scenarios, there can be utterances from unexpected categories (open-set) which need to be rejected rather than classified as one of the N classes. Combining the two needs, we tackle few-shot open-set keyword spotting with a new benchmark setting, named splitGSC. We propose episode-known dummy prototypes based on metric learning to detect an open-set better and introduce a simple and powerful approach, Dummy Prototypical Networks (D-ProtoNets). Our D-ProtoNets shows clear margins compared to recent few-shot open-set recognition (FSOSR) approaches in the suggested splitGSC. We also verify our method on a standard benchmark, miniImageNet, and D-ProtoNets shows the state-of-the-art open-set detection rate in FSOSR." 627,POEM: Out-of-Distribution Detection with Posterior Sampling,"Out-of-distribution (OOD) detection is indispensable for machine learning models deployed in the open world. Recently, the use of an auxiliary outlier dataset during training (also known as outlier exposure) has shown promising performance. As the sample space for potential OOD data can be prohibitively large, sampling informative outliers is essential. In this work, we propose a novel posterior sampling-based outlier mining framework, POEM, which facilitates efficient use of outlier data and promotes learning a compact decision boundary between ID and OOD data for improved detection. We show that POEM establishes state-of-the-art performance on common benchmarks. Compared to the current best method that uses a greedy sampling strategy, POEM improves the relative performance by 42.0% and 24.2% (FPR95) on CIFAR-10 and CIFAR-100, respectively. We further provide theoretical insights on the effectiveness of POEM for OOD detection." 628,Learning from human perception to improve automatic speaker verification in style-mismatched conditions,"Our prior experiments show that humans and machines seem to employ different approaches to speaker discrimination, especially in the presence of speaking style variability. The experiments examined read versus conversational speech. Listeners focused on speaker-specific idiosyncrasies while ""telling speakers together"", and on relative distances in a shared acoustic space when ""telling speakers apart"". However, automatic speaker verification (ASV) systems use the same loss function irrespective of target or non-target trials. To improve ASV performance in the presence of style variability, insights learnt from human perception are used to design a new training loss function that we refer to as ""CllrCE loss"". CllrCE loss uses both speaker-specific idiosyncrasies and relative acoustic distances between speakers to train the ASV system. When using the UCLA speaker variability database, in the x-vector and conditioning setups, CllrCE loss results in significant relative improvements in EER by 1-66%, and minDCF by 1-31% and 1-56%, respectively, when compared to the x-vector baseline. Using the SITW evaluation tasks, which involve different conversational speech tasks, the proposed loss combined with self-attention conditioning results in significant relative improvements in EER by 2-5% and minDCF by 6-12% over baseline. In the SITW case, performance improvements were consistent only with conditioning." 629,Attention-based conditioning methods using variable frame rate for style-robust speaker verification,"We propose an approach to extract speaker embeddings that are robust to speaking style variations in text-independent speaker verification. Typically, speaker embedding extraction includes training a DNN for speaker classification and using the bottleneck features as speaker representations. Such a network has a pooling layer to transform frame-level to utterance-level features by calculating statistics over all utterance frames, with equal weighting. However, self-attentive embeddings perform weighted pooling such that the weights correspond to the importance of the frames in a speaker classification task. Entropy can capture acoustic variability due to speaking style variations. Hence, an entropy-based variable frame rate vector is proposed as an external conditioning vector for the self-attention layer to provide the network with information that can address style effects. This work explores five different approaches to conditioning. The best conditioning approach, concatenation with gating, provided statistically significant improvements over the x-vector baseline in 12/23 tasks and was the same as the baseline in 11/23 tasks when using the UCLA speaker variability database. It also significantly outperformed self-attention without conditioning in 9/23 tasks and was worse in 1/23. The method also showed significant improvements in multi-speaker scenarios of SITW." 630,TTS-CGAN: A Transformer Time-Series Conditional GAN for Biosignal Data Augmentation,"Signal measurement appearing in the form of time series is one of the most common types of data used in medical machine learning applications. Such datasets are often small in size, expensive to collect and annotate, and might involve privacy issues, which hinders our ability to train large, state-of-the-art deep learning models for biomedical applications. For time-series data, the suite of data augmentation strategies we can use to expand the size of the dataset is limited by the need to maintain the basic properties of the signal. Generative Adversarial Networks (GANs) can be utilized as another data augmentation tool. In this paper, we present TTS-CGAN, a transformer-based conditional GAN model that can be trained on existing multi-class datasets and generate class-specific synthetic time-series sequences of arbitrary length. We elaborate on the model architecture and design strategies. Synthetic sequences generated by our model are indistinguishable from real ones, and can be used to complement or replace real signals of the same type, thus achieving the goal of data augmentation. To evaluate the quality of the generated data, we modify the wavelet coherence metric to be able to compare the similarity between two sets of signals, and also conduct a case study where a mix of synthetic and real data are used to train a deep learning model for sequence classification. Together with other visualization techniques and qualitative evaluation approaches, we demonstrate that TTS-CGAN generated synthetic data are similar to real data, and that our model performs better than the other state-of-the-art GAN models built for time-series data generation." 631,Studying Generalization Through Data Averaging,"The generalization of machine learning models has a complex dependence on the data, model and learning algorithm. We study train and test performance, as well as the generalization gap given by the mean of their difference over different data set samples to understand their ``typical"" behavior. We derive an expression for the gap as a function of the covariance between the model parameter distribution and the train loss, and another expression for the average test performance, showing test generalization only depends on data-averaged parameter distribution and the data-averaged loss. We show that for a large class of model parameter distributions a modified generalization gap is always non-negative. By specializing further to parameter distributions produced by stochastic gradient descent (SGD), along with a few approximations and modeling considerations, we are able to predict some aspects about how the generalization gap and model train and test performance vary as a function of SGD noise. We evaluate these predictions empirically on the Cifar10 classification task based on a ResNet architecture." 632,Deployment of ML Models using Kubeflow on Different Cloud Providers,"This project aims to explore the process of deploying Machine learning models on Kubernetes using an open-source tool called Kubeflow [1] - an end-to-end ML Stack orchestration toolkit. We create end-to-end Machine Learning models on Kubeflow in the form of pipelines and analyze various points including the ease of setup, deployment models, performance, limitations and features of the tool. We hope that our project acts almost like a seminar/introductory report that can help vanilla cloud/Kubernetes users with zero knowledge on Kubeflow use Kubeflow to deploy ML models. From setup on different clouds to serving our trained model over the internet - we give details and metrics detailing the performance of Kubeflow." 633,Supervised Learning with General Risk Functionals,"Standard uniform convergence results bound the generalization gap of the expected loss over a hypothesis class. The emergence of risk-sensitive learning requires generalization guarantees for functionals of the loss distribution beyond the expectation. While prior works specialize in uniform convergence of particular functionals, our work provides uniform convergence for a general class of H\""older risk functionals for which the closeness in the Cumulative Distribution Function (CDF) entails closeness in risk. We establish the first uniform convergence results for estimating the CDF of the loss distribution, yielding guarantees that hold simultaneously both over all H\""older risk functionals and over all hypotheses. Thus licensed to perform empirical risk minimization, we develop practical gradient-based methods for minimizing distortion risks (widely studied subset of H\""older risks that subsumes the spectral risks, including the mean, conditional value at risk, cumulative prospect theory risks, and others) and provide convergence guarantees. In experiments, we demonstrate the efficacy of our learning procedure, both in settings where uniform convergence results hold and in high-dimensional settings with deep networks." 634,On bounds for norms of reparameterized ReLU artificial neural network parameters: sums of fractional powers of the Lipschitz norm control the network parameter vector,"It is an elementary fact in the scientific literature that the Lipschitz norm of the realization function of a feedforward fully-connected rectified linear unit (ReLU) artificial neural network (ANN) can, up to a multiplicative constant, be bounded from above by sums of powers of the norm of the ANN parameter vector. Roughly speaking, in this work we reveal in the case of shallow ANNs that the converse inequality is also true. More formally, we prove that the norm of the equivalence class of ANN parameter vectors with the same realization function is, up to a multiplicative constant, bounded from above by the sum of powers of the Lipschitz norm of the ANN realization function (with the exponents $ 1/2 $ and $ 1 $). Moreover, we prove that this upper bound only holds when employing the Lipschitz norm but does neither hold for H\""older norms nor for Sobolev-Slobodeckij norms. Furthermore, we prove that this upper bound only holds for sums of powers of the Lipschitz norm with the exponents $ 1/2 $ and $ 1 $ but does not hold for the Lipschitz norm alone." 635,Utility Theory for Sequential Decision Making,"The von Neumann-Morgenstern (VNM) utility theorem shows that under certain axioms of rationality, decision-making is reduced to maximizing the expectation of some utility function. We extend these axioms to increasingly structured sequential decision making settings and identify the structure of the corresponding utility functions. In particular, we show that memoryless preferences lead to a utility in the form of a per transition reward and multiplicative factor on the future return. This result motivates a generalization of Markov Decision Processes (MDPs) with this structure on the agent's returns, which we call Affine-Reward MDPs. A stronger constraint on preferences is needed to recover the commonly used cumulative sum of scalar rewards in MDPs. A yet stronger constraint simplifies the utility function for goal-seeking agents in the form of a difference in some function of states that we call potential functions. Our necessary and sufficient conditions demystify the reward hypothesis that underlies the design of rational agents in reinforcement learning by adding an axiom to the VNM rationality axioms and motivates new directions for AI research involving sequential decision making." 636,Toward an ImageNet Library of Functions for Global Optimization Benchmarking,"Knowledge of search-landscape features of BlackBox Optimization (BBO) problems offers valuable information in light of the Algorithm Selection and/or Configuration problems. Exploratory Landscape Analysis (ELA) models have gained success in identifying predefined human-derived features and in facilitating portfolio selectors to address those challenges. Unlike ELA approaches, the current study proposes to transform the identification problem into an image recognition problem, with a potential to detect conception-free, machine-driven landscape features. To this end, we introduce the notion of Landscape Images, which enables us to generate imagery instances per a benchmark function, and then target the classification challenge over a diverse generalized dataset of functions. We address it as a supervised multi-class image recognition problem and apply basic artificial neural network models to solve it. The efficacy of our approach is numerically validated on the noise free BBOB and IOHprofiler benchmarking suites. This evident successful learning is another step toward automated feature extraction and local structure deduction of BBO problems. By using this definition of landscape images, and by capitalizing on existing capabilities of image recognition algorithms, we foresee the construction of an ImageNet-like library of functions for training generalized detectors that rely on machine-driven features." 637,"Nonparametric, Nonasymptotic Confidence Bands with Paley-Wiener Kernels for Band-Limited Functions","The paper introduces a method to construct confidence bands for bounded, band-limited functions based on a finite sample of input-output pairs. The approach is distribution-free w.r.t. the observation noises and only the knowledge of the input distribution is assumed. It is nonparametric, that is, it does not require a parametric model of the regression function and the regions have non-asymptotic guarantees. The algorithm is based on the theory of Paley-Wiener reproducing kernel Hilbert spaces. The paper first studies the fully observable variant, when there are no noises on the observations and only the inputs are random; then it generalizes the ideas to the noisy case using gradient-perturbation methods. Finally, numerical experiments demonstrating both cases are presented." 638,Patch Selection for Melanoma Classification,"In medical image processing, the most important information is often located on small parts of the image. Patch-based approaches aim at using only the most relevant parts of the image. Finding ways to automatically select the patches is a challenge. In this paper, we investigate two criteria to choose patches: entropy and a spectral similarity criterion. We perform experiments at different levels of patch size. We train a Convolutional Neural Network on the subsets of patches and analyze the training time. We find that, in addition to requiring less preprocessing time, the classifiers trained on the datasets of patches selected based on entropy converge faster than on those selected based on the spectral similarity criterion and, furthermore, lead to higher accuracy. Moreover, patches of high entropy lead to faster convergence and better accuracy than patches of low entropy." 639,Quantification of Deep Neural Network Prediction Uncertainties for VVUQ of Machine Learning Models,"Recent performance breakthroughs in Artificial intelligence (AI) and Machine learning (ML), especially advances in Deep learning (DL), the availability of powerful, easy-to-use ML libraries (e.g., scikit-learn, TensorFlow, PyTorch.), and increasing computational power have led to unprecedented interest in AI/ML among nuclear engineers. For physics-based computational models, Verification, Validation and Uncertainty Quantification (VVUQ) have been very widely investigated and a lot of methodologies have been developed. However, VVUQ of ML models has been relatively less studied, especially in nuclear engineering. In this work, we focus on UQ of ML models as a preliminary step of ML VVUQ, more specifically, Deep Neural Networks (DNNs) because they are the most widely used supervised ML algorithm for both regression and classification tasks. This work aims at quantifying the prediction, or approximation uncertainties of DNNs when they are used as surrogate models for expensive physical models. Three techniques for UQ of DNNs are compared, namely Monte Carlo Dropout (MCD), Deep Ensembles (DE) and Bayesian Neural Networks (BNNs). Two nuclear engineering examples are used to benchmark these methods, (1) time-dependent fission gas release data using the Bison code, and (2) void fraction simulation based on the BFBT benchmark using the TRACE code. It was found that the three methods typically require different DNN architectures and hyperparameters to optimize their performance. The UQ results also depend on the amount of training data available and the nature of the data. Overall, all these three methods can provide reasonable estimations of the approximation uncertainties. The uncertainties are generally smaller when the mean predictions are close to the test data, while the BNN methods usually produce larger uncertainties than MCD and DE." 640,Learning Controllable 3D Level Generators,"Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft (Mojang Studios, 2009). These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train an agent to optimize each of these tasks to explore the capabilities of previous research in PCGRL. This agent is able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators." 641,Measuring and Clustering Network Attackers using Medium-Interaction Honeypots,"Network honeypots are often used by information security teams to measure the threat landscape in order to secure their networks. With the advancement of honeypot development, today's medium-interaction honeypots provide a way for security teams and researchers to deploy these active defense tools that require little maintenance on a variety of protocols. In this work, we deploy such honeypots on five different protocols on the public Internet and study the intent and sophistication of the attacks we observe. We then use the information gained to develop a clustering approach that identifies correlations in attacker behavior to discover IPs that are highly likely to be controlled by a single operator, illustrating the advantage of using these honeypots for data collection." 642,Improved Text Classification via Test-Time Augmentation,"Test-time augmentation -- the aggregation of predictions across transformed examples of test inputs -- is an established technique to improve the performance of image classification models. Importantly, TTA can be used to improve model performance post-hoc, without additional training. Although test-time augmentation (TTA) can be applied to any data modality, it has seen limited adoption in NLP due in part to the difficulty of identifying label-preserving transformations. In this paper, we present augmentation policies that yield significant accuracy improvements with language models. A key finding is that augmentation policy design -- for instance, the number of samples generated from a single, non-deterministic augmentation -- has a considerable impact on the benefit of TTA. Experiments across a binary classification task and dataset show that test-time augmentation can deliver consistent improvements over current state-of-the-art approaches." 643,Online Resource Allocation under Horizon Uncertainty,"We study stochastic online resource allocation: a decision maker needs to allocate limited resources to stochastically-generated sequentially-arriving requests in order to maximize reward. Motivated by practice, we consider a data-driven setting in which requests are drawn independently from a distribution that is unknown to the decision maker. Online resource allocation and its special cases have been studied extensively in the past, but these previous results crucially and universally rely on a practically-untenable assumption: the total number of requests (the horizon) is known to the decision maker in advance. In many applications, such as revenue management and online advertising, the number of requests can vary widely because of fluctuations in demand or user traffic intensity. In this work, we develop online algorithms that are robust to horizon uncertainty. In sharp contrast to the known-horizon setting, we show that no algorithm can achieve a constant asymptotic competitive ratio that is independent of the horizon uncertainty. We then introduce a novel algorithm that combines dual mirror descent with a carefully-chosen target consumption sequence and prove that it achieves a bounded competitive ratio. Our algorithm is near-optimal in the sense that its competitive ratio attains the optimal rate of growth when the horizon uncertainty grows large." 644,On-device Synaptic Memory Consolidation using Fowler-Nordheim Quantum-tunneling,"Synaptic memory consolidation has been heralded as one of the key mechanisms for supporting continual learning in neuromorphic Artificial Intelligence (AI) systems. Here we report that a Fowler-Nordheim (FN) quantum-tunneling device can implement synaptic memory consolidation similar to what can be achieved by algorithmic consolidation models like the cascade and the elastic weight consolidation (EWC) models. The proposed FN-synapse not only stores the synaptic weight but also stores the synapse's historical usage statistic on the device itself. We also show that the operation of the FN-synapse is near-optimal in terms of the synaptic lifetime and we demonstrate that a network comprising FN-synapses outperforms a comparable EWC network for a small benchmark continual learning task. With an energy footprint of femtojoules per synaptic update, we believe that the proposed FN-synapse provides an ultra-energy-efficient approach for implementing both synaptic memory consolidation and persistent learning." 645,BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log Measurements for Autonomous Underwater Vehicle Navigation,"Autonomous underwater vehicles (AUV) perform various applications such as seafloor mapping and underwater structure health monitoring. Commonly, an inertial navigation system aided by a Doppler velocity log (DVL) is used to provide the vehicle's navigation solution. In such fusion, the DVL provides the velocity vector of the AUV, which determines the navigation solution's accuracy and helps estimate the navigation states. This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector that improves the accuracy of the velocity vector estimate, and could replace the model-based approach. Two versions of BeamsNet, differing in their input to the network, are suggested. The first uses the current DVL beam measurements and inertial sensors data, while the other utilizes only DVL data, taking the current and past DVL measurements for the regression process. Both simulation and sea experiments were made to validate the proposed learning approach relative to the model-based approach. Sea experiments were made with the Snapir AUV in the Mediterranean Sea, collecting approximately four hours of DVL and inertial sensor data. Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector." 646,Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching,"Pretraining molecular representations is critical in a variety of applications in drug and material discovery due to the limited number of labeled molecules, yet most of existing work focuses on pretraining on 2D molecular graphs. The power of pretraining on 3D geometric structures, however, has been less explored, owning to the difficulty of finding a sufficient proxy task to empower the pretraining to effectively extract essential features from the geometric structures. Motivated by the dynamic nature of 3D molecules, where the continuous motion of a molecule in the 3D Euclidean space forms a smooth potential energy surface, we propose a 3D coordinate denoising pretraining framework to model such an energy landscape. Leveraging a SE(3)-invariant score matching method, we propose SE(3)-DDM where the coordinate denoising proxy task is effectively boiled down to the denoising of the pairwise atomic distances in a molecule. Our comprehensive experiments confirm the effectiveness and robustness of our proposed method." 647,Efficient Deep Learning Using Non-Volatile Memory Technology,"Embedded machine learning (ML) systems have now become the dominant platform for deploying ML serving tasks and are projected to become of equal importance for training ML models. With this comes the challenge of overall efficient deployment, in particular low power and high throughput implementations, under stringent memory constraints. In this context, non-volatile memory (NVM) technologies such as STT-MRAM and SOT-MRAM have significant advantages compared to conventional SRAM due to their non-volatility, higher cell density, and scalability features. While prior work has investigated several architectural implications of NVM for generic applications, in this work we present DeepNVM++, a comprehensive framework to characterize, model, and analyze NVM-based caches in GPU architectures for deep learning (DL) applications by combining technology-specific circuit-level models and the actual memory behavior of various DL workloads. DeepNVM++ relies on iso-capacity and iso-area performance and energy models for last-level caches implemented using conventional SRAM and emerging STT-MRAM and SOT-MRAM technologies. In the iso-capacity case, STT-MRAM and SOT-MRAM provide up to 3.8x and 4.7x energy-delay product (EDP) reduction and 2.4x and 2.8x area reduction compared to conventional SRAM, respectively. Under iso-area assumptions, STT-MRAM and SOT-MRAM provide up to 2.2x and 2.4x EDP reduction and accommodate 2.3x and 3.3x cache capacity when compared to SRAM, respectively. We also perform a scalability analysis and show that STT-MRAM and SOT-MRAM achieve orders of magnitude EDP reduction when compared to SRAM for large cache capacities. DeepNVM++ is demonstrated on STT-/SOT-MRAM technologies and can be used for the characterization, modeling, and analysis of any NVM technology for last-level caches in GPUs for DL applications." 648,Challenges and Opportunities in Multi-device Speech Processing,"We review current solutions and technical challenges for automatic speech recognition, keyword spotting, device arbitration, speech enhancement, and source localization in multidevice home environments to provide context for the INTERSPEECH 2022 special session, ""Challenges and opportunities for signal processing and machine learning for multiple smart devices"". We also identify the datasets needed to support these research areas. Based on the review and our research experience in the multi-device domain, we conclude with an outlook on the future evolution" 649,Reduced Optimal Power Flow Using Graph Neural Network,"OPF problems are formulated and solved for power system operations, especially for determining generation dispatch points in real-time. For large and complex power system networks with large numbers of variables and constraints, finding the optimal solution for real-time OPF in a timely manner requires a massive amount of computing power. This paper presents a new method to reduce the number of constraints in the original OPF problem using a graph neural network (GNN). GNN is an innovative machine learning model that utilizes features from nodes, edges, and network topology to maximize its performance. In this paper, we proposed a GNN model to predict which lines would be heavily loaded or congested with given load profiles and generation capacities. Only these critical lines will be monitored in an OPF problem, creating a reduced OPF (ROPF) problem. Significant saving in computing time is expected from the proposed ROPF model. A comprehensive analysis of predictions from the GNN model was also made. It is concluded that the application of GNN for ROPF is able to reduce computing time while retaining solution quality." 650,Heterogeneous mixtures of dictionary functions to approximate subspace invariance in Koopman operators,"Koopman operators model nonlinear dynamics as a linear dynamic system acting on a nonlinear function as the state. This nonstandard state is often called a Koopman observable and is usually approximated numerically by a superposition of functions drawn from a \textit{dictionary}. A widely used algorithm, is \textit{Extended Dynamic Mode Decomposition}, where the dictionary functions are drawn from a fixed, homogeneous class of functions. Recently, deep learning combined with EDMD has been used to learn novel dictionary functions in an algorithm called deep dynamic mode decomposition (deepDMD). The learned representation both (1) accurately models and (2) scales well with the dimension of the original nonlinear system. In this paper we analyze the learned dictionaries from deepDMD and explore the theoretical basis for their strong performance. We discover a novel class of dictionary functions to approximate Koopman observables. Error analysis of these dictionary functions show they satisfy a property of subspace approximation, which we define as uniform finite approximate closure. We discover that structured mixing of heterogeneous dictionary functions drawn from different classes of nonlinear functions achieve the same accuracy and dimensional scaling as deepDMD. This mixed dictionary does so with an order of magnitude reduction in parameters, while maintaining geometric interpretability. Our results provide a hypothesis to explain the success of deep neural networks in learning numerical approximations to Koopman operators." 651,Exact Spectral Norm Regularization for Neural Networks,"We pursue a line of research that seeks to regularize the spectral norm of the Jacobian of the input-output mapping for deep neural networks. While previous work rely on upper bounding techniques, we provide a scheme that targets the exact spectral norm. We showcase that our algorithm achieves an improved generalization performance compared to previous spectral regularization techniques while simultaneously maintaining a strong safeguard against natural and adversarial noise. Moreover, we further explore some previous reasoning concerning the strong adversarial protection that Jacobian regularization provides and show that it can be misleading." 652,Rankings from multimodal pairwise comparisons,"The task of ranking individuals or teams, based on a set of comparisons between pairs, arises in various contexts, including sporting competitions and the analysis of dominance hierarchies among animals and humans. Given data on which competitors beat which others, the challenge is to rank the competitors from best to worst. Here we study the problem of computing rankings when there are multiple, potentially conflicting modes of comparison, such as multiple types of dominance behaviors among animals. We assume that we do not know a priori what information each behavior conveys about the ranking, or even whether they convey any information at all. Nonetheless we show that it is possible to compute a ranking in this situation and present a fast method for doing so, based on a combination of an expectation-maximization algorithm and a modified Bradley-Terry model. We give a selection of example applications to both animal and human competition." 653,Materials Transformers Language Models for Generative Materials Design: a benchmark study,"Pre-trained transformer language models on large unlabeled corpus have produced state-of-the-art results in natural language processing, organic molecule design, and protein sequence generation. However, no such models have been applied to learn the composition patterns of inorganic materials. Here we train a series of seven modern transformer language models (GPT, GPT-2, GPT-Neo, GPT-J, BLMM, BART, and RoBERTa) using the expanded formulas from material deposited in the ICSD, OQMD, and Materials Projects databases. Six different datasets with/out non-charge-neutral or balanced electronegativity samples are used to benchmark the performances and uncover the generation biases of modern transformer models for the generative design of materials compositions. Our extensive experiments showed that the causal language models based materials transformers can generate chemically valid materials compositions with as high as 97.54\% to be charge neutral and 91.40\% to be electronegativity balanced, which has more than 6 times higher enrichment compared to a baseline pseudo-random sampling algorithm. These models also demonstrate high novelty and their potential in new materials discovery has been proved by their capability to recover the leave-out materials. We also find that the properties of the generated samples can be tailored by training the models with selected training sets such as high-bandgap materials. Our experiments also showed that different models each have their own preference in terms of the properties of the generated samples and their running time complexity varies a lot. We have applied our materials transformer models to discover a set of new materials as validated using DFT calculations." 654,A View Independent Classification Framework for Yoga Postures,"Yoga is a globally acclaimed and widely recommended practice for a healthy living. Maintaining correct posture while performing a Yogasana is of utmost importance. In this work, we employ transfer learning from Human Pose Estimation models for extracting 136 key-points spread all over the body to train a Random Forest classifier which is used for estimation of the Yogasanas. The results are evaluated on an in-house collected extensive yoga video database of 51 subjects recorded from 4 different camera angles. We propose a 3 step scheme for evaluating the generalizability of a Yoga classifier by testing it on 1) unseen frames, 2) unseen subjects, and 3) unseen camera angles. We argue that for most of the applications, validation accuracies on unseen subjects and unseen camera angles would be most important. We empirically analyze over three public datasets, the advantage of transfer learning and the possibilities of target leakage. We further demonstrate that the classification accuracies critically depend on the cross validation method employed and can often be misleading. To promote further research, we have made key-points dataset and code publicly available." 655,AutoInit: Automatic Initialization via Jacobian Tuning,"Good initialization is essential for training Deep Neural Networks (DNNs). Oftentimes such initialization is found through a trial and error approach, which has to be applied anew every time an architecture is substantially modified, or inherited from smaller size networks leading to sub-optimal initialization. In this work we introduce a new and cheap algorithm, that allows one to find a good initialization automatically, for general feed-forward DNNs. The algorithm utilizes the Jacobian between adjacent network blocks to tune the network hyperparameters to criticality. We solve the dynamics of the algorithm for fully connected networks with ReLU and derive conditions for its convergence. We then extend the discussion to more general architectures with BatchNorm and residual connections. Finally, we apply our method to ResMLP and VGG architectures, where the automatic one-shot initialization found by our method shows good performance on vision tasks." 656,Programmatic Concept Learning for Human Motion Description and Synthesis,"We introduce Programmatic Motion Concepts, a hierarchical motion representation for human actions that captures both low-level motion and high-level description as motion concepts. This representation enables human motion description, interactive editing, and controlled synthesis of novel video sequences within a single framework. We present an architecture that learns this concept representation from paired video and action sequences in a semi-supervised manner. The compactness of our representation also allows us to present a low-resource training recipe for data-efficient learning. By outperforming established baselines, especially in the small data regime, we demonstrate the efficiency and effectiveness of our framework for multiple applications." 657,Neural Neural Textures Make Sim2Real Consistent,"Unpaired image translation algorithms can be used for sim2real tasks, but many fail to generate temporally consistent results. We present a new approach that combines differentiable rendering with image translation to achieve temporal consistency over indefinite timescales, using surface consistency losses and \emph{neural neural textures}. We call this algorithm TRITON (Texture Recovering Image Translation Network): an unsupervised, end-to-end, stateless sim2real algorithm that leverages the underlying 3D geometry of input scenes by generating realistic-looking learnable neural textures. By settling on a particular texture for the objects in a scene, we ensure consistency between frames statelessly. Unlike previous algorithms, TRITON is not limited to camera movements -- it can handle the movement of objects as well, making it useful for downstream tasks such as robotic manipulation." 658,Prompting Decision Transformer for Few-Shot Policy Generalization,"Humans can leverage prior experience and learn novel tasks from a handful of demonstrations. In contrast to offline meta-reinforcement learning, which aims to achieve quick adaptation through better algorithm design, we investigate the effect of architecture inductive bias on the few-shot learning capability. We propose a Prompt-based Decision Transformer (Prompt-DT), which leverages the sequential modeling ability of the Transformer architecture and the prompt framework to achieve few-shot adaptation in offline RL. We design the trajectory prompt, which contains segments of the few-shot demonstrations, and encodes task-specific information to guide policy generation. Our experiments in five MuJoCo control benchmarks show that Prompt-DT is a strong few-shot learner without any extra finetuning on unseen target tasks. Prompt-DT outperforms its variants and strong meta offline RL baselines by a large margin with a trajectory prompt containing only a few timesteps. Prompt-DT is also robust to prompt length changes and can generalize to out-of-distribution (OOD) environments." 659,Auditing Visualizations: Transparency Methods Struggle to Detect Anomalous Behavior,"Transparency methods such as model visualizations provide information that outputs alone might miss, since they describe the internals of neural networks. But can we trust that model explanations reflect model behavior? For instance, can they diagnose abnormal behavior such as backdoors or shape bias? To evaluate model explanations, we define a model as anomalous if it differs from a reference set of normal models, and we test whether transparency methods assign different explanations to anomalous and normal models. We find that while existing methods can detect stark anomalies such as shape bias or adversarial training, they struggle to identify more subtle anomalies such as models trained on incomplete data. Moreover, they generally fail to distinguish the inputs that induce anomalous behavior, e.g. images containing a backdoor trigger. These results reveal new blind spots in existing model explanations, pointing to the need for further method development." 660,Robustness Implies Generalization via Data-Dependent Generalization Bounds,"This paper proves that robustness implies generalization via data-dependent generalization bounds. As a result, robustness and generalization are shown to be connected closely in a data-dependent manner. Our bounds improve previous bounds in two directions, to solve an open problem that has seen little development since 2010. The first is to reduce the dependence on the covering number. The second is to remove the dependence on the hypothesis space. We present several examples, including ones for lasso and deep learning, in which our bounds are provably preferable. The experiments on real-world data and theoretical models demonstrate near-exponential improvements in various situations. To achieve these improvements, we do not require additional assumptions on the unknown distribution; instead, we only incorporate an observable and computable property of the training samples. A key technical innovation is an improved concentration bound for multinomial random variables that is of independent interest beyond robustness and generalization." 661,ProGen2: Exploring the Boundaries of Protein Language Models,"Attention-based models trained on protein sequences have demonstrated incredible success at classification and generation tasks relevant for artificial intelligence-driven protein design. However, we lack a sufficient understanding of how very large-scale models and data play a role in effective protein model development. We introduce a suite of protein language models, named ProGen2, that are scaled up to 6.4B parameters and trained on different sequence datasets drawn from over a billion proteins from genomic, metagenomic, and immune repertoire databases. ProGen2 models show state-of-the-art performance in capturing the distribution of observed evolutionary sequences, generating novel viable sequences, and predicting protein fitness without additional finetuning. As large model sizes and raw numbers of protein sequences continue to become more widely accessible, our results suggest that a growing emphasis needs to be placed on the data distribution provided to a protein sequence model. We release the ProGen2 models and code at https://github.com/salesforce/progen." 662,Effective training-time stacking for ensembling of deep neural networks,"Ensembling is a popular and effective method for improving machine learning (ML) models. It proves its value not only in classical ML but also for deep learning. Ensembles enhance the quality and trustworthiness of ML solutions, and allow uncertainty estimation. However, they come at a price: training ensembles of deep learning models eat a huge amount of computational resources. A snapshot ensembling collects models in the ensemble along a single training path. As it runs training only one time, the computational time is similar to the training of one model. However, the quality of models along the training path is different: typically, later models are better if no overfitting occurs. So, the models are of varying utility. Our method improves snapshot ensembling by selecting and weighting ensemble members along the training path. It relies on training-time likelihoods without looking at validation sample errors that standard stacking methods do. Experimental evidence for Fashion MNIST, CIFAR-10, and CIFAR-100 datasets demonstrates the superior quality of the proposed weighted ensembles c.t. vanilla ensembling of deep learning models." 663,Supply-Side Equilibria in Recommender Systems,"Digital recommender systems such as Spotify and Netflix affect not only consumer behavior but also producer incentives: producers seek to supply content that will be recommended by the system. But what content will be produced? In this paper, we investigate the supply-side equilibria in content recommender systems. We model users and content as $D$-dimensional vectors, and recommend the content that has the highest dot product with each user. The main features of our model are that the producer decision space is high-dimensional and the user base is heterogeneous. This gives rise to new qualitative phenomena at equilibrium: First, the formation of genres, where producers specialize to compete for subsets of users. Using a duality argument, we derive necessary and sufficient conditions for this specialization to occur. Second, we show that producers can achieve positive profit at equilibrium, which is typically impossible under perfect competition. We derive sufficient conditions for this to occur, and show it is closely connected to specialization of content. In both results, the interplay between the geometry of the users and the structure of producer costs influences the structure of the supply-side equilibria. At a conceptual level, our work serves as a starting point to investigate how recommender systems shape supply-side competition between producers." 664,Positive-definite parametrization of mixed quantum states with deep neural networks,"We introduce the Gram-Hadamard Density Operator (GHDO), a new deep neural-network architecture that can encode positive semi-definite density operators of exponential rank with polynomial resources. We then show how to embed an autoregressive structure in the GHDO to allow direct sampling of the probability distribution. These properties are especially important when representing and variationally optimizing the mixed quantum state of a system interacting with an environment. Finally, we benchmark this architecture by simulating the steady state of the dissipative transverse-field Ising model. Estimating local observables and the R\'enyi entropy, we show significant improvements over previous state-of-the-art variational approaches." 665,Understanding Benign Overfitting in Nested Meta Learning,"Meta learning has demonstrated tremendous success in few-shot learning with limited supervised data. In those settings, the meta model is usually overparameterized. While the conventional statistical learning theory suggests that overparameterized models tend to overfit, empirical evidence reveals that overparameterized meta learning methods still work well -- a phenomenon often called ``benign overfitting.'' To understand this phenomenon, we focus on the meta learning settings with a challenging nested structure that we term the nested meta learning, and analyze its generalization performance under an overparameterized meta learning model. While our analysis uses the relatively tractable linear models, our theory contributes to understanding the delicate interplay among data heterogeneity, model adaptation and benign overfitting in nested meta learning tasks. We corroborate our theoretical claims through numerical simulations." 666,Impact of Acoustic Event Tagging on Scene Classification in a Multi-Task Learning Framework,"Acoustic events are sounds with well-defined spectro-temporal characteristics which can be associated with the physical objects generating them. Acoustic scenes are collections of such acoustic events in no specific temporal order. Given this natural linkage between events and scenes, a common belief is that the ability to classify events must help in the classification of scenes. This has led to several efforts attempting to do well on Acoustic Event Tagging (AET) and Acoustic Scene Classification (ASC) using a multi-task network. However, in these efforts, improvement in one task does not guarantee an improvement in the other, suggesting a tension between ASC and AET. It is unclear if improvements in AET translates to improvements in ASC. We explore this conundrum through an extensive empirical study and show that under certain conditions, using AET as an auxiliary task in the multi-task network consistently improves ASC performance. Additionally, ASC performance further improves with the AET data-set size and is not sensitive to the choice of events or the number of events in the AET data-set. We conclude that this improvement in ASC performance comes from the regularization effect of using AET and not from the network's improved ability to discern between acoustic events." 667,Thermodynamics of Interpretation,"Over the past few years, different types of data-driven Artificial Intelligence (AI) techniques have been widely adopted in various domains of science for generating predictive black-box models. However, because of their black-box nature, it is crucial to establish trust in these models before accepting them as accurate. One way of achieving this goal is through the implementation of a post-hoc interpretation scheme that can put forward the reasons behind a black-box model prediction. In this work, we propose a classical thermodynamics inspired approach for this purpose: Thermodynamically Explainable Representations of AI and other black-box Paradigms (TERP). TERP works by constructing a linear, local surrogate model that approximates the behaviour of the black-box model within a small neighborhood around the instance being explained. By employing a simple forward feature selection Monte Carlo algorithm, TERP assigns an interpretability free energy score to all the possible surrogate models in order to choose an optimal interpretation. Additionally, we validate TERP as a generally applicable method by successfully interpreting four different classes of black-box models trained on datasets coming from relevant domains, including classifying images, predicting heart disease and classifying biomolecular conformations." 668,Variational Autoencoder Assisted Neural Network Likelihood RSRP Prediction Model,"Measuring customer experience on mobile data is of utmost importance for global mobile operators. The reference signal received power (RSRP) is one of the important indicators for current mobile network management, evaluation and monitoring. Radio data gathered through the minimization of drive test (MDT), a 3GPP standard technique, is commonly used for radio network analysis. Collecting MDT data in different geographical areas is inefficient and constrained by the terrain conditions and user presence, hence is not an adequate technique for dynamic radio environments. In this paper, we study a generative model for RSRP prediction, exploiting MDT data and a digital twin (DT), and propose a data-driven, two-tier neural network (NN) model. In the first tier, environmental information related to user equipment (UE), base stations (BS) and network key performance indicators (KPI) are extracted through a variational autoencoder (VAE). The second tier is designed as a likelihood model. Here, the environmental features and real MDT data features are adopted, formulating an integrated training process. On validation, our proposed model that uses real-world data demonstrates an accuracy improvement of about 20% or more compared with the empirical model and about 10% when compared with a fully connected prediction network." 669,Iso-CapsNet: Isomorphic Capsule Network for Brain Graph Representation Learning,"Brain graph representation learning serves as the fundamental technique for brain diseases diagnosis. Great efforts from both the academic and industrial communities have been devoted to brain graph representation learning in recent years. The isomorphic neural network (IsoNN) introduced recently can automatically learn the existence of sub-graph patterns in brain graphs, which is also the state-of-the-art brain graph representation learning method by this context so far. However, IsoNN fails to capture the orientations of sub-graph patterns, which may render the learned representations to be useless for many cases. In this paper, we propose a new Iso-CapsNet (Isomorphic Capsule Net) model by introducing the graph isomorphic capsules for effective brain graph representation learning. Based on the capsule dynamic routing, besides the subgraph pattern existence confidence scores, Iso-CapsNet can also learn other sub-graph rich properties, including position, size and orientation, for calculating the class-wise digit capsules. We have compared Iso-CapsNet with both classic and state-of-the-art brain graph representation approaches with extensive experiments on four brain graph benchmark datasets. The experimental results also demonstrate the effectiveness of Iso-CapsNet, which can out-perform the baseline methods with significant improvements." 670,When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning,"Learning effective reinforcement learning (RL) policies to solve real-world complex tasks can be quite challenging without a high-fidelity simulation environment. In most cases, we are only given imperfect simulators with simplified dynamics, which inevitably lead to severe sim-to-real gaps in RL policy learning. The recently emerged field of offline RL provides another possibility to learn policies directly from pre-collected historical data. However, to achieve reasonable performance, existing offline RL algorithms need impractically large offline data with sufficient state-action space coverage for training. This brings up a new question: is it possible to combine learning from limited real data in offline RL and unrestricted exploration through imperfect simulators in online RL to address the drawbacks of both approaches? In this study, we propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question. H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps, while also simultaneously allowing learning from a fixed real-world dataset. Through extensive simulation and real-world tasks, as well as theoretical analysis, we demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms. H2O provides a brand new hybrid offline-and-online RL paradigm, which can potentially shed light on future RL algorithm design for solving practical real-world tasks." 671,"""Double vaccinated, 5G boosted!"": Learning Attitudes towards COVID-19 Vaccination from Social Media","To address the vaccine hesitancy which impairs the efforts of the COVID-19 vaccination campaign, it is imperative to understand public vaccination attitudes and timely grasp their changes. In spite of reliability and trustworthiness, conventional attitude collection based on surveys is time-consuming and expensive, and cannot follow the fast evolution of vaccination attitudes. We leverage the textual posts on social media to extract and track users' vaccination stances in near real time by proposing a deep learning framework. To address the impact of linguistic features such as sarcasm and irony commonly used in vaccine-related discourses, we integrate into the framework the recent posts of a user's social network neighbours to help detect the user's genuine attitude. Based on our annotated dataset from Twitter, the models instantiated from our framework can increase the performance of attitude extraction by up to 23% compared to state-of-the-art text-only models. Using this framework, we successfully validate the feasibility of using social media to track the evolution of vaccination attitudes in real life. We further show one practical use of our framework by validating the possibility to forecast a user's vaccine hesitancy changes with information perceived from social media." 672,Causal Dynamics Learning for Task-Independent State Abstraction,"Learning dynamics models accurately is an important goal for Model-Based Reinforcement Learning (MBRL), but most MBRL methods learn a dense dynamics model which is vulnerable to spurious correlations and therefore generalizes poorly to unseen states. In this paper, we introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL), which first learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action, thus generalizing well to unseen states. A state abstraction can then be derived from the learned dynamics, which not only improves sample efficiency but also applies to a wider range of tasks than existing state abstraction methods. Evaluated on two simulated environments and downstream tasks, both the dynamics model and policies learned by the proposed method generalize well to unseen states and the derived state abstraction improves sample efficiency compared to learning without it." 673,Distinguishing Learning Rules with Brain Machine Interfaces,"Despite extensive theoretical work on biologically plausible learning rules, it has been difficult to obtain clear evidence about whether and how such rules are implemented in the brain. We consider biologically plausible supervised- and reinforcement-learning rules and ask whether changes in network activity during learning can be used to determine which learning rule is being used. Supervised learning requires a credit-assignment model estimating the mapping from neural activity to behavior, and, in a biological organism, this model will inevitably be an imperfect approximation of the ideal mapping, leading to a bias in the direction of the weight updates relative to the true gradient. Reinforcement learning, on the other hand, requires no credit-assignment model and tends to make weight updates following the true gradient direction. We derive a metric to distinguish between learning rules by observing changes in the network activity during learning, given that the mapping from brain to behavior is known by the experimenter. Because brain-machine interface (BMI) experiments allow for perfect knowledge of this mapping, we focus on modeling a cursor-control BMI task using recurrent neural networks, showing that learning rules can be distinguished in simulated experiments using only observations that a neuroscience experimenter would plausibly have access to." 674,Pen and Paper Exercises in Machine Learning,"This is a collection of (mostly) pen-and-paper exercises in machine learning. The exercises are on the following topics: linear algebra, optimisation, directed graphical models, undirected graphical models, expressive power of graphical models, factor graphs and message passing, inference for hidden Markov models, model-based learning (including ICA and unnormalised models), sampling and Monte-Carlo integration, and variational inference." 675,ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration,"Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths." 676,Interpretable Hidden Markov Model-Based Deep Reinforcement Learning Hierarchical Framework for Predictive Maintenance of Turbofan Engines,"An open research question in deep reinforcement learning is how to focus the policy learning of key decisions within a sparse domain. This paper emphasizes combining the advantages of inputoutput hidden Markov models and reinforcement learning towards interpretable maintenance decisions. We propose a novel hierarchical-modeling methodology that, at a high level, detects and interprets the root cause of a failure as well as the health degradation of the turbofan engine, while, at a low level, it provides the optimal replacement policy. It outperforms the baseline performance of deep reinforcement learning methods applied directly to the raw data or when using a hidden Markov model without such a specialized hierarchy. It also provides comparable performance to prior work, however, with the additional benefit of interpretability." 677,"Benchopt: Reproducible, efficient and collaborative optimization benchmarks","Numerical validation is at the core of machine learning research as it allows to assess the actual impact of new methods, and to confirm the agreement between theory and practice. Yet, the rapid development of the field poses several challenges: researchers are confronted with a profusion of methods to compare, limited transparency and consensus on best practices, as well as tedious re-implementation work. As a result, validation is often very partial, which can lead to wrong conclusions that slow down the progress of research. We propose Benchopt, a collaborative framework to automate, reproduce and publish optimization benchmarks in machine learning across programming languages and hardware architectures. Benchopt simplifies benchmarking for the community by providing an off-the-shelf tool for running, sharing and extending experiments. To demonstrate its broad usability, we showcase benchmarks on three standard learning tasks: $\ell_2$-regularized logistic regression, Lasso, and ResNet18 training for image classification. These benchmarks highlight key practical findings that give a more nuanced view of the state-of-the-art for these problems, showing that for practical evaluation, the devil is in the details. We hope that Benchopt will foster collaborative work in the community hence improving the reproducibility of research findings." 678,DeStripe: A Self2Self Spatio-Spectral Graph Neural Network with Unfolded Hessian for Stripe Artifact Removal in Light-sheet Microscopy,"Light-sheet fluorescence microscopy (LSFM) is a cutting-edge volumetric imaging technique that allows for three-dimensional imaging of mesoscopic samples with decoupled illumination and detection paths. Although the selective excitation scheme of such a microscope provides intrinsic optical sectioning that minimizes out-of-focus fluorescence background and sample photodamage, it is prone to light absorption and scattering effects, which results in uneven illumination and striping artifacts in the images adversely. To tackle this issue, in this paper, we propose a blind stripe artifact removal algorithm in LSFM, called DeStripe, which combines a self-supervised spatio-spectral graph neural network with unfolded Hessian prior. Specifically, inspired by the desirable properties of Fourier transform in condensing striping information into isolated values in the frequency domain, DeStripe firstly localizes the potentially corrupted Fourier coefficients by exploiting the structural difference between unidirectional stripe artifacts and more isotropic foreground images. Affected Fourier coefficients can then be fed into a graph neural network for recovery, with a Hessian regularization unrolled to further ensure structures in the standard image space are well preserved. Since in realistic, stripe-free LSFM barely exists with a standard image acquisition protocol, DeStripe is equipped with a Self2Self denoising loss term, enabling artifact elimination without access to stripe-free ground truth images. Competitive experimental results demonstrate the efficacy of DeStripe in recovering corrupted biomarkers in LSFM with both synthetic and real stripe artifacts." 679,Learning To Cut By Looking Ahead: Cutting Plane Selection via Imitation Learning,"Cutting planes are essential for solving mixed-integer linear problems (MILPs), because they facilitate bound improvements on the optimal solution value. For selecting cuts, modern solvers rely on manually designed heuristics that are tuned to gauge the potential effectiveness of cuts. We show that a greedy selection rule explicitly looking ahead to select cuts that yield the best bound improvement delivers strong decisions for cut selection - but is too expensive to be deployed in practice. In response, we propose a new neural architecture (NeuralCut) for imitation learning on the lookahead expert. Our model outperforms standard baselines for cut selection on several synthetic MILP benchmarks. Experiments with a B&C solver for neural network verification further validate our approach, and exhibit the potential of learning methods in this setting." 680,Explicitly incorporating spatial information to recurrent networks for agriculture,"In agriculture, the majority of vision systems perform still image classification. Yet, recent work has highlighted the potential of spatial and temporal cues as a rich source of information to improve the classification performance. In this paper, we propose novel approaches to explicitly capture both spatial and temporal information to improve the classification of deep convolutional neural networks. We leverage available RGB-D images and robot odometry to perform inter-frame feature map spatial registration. This information is then fused within recurrent deep learnt models, to improve their accuracy and robustness. We demonstrate that this can considerably improve the classification performance with our best performing spatial-temporal model (ST-Atte) achieving absolute performance improvements for intersection-over-union (IoU[%]) of 4.7 for crop-weed segmentation and 2.6 for fruit (sweet pepper) segmentation. Furthermore, we show that these approaches are robust to variable framerates and odometry errors, which are frequently observed in real-world applications." 681,Utilizing Class Separation Distance for the Evaluation of Corruption Robustness of Machine Learning Classifiers,"Robustness is a fundamental pillar of Machine Learning (ML) classifiers, substantially determining their reliability. Methods for assessing classifier robustness are therefore essential. In this work, we address the challenge of evaluating corruption robustness in a way that allows comparability and interpretability on a given dataset. We propose a test data augmentation method that uses a robustness distance $\epsilon$ derived from the datasets minimal class separation distance. The resulting MSCR (mean statistical corruption robustness) metric allows a dataset-specific comparison of different classifiers with respect to their corruption robustness. The MSCR value is interpretable, as it represents the classifiers avoidable loss of accuracy due to statistical corruptions. On 2D and image data, we show that the metric reflects different levels of classifier robustness. Furthermore, we observe unexpected optima in classifiers robust accuracy through training and testing classifiers with different levels of noise. While researchers have frequently reported on a significant tradeoff on accuracy when training robust models, we strengthen the view that a tradeoff between accuracy and corruption robustness is not inherent. Our results indicate that robustness training through simple data augmentation can already slightly improve accuracy." 682,Transfer Learning via Test-Time Neural Networks Aggregation,"It has been demonstrated that deep neural networks outperform traditional machine learning. However, deep networks lack generalisability, that is, they will not perform as good as in a new (testing) set drawn from a different distribution due to the domain shift. In order to tackle this known issue, several transfer learning approaches have been proposed, where the knowledge of a trained model is transferred into another to improve performance with different data. However, most of these approaches require additional training steps, or they suffer from catastrophic forgetting that occurs when a trained model has overwritten previously learnt knowledge. We address both problems with a novel transfer learning approach that uses network aggregation. We train dataset-specific networks together with an aggregation network in a unified framework. The loss function includes two main components: a task-specific loss (such as cross-entropy) and an aggregation loss. The proposed aggregation loss allows our model to learn how trained deep network parameters can be aggregated with an aggregation operator. We demonstrate that the proposed approach learns model aggregation at test time without any further training step, reducing the burden of transfer learning to a simple arithmetical operation. The proposed approach achieves comparable performance w.r.t. the baseline. Besides, if the aggregation operator has an inverse, we will show that our model also inherently allows for selective forgetting, i.e., the aggregated model can forget one of the datasets it was trained on, retaining information on the others." 683,Guillotine Regularization: Improving Deep Networks Generalization by Removing their Head,"One unexpected technique that emerged in recent years consists in training a Deep Network (DN) with a Self-Supervised Learning (SSL) method, and using this network on downstream tasks but with its last few layers entirely removed. This usually skimmed-over trick is actually critical for SSL methods to display competitive performances. For example, on ImageNet classification, more than 30 points of percentage can be gained that way. This is a little vexing, as one would hope that the network layer at which invariance is explicitly enforced by the SSL criterion during training (the last layer) should be the one to use for best generalization performance downstream. But it seems not to be, and this study sheds some light on why. This trick, which we name Guillotine Regularization (GR), is in fact a generically applicable form of regularization that has also been used to improve generalization performance in transfer learning scenarios. In this work, through theory and experiments, we formalize GR and identify the underlying reasons behind its success in SSL methods. Our study shows that the use of this trick is essential to SSL performance for two main reasons: (i) improper data-augmentations to define the positive pairs used during training, and/or (ii) suboptimal selection of the hyper-parameters of the SSL loss." 684,Stability Verification of Neural Network Controllers using Mixed-Integer Programming,"We propose a framework for the stability verification of Mixed-Integer Linear Programming (MILP) representable control policies. This framework compares a fixed candidate policy, which admits an efficient parameterization and can be evaluated at a low computational cost, against a fixed baseline policy, which is known to be stable but expensive to evaluate. We provide sufficient conditions for the closed-loop stability of the candidate policy in terms of the worst-case approximation error with respect to the baseline policy, and we show that these conditions can be checked by solving a Mixed-Integer Quadratic Program (MIQP). Additionally, we demonstrate that an outer approximation of the stability region of the candidate policy can be computed by solving an MILP. The proposed framework is sufficiently general to accommodate a broad range of candidate policies including ReLU Neural Networks (NNs), optimal solution maps of parametric quadratic programs, and Model Predictive Control (MPC) policies. We also present an open-source toolbox in Python based on the proposed framework, which allows for the easy verification of custom NN architectures and MPC formulations. We showcase the flexibility and reliability of our framework in the context of a DC-DC power convertor case study and investigate the computational complexity." 685,Interpretable Acoustic Representation Learning on Breathing and Speech Signals for COVID-19 Detection,"In this paper, we describe an approach for representation learning of audio signals for the task of COVID-19 detection. The raw audio samples are processed with a bank of 1-D convolutional filters that are parameterized as cosine modulated Gaussian functions. The choice of these kernels allows the interpretation of the filterbanks as smooth band-pass filters. The filtered outputs are pooled, log-compressed and used in a self-attention based relevance weighting mechanism. The relevance weighting emphasizes the key regions of the time-frequency decomposition that are important for the downstream task. The subsequent layers of the model consist of a recurrent architecture and the models are trained for a COVID-19 detection task. In our experiments on the Coswara data set, we show that the proposed model achieves significant performance improvements over the baseline system as well as other representation learning approaches. Further, the approach proposed is shown to be uniformly applicable for speech and breathing signals and for transfer learning from a larger data set." 686,A Simple and Scalable Tensor Completion Algorithm via Latent Invariant Constraint for Recommendation System,"In this paper we provide a latent-variable formulation and solution to the recommender system (RS) problem in terms of a fundamental property that any reasonable solution should be expected to satisfy. Specifically, we examine a novel tensor completion method to efficiently and accurately learn parameters of a model for the unobservable personal preferences that underly user ratings. By regularizing the tensor decomposition with a single latent invariant, we achieve three properties for a reliable recommender system: (1) uniqueness of the tensor completion result with minimal assumptions, (2) unit consistency that is independent of arbitrary preferences of users, and (3) a consensus ordering guarantee that provides consistent ranking between observed and unobserved rating scores. Our algorithm leads to a simple and elegant recommendation framework that has linear computational complexity and with no hyperparameter tuning. We provide empirical results demonstrating that the approach significantly outperforms current state-of-the-art methods." 687,Benign overfitting and adaptive nonparametric regression,"In the nonparametric regression setting, we construct an estimator which is a continuous function interpolating the data points with high probability, while attaining minimax optimal rates under mean squared risk on the scale of H\""older classes adaptively to the unknown smoothness." 688,Distributional Gaussian Processes Layers for Out-of-Distribution Detection,"Machine learning models deployed on medical imaging tasks must be equipped with out-of-distribution detection capabilities in order to avoid erroneous predictions. It is unsure whether out-of-distribution detection models reliant on deep neural networks are suitable for detecting domain shifts in medical imaging. Gaussian Processes can reliably separate in-distribution data points from out-of-distribution data points via their mathematical construction. Hence, we propose a parameter efficient Bayesian layer for hierarchical convolutional Gaussian Processes that incorporates Gaussian Processes operating in Wasserstein-2 space to reliably propagate uncertainty. This directly replaces convolving Gaussian Processes with a distance-preserving affine operator on distributions. Our experiments on brain tissue-segmentation show that the resulting architecture approaches the performance of well-established deterministic segmentation algorithms (U-Net), which has not been achieved with previous hierarchical Gaussian Processes. Moreover, by applying the same segmentation model to out-of-distribution data (i.e., images with pathology such as brain tumors), we show that our uncertainty estimates result in out-of-distribution detection that outperforms the capabilities of previous Bayesian networks and reconstruction-based approaches that learn normative distributions. To facilitate future work our code is publicly available." 689,Continual Learning of Dynamical Systems with Competitive Federated Reservoir Computing,"Machine learning recently proved efficient in learning differential equations and dynamical systems from data. However, the data is commonly assumed to originate from a single never-changing system. In contrast, when modeling real-world dynamical processes, the data distribution often shifts due to changes in the underlying system dynamics. Continual learning of these processes aims to rapidly adapt to abrupt system changes without forgetting previous dynamical regimes. This work proposes an approach to continual learning based on reservoir computing, a state-of-the-art method for training recurrent neural networks on complex spatiotemporal dynamical systems. Reservoir computing fixes the recurrent network weights - hence these cannot be forgotten - and only updates linear projection heads to the output. We propose to train multiple competitive prediction heads concurrently. Inspired by neuroscience's predictive coding, only the most predictive heads activate, laterally inhibiting and thus protecting the inactive heads from forgetting induced by interfering parameter updates. We show that this multi-head reservoir minimizes interference and catastrophic forgetting on several dynamical systems, including the Van-der-Pol oscillator, the chaotic Lorenz attractor, and the high-dimensional Lorenz-96 weather model. Our results suggest that reservoir computing is a promising candidate framework for the continual learning of dynamical systems. We provide our code for data generation, method, and comparisons at \url{https://github.com/leonardbereska/multiheadreservoir}." 690,Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning,"The worldwide increase of antimicrobial resistance (AMR) is a serious threat to human health. To avert the spread of AMR, fast reliable diagnostics tools that facilitate optimal antibiotic stewardship are an unmet need. In this regard, Raman spectroscopy promises rapid label- and culture-free identification and antimicrobial susceptibility testing (AST) in a single step. However, even though many Raman-based bacteria-identification and AST studies have demonstrated impressive results, some shortcomings must be addressed. To bridge the gap between proof-of-concept studies and clinical application, we have developed machine learning techniques in combination with a novel data-augmentation algorithm, for fast identification of minimally prepared bacteria phenotypes and the distinctions of methicillin-resistant (MR) from methicillin-susceptible (MS) bacteria. For this we have implemented a spectral transformer model for hyper-spectral Raman images of bacteria. We show that our model outperforms the standard convolutional neural network models on a multitude of classification problems, both in terms of accuracy and in terms of training time. We attain more than 96$\%$ classification accuracy on a dataset consisting of 15 different classes and 95.6$\%$ classification accuracy for six MR-MS bacteria species. More importantly, our results are obtained using only fast and easy-to-produce training and test data" 691,A penalisation method for batch multi-objective Bayesian optimisation with application in heat exchanger design,"We present HIghly Parallelisable Pareto Optimisation (HIPPO) -- a batch acquisition function that enables multi-objective Bayesian optimisation methods to efficiently exploit parallel processing resources. Multi-Objective Bayesian Optimisation (MOBO) is a very efficient tool for tackling expensive black-box problems. However, most MOBO algorithms are designed as purely sequential strategies, and existing batch approaches are prohibitively expensive for all but the smallest of batch sizes. We show that by encouraging batch diversity through penalising evaluations with similar predicted objective values, HIPPO is able to cheaply build large batches of informative points. Our extensive experimental validation demonstrates that HIPPO is at least as efficient as existing alternatives whilst incurring an order of magnitude lower computational overhead and scaling easily to batch sizes considerably higher than currently supported in the literature. Additionally, we demonstrate the application of HIPPO to a challenging heat exchanger design problem, stressing the real-world utility of our highly parallelisable approach to MOBO." 692,Path Integral Stochastic Optimal Control for Sampling Transition Paths,"We consider the problem of Sampling Transition Paths. Given two metastable conformational states of a molecular system, eg. a folded and unfolded protein, we aim to sample the most likely transition path between the two states. Sampling such a transition path is computationally expensive due to the existence of high free energy barriers between the two states. To circumvent this, previous work has focused on simplifying the trajectories to occur along specific molecular descriptors called Collective Variables (CVs). However, finding CVs is not trivial and requires chemical intuition. For larger molecules, where intuition is not sufficient, using these CV-based methods biases the transition along possibly irrelevant dimensions. Instead, this work proposes a method for sampling transition paths that consider the entire geometry of the molecules. To achieve this, we first relate the problem to recent work on the Schrodinger bridge problem and stochastic optimal control. Using this relation, we construct a method that takes into account important characteristics of molecular systems such as second-order dynamics and invariance to rotations and translations. We demonstrate our method on the commonly studied Alanine Dipeptide, but also consider larger proteins such as Polyproline and Chignolin." 693,Humans are not Boltzmann Distributions: Challenges and Opportunities for Modelling Human Feedback and Interaction in Reinforcement Learning,"Reinforcement learning (RL) commonly assumes access to well-specified reward functions, which many practical applications do not provide. Instead, recently, more work has explored learning what to do from interacting with humans. So far, most of these approaches model humans as being (nosily) rational and, in particular, giving unbiased feedback. We argue that these models are too simplistic and that RL researchers need to develop more realistic human models to design and evaluate their algorithms. In particular, we argue that human models have to be personal, contextual, and dynamic. This paper calls for research from different disciplines to address key questions about how humans provide feedback to AIs and how we can build more robust human-in-the-loop RL systems." 694,Insights into Deep Non-linear Filters for Improved Multi-channel Speech Enhancement,"The key advantage of using multiple microphones for speech enhancement is that spatial filtering can be used to complement the tempo-spectral processing. In a traditional setting, linear spatial filtering (beamforming) and single-channel post-filtering are commonly performed separately. In contrast, there is a trend towards employing deep neural networks (DNNs) to learn a joint spatial and tempo-spectral non-linear filter, which means that the restriction of a linear processing model and that of a separate processing of spatial and tempo-spectral information can potentially be overcome. However, the internal mechanisms that lead to good performance of such data-driven filters for multi-channel speech enhancement are not well understood. Therefore, in this work, we analyse the properties of a non-linear spatial filter realized by a DNN as well as its interdependency with temporal and spectral processing by carefully controlling the information sources (spatial, spectral, and temporal) available to the network. We confirm the superiority of a non-linear spatial processing model, which outperforms an oracle linear spatial filter in a challenging speaker extraction scenario for a low number of microphones by 0.24 POLQA score. Our analyses reveal that in particular spectral information should be processed jointly with spatial information as this increases the spatial selectivity of the filter. Our systematic evaluation then leads to a simple network architecture, that outperforms state-of-the-art network architectures on a speaker extraction task by 0.22 POLQA score and by 0.32 POLQA score on the CHiME3 data." 695,Supernova Light Curves Approximation based on Neural Network Models,"Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy. Recent studies have demonstrated the superior quality of solutions based on various machine learning models. These models learn to classify supernova types using their light curves as inputs. Preprocessing these curves is a crucial step that significantly affects the final quality. In this talk, we study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve. We use these approximations as inputs for supernovae classification models and demonstrate that the proposed methods outperform the state-of-the-art based on Gaussian processes applying to the Zwicky Transient Facility Bright Transient Survey light curves. MLP demonstrates similar quality as Gaussian processes and speed increase. Normalizing Flows exceeds Gaussian processes in terms of approximation quality as well." 696,PARTICUL: Part Identification with Confidence measure using Unsupervised Learning,"In this paper, we present PARTICUL, a novel algorithm for unsupervised learning of part detectors from datasets used in fine-grained recognition. It exploits the macro-similarities of all images in the training set in order to mine for recurring patterns in the feature space of a pre-trained convolutional neural network. We propose new objective functions enforcing the locality and unicity of the detected parts. Additionally, we embed our detectors with a confidence measure based on correlation scores, allowing the system to estimate the visibility of each part. We apply our method on two public fine-grained datasets (Caltech-UCSD Bird 200 and Stanford Cars) and show that our detectors can consistently highlight parts of the object while providing a good measure of the confidence in their prediction. We also demonstrate that these detectors can be directly used to build part-based fine-grained classifiers that provide a good compromise between the transparency of prototype-based approaches and the performance of non-interpretable methods." 697,A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter,"Vaccine hesitancy is considered as one main cause of the stagnant uptake ratio of COVID-19 vaccines in Europe and the US where vaccines are sufficiently supplied. Fast and accurate grasp of public attitudes toward vaccination is critical to address vaccine hesitancy, and social media platforms have proved to be an effective source of public opinions. In this paper, we describe the collection and release of a dataset of tweets related to COVID-19 vaccines. This dataset consists of the IDs of 2,198,090 tweets collected from Western Europe, 17,934 of which are annotated with the originators' vaccination stances. Our annotation will facilitate using and developing data-driven models to extract vaccination attitudes from social media posts and thus further confirm the power of social media in public health surveillance. To lay the groundwork for future research, we not only perform statistical analysis and visualisation of our dataset, but also evaluate and compare the performance of established text-based benchmarks in vaccination stance extraction. We demonstrate one potential use of our data in practice in tracking the temporal changes of public COVID-19 vaccination attitudes." 698,Consistency-preserving Visual Question Answering in Medical Imaging,"Visual Question Answering (VQA) models take an image and a natural-language question as input and infer the answer to the question. Recently, VQA systems in medical imaging have gained popularity thanks to potential advantages such as patient engagement and second opinions for clinicians. While most research efforts have been focused on improving architectures and overcoming data-related limitations, answer consistency has been overlooked even though it plays a critical role in establishing trustworthy models. In this work, we propose a novel loss function and corresponding training procedure that allows the inclusion of relations between questions into the training process. Specifically, we consider the case where implications between perception and reasoning questions are known a-priori. To show the benefits of our approach, we evaluate it on the clinically relevant task of Diabetic Macular Edema (DME) staging from fundus imaging. Our experiments show that our method outperforms state-of-the-art baselines, not only by improving model consistency, but also in terms of overall model accuracy. Our code and data are available at https://github.com/sergiotasconmorales/consistency_vqa." 699,Diffusion Deformable Model for 4D Temporal Medical Image Generation,"Temporal volume images with 3D+t (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression. Although deep-learning-based generative models for natural images have been extensively studied, approaches for temporal medical image generation such as 4D cardiac volume data are limited. In this work, we present a novel deep learning model that generates intermediate temporal volumes between source and target volumes. Specifically, we propose a diffusion deformable model (DDM) by adapting the denoising diffusion probabilistic model that has recently been widely investigated for realistic image generation. Our proposed DDM is composed of the diffusion and the deformation modules so that DDM can learn spatial deformation information between the source and target volumes and provide a latent code for generating intermediate frames along a geodesic path. Once our model is trained, the latent code estimated from the diffusion module is simply interpolated and fed into the deformation module, which enables DDM to generate temporal frames along the continuous trajectory while preserving the topology of the source image. We demonstrate the proposed method with the 4D cardiac MR image generation between the diastolic and systolic phases for each subject. Compared to the existing deformation methods, our DDM achieves high performance on temporal volume generation." 700,Theoretical analysis of Adam using hyperparameters close to one without Lipschitz smoothness,"Convergence and convergence rate analyses of adaptive methods, such as Adaptive Moment Estimation (Adam) and its variants, have been widely studied for nonconvex optimization. The analyses are based on assumptions that the expected or empirical average loss function is Lipschitz smooth (i.e., its gradient is Lipschitz continuous) and the learning rates depend on the Lipschitz constant of the Lipschitz continuous gradient. Meanwhile, numerical evaluations of Adam and its variants have clarified that using small constant learning rates without depending on the Lipschitz constant and hyperparameters ($\beta_1$ and $\beta_2$) close to one is advantageous for training deep neural networks. Since computing the Lipschitz constant is NP-hard, the Lipschitz smoothness condition would be unrealistic. This paper provides theoretical analyses of Adam without assuming the Lipschitz smoothness condition in order to bridge the gap between theory and practice. The main contribution is to show theoretical evidence that Adam using small learning rates and hyperparameters close to one performs well, whereas the previous theoretical results were all for hyperparameters close to zero. Our analysis also leads to the finding that Adam performs well with large batch sizes. Moreover, we show that Adam performs well when it uses diminishing learning rates and hyperparameters close to one." 701,Sum-of-Squares Relaxations for Information Theory and Variational Inference,"We consider extensions of the Shannon relative entropy, referred to as f-divergences. Three classical related computational problems are typically associated with these divergences: (a) estimation from moments, (b) computing normalizing integrals, and (c) variational inference in probabilistic models. These problems are related to one another through convex duality, and for all them, there are many applications throughout data science, and we aim for computationally tractable approximation algorithms that preserve properties of the original problem such as potential convexity or monotonicity. In order to achieve this, we derive a sequence of convex relaxations for computing these divergences from non-centered covariance matrices associated with a given feature vector: starting from the typically non-tractable optimal lower-bound, we consider an additional relaxation based on ''sums-of-squares'', which is is now computable in polynomial time as a semidefinite program, as well as further computationally more efficient relaxations based on spectral information divergences from quantum information theory. For all of the tasks above, beyond proposing new relaxations, we derive tractable algorithms based on augmented Lagrangians and first-order methods, and we present illustrations on multivariate trigonometric polynomials and functions on the Boolean hypercube." 702,Deep-Learning vs Regression: Prediction of Tourism Flow with Limited Data,"Modern tourism in the 21st century is facing numerous challenges. One of these challenges is the rapidly growing number of tourists in space limited regions such as historical city centers, museums or geographical bottlenecks like narrow valleys. In this context, a proper and accurate prediction of tourism volume and tourism flow within a certain area is important and critical for visitor management tasks such as visitor flow control and prevention of overcrowding. Static flow control methods like limiting access to hotspots or using conventional low level controllers could not solve the problem yet. In this paper, we empirically evaluate the performance of several state-of-the-art deep-learning methods in the field of visitor flow prediction with limited data by using available granular data supplied by a tourism region and comparing the results to ARIMA, a classical statistical method. Our results show that deep-learning models yield better predictions compared to the ARIMA method, while both featuring faster inference times and being able to incorporate additional input features." 703,"Wideband Audio Waveform Evaluation Networks: Efficient, Accurate Estimation of Speech Qualities","Wideband Audio Waveform Evaluation Networks (WAWEnets) are convolutional neural networks that operate directly on wideband audio waveforms in order to produce evaluations of those waveforms. In the present work these evaluations give qualities of telecommunications speech (e.g., noisiness, intelligibility, overall speech quality). WAWEnets are no-reference networks because they do not require ``reference'' (original or undistorted) versions of the waveforms they evaluate. Our initial WAWEnet publication introduced four WAWEnets and each emulated the output of an established full-reference speech quality or intelligibility estimation algorithm. We have updated the WAWEnet architecture to be more efficient and effective. Here we present a single WAWEnet that closely tracks seven different quality and intelligibility values. We create a second network that additionally tracks four subjective speech quality dimensions. We offer a third network that focuses on just subjective quality scores and achieves very high levels of agreement. This work has leveraged 334 hours of speech in 13 languages, over two million full-reference target values and over 93,000 subjective mean opinion scores. We also interpret the operation of WAWEnets and identify the key to their operation using the language of signal processing: ReLUs strategically move spectral information from non-DC components into the DC component. The DC values of 96 output signals define a vector in a 96-D latent space and this vector is then mapped to a quality or intelligibility value for the input waveform." 704,Multifamily Malware Models,"When training a machine learning model, there is likely to be a tradeoff between accuracy and the diversity of the dataset. Previous research has shown that if we train a model to detect one specific malware family, we generally obtain stronger results as compared to a case where we train a single model on multiple diverse families. However, during the detection phase, it would be more efficient to have a single model that can reliably detect multiple families, rather than having to score each sample against multiple models. In this research, we conduct experiments based on byte $n$-gram features to quantify the relationship between the generality of the training dataset and the accuracy of the corresponding machine learning models, all within the context of the malware detection problem. We find that neighborhood-based algorithms generalize surprisingly well, far outperforming the other machine learning techniques considered." 705,The Performance of Wasserstein Distributionally Robust M-Estimators in High Dimensions,"Wasserstein distributionally robust optimization has recently emerged as a powerful framework for robust estimation, enjoying good out-of-sample performance guarantees, well-understood regularization effects, and computationally tractable dual reformulations. In such framework, the estimator is obtained by minimizing the worst-case expected loss over all probability distributions which are close, in a Wasserstein sense, to the empirical distribution. In this paper, we propose a Wasserstein distributionally robust M-estimation framework to estimate an unknown parameter from noisy linear measurements, and we focus on the important and challenging task of analyzing the squared error performance of such estimators. Our study is carried out in the modern high-dimensional proportional regime, where both the ambient dimension and the number of samples go to infinity, at a proportional rate which encodes the under/over-parametrization of the problem. Under an isotropic Gaussian features assumption, we show that the squared error can be recover as the solution of a convex-concave optimization problem which, surprinsingly, involves at most four scalar variables. To the best of our knowledge, this is the first work to study this problem in the context of Wasserstein distributionally robust M-estimation." 706,Finite Littlestone Dimension Implies Finite Information Complexity,"We prove that every online learnable class of functions of Littlestone dimension $d$ admits a learning algorithm with finite information complexity. Towards this end, we use the notion of a globally stable algorithm. Generally, the information complexity of such a globally stable algorithm is large yet finite, roughly exponential in $d$. We also show there is room for improvement; for a canonical online learnable class, indicator functions of affine subspaces of dimension $d$, the information complexity can be upper bounded logarithmically in $d$." 707,Knowledge-aware Neural Collective Matrix Factorization for Cross-domain Recommendation,"Cross-domain recommendation (CDR) can help customers find more satisfying items in different domains. Existing CDR models mainly use common users or mapping functions as bridges between domains but have very limited exploration in fully utilizing extra knowledge across domains. In this paper, we propose to incorporate the knowledge graph (KG) for CDR, which enables items in different domains to share knowledge. To this end, we first construct a new dataset AmazonKG4CDR from the Freebase KG and a subset (two domain pairs: movies-music, movie-book) of Amazon Review Data. This new dataset facilitates linking knowledge to bridge within- and cross-domain items for CDR. Then we propose a new framework, KG-aware Neural Collective Matrix Factorization (KG-NeuCMF), leveraging KG to enrich item representations. It first learns item embeddings by graph convolutional autoencoder to capture both domain-specific and domain-general knowledge from adjacent and higher-order neighbours in the KG. Then, we maximize the mutual information between item embeddings learned from the KG and user-item matrix to establish cross-domain relationships for better CDR. Finally, we conduct extensive experiments on the newly constructed dataset and demonstrate that our model significantly outperforms the best-performing baselines." 708,Sample compression schemes for balls in graphs,"One of the open problems in machine learning is whether any set-family of VC-dimension $d$ admits a sample compression scheme of size~$O(d)$. In this paper, we study this problem for balls in graphs. For balls of arbitrary radius $r$, we design proper sample compression schemes of size $2$ for trees, of size $3$ for cycles, of size $4$ for interval graphs, of size $6$ for trees of cycles, and of size $22$ for cube-free median graphs. For balls of a given radius, we design proper labeled sample compression schemes of size $2$ for trees and of size $4$ for interval graphs. We also design approximate sample compression schemes of size 2 for balls of $\delta$-hyperbolic graphs." 709,Attack Agnostic Dataset: Towards Generalization and Stabilization of Audio DeepFake Detection,"Audio DeepFakes allow the creation of high-quality, convincing utterances and therefore pose a threat due to its potential applications such as impersonation or fake news. Methods for detecting these manipulations should be characterized by good generalization and stability leading to robustness against attacks conducted with techniques that are not explicitly included in the training. In this work, we introduce Attack Agnostic Dataset - a combination of two audio DeepFakes and one anti-spoofing datasets that, thanks to the disjoint use of attacks, can lead to better generalization of detection methods. We present a thorough analysis of current DeepFake detection methods and consider different audio features (front-ends). In addition, we propose a model based on LCNN with LFCC and mel-spectrogram front-end, which not only is characterized by a good generalization and stability results but also shows improvement over LFCC-based mode - we decrease standard deviation on all folds and EER in two folds by up to 5%." 710,Cracking nuts with a sledgehammer: when modern graph neural networks do worse than classical greedy algorithms,"The recent work ``Combinatorial Optimization with Physics-Inspired Graph Neural Networks'' [Nat Mach Intell 4 (2022) 367] introduces a physics-inspired unsupervised Graph Neural Network (GNN) to solve combinatorial optimization problems on sparse graphs. To test the performances of these GNNs, the authors of the work show numerical results for two fundamental problems: maximum cut and maximum independent set (MIS). They conclude that ""the graph neural network optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems with millions of variables."" In this comment, we show that a simple greedy algorithm, running in almost linear time, can find solutions for the MIS problem of much better quality than the GNN. The greedy algorithm is faster by a factor of $10^4$ with respect to the GNN for problems with a million variables. We do not see any good reason for solving the MIS with these GNN, as well as for using a sledgehammer to crack nuts. In general, many claims of superiority of neural networks in solving combinatorial problems are at risk of being not solid enough, since we lack standard benchmarks based on really hard problems. We propose one of such hard benchmarks, and we hope to see future neural network optimizers tested on these problems before any claim of superiority is made." 711,Human-AI Collaboration in Decision-Making: Beyond Learning to Defer,"Human-AI collaboration (HAIC) in decision-making aims to create synergistic teaming between human decision-makers and AI systems. Learning to Defer (L2D) has been presented as a promising framework to determine who among humans and AI should take which decisions in order to optimize the performance and fairness of the combined system. Nevertheless, L2D entails several often unfeasible requirements, such as the availability of predictions from humans for every instance or ground-truth labels independent from said decision-makers. Furthermore, neither L2D nor alternative approaches tackle fundamental issues of deploying HAIC in real-world settings, such as capacity management or dealing with dynamic environments. In this paper, we aim to identify and review these and other limitations, pointing to where opportunities for future research in HAIC may lie." 712,Few-Shot Cross-Lingual TTS Using Transferable Phoneme Embedding,"This paper studies a transferable phoneme embedding framework that aims to deal with the cross-lingual text-to-speech (TTS) problem under the few-shot setting. Transfer learning is a common approach when it comes to few-shot learning since training from scratch on few-shot training data is bound to overfit. Still, we find that the naive transfer learning approach fails to adapt to unseen languages under extremely few-shot settings, where less than 8 minutes of data is provided. We deal with the problem by proposing a framework that consists of a phoneme-based TTS model and a codebook module to project phonemes from different languages into a learned latent space. Furthermore, by utilizing phoneme-level averaged self-supervised learned features, we effectively improve the quality of synthesized speeches. Experiments show that using 4 utterances, which is about 30 seconds of data, is enough to synthesize intelligible speech when adapting to an unseen language using our framework." 713,Differentially Private Federated Combinatorial Bandits with Constraints,"There is a rapid increase in the cooperative learning paradigm in online learning settings, i.e., federated learning (FL). Unlike most FL settings, there are many situations where the agents are competitive. Each agent would like to learn from others, but the part of the information it shares for others to learn from could be sensitive; thus, it desires its privacy. This work investigates a group of agents working concurrently to solve similar combinatorial bandit problems while maintaining quality constraints. Can these agents collectively learn while keeping their sensitive information confidential by employing differential privacy? We observe that communicating can reduce the regret. However, differential privacy techniques for protecting sensitive information makes the data noisy and may deteriorate than help to improve regret. Hence, we note that it is essential to decide when to communicate and what shared data to learn to strike a functional balance between regret and privacy. For such a federated combinatorial MAB setting, we propose a Privacy-preserving Federated Combinatorial Bandit algorithm, P-FCB. We illustrate the efficacy of P-FCB through simulations. We further show that our algorithm provides an improvement in terms of regret while upholding quality threshold and meaningful privacy guarantees." 714,An Empirical Study of Personalized Federated Learning,"Federated learning is a distributed machine learning approach in which a single server and multiple clients collaboratively build machine learning models without sharing datasets on clients. A challenging issue of federated learning is data heterogeneity (i.e., data distributions may differ across clients). To cope with this issue, numerous federated learning methods aim at personalized federated learning and build optimized models for clients. Whereas existing studies empirically evaluated their own methods, the experimental settings (e.g., comparison methods, datasets, and client setting) in these studies differ from each other, and it is unclear which personalized federate learning method achieves the best performance and how much progress can be made by using these methods instead of standard (i.e., non-personalized) federated learning. In this paper, we benchmark the performance of existing personalized federated learning through comprehensive experiments to evaluate the characteristics of each method. Our experimental study shows that (1) there are no champion methods, (2) large data heterogeneity often leads to high accurate predictions, and (3) standard federated learning methods (e.g. FedAvg) with fine-tuning often outperform personalized federated learning methods. We open our benchmark tool FedBench for researchers to conduct experimental studies with various experimental settings." 715,Prisoners of Their Own Devices: How Models Induce Data Bias in Performative Prediction,"The unparalleled ability of machine learning algorithms to learn patterns from data also enables them to incorporate biases embedded within. A biased model can then make decisions that disproportionately harm certain groups in society. Much work has been devoted to measuring unfairness in static ML environments, but not in dynamic, performative prediction ones, in which most real-world use cases operate. In the latter, the predictive model itself plays a pivotal role in shaping the distribution of the data. However, little attention has been heeded to relating unfairness to these interactions. Thus, to further the understanding of unfairness in these settings, we propose a taxonomy to characterize bias in the data, and study cases where it is shaped by model behaviour. Using a real-world account opening fraud detection case study as an example, we study the dangers to both performance and fairness of two typical biases in performative prediction: distribution shifts, and the problem of selective labels." 716,Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data -- An Algorithm and A Benchmark,"This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K, with $d \leq 3$. Our method extends the seminal ""PairCells"" algorithm by introducing three main accelerations. First, we express this algorithm within the setting of discrete Morse theory, which considerably reduces the number of input simplices to consider. Second, we introduce a stratification approach to the problem, that we call ""sandwiching"". Specifically, minima-saddle persistence pairs ($D_0(f)$) and saddle-maximum persistence pairs ($D_{d-1}(f)$) are efficiently computed by respectively processing with a Union-Find the unstable sets of 1-saddles and the stable sets of (d-1)-saddles. This fast processing of the dimensions 0 and (d-1) further reduces, and drastically, the number of critical simplices to consider for the computation of $D_1(f)$, the intermediate layer of the sandwich. Third, we document several performance improvements via shared-memory parallelism. We provide an open-source implementation of our algorithm for reproducibility purposes. We also contribute a reproducible benchmark package, which exploits three-dimensional data from a public repository and compares our algorithm to a variety of publicly available implementations. Extensive experiments indicate that our algorithm improves by two orders of magnitude the time performance of the seminal ""PairCells"" algorithm it extends. Moreover, it also improves memory footprint and time performance over a selection of 14 competing approaches, with a substantial gain over the fastest available approaches, while producing a strictly identical output. We illustrate the utility of our contributions with an application to the fast and robust extraction of persistent 1-dimensional generators on surfaces, volume data and high-dimensional point clouds." 717,Learning to Control Local Search for Combinatorial Optimization,"Combinatorial optimization problems are encountered in many practical contexts such as logistics and production, but exact solutions are particularly difficult to find and usually NP-hard for considerable problem sizes. To compute approximate solutions, a zoo of generic as well as problem-specific variants of local search is commonly used. However, which variant to apply to which particular problem is difficult to decide even for experts. In this paper we identify three independent algorithmic aspects of such local search algorithms and formalize their sequential selection over an optimization process as Markov Decision Process (MDP). We design a deep graph neural network as policy model for this MDP, yielding a learned controller for local search called NeuroLS. Ample experimental evidence shows that NeuroLS is able to outperform both, well-known general purpose local search controllers from Operations Research as well as latest machine learning-based approaches." 718,A Representation Learning Framework for Property Graphs,"Representation learning on graphs, also called graph embedding, has demonstrated its significant impact on a series of machine learning applications such as classification, prediction and recommendation. However, existing work has largely ignored the rich information contained in the properties (or attributes) of both nodes and edges of graphs in modern applications, e.g., those represented by property graphs. To date, most existing graph embedding methods either focus on plain graphs with only the graph topology, or consider properties on nodes only. We propose PGE, a graph representation learning framework that incorporates both node and edge properties into the graph embedding procedure. PGE uses node clustering to assign biases to differentiate neighbors of a node and leverages multiple data-driven matrices to aggregate the property information of neighbors sampled based on a biased strategy. PGE adopts the popular inductive model for neighborhood aggregation. We provide detailed analyses on the efficacy of our method and validate the performance of PGE by showing how PGE achieves better embedding results than the state-of-the-art graph embedding methods on benchmark applications such as node classification and link prediction over real-world datasets." 719,Measuring and Improving the Use of Graph Information in Graph Neural Networks,"Graph neural networks (GNNs) have been widely used for representation learning on graph data. However, there is limited understanding on how much performance GNNs actually gain from graph data. This paper introduces a context-surrounding GNN framework and proposes two smoothness metrics to measure the quantity and quality of information obtained from graph data. A new GNN model, called CS-GNN, is then designed to improve the use of graph information based on the smoothness values of a graph. CS-GNN is shown to achieve better performance than existing methods in different types of real graphs." 720,Local Evaluation of Time Series Anomaly Detection Algorithms,"In recent years, specific evaluation metrics for time series anomaly detection algorithms have been developed to handle the limitations of the classical precision and recall. However, such metrics are heuristically built as an aggregate of multiple desirable aspects, introduce parameters and wipe out the interpretability of the output. In this article, we first highlight the limitations of the classical precision/recall, as well as the main issues of the recent event-based metrics -- for instance, we show that an adversary algorithm can reach high precision and recall on almost any dataset under weak assumption. To cope with the above problems, we propose a theoretically grounded, robust, parameter-free and interpretable extension to precision/recall metrics, based on the concept of ``affiliation'' between the ground truth and the prediction sets. Our metrics leverage measures of duration between ground truth and predictions, and have thus an intuitive interpretation. By further comparison against random sampling, we obtain a normalized precision/recall, quantifying how much a given set of results is better than a random baseline prediction. By construction, our approach keeps the evaluation local regarding ground truth events, enabling fine-grained visualization and interpretation of algorithmic results. We compare our proposal against various public time series anomaly detection datasets, algorithms and metrics. We further derive theoretical properties of the affiliation metrics that give explicit expectations about their behavior and ensure robustness against adversary strategies." 721,Evaluating resampling methods on a real-life highly imbalanced online credit card payments dataset,"Various problems of any credit card fraud detection based on machine learning come from the imbalanced aspect of transaction datasets. Indeed, the number of frauds compared to the number of regular transactions is tiny and has been shown to damage learning performances, e.g., at worst, the algorithm can learn to classify all the transactions as regular. Resampling methods and cost-sensitive approaches are known to be good candidates to leverage this issue of imbalanced datasets. This paper evaluates numerous state-of-the-art resampling methods on a large real-life online credit card payments dataset. We show they are inefficient because methods are intractable or because metrics do not exhibit substantial improvements. Our work contributes to this domain in (1) that we compare many state-of-the-art resampling methods on a large-scale dataset and in (2) that we use a real-life online credit card payments dataset." 722,Compressing Features for Learning with Noisy Labels,"Supervised learning can be viewed as distilling relevant information from input data into feature representations. This process becomes difficult when supervision is noisy as the distilled information might not be relevant. In fact, recent research shows that networks can easily overfit all labels including those that are corrupted, and hence can hardly generalize to clean datasets. In this paper, we focus on the problem of learning with noisy labels and introduce compression inductive bias to network architectures to alleviate this over-fitting problem. More precisely, we revisit one classical regularization named Dropout and its variant Nested Dropout. Dropout can serve as a compression constraint for its feature dropping mechanism, while Nested Dropout further learns ordered feature representations w.r.t. feature importance. Moreover, the trained models with compression regularization are further combined with Co-teaching for performance boost. Theoretically, we conduct bias-variance decomposition of the objective function under compression regularization. We analyze it for both single model and Co-teaching. This decomposition provides three insights: (i) it shows that over-fitting is indeed an issue for learning with noisy labels; (ii) through an information bottleneck formulation, it explains why the proposed feature compression helps in combating label noise; (iii) it gives explanations on the performance boost brought by incorporating compression regularization into Co-teaching. Experiments show that our simple approach can have comparable or even better performance than the state-of-the-art methods on benchmarks with real-world label noise including Clothing1M and ANIMAL-10N. Our implementation is available at https://yingyichen-cyy.github.io/CompressFeatNoisyLabels/." 723,Extracting Weighted Finite Automata from Recurrent Neural Networks for Natural Languages,"Recurrent Neural Networks (RNNs) have achieved tremendous success in sequential data processing. However, it is quite challenging to interpret and verify RNNs' behaviors directly. To this end, many efforts have been made to extract finite automata from RNNs. Existing approaches such as exact learning are effective in extracting finite-state models to characterize the state dynamics of RNNs for formal languages, but are limited in the scalability to process natural languages. Compositional approaches that are scablable to natural languages fall short in extraction precision. In this paper, we identify the transition sparsity problem that heavily impacts the extraction precision. To address this problem, we propose a transition rule extraction approach, which is scalable to natural language processing models and effective in improving extraction precision. Specifically, we propose an empirical method to complement the missing rules in the transition diagram. In addition, we further adjust the transition matrices to enhance the context-aware ability of the extracted weighted finite automaton (WFA). Finally, we propose two data augmentation tactics to track more dynamic behaviors of the target RNN. Experiments on two popular natural language datasets show that our method can extract WFA from RNN for natural language processing with better precision than existing approaches." 724,Revisiting Architecture-aware Knowledge Distillation: Smaller Models and Faster Search,"Knowledge Distillation (KD) has recently emerged as a popular method for compressing neural networks. In recent studies, generalized distillation methods that find parameters and architectures of student models at the same time have been proposed. Still, this search method requires a lot of computation to search for architectures and has the disadvantage of considering only convolutional blocks in their search space. This paper introduces a new algorithm, coined as Trust Region Aware architecture search to Distill knowledge Effectively (TRADE), that rapidly finds effective student architectures from several state-of-the-art architectures using trust region Bayesian optimization approach. Experimental results show our proposed TRADE algorithm consistently outperforms both the conventional NAS approach and pre-defined architecture under KD training." 725,Transfer learning for ensembles: reducing computation time and keeping the diversity,"Transferring a deep neural network trained on one problem to another requires only a small amount of data and little additional computation time. The same behaviour holds for ensembles of deep learning models typically superior to a single model. However, a transfer of deep neural networks ensemble demands relatively high computational expenses. The probability of overfitting also increases. Our approach for the transfer learning of ensembles consists of two steps: (a) shifting weights of encoders of all models in the ensemble by a single shift vector and (b) doing a tiny fine-tuning for each individual model afterwards. This strategy leads to a speed-up of the training process and gives an opportunity to add models to an ensemble with significantly reduced training time using the shift vector. We compare different strategies by computation time, the accuracy of an ensemble, uncertainty estimation and disagreement and conclude that our approach gives competitive results using the same computation complexity in comparison with the traditional approach. Also, our method keeps the ensemble's models' diversity higher." 726,Dynamic-Group-Aware Networks for Multi-Agent Trajectory Prediction with Relational Reasoning,"Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works mainly consider static, pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling and relational reasoning, we propose DynGroupNet, a dynamic-group-aware network, which can i) model time-varying interactions in highly dynamic scenes; ii) capture both pair-wise and group-wise interactions; and iii) reason both interaction strength and category without direct supervision. Based on DynGroupNet, we further design a prediction system to forecast socially plausible trajectories with dynamic relational reasoning. The proposed prediction system leverages the Gaussian mixture model, multiple sampling and prediction refinement to promote prediction diversity, training stability and trajectory smoothness, respectively. Extensive experiments show that: 1)DynGroupNet can capture time-varying group behaviors, infer time-varying interaction category and interaction strength during trajectory prediction without any relation supervision on physical simulation datasets; 2)DynGroupNet outperforms the state-of-the-art trajectory prediction methods by a significant improvement of 22.6%/28.0%, 26.9%/34.9%, 5.1%/13.0% in ADE/FDE on the NBA, NFL Football and SDD datasets and achieve the state-of-the-art performance on the ETH-UCY dataset." 727,Enhancing Stochastic Petri Net-based Remaining Time Prediction using k-Nearest Neighbors,"Reliable remaining time prediction of ongoing business processes is a highly relevant topic. One example is order delivery, a key competitive factor in e.g. retailing as it is a main driver of customer satisfaction. For realising timely delivery, an accurate prediction of the remaining time of the delivery process is crucial. Within the field of process mining, a wide variety of remaining time prediction techniques have already been proposed. In this work, we extend remaining time prediction based on stochastic Petri nets with generally distributed transitions with k-nearest neighbors. The k-nearest neighbors algorithm is performed on simple vectors storing the time passed to complete previous activities. By only taking a subset of instances, a more representative and stable stochastic Petri Net is obtained, leading to more accurate time predictions. We discuss the technique and its basic implementation in Python and use different real world data sets to evaluate the predictive power of our extension. These experiments show clear advantages in combining both techniques with regard to predictive power." 728,AdaSparse: Learning Adaptively Sparse Structures for Multi-Domain Click-Through Rate Prediction,"Click-through rate (CTR) prediction is a fundamental technique in recommendation and advertising systems. Recent studies have proved that learning a unified model to serve multiple domains is effective to improve the overall performance. However, it is still challenging to improve generalization across domains under limited training data, and hard to deploy current solutions due to their computational complexity. In this paper, we propose a simple yet effective framework AdaSparse for multi-domain CTR prediction, which learns adaptively sparse structure for each domain, achieving better generalization across domains with lower computational cost. In AdaSparse, we introduce domain-aware neuron-level weighting factors to measure the importance of neurons, with that for each domain our model can prune redundant neurons to improve generalization. We further add flexible sparsity regularizations to control the sparsity ratio of learned structures. Offline and online experiments show that AdaSparse outperforms previous multi-domain CTR models significantly." 729,A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method,"Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids to show the capability of deep learning for predicting the solution in a complex environment under different boundary conditions. The performance of the proposed PINN model is checked against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). We concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and FEM for a fast and accurate design of composite materials in future developments." 730,Modeling Content Creator Incentives on Algorithm-Curated Platforms,"Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by algorithms including modern factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices -- e.g., non-negative vs. unconstrained factorization -- significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models like ours for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups." 731,SpeechEQ: Speech Emotion Recognition based on Multi-scale Unified Datasets and Multitask Learning,"Speech emotion recognition (SER) has many challenges, but one of the main challenges is that each framework does not have a unified standard. In this paper, we propose SpeechEQ, a framework for unifying SER tasks based on a multi-scale unified metric. This metric can be trained by Multitask Learning (MTL), which includes two emotion recognition tasks of Emotion States Category (EIS) and Emotion Intensity Scale (EIS), and two auxiliary tasks of phoneme recognition and gender recognition. For this framework, we build a Mandarin SER dataset - SpeechEQ Dataset (SEQD). We conducted experiments on the public CASIA and ESD datasets in Mandarin, which exhibit that our method outperforms baseline methods by a relatively large margin, yielding 8.0\% and 6.5\% improvement in accuracy respectively. Additional experiments on IEMOCAP with four emotion categories (i.e., angry, happy, sad, and neutral) also show the proposed method achieves a state-of-the-art of both weighted accuracy (WA) of 78.16% and unweighted accuracy (UA) of 77.47%." 732,Zero Stability Well Predicts Performance of Convolutional Neural Networks,"The question of what kind of convolutional neural network (CNN) structure performs well is fascinating. In this work, we move toward the answer with one more step by connecting zero stability and model performance. Specifically, we found that if a discrete solver of an ordinary differential equation is zero stable, the CNN corresponding to that solver performs well. We first give the interpretation of zero stability in the context of deep learning and then investigate the performance of existing first- and second-order CNNs under different zero-stable circumstances. Based on the preliminary observation, we provide a higher-order discretization to construct CNNs and then propose a zero-stable network (ZeroSNet). To guarantee zero stability of the ZeroSNet, we first deduce a structure that meets consistency conditions and then give a zero stable region of a training-free parameter. By analyzing the roots of a characteristic equation, we theoretically obtain the optimal coefficients of feature maps. Empirically, we present our results from three aspects: We provide extensive empirical evidence of different depth on different datasets to show that the moduli of the characteristic equation's roots are the keys for the performance of CNNs that require historical features; Our experiments show that ZeroSNet outperforms existing CNNs which is based on high-order discretization; ZeroSNets show better robustness against noises on the input. The source code is available at \url{https://github.com/LongJin-lab/ZeroSNet}." 733,A Zero-Shot Classification Approach for a Word-Guessing Challenge,"The Taboo Challenge competition, a task based on the well-known Taboo game, has been proposed to stimulate research in the AI field. The challenge requires building systems able to comprehend the implied inferences between the exchanged messages of guesser and describer agents. A describer sends pre-determined hints to guessers indirectly describing cities, and guessers are required to return the matching cities implied by the hints. Climbing up the scoring ledger requires the resolving of the highest amount of cities with the smallest amount of hints in a specified time frame. Here, we present TabooLM, a language-model approach that tackles the challenge based on a zero-shot setting. We start by presenting and comparing the results of this approach with three studies from the literature. The results show that our method achieves SOTA results on the Taboo challenge, suggesting that TabooLM can guess the implied cities faster and more accurately than existing approaches." 734,Learning Deep Input-Output Stable Dynamics,"Learning stable dynamics from observed time-series data is an essential problem in robotics, physical modeling, and systems biology. Many of these dynamics are represented as an inputs-output system to communicate with the external environment. In this study, we focus on input-output stable systems, exhibiting robustness against unexpected stimuli and noise. We propose a method to learn nonlinear systems guaranteeing the input-output stability. Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality to realize the input-output stability. The problem of finding this projection can be formulated as a quadratic constraint quadratic programming problem, and we derive the particular solution analytically. Also, we apply our method to a toy bistable model and the task of training a benchmark generated from a glucose-insulin simulator. The results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks. Our code is available at https://github.com/clinfo/DeepIOStability." 735,Split Localized Conformal Prediction,"Conformal prediction is a simple and powerful tool that can quantify uncertainty without any distributional assumptions. However, existing methods can only provide an average coverage guarantee, which is not ideal compared to the stronger conditional coverage guarantee. Although achieving exact conditional coverage is proven to be impossible, approximating conditional coverage is still an important research direction. In this paper, we propose a modified non-conformity score by leveraging local approximation of the conditional distribution. The modified score inherits the spirit of split conformal methods, which is simple and efficient compared with full conformal methods but better approximates conditional coverage guarantee. Empirical results on various datasets, including a high dimension age regression on image, demonstrate that our method provides tighter intervals compared to existing methods." 736,Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift,"Recently, Miller et al. showed that a model's in-distribution (ID) accuracy has a strong linear correlation with its out-of-distribution (OOD) accuracy on several OOD benchmarks -- a phenomenon they dubbed ''accuracy-on-the-line''. While a useful tool for model selection (i.e., the model most likely to perform the best OOD is the one with highest ID accuracy), this fact does not help estimate the actual OOD performance of models without access to a labeled OOD validation set. In this paper, we show a similar but surprising phenomenon also holds for the agreement between pairs of neural network classifiers: whenever accuracy-on-the-line holds, we observe that the OOD agreement between the predictions of any two pairs of neural networks (with potentially different architectures) also observes a strong linear correlation with their ID agreement. Furthermore, we observe that the slope and bias of OOD vs ID agreement closely matches that of OOD vs ID accuracy. This phenomenon, which we call agreement-on-the-line, has important practical applications: without any labeled data, we can predict the OOD accuracy of classifiers}, since OOD agreement can be estimated with just unlabeled data. Our prediction algorithm outperforms previous methods both in shifts where agreement-on-the-line holds and, surprisingly, when accuracy is not on the line. This phenomenon also provides new insights into deep neural networks: unlike accuracy-on-the-line, agreement-on-the-line appears to only hold for neural network classifiers." 737,RankSEG: A Consistent Ranking-based Framework for Segmentation,"Segmentation has emerged as a fundamental field of computer vision and natural language processing, which assigns a label to every pixel/feature to extract regions of interest from an image/text. To evaluate the performance of segmentation, the Dice and IoU metrics are used to measure the degree of overlap between the ground truth and the predicted segmentation. In this paper, we establish a theoretical foundation of segmentation with respect to the Dice/IoU metrics, including the Bayes rule and Dice/IoU-calibration, analogous to classification-calibration or Fisher consistency in classification. We prove that the existing thresholding-based framework with most operating losses are not consistent with respect to the Dice/IoU metrics, and thus may lead to a suboptimal solution. To address this pitfall, we propose a novel consistent ranking-based framework, namely RankDice/RankIoU, inspired by plug-in rules of the Bayes segmentation rule. Three numerical algorithms with GPU parallel execution are developed to implement the proposed framework in large-scale and high-dimensional segmentation. We study statistical properties of the proposed framework. We show it is Dice-/IoU-calibrated, and its excess risk bounds and the rate of convergence are also provided. The numerical effectiveness of RankDice/mRankDice is demonstrated in various simulated examples and Fine-annotated CityScapes and Pascal VOC datasets with state-of-the-art deep learning architectures." 738,Adversarial Example Detection in Deployed Tree Ensembles,"Tree ensembles are powerful models that are widely used. However, they are susceptible to adversarial examples, which are examples that purposely constructed to elicit a misprediction from the model. This can degrade performance and erode a user's trust in the model. Typically, approaches try to alleviate this problem by verifying how robust a learned ensemble is or robustifying the learning process. We take an alternative approach and attempt to detect adversarial examples in a post-deployment setting. We present a novel method for this task that works by analyzing an unseen example's output configuration, which is the set of predictions made by an ensemble's constituent trees. Our approach works with any additive tree ensemble and does not require training a separate model. We evaluate our approach on three different tree ensemble learners. We empirically show that our method is currently the best adversarial detection method for tree ensembles." 739,Improving Clinical Efficiency and Reducing Medical Errors through NLP-enabled diagnosis of Health Conditions from Transcription Reports,"Misdiagnosis rates are one of the leading causes of medical errors in hospitals, affecting over 12 million adults across the US. To address the high rate of misdiagnosis, this study utilizes 4 NLP-based algorithms to determine the appropriate health condition based on an unstructured transcription report. From the Logistic Regression, Random Forest, LSTM, and CNNLSTM models, the CNN-LSTM model performed the best with an accuracy of 97.89%. We packaged this model into a authenticated web platform for accessible assistance to clinicians. Overall, by standardizing health care diagnosis and structuring transcription reports, our NLP platform drastically improves the clinical efficiency and accuracy of hospitals worldwide." 740,Leveraging Language for Accelerated Learning of Tool Manipulation,"Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering." 741,Uncertainty Calibration for Deep Audio Classifiers,"Although deep Neural Networks (DNNs) have achieved tremendous success in audio classification tasks, their uncertainty calibration are still under-explored. A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate. In this work, we investigate the uncertainty calibration for deep audio classifiers. In particular, we empirically study the performance of popular calibration methods: (i) Monte Carlo Dropout, (ii) ensemble, (iii) focal loss, and (iv) spectral-normalized Gaussian process (SNGP), on audio classification datasets. To this end, we evaluate (i-iv) for the tasks of environment sound and music genre classification. Results indicate that uncalibrated deep audio classifiers may be over-confident, and SNGP performs the best and is very efficient on the two datasets of this paper." 742,On the Complexity of Adversarial Decision Making,"A central problem in online learning and decision making -- from bandits to reinforcement learning -- is to understand what modeling assumptions lead to sample-efficient learning guarantees. We consider a general adversarial decision making framework that encompasses (structured) bandit problems with adversarial rewards and reinforcement learning problems with adversarial dynamics. Our main result is to show -- via new upper and lower bounds -- that the Decision-Estimation Coefficient, a complexity measure introduced by Foster et al. in the stochastic counterpart to our setting, is necessary and sufficient to obtain low regret for adversarial decision making. However, compared to the stochastic setting, one must apply the Decision-Estimation Coefficient to the convex hull of the class of models (or, hypotheses) under consideration. This establishes that the price of accommodating adversarial rewards or dynamics is governed by the behavior of the model class under convexification, and recovers a number of existing results -- both positive and negative. En route to obtaining these guarantees, we provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures, including the Information Ratio of Russo and Van Roy and the Exploration-by-Optimization objective of Lattimore and Gy\""{o}rgy." 743,DPOAD: Differentially Private Outsourcing of Anomaly Detection through Iterative Sensitivity Learning,"Outsourcing anomaly detection to third-parties can allow data owners to overcome resource constraints (e.g., in lightweight IoT devices), facilitate collaborative analysis (e.g., under distributed or multi-party scenarios), and benefit from lower costs and specialized expertise (e.g., of Managed Security Service Providers). Despite such benefits, a data owner may feel reluctant to outsource anomaly detection without sufficient privacy protection. To that end, most existing privacy solutions would face a novel challenge, i.e., preserving privacy usually requires the difference between data entries to be eliminated or reduced, whereas anomaly detection critically depends on that difference. Such a conflict is recently resolved under a local analysis setting with trusted analysts (where no outsourcing is involved) through moving the focus of differential privacy (DP) guarantee from ""all"" to only ""benign"" entries. In this paper, we observe that such an approach is not directly applicable to the outsourcing setting, because data owners do not know which entries are ""benign"" prior to outsourcing, and hence cannot selectively apply DP on data entries. Therefore, we propose a novel iterative solution for the data owner to gradually ""disentangle"" the anomalous entries from the benign ones such that the third-party analyst can produce accurate anomaly results with sufficient DP guarantee. We design and implement our Differentially Private Outsourcing of Anomaly Detection (DPOAD) framework, and demonstrate its benefits over baseline Laplace and PainFree mechanisms through experiments with real data from different application domains." 744,Automated Systems For Diagnosis of Dysgraphia in Children: A Survey and Novel Framework,"Learning disabilities, which primarily interfere with the basic learning skills such as reading, writing and math, are known to affect around 10% of children in the world. The poor motor skills and motor coordination as part of the neurodevelopmental disorder can become a causative factor for the difficulty in learning to write (dysgraphia), hindering the academic track of an individual. The signs and symptoms of dysgraphia include but are not limited to irregular handwriting, improper handling of writing medium, slow or labored writing, unusual hand position, etc. The widely accepted assessment criterion for all the types of learning disabilities is the examination performed by medical experts. The few available artificial intelligence-powered screening systems for dysgraphia relies on the distinctive features of handwriting from the corresponding images.This work presents a review of the existing automated dysgraphia diagnosis systems for children in the literature. The main focus of the work is to review artificial intelligence-based systems for dysgraphia diagnosis in children. This work discusses the data collection method, important handwriting features, machine learning algorithms employed in the literature for the diagnosis of dysgraphia. Apart from that, this article discusses some of the non-artificial intelligence-based automated systems also. Furthermore, this article discusses the drawbacks of existing systems and proposes a novel framework for dysgraphia diagnosis." 745,Haul Road Mapping from GPS Traces,"Automation in mining requires accurate maps of road networks on site. Because roads on open-cut mines are dynamic in nature and continuously changing, manually updating road maps is tedious and error-prone. This paper investigates the possibility of automatically deriving an accurate representation of the road network using GPS data available from haul trucks operating on site. We present an overview of approaches proposed in literature and test the performance of publicly available methods on GPS data collected from trucks operating on site. Based on shortcomings seen in all tested algorithms, a post-processing step is developed which geometrically analyses the created road map for artefacts typical of free-drive areas on mine sites and significantly improves the quality of the final road network graph." 746,A General Recipe for Likelihood-free Bayesian Optimization,"The acquisition function, a critical component in Bayesian optimization (BO), can often be written as the expectation of a utility function under a surrogate model. However, to ensure that acquisition functions are tractable to optimize, restrictions must be placed on the surrogate model and utility function. To extend BO to a broader class of models and utilities, we propose likelihood-free BO (LFBO), an approach based on likelihood-free inference. LFBO directly models the acquisition function without having to separately perform inference with a probabilistic surrogate model. We show that computing the acquisition function in LFBO can be reduced to optimizing a weighted classification problem, where the weights correspond to the utility being chosen. By choosing the utility function for expected improvement (EI), LFBO outperforms various state-of-the-art black-box optimization methods on several real-world optimization problems. LFBO can also effectively leverage composite structures of the objective function, which further improves its regret by several orders of magnitude." 747,Monitoring Shortcut Learning using Mutual Information,"The failure of deep neural networks to generalize to out-of-distribution data is a well-known problem and raises concerns about the deployment of trained networks in safety-critical domains such as healthcare, finance and autonomous vehicles. We study a particular kind of distribution shift $\unicode{x2013}$ shortcuts or spurious correlations in the training data. Shortcut learning is often only exposed when models are evaluated on real-world data that does not contain the same spurious correlations, posing a serious dilemma for AI practitioners to properly assess the effectiveness of a trained model for real-world applications. In this work, we propose to use the mutual information (MI) between the learned representation and the input as a metric to find where in training, the network latches onto shortcuts. Experiments demonstrate that MI can be used as a domain-agnostic metric for monitoring shortcut learning." 748,Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization,"By ensuring differential privacy in the learning algorithms, one can rigorously mitigate the risk of large models memorizing sensitive training data. In this paper, we study two algorithms for this purpose, i.e., DP-SGD and DP-NSGD, which first clip or normalize \textit{per-sample} gradients to bound the sensitivity and then add noise to obfuscate the exact information. We analyze the convergence behavior of these two algorithms in the non-convex optimization setting with two common assumptions and achieve a rate $\mathcal{O}\left(\sqrt[4]{\frac{d\log(1/\delta)}{N^2\epsilon^2}}\right)$ of the gradient norm for a $d$-dimensional model, $N$ samples and $(\epsilon,\delta)$-DP, which improves over previous bounds under much weaker assumptions. Specifically, we introduce a regularizing factor in DP-NSGD and show that it is crucial in the convergence proof and subtly controls the bias and noise trade-off. Our proof deliberately handles the per-sample gradient clipping and normalization that are specified for the private setting. Empirically, we demonstrate that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD and hence may help further save the privacy budget when accounting the tuning effort." 749,Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels,"The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods. To exploit this effect, the model prediction-based methods have been widely adopted, which aim to exploit the outputs of DNNs in the early stage of learning to correct noisy labels. However, we observe that the model will make mistakes during label prediction, resulting in unsatisfactory performance. By contrast, the produced features in the early stage of learning show better robustness. Inspired by this observation, in this paper, we propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND). To be specific, we first compute a similarity matrix based on current embedded features to capture the local structure of training data. Then, the noisy supervision signals carried by mislabeled data are overwhelmed by nearby correctly labeled ones (\textit{i.e.}, label noise dilution), of which the effectiveness is guaranteed by the inherent robustness of feature embedding. Finally, the training data with diluted labels are further used to train a robust classifier. Empirically, we conduct extensive experiments on both synthetic and real-world noisy datasets by comparing our LEND with several representative robust learning approaches. The results verify the effectiveness of our LEND." 750,Long Range Language Modeling via Gated State Spaces,"State space models have shown to be effective at modeling long range dependencies, specially on sequence classification tasks. In this work we focus on autoregressive sequence modeling over English books, Github source code and ArXiv mathematics articles. Based on recent developments around the effectiveness of gated activation functions, we propose a new layer named Gated State Space (GSS) and show that it trains significantly faster than the diagonal version of S4 (i.e. DSS) on TPUs, is fairly competitive with several well-tuned Transformer-based baselines and exhibits zero-shot generalization to longer inputs while being straightforward to implement. Finally, we show that leveraging self-attention to model local dependencies improves the performance of GSS even further." 751,Efficient Private SCO for Heavy-Tailed Data via Clipping,"We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Prior work on this problem is restricted to the gradient descent (GD) method, which is inefficient for large-scale problems. In this paper, we resolve this issue and derive the first high-probability bounds for private stochastic method with clipping. For general convex problems, we derive excess population risks $\Tilde{O}\left(\frac{d^{1/7}\sqrt{\ln\frac{(n \epsilon)^2}{\beta d}}}{(n\epsilon)^{2/7}}\right)$ and $\Tilde{O}\left(\frac{d^{1/7}\ln\frac{(n\epsilon)^2}{\beta d}}{(n\epsilon)^{2/7}}\right)$ under bounded or unbounded domain assumption, respectively (here $n$ is the sample size, $d$ is the dimension of the data, $\beta$ is the confidence level and $\epsilon$ is the private level). Then, we extend our analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with H$\ddot{\text{o}}$lder-continuous gradients). We establish new excess risk bounds without bounded domain assumption. The results above achieve lower excess risks and gradient complexities than existing methods in their corresponding cases. Numerical experiments are conducted to justify the theoretical improvement." 752,FlowX: Towards Explainable Graph Neural Networks via Message Flows,"We investigate the explainability of graph neural networks (GNNs) as a step towards elucidating their working mechanisms. While most current methods focus on explaining graph nodes, edges, or features, we argue that, as the inherent functional mechanism of GNNs, message flows are more natural for performing explainability. To this end, we propose a novel method here, known as FlowX, to explain GNNs by identifying important message flows. To quantify the importance of flows, we propose to follow the philosophy of Shapley values from cooperative game theory. To tackle the complexity of computing all coalitions' marginal contributions, we propose an approximation scheme to compute Shapley-like values as initial assessments of further redistribution training. We then propose a learning algorithm to train flow scores and improve explainability. Experimental studies on both synthetic and real-world datasets demonstrate that our proposed FlowX leads to improved explainability of GNNs." 753,Explaining the root causes of unit-level changes,"Existing methods of explainable AI and interpretable ML cannot explain change in the values of an output variable for a statistical unit in terms of the change in the input values and the change in the ""mechanism"" (the function transforming input to output). We propose two methods based on counterfactuals for explaining unit-level changes at various input granularities using the concept of Shapley values from game theory. These methods satisfy two key axioms desirable for any unit-level change attribution method. Through simulations, we study the reliability and the scalability of the proposed methods. We get sensible results from a case study on identifying the drivers of the change in the earnings for individuals in the US." 754,Improving Policy Optimization with Generalist-Specialist Learning,"Generalization in deep reinforcement learning over unseen environment variations usually requires policy learning over a large set of diverse training variations. We empirically observe that an agent trained on many variations (a generalist) tends to learn faster at the beginning, yet its performance plateaus at a less optimal level for a long time. In contrast, an agent trained only on a few variations (a specialist) can often achieve high returns under a limited computational budget. To have the best of both worlds, we propose a novel generalist-specialist training framework. Specifically, we first train a generalist on all environment variations; when it fails to improve, we launch a large population of specialists with weights cloned from the generalist, each trained to master a selected small subset of variations. We finally resume the training of the generalist with auxiliary rewards induced by demonstrations of all specialists. In particular, we investigate the timing to start specialist training and compare strategies to learn generalists with assistance from specialists. We show that this framework pushes the envelope of policy learning on several challenging and popular benchmarks including Procgen, Meta-World and ManiSkill." 755,Explainable and High-Performance Hate and Offensive Speech Detection,"The spread of information through social media platforms can create environments possibly hostile to vulnerable communities and silence certain groups in society. To mitigate such instances, several models have been developed to detect hate and offensive speech. Since detecting hate and offensive speech in social media platforms could incorrectly exclude individuals from social media platforms, which can reduce trust, there is a need to create explainable and interpretable models. Thus, we build an explainable and interpretable high performance model based on the XGBoost algorithm, trained on Twitter data. For unbalanced Twitter data, XGboost outperformed the LSTM, AutoGluon, and ULMFiT models on hate speech detection with an F1 score of 0.75 compared to 0.38 and 0.37, and 0.38 respectively. When we down-sampled the data to three separate classes of approximately 5000 tweets, XGBoost performed better than LSTM, AutoGluon, and ULMFiT; with F1 scores for hate speech detection of 0.79 vs 0.69, 0.77, and 0.66 respectively. XGBoost also performed better than LSTM, AutoGluon, and ULMFiT in the down-sampled version for offensive speech detection with F1 score of 0.83 vs 0.88, 0.82, and 0.79 respectively. We use Shapley Additive Explanations (SHAP) on our XGBoost models' outputs to makes it explainable and interpretable compared to LSTM, AutoGluon and ULMFiT that are black-box models." 756,Adversarially Robust Learning of Real-Valued Functions,"We study robustness to test-time adversarial attacks in the regression setting with $\ell_p$ losses and arbitrary perturbation sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite fat-shattering dimension are learnable. Moreover, for convex function classes, they are even properly learnable. In contrast, some non-convex function classes provably require improper learning algorithms. We also discuss extensions to agnostic learning. Our main technique is based on a construction of an adversarially robust sample compression scheme of a size determined by the fat-shattering dimension." 757,RF Signal Classification with Synthetic Training Data and its Real-World Performance,"Neural nets are a powerful method for the classification of radio signals in the electromagnetic spectrum. These neural nets are often trained with synthetically generated data due to the lack of diverse and plentiful real RF data. However, it is often unclear how neural nets trained on synthetic data perform in real-world applications. This paper investigates the impact of different RF signal impairments (such as phase, frequency and sample rate offsets, receiver filters, noise and channel models) modeled in synthetic training data with respect to the real-world performance. For that purpose, this paper trains neural nets with various synthetic training datasets with different signal impairments. After training, the neural nets are evaluated against real-world RF data collected by a software defined radio receiver in the field. This approach reveals which modeled signal impairments should be included in carefully designed synthetic datasets. The investigated showcase example can classify RF signals into one of 20 different radio signal types from the shortwave bands. It achieves an accuracy of up to 95 % in real-world operation by using carefully designed synthetic training data only." 758,Self-Healing Robust Neural Networks via Closed-Loop Control,"Despite the wide applications of neural networks, there have been increasing concerns about their vulnerability issue. While numerous attack and defense techniques have been developed, this work investigates the robustness issue from a new angle: can we design a self-healing neural network that can automatically detect and fix the vulnerability issue by itself? A typical self-healing mechanism is the immune system of a human body. This biology-inspired idea has been used in many engineering designs but is rarely investigated in deep learning. This paper considers the post-training self-healing of a neural network, and proposes a closed-loop control formulation to automatically detect and fix the errors caused by various attacks or perturbations. We provide a margin-based analysis to explain how this formulation can improve the robustness of a classifier. To speed up the inference of the proposed self-healing network, we solve the control problem via improving the Pontryagin Maximum Principle-based solver. Lastly, we present an error estimation of the proposed framework for neural networks with nonlinear activation functions. We validate the performance on several network architectures against various perturbations. Since the self-healing method does not need a-priori information about data perturbations/attacks, it can handle a broad class of unforeseen perturbations." 759,Probabilistic PolarGMM: Unsupervised Cluster Learning of Very Noisy Projection Images of Unknown Pose,"A crucial step in single particle analysis (SPA) of cryogenic electron microscopy (Cryo-EM), 2D classification and alignment takes a collection of noisy particle images to infer orientations and group similar images together. Averaging these aligned and clustered noisy images produces a set of clean images, ready for further analysis such as 3D reconstruction. Fourier-Bessel steerable principal component analysis (FBsPCA) enables an efficient, adaptable, low-rank rotation operator. We extend the FBsPCA to additionally handle translations. In this extended FBsPCA representation, we use a probabilistic polar-coordinate Gaussian mixture model to learn soft clusters in an unsupervised fashion using an expectation maximization (EM) algorithm. The obtained rotational clusters are thus additionally robust to the presence of pairwise alignment imperfections. Multiple benchmarks from simulated Cryo-EM datasets show probabilistic PolarGMM's improved performance in comparisons with standard single-particle Cryo-EM tools, EMAN2 and RELION, in terms of various clustering metrics and alignment errors." 760,Nonwatertight Mesh Reconstruction,"Reconstructing 3D non-watertight mesh from an unoriented point cloud is an unexplored area in computer vision and computer graphics. In this project, we tried to tackle this problem by extending the learning-based watertight mesh reconstruction pipeline presented in the paper 'Shape as Points'. The core of our approach is to cast the problem as a semantic segmentation problem that identifies the region in the 3D volume where the mesh surface lies and extracts the surfaces from the detected regions. Our approach achieves compelling results compared to the baseline techniques." 761,Cross-Silo Federated Learning: Challenges and Opportunities,"Federated learning (FL) is an emerging technology that enables the training of machine learning models from multiple clients while keeping the data distributed and private. Based on the participating clients and the model training scale, federated learning can be classified into two types: cross-device FL where clients are typically mobile devices and the client number can reach up to a scale of millions; cross-silo FL where clients are organizations or companies and the client number is usually small (e.g., within a hundred). While existing studies mainly focus on cross-device FL, this paper aims to provide an overview of the cross-silo FL. More specifically, we first discuss applications of cross-silo FL and outline its major challenges. We then provide a systematic overview of the existing approaches to the challenges in cross-silo FL by focusing on their connections and differences to cross-device FL. Finally, we discuss future directions and open issues that merit research efforts from the community." 762,PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning,"Semantic image interpretation can vastly benefit from approaches that combine sub-symbolic distributed representation learning with the capability to reason at a higher level of abstraction. Logic Tensor Networks (LTNs) are a class of neuro-symbolic systems based on a differentiable, first-order logic grounded into a deep neural network. LTNs replace the classical concept of training set with a knowledge base of fuzzy logical axioms. By defining a set of differentiable operators to approximate the role of connectives, predicates, functions and quantifiers, a loss function is automatically specified so that LTNs can learn to satisfy the knowledge base. We focus here on the subsumption or \texttt{isOfClass} predicate, which is fundamental to encode most semantic image interpretation tasks. Unlike conventional LTNs, which rely on a separate predicate for each class (e.g., dog, cat), each with its own set of learnable weights, we propose a common \texttt{isOfClass} predicate, whose level of truth is a function of the distance between an object embedding and the corresponding class prototype. The PROTOtypical Logic Tensor Networks (PROTO-LTN) extend the current formulation by grounding abstract concepts as parametrized class prototypes in a high-dimensional embedding space, while reducing the number of parameters required to ground the knowledge base. We show how this architecture can be effectively trained in the few and zero-shot learning scenarios. Experiments on Generalized Zero Shot Learning benchmarks validate the proposed implementation as a competitive alternative to traditional embedding-based approaches. The proposed formulation opens up new opportunities in zero shot learning settings, as the LTN formalism allows to integrate background knowledge in the form of logical axioms to compensate for the lack of labelled examples." 763,Latent Augmentation Improves Graph Self-Supervised Learning,"Graph self-supervised learning has been vastly employed to learn representations from unlabeled graphs. Existing methods can be roughly divided into predictive learning and contrastive learning, where the latter one attracts more research attention with better empirical performance. We argue that, however, predictive models weaponed with latent augmentations and powerful decoder could achieve comparable or even better representation power than contrastive models. In this work, we introduce data augmentations into latent space for superior generalization and better efficiency. A novel graph decoder named Wiener Graph Deconvolutional Network is correspondingly designed to perform information reconstruction from augmented latent representations. Theoretical analysis proves the superior reconstruction ability of graph wiener filter. Extensive experimental results on various datasets demonstrate the effectiveness of our approach." 764,Learning neural state-space models: do we need a state estimator?,"In recent years, several algorithms for system identification with neural state-space models have been introduced. Most of the proposed approaches are aimed at reducing the computational complexity of the learning problem, by splitting the optimization over short sub-sequences extracted from a longer training dataset. Different sequences are then processed simultaneously within a minibatch, taking advantage of modern parallel hardware for deep learning. An issue arising in these methods is the need to assign an initial state for each of the sub-sequences, which is required to run simulations and thus to evaluate the fitting loss. In this paper, we provide insights for calibration of neural state-space training algorithms based on extensive experimentation and analyses performed on two recognized system identification benchmarks. Particular focus is given to the choice and the role of the initial state estimation. We demonstrate that advanced initial state estimation techniques are really required to achieve high performance on certain classes of dynamical systems, while for asymptotically stable ones basic procedures such as zero or random initialization already yield competitive performance." 765,Vision Transformer for Contrastive Clustering,"Vision Transformer (ViT) has shown its advantages over the convolutional neural network (CNN) with its ability to capture global long-range dependencies for visual representation learning. Besides ViT, contrastive learning is another popular research topic recently. While previous contrastive learning works are mostly based on CNNs, some latest studies have attempted to jointly model the ViT and the contrastive learning for enhanced self-supervised learning. Despite the considerable progress, these combinations of ViT and contrastive learning mostly focus on the instance-level contrastiveness, which often overlook the contrastiveness of the global clustering structures and also lack the ability to directly learn the clustering result (e.g., for images). In view of this, this paper presents an end-to-end deep image clustering approach termed Vision Transformer for Contrastive Clustering (VTCC), which for the first time, to the best of our knowledge, unifies the Transformer and the contrastive learning for the image clustering task. Specifically, with two random augmentations performed on each image in a mini-batch, we utilize a ViT encoder with two weight-sharing views as the backbone to learn the representations for the augmented samples. To remedy the potential instability of the ViT, we incorporate a convolutional stem, which uses multiple stacked small convolutions instead of a big convolution in the patch projection layer, to split each augmented sample into a sequence of patches. With representations learned via the backbone, an instance projector and a cluster projector are further utilized for the instance-level contrastive learning and the global clustering structure learning, respectively. Extensive experiments on eight image datasets demonstrate the stability (during the training-from-scratch) and the superiority (in clustering performance) of VTCC over the state-of-the-art." 766,TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification,"Learning unbiased node representations under class-imbalanced graph data is challenging due to interactions between adjacent nodes. Existing studies have in common that they compensate the minor class nodes `as a group' according to their overall quantity (ignoring node connections in graph), which inevitably increase the false positive cases for major nodes. We hypothesize that the increase in these false positive cases is highly affected by the label distribution around each node and confirm it experimentally. In addition, in order to handle this issue, we propose Topology-Aware Margin (TAM) to reflect local topology on the learning objective. Our method compares the connectivity pattern of each node with the class-averaged counter-part and adaptively adjusts the margin accordingly based on that. Our method consistently exhibits superiority over the baselines on various node classification benchmark datasets with representative GNN architectures." 767,Video Anomaly Detection via Prediction Network with Enhanced Spatio-Temporal Memory Exchange,"Video anomaly detection is a challenging task because most anomalies are scarce and non-deterministic. Many approaches investigate the reconstruction difference between normal and abnormal patterns, but neglect that anomalies do not necessarily correspond to large reconstruction errors. To address this issue, we design a Convolutional LSTM Auto-Encoder prediction framework with enhanced spatio-temporal memory exchange using bi-directionalilty and a higher-order mechanism. The bi-directional structure promotes learning the temporal regularity through forward and backward predictions. The unique higher-order mechanism further strengthens spatial information interaction between the encoder and the decoder. Considering the limited receptive fields in Convolutional LSTMs, we also introduce an attention module to highlight informative features for prediction. Anomalies are eventually identified by comparing the frames with their corresponding predictions. Evaluations on three popular benchmarks show that our framework outperforms most existing prediction-based anomaly detection methods." 768,Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection,"Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications. In this paper we propose an uncertainty quantification approach by modelling the distribution of features. We further incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble stochastic neural networks (BE-SNNs) and overcome the feature collapse problem. We compare the performance of the proposed BE-SNNs with the other state-of-the-art approaches and show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionMNIST vs NotMNIST dataset, and the CIFAR10 vs SVHN dataset." 769,Noise-aware Physics-informed Machine Learning for Robust PDE Discovery,"This work is concerned with discovering the governing partial differential equation (PDE) of a physical system. Existing methods have demonstrated the PDE identification from finite observations but failed to maintain satisfying performance against noisy data, partly owing to suboptimal estimated derivatives and found PDE coefficients. We address the issues by introducing a noise-aware physics-informed machine learning (nPIML) framework to discover the governing PDE from data following arbitrary distributions. Our proposals are twofold. First, we propose a couple of neural networks, namely solver and preselector, which yield an interpretable neural representation of the hidden physical constraint. After they are jointly trained, the solver network approximates potential candidates, e.g., partial derivatives, which are then fed to the sparse regression algorithm that initially unveils the most likely parsimonious PDE, decided according to the information criterion. Second, we propose the denoising physics-informed neural networks (dPINNs), based on Discrete Fourier Transform (DFT), to deliver a set of the optimal finetuned PDE coefficients respecting the noise-reduced variables. The denoising PINNs' structures are compartmentalized into forefront projection networks and a PINN, by which the formerly learned solver initializes. Our extensive experiments on five canonical PDEs affirm that the proposed framework presents a robust and interpretable approach for PDE discovery, applicable to a wide range of systems, possibly complicated by noise." 770,FingerGAN: A Constrained Fingerprint Generation Scheme for Latent Fingerprint Enhancement,"Latent fingerprint enhancement is an essential pre-processing step for latent fingerprint identification. Most latent fingerprint enhancement methods try to restore corrupted gray ridges/valleys. In this paper, we propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem within a generative adversarial network (GAN) framework. We name the proposed network as FingerGAN. It can enforce its generated fingerprint (i.e, enhanced latent fingerprint) indistinguishable from the corresponding ground-truth instance in terms of the fingerprint skeleton map weighted by minutia locations and the orientation field regularized by the FOMFE model. Because minutia is the primary feature for fingerprint recognition and minutia can be retrieved directly from the fingerprint skeleton map, we offer a holistic framework which can perform latent fingerprint enhancement in the context of directly optimizing minutia information. This will help improve latent fingerprint identification performance significantly. Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly. The codes will be available for non-commercial purposes from \url{https://github.com/HubYZ/LatentEnhancement}." 771,fETSmcs: Feature-based ETS model component selection,"The well-developed ETS (ExponenTial Smoothing or Error, Trend, Seasonality) method incorporating a family of exponential smoothing models in state space representation has been widely used for automatic forecasting. The existing ETS method uses information criteria for model selection by choosing an optimal model with the smallest information criterion among all models fitted to a given time series. The ETS method under such a model selection scheme suffers from computational complexity when applied to large-scale time series data. To tackle this issue, we propose an efficient approach for ETS model selection by training classifiers on simulated data to predict appropriate model component forms for a given time series. We provide a simulation study to show the model selection ability of the proposed approach on simulated data. We evaluate our approach on the widely used forecasting competition data set M4, in terms of both point forecasts and prediction intervals. To demonstrate the practical value of our method, we showcase the performance improvements from our approach on a monthly hospital data set." 772,Data Augmentation for Dementia Detection in Spoken Language,"Dementia is a growing problem as our society ages, and detection methods are often invasive and expensive. Recent deep-learning techniques can offer a faster diagnosis and have shown promising results. However, they require large amounts of labelled data which is not easily available for the task of dementia detection. One effective solution to sparse data problems is data augmentation, though the exact methods need to be selected carefully. To date, there has been no empirical study of data augmentation on Alzheimer's disease (AD) datasets for NLP and speech processing. In this work, we investigate data augmentation techniques for the task of AD detection and perform an empirical evaluation of the different approaches on two kinds of models for both the text and audio domains. We use a transformer-based model for both domains, and SVM and Random Forest models for the text and audio domains, respectively. We generate additional samples using traditional as well as deep learning based methods and show that data augmentation improves performance for both the text- and audio-based models and that such results are comparable to state-of-the-art results on the popular ADReSS set, with carefully crafted architectures and features." 773,Estimating Link Flows in Road Networks with Synthetic Trajectory Data Generation: Reinforcement Learning-based Approaches,"This paper addresses the problem of estimating link flows in a road network by combining limited traffic volume and vehicle trajectory data. While traffic volume data from loop detectors have been the common data source for link flow estimation, the detectors only cover a subset of links. Vehicle trajectory data collected from vehicle tracking sensors are also incorporated these days. However, trajectory data are often sparse in that the observed trajectories only represent a small subset of the whole population, where the exact sampling rate is unknown and may vary over space and time. This study proposes a novel generative modelling framework, where we formulate the link-to-link movements of a vehicle as a sequential decision-making problem using the Markov Decision Process framework and train an agent to make sequential decisions to generate realistic synthetic vehicle trajectories. We use Reinforcement Learning (RL)-based methods to find the best behaviour of the agent, based on which synthetic population vehicle trajectories can be generated to estimate link flows across the whole network. To ensure the generated population vehicle trajectories are consistent with the observed traffic volume and trajectory data, two methods based on Inverse Reinforcement Learning and Constrained Reinforcement Learning are proposed. The proposed generative modelling framework solved by either of these RL-based methods is validated by solving the link flow estimation problem in a real road network. Additionally, we perform comprehensive experiments to compare the performance with two existing methods. The results show that the proposed framework has higher estimation accuracy and robustness under realistic scenarios where certain behavioural assumptions about drivers are not met or the network coverage and penetration rate of trajectory data are low." 774,Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction,"The dipole moment is a physical quantity indicating the polarity of a molecule and is determined by reflecting the electrical properties of constituent atoms and the geometric properties of the molecule. Most embeddings used to represent graph representations in traditional graph neural network methodologies treat molecules as topological graphs, creating a significant barrier to the goal of recognizing geometric information. Unlike existing embeddings dealing with equivariance, which have been proposed to handle the 3D structure of molecules properly, our proposed embeddings directly express the physical implications of the local contribution of dipole moments. We show that the developed model works reasonably even for molecules with extended geometries and captures more interatomic interaction information, significantly improving the prediction results with accuracy comparable to ab-initio calculations." 775,Two-Stage Neural Contextual Bandits for Personalised News Recommendation,"We consider the problem of personalised news recommendation where each user consumes news in a sequential fashion. Existing personalised news recommendation methods focus on exploiting user interests and ignores exploration in recommendation, which leads to biased feedback loops and hurt recommendation quality in the long term. We build on contextual bandits recommendation strategies which naturally address the exploitation-exploration trade-off. The main challenges are the computational efficiency for exploring the large-scale item space and utilising the deep representations with uncertainty. We propose a two-stage hierarchical topic-news deep contextual bandits framework to efficiently learn user preferences when there are many news items. We use deep learning representations for users and news, and generalise the neural upper confidence bound (UCB) policies to generalised additive UCB and bilinear UCB. Empirical results on a large-scale news recommendation dataset show that our proposed policies are efficient and outperform the baseline bandit policies." 776,Semantic Role Aware Correlation Transformer for Text to Video Retrieval,"With the emergence of social media, voluminous video clips are uploaded every day, and retrieving the most relevant visual content with a language query becomes critical. Most approaches aim to learn a joint embedding space for plain textual and visual contents without adequately exploiting their intra-modality structures and inter-modality correlations. This paper proposes a novel transformer that explicitly disentangles the text and video into semantic roles of objects, spatial contexts and temporal contexts with an attention scheme to learn the intra- and inter-role correlations among the three roles to discover discriminative features for matching at different levels. The preliminary results on popular YouCook2 indicate that our approach surpasses a current state-of-the-art method, with a high margin in all metrics. It also overpasses two SOTA methods in terms of two metrics." 777,Analysis of Stochastic Processes through Replay Buffers,"Replay buffers are a key component in many reinforcement learning schemes. Yet, their theoretical properties are not fully understood. In this paper we analyze a system where a stochastic process X is pushed into a replay buffer and then randomly sampled to generate a stochastic process Y from the replay buffer. We provide an analysis of the properties of the sampled process such as stationarity, Markovity and autocorrelation in terms of the properties of the original process. Our theoretical analysis sheds light on why replay buffer may be a good de-correlator. Our analysis provides theoretical tools for proving the convergence of replay buffer based algorithms which are prevalent in reinforcement learning schemes." 778,RoME: Role-aware Mixture-of-Expert Transformer for Text-to-Video Retrieval,"Seas of videos are uploaded daily with the popularity of social channels; thus, retrieving the most related video contents with user textual queries plays a more crucial role. Most methods consider only one joint embedding space between global visual and textual features without considering the local structures of each modality. Some other approaches consider multiple embedding spaces consisting of global and local features separately, ignoring rich inter-modality correlations. We propose a novel mixture-of-expert transformer RoME that disentangles the text and the video into three levels; the roles of spatial contexts, temporal contexts, and object contexts. We utilize a transformer-based attention mechanism to fully exploit visual and text embeddings at both global and local levels with mixture-of-experts for considering inter-modalities and structures' correlations. The results indicate that our method outperforms the state-of-the-art methods on the YouCook2 and MSR-VTT datasets, given the same visual backbone without pre-training. Finally, we conducted extensive ablation studies to elucidate our design choices." 779,Benchmarking Bayesian Improved Surname Geocoding Against Machine Learning Methods,"Bayesian Improved Surname Geocoding (BISG) is the most popular method for proxying race/ethnicity in voter registration files that do not contain it. This paper benchmarks BISG against a range of previously untested machine learning alternatives, using voter files with self-reported race/ethnicity from California, Florida, North Carolina, and Georgia. This analysis yields three key findings. First, when given the exact same inputs, BISG and machine learning perform similarly for estimating aggregate racial/ethnic composition. Second, machine learning outperforms BISG at individual classification of race/ethnicity. Third, the performance of all methods varies substantially across states. These results suggest that pre-trained machine learning models are preferable to BISG for individual classification. Furthermore, mixed results at the precinct level and across states underscore the need for researchers to empirically validate their chosen race/ethnicity proxy in their populations of interest." 780,Your Autoregressive Generative Model Can be Better If You Treat It as an Energy-Based One,"Autoregressive generative models are commonly used, especially for those tasks involving sequential data. They have, however, been plagued by a slew of inherent flaws due to the intrinsic characteristics of chain-style conditional modeling (e.g., exposure bias or lack of long-range coherence), severely limiting their ability to model distributions properly. In this paper, we propose a unique method termed E-ARM for training autoregressive generative models that takes advantage of a well-designed energy-based learning objective. By leveraging the extra degree of freedom of the softmax operation, we are allowed to make the autoregressive model itself be an energy-based model for measuring the likelihood of input without introducing any extra parameters. Furthermore, we show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem and increase temporal coherence for autoregressive generative models. Extensive empirical results, covering benchmarks like language modeling, neural machine translation, and image generation, demonstrate the effectiveness of the proposed approach." 781,Repository-Level Prompt Generation for Large Language Models of Code,"With the success of large language models (LLMs) of code and their use as code assistants (e.g. Codex used in GitHub Copilot), techniques for introducing domain-specific knowledge in the prompt design process become important. In this work, we propose a framework called Repo-Level Prompt Generator that learns to generate example-specific prompts using a set of rules. These rules take context from the entire repository, thereby incorporating both the structure of the repository and the context from other relevant files (e.g. imports, parent class files). Our technique doesn't require any access to the weights of the LLM, making it applicable in cases where we only have black-box access to the LLM. We conduct experiments on the task of single-line code-autocompletion using code repositories taken from Google Code archives. We demonstrate that an oracle constructed from our proposed rules gives up to 36% relative improvement over Codex, showing the quality of the rules. Further, we show that when we train a model to select the best rule, we can achieve significant performance gains over Codex. The code for our work can be found at: https://github.com/shrivastavadisha/repo_level_prompt_generation." 782,Prediction Errors for Penalized Regressions based on Generalized Approximate Message Passing,"We discuss the prediction accuracy of assumed statistical models in terms of prediction errors for the generalized linear model and penalized maximum likelihood methods. We derive the forms of estimators for the prediction errors: $C_p$ criterion, information criteria, and leave-one-out cross validation (LOOCV) error, using the generalized approximate message passing (GAMP) algorithm and replica method. These estimators coincide with each other when the number of model parameters is sufficiently small; however, there is a discrepancy between them in particular in the overparametrized region where the number of model parameters is larger than the data dimension. In this paper, we review the prediction errors and corresponding estimators, and discuss their differences. In the framework of GAMP, we show that the information criteria can be expressed by using the variance of the estimates. Further, we demonstrate how to approach LOOCV error from the information criteria by utilizing the expression provided by GAMP." 783,On Comparison of Encoders for Attention based End to End Speech Recognition in Standalone and Rescoring Mode,"The streaming automatic speech recognition (ASR) models are more popular and suitable for voice-based applications. However, non-streaming models provide better performance as they look at the entire audio context. To leverage the benefits of the non-streaming model in streaming applications like voice search, it is commonly used in second pass re-scoring mode. The candidate hypothesis generated using steaming models is re-scored using a non-streaming model. In this work, we evaluate the non-streaming attention-based end-to-end ASR models on the Flipkart voice search task in both standalone and re-scoring modes. These models are based on Listen-Attend-Spell (LAS) encoder-decoder architecture. We experiment with different encoder variations based on LSTM, Transformer, and Conformer. We compare the latency requirements of these models along with their performance. Overall we show that the Transformer model offers acceptable WER with the lowest latency requirements. We report a relative WER improvement of around 16% with the second pass LAS re-scoring with latency overhead under 5ms. We also highlight the importance of CNN front-end with Transformer architecture to achieve comparable word error rates (WER). Moreover, we observe that in the second pass re-scoring mode all the encoders provide similar benefits whereas the difference in performance is prominent in standalone text generation mode." 784,Breast Cancer Classification using Deep Learned Features Boosted with Handcrafted Features,"Breast cancer is one of the leading causes of death among women across the globe. It is difficult to treat if detected at advanced stages, however, early detection can significantly increase chances of survival and improves lives of millions of women. Given the widespread prevalence of breast cancer, it is of utmost importance for the research community to come up with the framework for early detection, classification and diagnosis. Artificial intelligence research community in coordination with medical practitioners are developing such frameworks to automate the task of detection. With the surge in research activities coupled with availability of large datasets and enhanced computational powers, it expected that AI framework results will help even more clinicians in making correct predictions. In this article, a novel framework for classification of breast cancer using mammograms is proposed. The proposed framework combines robust features extracted from novel Convolutional Neural Network (CNN) features with handcrafted features including HOG (Histogram of Oriented Gradients) and LBP (Local Binary Pattern). The obtained results on CBIS-DDSM dataset exceed state of the art." 785,Memory-Guided Multi-View Multi-Domain Fake News Detection,"The wide spread of fake news is increasingly threatening both individuals and society. Great efforts have been made for automatic fake news detection on a single domain (e.g., politics). However, correlations exist commonly across multiple news domains, and thus it is promising to simultaneously detect fake news of multiple domains. Based on our analysis, we pose two challenges in multi-domain fake news detection: 1) domain shift, caused by the discrepancy among domains in terms of words, emotions, styles, etc. 2) domain labeling incompleteness, stemming from the real-world categorization that only outputs one single domain label, regardless of topic diversity of a news piece. In this paper, we propose a Memory-guided Multi-view Multi-domain Fake News Detection Framework (M$^3$FEND) to address these two challenges. We model news pieces from a multi-view perspective, including semantics, emotion, and style. Specifically, we propose a Domain Memory Bank to enrich domain information which could discover potential domain labels based on seen news pieces and model domain characteristics. Then, with enriched domain information as input, a Domain Adapter could adaptively aggregate discriminative information from multiple views for news in various domains. Extensive offline experiments on English and Chinese datasets demonstrate the effectiveness of M$^3$FEND, and online tests verify its superiority in practice. Our code is available at https://github.com/ICTMCG/M3FEND." 786,Bounding the Width of Neural Networks via Coupled Initialization -- A Worst Case Analysis,"A common method in training neural networks is to initialize all the weights to be independent Gaussian vectors. We observe that by instead initializing the weights into independent pairs, where each pair consists of two identical Gaussian vectors, we can significantly improve the convergence analysis. While a similar technique has been studied for random inputs [Daniely, NeurIPS 2020], it has not been analyzed with arbitrary inputs. Using this technique, we show how to significantly reduce the number of neurons required for two-layer ReLU networks, both in the under-parameterized setting with logistic loss, from roughly $\gamma^{-8}$ [Ji and Telgarsky, ICLR 2020] to $\gamma^{-2}$, where $\gamma$ denotes the separation margin with a Neural Tangent Kernel, as well as in the over-parameterized setting with squared loss, from roughly $n^4$ [Song and Yang, 2019] to $n^2$, implicitly also improving the recent running time bound of [Brand, Peng, Song and Weinstein, ITCS 2021]. For the under-parameterized setting we also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible." 787,Structural Entropy Guided Graph Hierarchical Pooling,"Following the success of convolution on non-Euclidean space, the corresponding pooling approaches have also been validated on various tasks regarding graphs. However, because of the fixed compression quota and stepwise pooling design, these hierarchical pooling methods still suffer from local structure damage and suboptimal problem. In this work, inspired by structural entropy, we propose a hierarchical pooling approach, SEP, to tackle the two issues. Specifically, without assigning the layer-specific compression quota, a global optimization algorithm is designed to generate the cluster assignment matrices for pooling at once. Then, we present an illustration of the local structure damage from previous methods in the reconstruction of ring and grid synthetic graphs. In addition to SEP, we further design two classification models, SEP-G and SEP-N for graph classification and node classification, respectively. The results show that SEP outperforms state-of-the-art graph pooling methods on graph classification benchmarks and obtains superior performance on node classifications." 788,Class Impression for Data-free Incremental Learning,"Standard deep learning-based classification approaches require collecting all samples from all classes in advance and are trained offline. This paradigm may not be practical in real-world clinical applications, where new classes are incrementally introduced through the addition of new data. Class incremental learning is a strategy allowing learning from such data. However, a major challenge is catastrophic forgetting, i.e., performance degradation on previous classes when adapting a trained model to new data. Prior methodologies to alleviate this challenge save a portion of training data require perpetual storage of such data that may introduce privacy issues. Here, we propose a novel data-free class incremental learning framework that first synthesizes data from the model trained on previous classes to generate a \ours. Subsequently, it updates the model by combining the synthesized data with new class data. Furthermore, we incorporate a cosine normalized Cross-entropy loss to mitigate the adverse effects of the imbalance, a margin loss to increase separation among previous classes and new ones, and an intra-domain contrastive loss to generalize the model trained on the synthesized data to real data. We compare our proposed framework with state-of-the-art methods in class incremental learning, where we demonstrate improvement in accuracy for the classification of 11,062 echocardiography cine series of patients." 789,Transferring Fairness under Distribution Shifts via Fair Consistency Regularization,"The increasing reliance on ML models in high-stakes tasks has raised a major concern on fairness violations. Although there has been a surge of work that improves algorithmic fairness, most of them are under the assumption of an identical training and test distribution. In many real-world applications, however, such an assumption is often violated as previously trained fair models are often deployed in a different environment, and the fairness of such models has been observed to collapse. In this paper, we study how to transfer model fairness under distribution shifts, a widespread issue in practice. We conduct a fine-grained analysis of how the fair model is affected under different types of distribution shifts and find that domain shifts are more challenging than subpopulation shifts. Inspired by the success of self-training in transferring accuracy under domain shifts, we derive a sufficient condition for transferring group fairness. Guided by it, we propose a practical algorithm with a fair consistency regularization as the key component. A synthetic dataset benchmark, which covers all types of distribution shifts, is deployed for experimental verification of the theoretical findings. Experiments on synthetic and real datasets including image and tabular data demonstrate that our approach effectively transfers fairness and accuracy under various distribution shifts." 790,APPFLChain: A Privacy Protection Distributed Artificial-Intelligence Architecture Based on Federated Learning and Consortium Blockchain,"Recent research in Internet of things has been widely applied for industrial practices, fostering the exponential growth of data and connected devices. Henceforth, data-driven AI models would be accessed by different parties through certain data-sharing policies. However, most of the current training procedures rely on the centralized data-collection strategy and a single computational server. However, such a centralized scheme may lead to many issues. Customer data stored in a centralized database may be tampered with so the provenance and authenticity of data cannot be justified. Once the aforementioned security concerns occur, the credibility of the trained AI models would be questionable and even unfavorable outcomes might be produced at the test stage. Lately, blockchain and AI, the two core technologies in Industry 4.0 and Web 3.0, have been explored to facilitate the decentralized AI training strategy. To serve on this very purpose, we propose a new system architecture called APPFLChain, namely an integrated architecture of a Hyperledger Fabric-based blockchain and a federated-learning paradigm. Our proposed new system allows different parties to jointly train AI models and their customers or stakeholders are connected by a consortium blockchain-based network. Our new system can maintain a high degree of security and privacy as users do not need to share sensitive personal information to the server. For numerical evaluation, we simulate a real-world scenario to illustrate the whole operational process of APPFLChain. Simulation results show that taking advantage of the characteristics of consortium blockchain and federated learning, APPFLChain can demonstrate favorable properties including untamperability, traceability, privacy protection, and reliable decision-making." 791,Malware Detection and Prevention using Artificial Intelligence Techniques,"With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholders, particularly, end users security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI." 792,Generalized Beliefs for Cooperative AI,"Self-play is a common paradigm for constructing solutions in Markov games that can yield optimal policies in collaborative settings. However, these policies often adopt highly-specialized conventions that make playing with a novel partner difficult. To address this, recent approaches rely on encoding symmetry and convention-awareness into policy training, but these require strong environmental assumptions and can complicate policy training. We therefore propose moving the learning of conventions to the belief space. Specifically, we propose a belief learning model that can maintain beliefs over rollouts of policies not seen at training time, and can thus decode and adapt to novel conventions at test time. We show how to leverage this model for both search and training of a best response over various pools of policies to greatly improve ad-hoc teamplay. We also show how our setup promotes explainability and interpretability of nuanced agent conventions." 793,Predicting the Need for Blood Transfusion in Intensive Care Units with Reinforcement Learning,"As critically ill patients frequently develop anemia or coagulopathy, transfusion of blood products is a frequent intervention in the Intensive Care Units (ICU). However, inappropriate transfusion decisions made by physicians are often associated with increased risk of complications and higher hospital costs. In this work, we aim to develop a decision support tool that uses available patient information for transfusion decision-making on three common blood products (red blood cells, platelets, and fresh frozen plasma). To this end, we adopt an off-policy batch reinforcement learning (RL) algorithm, namely, discretized Batch Constrained Q-learning, to determine the best action (transfusion or not) given observed patient trajectories. Simultaneously, we consider different state representation approaches and reward design mechanisms to evaluate their impacts on policy learning. Experiments are conducted on two real-world critical care datasets: the MIMIC-III and the UCSF. Results demonstrate that policy recommendations on transfusion achieved comparable matching against true hospital policies via accuracy and weighted importance sampling evaluations on the MIMIC-III dataset. Furthermore, a combination of transfer learning (TL) and RL on the data-scarce UCSF dataset can provide up to $17.02% improvement in terms of accuracy, and up to 18.94% and 21.63% improvement in jump-start and asymptotic performance in terms of weighted importance sampling averaged over three transfusion tasks. Finally, simulations on transfusion decisions suggest that the transferred RL policy could reduce patients' estimated 28-day mortality rate by 2.74% and decreased acuity rate by 1.18% on the UCSF dataset." 794,Spatiotemporal Data Mining: A Survey,"Spatiotemporal data mining aims to discover interesting, useful but non-trivial patterns in big spatial and spatiotemporal data. They are used in various application domains such as public safety, ecology, epidemiology, earth science, etc. This problem is challenging because of the high societal cost of spurious patterns and exorbitant computational cost. Recent surveys of spatiotemporal data mining need update due to rapid growth. In addition, they did not adequately survey parallel techniques for spatiotemporal data mining. This paper provides a more up-to-date survey of spatiotemporal data mining methods. Furthermore, it has a detailed survey of parallel formulations of spatiotemporal data mining." 795,Design and Analysis of Robust Resilient Diffusion over Multi-Task Networks Against Byzantine Attacks,"This paper studies distributed diffusion adaptation over clustered multi-task networks in the presence of impulsive interferences and Byzantine attacks. We develop a robust resilient diffusion least mean Geman-McClure-estimation (RDLMG) algorithm based on the cost function used by the Geman-McClure estimator, which can reduce the sensitivity to large outliers and make the algorithm robust under impulsive interferences. Moreover, the mean sub-sequence reduced method, in which each node discards the extreme value information of cost contributions received from its neighbors, can make the network resilient against Byzantine attacks. In this regard, the proposed RDLMG algorithm ensures that all normal nodes converge to their ideal states with cooperation among nodes. A statistical analysis of the RDLMG algorithm is also carried out in terms of mean and mean-square performances. Numerical results evaluate the proposed RDLMG algorithm in applications to multi-target localization and multi-task spectrum sensing." 796,HyGNN: Drug-Drug Interaction Prediction via Hypergraph Neural Network,"Drug-Drug Interactions (DDIs) may hamper the functionalities of drugs, and in the worst scenario, they may lead to adverse drug reactions (ADRs). Predicting all DDIs is a challenging and critical problem. Most existing computational models integrate drug-centric information from different sources and leverage them as features in machine learning classifiers to predict DDIs. However, these models have a high chance of failure, especially for the new drugs when all the information is not available. This paper proposes a novel Hypergraph Neural Network (HyGNN) model based on only the SMILES string of drugs, available for any drug, for the DDI prediction problem. To capture the drug similarities, we create a hypergraph from drugs' chemical substructures extracted from the SMILES strings. Then, we develop HyGNN consisting of a novel attention-based hypergraph edge encoder to get the representation of drugs as hyperedges and a decoder to predict the interactions between drug pairs. Furthermore, we conduct extensive experiments to evaluate our model and compare it with several state-of-the-art methods. Experimental results demonstrate that our proposed HyGNN model effectively predicts DDIs and impressively outperforms the baselines with a maximum ROC-AUC and PR-AUC of 97.9% and 98.1%, respectively." 797,Modeling Oceanic Variables with Dynamic Graph Neural Networks,"Researchers typically resort to numerical methods to understand and predict ocean dynamics, a key task in mastering environmental phenomena. Such methods may not be suitable in scenarios where the topographic map is complex, knowledge about the underlying processes is incomplete, or the application is time critical. On the other hand, if ocean dynamics are observed, they can be exploited by recent machine learning methods. In this paper we describe a data-driven method to predict environmental variables such as current velocity and sea surface height in the region of Santos-Sao Vicente-Bertioga Estuarine System in the southeastern coast of Brazil. Our model exploits both temporal and spatial inductive biases by joining state-of-the-art sequence models (LSTM and Transformers) and relational models (Graph Neural Networks) in an end-to-end framework that learns both the temporal features and the spatial relationship shared among observation sites. We compare our results with the Santos Operational Forecasting System (SOFS). Experiments show that better results are attained by our model, while maintaining flexibility and little domain knowledge dependency." 798,On how to avoid exacerbating spurious correlations when models are overparameterized,"Overparameterized models fail to generalize well in the presence of data imbalance even when combined with traditional techniques for mitigating imbalances. This paper focuses on imbalanced classification datasets, in which a small subset of the population -- a minority -- may contain features that correlate spuriously with the class label. For a parametric family of cross-entropy loss modifications and a representative Gaussian mixture model, we derive non-asymptotic generalization bounds on the worst-group error that shed light on the role of different hyper-parameters. Specifically, we prove that, when appropriately tuned, the recently proposed VS-loss learns a model that is fair towards minorities even when spurious features are strong. On the other hand, alternative heuristics, such as the weighted CE and the LA-loss, can fail dramatically. Compared to previous works, our bounds hold for more general models, they are non-asymptotic, and, they apply even at scenarios of extreme imbalance." 799,Self-Supervised 3D Monocular Object Detection by Recycling Bounding Boxes,"Modern object detection architectures are moving towards employing self-supervised learning (SSL) to improve performance detection with related pretext tasks. Pretext tasks for monocular 3D object detection have not yet been explored yet in literature. The paper studies the application of established self-supervised bounding box recycling by labeling random windows as the pretext task. The classifier head of the 3D detector is trained to classify random windows containing different proportions of the ground truth objects, thus handling the foreground-background imbalance. We evaluate the pretext task using the RTM3D detection model as baseline, with and without the application of data augmentation. We demonstrate improvements of between 2-3 % in mAP 3D and 0.9-1.5 % BEV scores using SSL over the baseline scores. We propose the inverse class frequency re-weighted (ICFW) mAP score that highlights improvements in detection for low frequency classes in a class imbalanced dataset with long tails. We demonstrate improvements in ICFW both mAP 3D and BEV scores to take into account the class imbalance in the KITTI validation dataset. We see 4-5 % increase in ICFW metric with the pretext task." 800,"Cascading Failures in Smart Grids under Random, Targeted and Adaptive Attacks","We study cascading failures in smart grids, where an attacker selectively compromises the nodes with probabilities proportional to their degrees, betweenness, or clustering coefficient. This implies that nodes with high degrees, betweenness, or clustering coefficients are attacked with higher probability. We mathematically and experimentally analyze the sizes of the giant components of the networks under different types of targeted attacks, and compare the results with the corresponding sizes under random attacks. We show that networks disintegrate faster for targeted attacks compared to random attacks. A targeted attack on a small fraction of high degree nodes disintegrates one or both of the networks, whereas both the networks contain giant components for random attack on the same fraction of nodes. An important observation is that an attacker has an advantage if it compromises nodes based on their betweenness, rather than based on degree or clustering coefficient. We next study adaptive attacks, where an attacker compromises nodes in rounds. Here, some nodes are compromised in each round based on their degree, betweenness or clustering coefficients, instead of compromising all nodes together. In this case, the degree, betweenness, or clustering coefficient is calculated before the start of each round, instead of at the beginning. We show experimentally that an adversary has an advantage in this adaptive approach, compared to compromising the same number of nodes all at once." 801,Aligning Artificial Intelligence with Humans through Public Policy,"Given that Artificial Intelligence (AI) increasingly permeates our lives, it is critical that we systematically align AI objectives with the goals and values of humans. The human-AI alignment problem stems from the impracticality of explicitly specifying the rewards that AI models should receive for all the actions they could take in all relevant states of the world. One possible solution, then, is to leverage the capabilities of AI models to learn those rewards implicitly from a rich source of data describing human values in a wide range of contexts. The democratic policy-making process produces just such data by developing specific rules, flexible standards, interpretable guidelines, and generalizable precedents that synthesize citizens' preferences over potential actions taken in many states of the world. Therefore, computationally encoding public policies to make them legible to AI systems should be an important part of a socio-technical approach to the broader human-AI alignment puzzle. This Essay outlines research on AI that learn structures in policy data that can be leveraged for downstream tasks. As a demonstration of the ability of AI to comprehend policy, we provide a case study of an AI system that predicts the relevance of proposed legislation to any given publicly traded company and its likely effect on that company. We believe this represents the ""comprehension"" phase of AI and policy, but leveraging policy as a key source of human values to align AI requires ""understanding"" policy. Solving the alignment problem is crucial to ensuring that AI is beneficial both individually (to the person or group deploying the AI) and socially. As AI systems are given increasing responsibility in high-stakes contexts, integrating democratically-determined policy into those systems could align their behavior with human goals in a way that is responsive to a constantly evolving society." 802,Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime,"Most differential privacy mechanisms are applied (i.e., composed) numerous times on sensitive data. We study the design of optimal differential privacy mechanisms in the limit of a large number of compositions. As a consequence of the law of large numbers, in this regime the best privacy mechanism is the one that minimizes the Kullback-Leibler divergence between the conditional output distributions of the mechanism given two different inputs. We formulate an optimization problem to minimize this divergence subject to a cost constraint on the noise. We first prove that additive mechanisms are optimal. Since the optimization problem is infinite dimensional, it cannot be solved directly; nevertheless, we quantize the problem to derive near-optimal additive mechanisms that we call ""cactus mechanisms"" due to their shape. We show that our quantization approach can be arbitrarily close to an optimal mechanism. Surprisingly, for quadratic cost, the Gaussian mechanism is strictly sub-optimal compared to this cactus mechanism. Finally, we provide numerical results which indicate that cactus mechanism outperforms the Gaussian mechanism for a finite number of compositions." 803,Defending Multimodal Fusion Models against Single-Source Adversaries,"Beyond achieving high performance across many vision tasks, multimodal models are expected to be robust to single-source faults due to the availability of redundant information between modalities. In this paper, we investigate the robustness of multimodal neural networks against worst-case (i.e., adversarial) perturbations on a single modality. We first show that standard multimodal fusion models are vulnerable to single-source adversaries: an attack on any single modality can overcome the correct information from multiple unperturbed modalities and cause the model to fail. This surprising vulnerability holds across diverse multimodal tasks and necessitates a solution. Motivated by this finding, we propose an adversarially robust fusion strategy that trains the model to compare information coming from all the input sources, detect inconsistencies in the perturbed modality compared to the other modalities, and only allow information from the unperturbed modalities to pass through. Our approach significantly improves on state-of-the-art methods in single-source robustness, achieving gains of 7.8-25.2% on action recognition, 19.7-48.2% on object detection, and 1.6-6.7% on sentiment analysis, without degrading performance on unperturbed (i.e., clean) data." 804,Protoformer: Embedding Prototypes for Transformers,"Transformers have been widely applied in text classification. Unfortunately, real-world data contain anomalies and noisy labels that cause challenges for state-of-art Transformers. This paper proposes Protoformer, a novel self-learning framework for Transformers that can leverage problematic samples for text classification. Protoformer features a selection mechanism for embedding samples that allows us to efficiently extract and utilize anomalies prototypes and difficult class prototypes. We demonstrated such capabilities on datasets with diverse textual structures (e.g., Twitter, IMDB, ArXiv). We also applied the framework to several models. The results indicate that Protoformer can improve current Transformers in various empirical settings." 805,Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach,"The rising growth of deep neural networks (DNNs) and datasets in size motivates the need for efficient solutions for simultaneous model selection and training. Many methods for hyperparameter optimization (HPO) of iterative learners including DNNs attempt to solve this problem by querying and learning a response surface while searching for the optimum of that surface. However, many of these methods make myopic queries, do not consider prior knowledge about the response structure, and/or perform biased cost-aware search, all of which exacerbate identifying the best-performing model when a total cost budget is specified. This paper proposes a novel approach referred to as Budget-Aware Planning for Iterative Learners (BAPI) to solve HPO problems under a constrained cost budget. BAPI is an efficient non-myopic Bayesian optimization solution that accounts for the budget and leverages the prior knowledge about the objective function and cost function to select better configurations and to take more informed decisions during the evaluation (training). Experiments on diverse HPO benchmarks for iterative learners show that BAPI performs better than state-of-the-art baselines in most of the cases." 806,Binary and Multinomial Classification through Evolutionary Symbolic Regression,"We present three evolutionary symbolic regression-based classification algorithms for binary and multinomial datasets: GPLearnClf, CartesianClf, and ClaSyCo. Tested over 162 datasets and compared to three state-of-the-art machine learning algorithms -- XGBoost, LightGBM, and a deep neural network -- we find our algorithms to be competitive. Further, we demonstrate how to find the best method for one's dataset automatically, through the use of a state-of-the-art hyperparameter optimizer." 807,p-Meta: Towards On-device Deep Model Adaptation,"Data collected by IoT devices are often private and have a large diversity across users. Therefore, learning requires pre-training a model with available representative data samples, deploying the pre-trained model on IoT devices, and adapting the deployed model on the device with local data. Such an on-device adaption for deep learning empowered applications demands data and memory efficiency. However, existing gradient-based meta learning schemes fail to support memory-efficient adaptation. To this end, we propose p-Meta, a new meta learning method that enforces structure-wise partial parameter updates while ensuring fast generalization to unseen tasks. Evaluations on few-shot image classification and reinforcement learning tasks show that p-Meta not only improves the accuracy but also substantially reduces the peak dynamic memory by a factor of 2.5 on average compared to state-of-the-art few-shot adaptation methods." 808,Anatomy-Guided Weakly-Supervised Abnormality Localization in Chest X-rays,"Creating a large-scale dataset of abnormality annotation on medical images is a labor-intensive and costly task. Leveraging weak supervision from readily available data such as radiology reports can compensate lack of large-scale data for anomaly detection methods. However, most of the current methods only use image-level pathological observations, failing to utilize the relevant anatomy mentions in reports. Furthermore, Natural Language Processing (NLP)-mined weak labels are noisy due to label sparsity and linguistic ambiguity. We propose an Anatomy-Guided chest X-ray Network (AGXNet) to address these issues of weak annotation. Our framework consists of a cascade of two networks, one responsible for identifying anatomical abnormalities and the second responsible for pathological observations. The critical component in our framework is an anatomy-guided attention module that aids the downstream observation network in focusing on the relevant anatomical regions generated by the anatomy network. We use Positive Unlabeled (PU) learning to account for the fact that lack of mention does not necessarily mean a negative label. Our quantitative and qualitative results on the MIMIC-CXR dataset demonstrate the effectiveness of AGXNet in disease and anatomical abnormality localization. Experiments on the NIH Chest X-ray dataset show that the learned feature representations are transferable and can achieve the state-of-the-art performances in disease classification and competitive disease localization results. Our code is available at https://github.com/batmanlab/AGXNet" 809,Data Augmentation techniques in time series domain: A survey and taxonomy,"With the latest advances in deep learning generative models, it has not taken long to take advantage of their remarkable performance in the area of time series. Deep neural networks used to work with time series depend heavily on the breadth and consistency of the datasets used in training. These types of characteristic are not usually abundant in the real world, where they are usually limited and often with privacy constraints that must be guaranteed. Therefore, an effective way is to increase the number of data using \gls{da} techniques, either by adding noise or permutations and by generating new synthetic data. It is systematically review the current state-of-the-art in the area to provide an overview of all available algorithms and proposes a taxonomy of the most relevant researches. The efficiency of the different variants will be evaluated; as a vital part of the process, the different metrics to evaluate the performance and the main problems concerning each model will be analysed. The ultimate goal of this study is to provide a summary of the evolution and performance of areas that produce better results to guide future researchers in this field." 810,Improving Data-driven Heterogeneous Treatment Effect Estimation Under Structure Uncertainty,"Estimating how a treatment affects units individually, known as heterogeneous treatment effect (HTE) estimation, is an essential part of decision-making and policy implementation. The accumulation of large amounts of data in many domains, such as healthcare and e-commerce, has led to increased interest in developing data-driven algorithms for estimating heterogeneous effects from observational and experimental data. However, these methods often make strong assumptions about the observed features and ignore the underlying causal model structure, which can lead to biased HTE estimation. At the same time, accounting for the causal structure of real-world data is rarely trivial since the causal mechanisms that gave rise to the data are typically unknown. To address this problem, we develop a feature selection method that considers each feature's value for HTE estimation and learns the relevant parts of the causal structure from data. We provide strong empirical evidence that our method improves existing data-driven HTE estimation methods under arbitrary underlying causal structures. Our results on synthetic, semi-synthetic, and real-world datasets show that our feature selection algorithm leads to lower HTE estimation error." 811,Defense against adversarial attacks on deep convolutional neural networks through nonlocal denoising,"Despite substantial advances in network architecture performance, the susceptibility of adversarial attacks makes deep learning challenging to implement in safety-critical applications. This paper proposes a data-centric approach to addressing this problem. A nonlocal denoising method with different luminance values has been used to generate adversarial examples from the Modified National Institute of Standards and Technology database (MNIST) and Canadian Institute for Advanced Research (CIFAR-10) data sets. Under perturbation, the method provided absolute accuracy improvements of up to 9.3% in the MNIST data set and 13% in the CIFAR-10 data set. Training using transformed images with higher luminance values increases the robustness of the classifier. We have shown that transfer learning is disadvantageous for adversarial machine learning. The results indicate that simple adversarial examples can improve resilience and make deep learning easier to apply in various applications." 812,Minority Report: A Graph Network Oracle for In Situ Visualization,"In situ visualization techniques are hampered by a lack of foresight: crucial simulation phenomena can be missed due to a poor sampling rate or insufficient detail at critical timesteps. Keeping a human in the loop is impractical, and defining statistical triggers can be difficult. This paper demonstrates the potential for using a machine-learning-based simulation surrogate as an oracle to identify expected critical regions of a large-scale simulation. These critical regions are used to drive the in situ analysis, providing greater data fidelity and analysis resolution with an equivalent I/O budget to a traditional in situ framework. We develop a distributed asynchronous in situ visualization by integrating TACC Galaxy with CB-Geo MPM for material point simulation of granular flows. We employ a PyTorch-based 3D Graph Network Simulator (GNS) trained on granular flow problems as an oracle to predict the dynamics of granular flows. Critical regions of interests are manually tagged in GNS for in situ rendering in MPM." 813,Topology-aware Generalization of Decentralized SGD,"This paper studies the algorithmic stability and generalizability of decentralized stochastic gradient descent (D-SGD). We prove that the consensus model learned by D-SGD is $\mathcal{O}{(m/N+1/m+\lambda^2)}$-stable in expectation in the non-convex non-smooth setting, where $N$ is the total sample size of the whole system, $m$ is the worker number, and $1-\lambda$ is the spectral gap that measures the connectivity of the communication topology. These results then deliver an $\mathcal{O}{(1/N+{({(m^{-1}\lambda^2)}^{\frac{\alpha}{2}}+ m^{-\alpha})}/{N^{1-\frac{\alpha}{2}}})}$ in-average generalization bound, which is non-vacuous even when $\lambda$ is closed to $1$, in contrast to vacuous as suggested by existing literature on the projected version of D-SGD. Our theory indicates that the generalizability of D-SGD has a positive correlation with the spectral gap, and can explain why consensus control in initial training phase can ensure better generalization. Experiments of VGG-11 and ResNet-18 on CIFAR-10, CIFAR-100 and Tiny-ImageNet justify our theory. To our best knowledge, this is the first work on the topology-aware generalization of vanilla D-SGD. Code is available at https://github.com/Raiden-Zhu/Generalization-of-DSGD." 814,Envelope imbalanced ensemble model with deep sample learning and local-global structure consistency,"The class imbalance problem is important and challenging. Ensemble approaches are widely used to tackle this problem because of their effectiveness. However, existing ensemble methods are always applied into original samples, while not considering the structure information among original samples. The limitation will prevent the imbalanced learning from being better. Besides, research shows that the structure information among samples includes local and global structure information. Based on the analysis above, an imbalanced ensemble algorithm with the deep sample pre-envelope network (DSEN) and local-global structure consistency mechanism (LGSCM) is proposed here to solve the problem.This algorithm can guarantee high-quality deep envelope samples for considering the local manifold and global structures information, which is helpful for imbalance learning. First, the deep sample envelope pre-network (DSEN) is designed to mine structure information among samples.Then, the local manifold structure metric (LMSM) and global structure distribution metric (GSDM) are designed to construct LGSCM to enhance distribution consistency of interlayer samples. Next, the DSEN and LGSCM are put together to form the final deep sample envelope network (DSEN-LG). After that, base classifiers are applied on the layers of deep samples respectively.Finally, the predictive results from base classifiers are fused through bagging ensemble learning mechanism. To demonstrate the effectiveness of the proposed method, forty-four public datasets and more than ten representative relevant algorithms are chosen for verification. The experimental results show that the algorithm is significantly better than other imbalanced ensemble algorithms." 815,Learning to Infer 3D Shape Programs with Differentiable Renderer,"Given everyday artifacts, such as tables and chairs, humans recognize high-level regularities within them, such as the symmetries of a table, the repetition of its legs, while possessing low-level priors of their geometries, e.g., surfaces are smooth and edges are sharp. This kind of knowledge constitutes an important part of human perceptual understanding and reasoning. Representations of and how to reason in such knowledge, and the acquisition thereof, are still open questions in artificial intelligence (AI) and cognitive science. Building on the previous proposal of the \emph{3D shape programs} representation alone with the accompanying neural generator and executor from \citet{tian2019learning}, we propose an analytical yet differentiable executor that is more faithful and controllable in interpreting shape programs (particularly in extrapolation) and more sample efficient (requires no training). These facilitate the generator's learning when ground truth programs are not available, and should be especially useful when new shape-program components are enrolled either by human designers or -- in the context of library learning -- algorithms themselves. Preliminary experiments on using it for adaptation illustrate the aforesaid advantages of the proposed module, encouraging similar methods being explored in building machines that learn to reason with the kind of knowledge described above, and even learn this knowledge itself." 816,Guided Exploration in Reinforcement Learning via Monte Carlo Critic Optimization,"The class of deep deterministic off-policy algorithms is effectively applied to solve challenging continuous control problems. However, current approaches use random noise as a common exploration method that has several weaknesses, such as a need for manual adjusting on a given task and the absence of exploratory calibration during the training process. We address these challenges by proposing a novel guided exploration method that uses a differential directional controller to incorporate scalable exploratory action correction. An ensemble of Monte Carlo Critics that provides exploratory direction is presented as a controller. The proposed method improves the traditional exploration scheme by changing exploration dynamically. We then present a novel algorithm exploiting the proposed directional controller for both policy and critic modification. The presented algorithm outperforms modern reinforcement learning algorithms across a variety of problems from DMControl suite." 817,Trace Recovery from Stochastically Known Logs,"In this work we propose an algorithm for trace recovery from stochastically known logs, a setting that is becoming more common with the increasing number of sensors and predictive models that generate uncertain data. The suggested approach calculates the conformance between a process model and a stochastically known trace and recovers the best alignment within this stochastic trace as the true trace. The paper offers an analysis of the impact of various cost models on trace recovery accuracy and makes use of a product multi-graph to compare alternative trace recovery options. The average accuracy of our approach, evaluated using two publicly available datasets, is impressive, with an average recovery accuracy score of 90-97%, significantly improving a common heuristic that chooses the most likely value for each uncertain activity. We believe that the effectiveness of the proposed algorithm in recovering correct traces from stochastically known logs may be a powerful aid for developing credible decision-making tools in uncertain settings." 818,Evaluation of Semantic Answer Similarity Metrics,"There are several issues with the existing general machine translation or natural language generation evaluation metrics, and question-answering (QA) systems are indifferent in that context. To build robust QA systems, we need the ability to have equivalently robust evaluation systems to verify whether model predictions to questions are similar to ground-truth annotations. The ability to compare similarity based on semantics as opposed to pure string overlap is important to compare models fairly and to indicate more realistic acceptance criteria in real-life applications. We build upon the first to our knowledge paper that uses transformer-based model metrics to assess semantic answer similarity and achieve higher correlations to human judgement in the case of no lexical overlap. We propose cross-encoder augmented bi-encoder and BERTScore models for semantic answer similarity, trained on a new dataset consisting of name pairs of US-American public figures. As far as we are concerned, we provide the first dataset of co-referent name string pairs along with their similarities, which can be used for training." 819,Statistical inference with implicit SGD: proximal Robbins-Monro vs. Polyak-Ruppert,"The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive non-asymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature." 820,BackdoorBench: A Comprehensive Benchmark of Backdoor Learning,"Backdoor learning is an emerging and important topic of studying the vulnerability of deep neural networks (DNNs). Many pioneering backdoor attack and defense methods are being proposed successively or concurrently, in the status of a rapid arms race. However, we find that the evaluations of new methods are often unthorough to verify their claims and real performance, mainly due to the rapid development, diverse settings, as well as the difficulties of implementation and reproducibility. Without thorough evaluations and comparisons, it is difficult to track the current progress and design the future development roadmap of the literature. To alleviate this dilemma, we build a comprehensive benchmark of backdoor learning, called BackdoorBench. It consists of an extensible modular based codebase (currently including implementations of 8 state-of-the-art (SOTA) attack and 9 SOTA defense algorithms), as well as a standardized protocol of a complete backdoor learning. We also provide comprehensive evaluations of every pair of 8 attacks against 9 defenses, with 5 poisoning ratios, based on 5 models and 4 datasets, thus 8,000 pairs of evaluations in total. We further present analysis from different perspectives about these 8,000 evaluations, studying the effects of attack against defense algorithms, poisoning ratio, model and dataset in backdoor learning. All codes and evaluations of BackdoorBench are publicly available at \url{https://backdoorbench.github.io}." 821,Review on Social Behavior Analysis of Laboratory Animals: From Methodologies to Applications,"As the bridge between genetic and physiological aspects, animal behaviour analysis is one of the most significant topics in biology and ecological research. However, identifying, tracking and recording animal behaviour are labour intensive works that require professional knowledge. To mitigate the spend for annotating data, researchers turn to computer vision techniques for automatic label algorithms, since most of the data are recorded visually. In this work, we explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods. The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods. Apart from that, we also discuss the strengths and weaknesses of those algorithms to provide some insights for those who already delve into this field." 822,Machine Learning-based Biological Ageing Estimation Technologies: A Survey,"In recent years, there are various methods of estimating Biological Age (BA) have been developed. Especially with the development of machine learning (ML), there are more and more types of BA predictions, and the accuracy has been greatly improved. The models for the estimation of BA play an important role in monitoring healthy aging, and could provide new tools to detect health status in the general population and give warnings to sub-healthy people. We will mainly review three age prediction methods by using ML. They are based on blood biomarkers, facial images, and structural neuroimaging features. For now, the model using blood biomarkers is the simplest, most direct, and most accurate method. The face image method is affected by various aspects such as race, environment, etc., the prediction accuracy is not very good, which cannot make a great contribution to the medical field. In summary, we are here to track the way forward in the era of big data for us and other potential general populations and show ways to leverage the vast amounts of data available today." 823,Tensor Recovery Based on A Novel Non-convex Function Minimax Logarithmic Concave Penalty Function,"Non-convex relaxation methods have been widely used in tensor recovery problems, and compared with convex relaxation methods, can achieve better recovery results. In this paper, a new non-convex function, Minimax Logarithmic Concave Penalty (MLCP) function, is proposed, and some of its intrinsic properties are analyzed, among which it is interesting to find that the Logarithmic function is an upper bound of the MLCP function. The proposed function is generalized to tensor cases, yielding tensor MLCP and weighted tensor $L\gamma$-norm. Consider that its explicit solution cannot be obtained when applying it directly to the tensor recovery problem. Therefore, the corresponding equivalence theorems to solve such problem are given, namely, tensor equivalent MLCP theorem and equivalent weighted tensor $L\gamma$-norm theorem. In addition, we propose two EMLCP-based models for classic tensor recovery problems, namely low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA), and design proximal alternate linearization minimization (PALM) algorithms to solve them individually. Furthermore, based on the Kurdyka-{\L}ojasiwicz property, it is proved that the solution sequence of the proposed algorithm has finite length and converges to the critical point globally. Finally, Extensive experiments show that proposed algorithm achieve good results, and it is confirmed that the MLCP function is indeed better than the Logarithmic function in the minimization problem, which is consistent with the analysis of theoretical properties." 824,Multi-Variate Time Series Forecasting on Variable Subsets,"We formulate a new inference task in the domain of multivariate time series forecasting (MTSF), called Variable Subset Forecast (VSF), where only a small subset of the variables is available during inference. Variables are absent during inference because of long-term data loss (eg. sensor failures) or high -> low-resource domain shift between train / test. To the best of our knowledge, robustness of MTSF models in presence of such failures, has not been studied in the literature. Through extensive evaluation, we first show that the performance of state of the art methods degrade significantly in the VSF setting. We propose a non-parametric, wrapper technique that can be applied on top any existing forecast models. Through systematic experiments across 4 datasets and 5 forecast models, we show that our technique is able to recover close to 95\% performance of the models even when only 15\% of the original variables are present." 825,Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread,"When investigating epidemic dynamics through differential models, the parameters needed to understand the phenomenon and to simulate forecast scenarios require a delicate calibration phase, often made even more challenging by the scarcity and uncertainty of the observed data reported by official sources. In this context, Physics-Informed Neural Networks (PINNs), by embedding the knowledge of the differential model that governs the physical phenomenon in the learning process, can effectively address the inverse and forward problem of data-driven learning and solving the corresponding epidemic problem. In many circumstances, however, the spatial propagation of an infectious disease is characterized by movements of individuals at different scales governed by multiscale PDEs. This reflects the heterogeneity of a region or territory in relation to the dynamics within cities and in neighboring zones. In presence of multiple scales, a direct application of PINNs generally leads to poor results due to the multiscale nature of the differential model in the loss function of the neural network. To allow the neural network to operate uniformly with respect to the small scales, it is desirable that the neural network satisfies an Asymptotic-Preservation (AP) property in the learning process. To this end, we consider a new class of AP Neural Networks (APNNs) for multiscale hyperbolic transport models of epidemic spread that, thanks to an appropriate AP formulation of the loss function, is capable to work uniformly at the different scales of the system. A series of numerical tests for different epidemic scenarios confirms the validity of the proposed approach, highlighting the importance of the AP property in the neural network when dealing with multiscale problems especially in presence of sparse and partially observed systems." 826,Language Models as Knowledge Embeddings,"Knowledge embeddings (KE) represent a knowledge graph (KG) by embedding entities and relations into continuous vector spaces. Existing methods are mainly structure-based or description-based. Structure-based methods learn representations that preserve the inherent structure of KGs. They cannot well represent abundant long-tail entities in real-world KGs with limited structural information. Description-based methods leverage textual information and language models. Prior approaches in this direction barely outperform structure-based ones, and suffer from problems like expensive negative sampling and restrictive description demand. In this paper, we propose LMKE, which adopts Language Models to derive Knowledge Embeddings, aiming at both enriching representations of long-tail entities and solving problems of prior description-based methods. We formulate description-based KE learning with a contrastive learning framework to improve efficiency in training and evaluation. Experimental results show that LMKE achieves state-of-the-art performance on KE benchmarks of link prediction and triple classification, especially for long-tail entities." 827,Adversarial Self-Attention for Language Understanding,"An ultimate language system aims at the high generalization and robustness when adapting to diverse scenarios. Unfortunately, the recent white hope pre-trained language models (PrLMs) barely escape from stacking excessive parameters to the over-parameterized Transformer architecture to achieve higher performances. This paper thus proposes \textit{Adversarial Self-Attention} mechanism (ASA), which adversarially reconstructs the Transformer attentions and facilitates model training from contaminated model structures, coupled with a fast and simple implementation for better PrLM building. We conduct comprehensive evaluation across a wide range of tasks on both pre-training and fine-tuning stages. For pre-training, ASA unfolds remarkable performance gain compared to regular training for longer periods. For fine-tuning, ASA-empowered models consistently outweigh naive models by a large margin considering both generalization and robustness." 828,Mitigating sampling bias in risk-based active learning via an EM algorithm,"Risk-based active learning is an approach to developing statistical classifiers for online decision-support. In this approach, data-label querying is guided according to the expected value of perfect information for incipient data points. For SHM applications, the value of information is evaluated with respect to a maintenance decision process, and the data-label querying corresponds to the inspection of a structure to determine its health state. Sampling bias is a known issue within active-learning paradigms; this occurs when an active learning process over- or undersamples specific regions of a feature-space, thereby resulting in a training set that is not representative of the underlying distribution. This bias ultimately degrades decision-making performance, and as a consequence, results in unnecessary costs incurred. The current paper outlines a risk-based approach to active learning that utilises a semi-supervised Gaussian mixture model. The semi-supervised approach counteracts sampling bias by incorporating pseudo-labels for unlabelled data via an EM algorithm. The approach is demonstrated on a numerical example representative of the decision processes found in SHM." 829,Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels,"We propose a new method for approximating active learning acquisition strategies that are based on retraining with hypothetically-labeled candidate data points. Although this is usually infeasible with deep networks, we use the neural tangent kernel to approximate the result of retraining, and prove that this approximation works asymptotically even in an active learning setup -- approximating ""look-ahead"" selection criteria with far less computation required. This also enables us to conduct sequential active learning, i.e. updating the model in a streaming regime, without needing to retrain the model with SGD after adding each new data point. Moreover, our querying strategy, which better understands how the model's predictions will change by adding new data points in comparison to the standard (""myopic"") criteria, beats other look-ahead strategies by large margins, and achieves equal or better performance compared to state-of-the-art methods on several benchmark datasets in pool-based active learning." 830,Functional Optimization Reinforcement Learning for Real-Time Bidding,"Real-time bidding is the new paradigm of programmatic advertising. An advertiser wants to make the intelligent choice of utilizing a \textbf{Demand-Side Platform} to improve the performance of their ad campaigns. Existing approaches are struggling to provide a satisfactory solution for bidding optimization due to stochastic bidding behavior. In this paper, we proposed a multi-agent reinforcement learning architecture for RTB with functional optimization. We designed four agents bidding environment: three Lagrange-multiplier based functional optimization agents and one baseline agent (without any attribute of functional optimization) First, numerous attributes have been assigned to each agent, including biased or unbiased win probability, Lagrange multiplier, and click-through rate. In order to evaluate the proposed RTB strategy's performance, we demonstrate the results on ten sequential simulated auction campaigns. The results show that agents with functional actions and rewards had the most significant average winning rate and winning surplus, given biased and unbiased winning information respectively. The experimental evaluations show that our approach significantly improve the campaign's efficacy and profitability." 831,Generating Diverse Vocal Bursts with StyleGAN2 and MEL-Spectrograms,"We describe our approach for the generative emotional vocal burst task (ExVo Generate) of the ICML Expressive Vocalizations Competition. We train a conditional StyleGAN2 architecture on mel-spectrograms of preprocessed versions of the audio samples. The mel-spectrograms generated by the model are then inverted back to the audio domain. As a result, our generated samples substantially improve upon the baseline provided by the competition from a qualitative and quantitative perspective for all emotions. More precisely, even for our worst-performing emotion (awe), we obtain an FAD of 1.76 compared to the baseline of 4.81 (as a reference, the FAD between the train/validation sets for awe is 0.776)." 832,PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance,"Large Transformer-based models have exhibited superior performance in various natural language processing and computer vision tasks. However, these models contain enormous amounts of parameters, which restrict their deployment to real-world applications. To reduce the model size, researchers prune these models based on the weights' importance scores. However, such scores are usually estimated on mini-batches during training, which incurs large variability/uncertainty due to mini-batch sampling and complicated training dynamics. As a result, some crucial weights could be pruned by commonly used pruning methods because of such uncertainty, which makes training unstable and hurts generalization. To resolve this issue, we propose PLATON, which captures the uncertainty of importance scores by upper confidence bound (UCB) of importance estimation. In particular, for the weights with low importance scores but high uncertainty, PLATON tends to retain them and explores their capacity. We conduct extensive experiments with several Transformer-based models on natural language understanding, question answering and image classification to validate the effectiveness of PLATON. Results demonstrate that PLATON manifests notable improvement under different sparsity levels. Our code is publicly available at https://github.com/QingruZhang/PLATON." 833,Integrating Machine Learning with Discrete Event Simulation for Improving Health Referral Processing in a Care Management Setting,"Post-discharge care management coordinates patients' referrals to improve their health after being discharged from hospitals, especially elderly and chronically ill patients. In a care management setting, health referrals are processed by a specialized unit in the managed care organization (MCO), which interacts with many other entities including inpatient hospitals, insurance companies, and post-discharge care providers. In this paper, a machine-learning-guided discrete event simulation framework to improve health referrals processing is proposed. Random-forest-based prediction models are developed to predict the LOS and referral type. Two simulation models are constructed to represent the as-is configuration of the referral processing system and the intelligent system after incorporating the prediction functionality, respectively. By incorporating a prediction module for the referral processing system to plan and prioritize referrals, the overall performance was enhanced in terms of reducing the average referral creation delay time. This research will emphasize the role of post-discharge care management in improving health quality and reducing associated costs. Also, the paper demonstrates how to use integrated systems engineering methods for process improvement of complex healthcare systems." 834,Geometry Contrastive Learning on Heterogeneous Graphs,"Self-supervised learning (especially contrastive learning) methods on heterogeneous graphs can effectively get rid of the dependence on supervisory data. Meanwhile, most existing representation learning methods embed the heterogeneous graphs into a single geometric space, either Euclidean or hyperbolic. This kind of single geometric view is usually not enough to observe the complete picture of heterogeneous graphs due to their rich semantics and complex structures. Under these observations, this paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL), to better represent the heterogeneous graphs when supervisory data is unavailable. GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures, which is expected to bring in more benefits for downstream tasks. GCL maximizes the mutual information between two geometric views by contrasting representations at both local-local and local-global semantic levels. Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines, including both unsupervised methods and supervised methods, on three tasks, including node classification, node clustering and similarity search." 835,"A Fast, Well-Founded Approximation to the Empirical Neural Tangent Kernel","Empirical neural tangent kernels (eNTKs) can provide a good understanding of a given network's representation: they are often far less expensive to compute and applicable more broadly than infinite width NTKs. For networks with O output units (e.g. an O-class classifier), however, the eNTK on N inputs is of size $NO \times NO$, taking $O((NO)^2)$ memory and up to $O((NO)^3)$ computation. Most existing applications have therefore used one of a handful of approximations yielding $N \times N$ kernel matrices, saving orders of magnitude of computation, but with limited to no justification. We prove that one such approximation, which we call ""sum of logits"", converges to the true eNTK at initialization for any network with a wide final ""readout"" layer. Our experiments demonstrate the quality of this approximation for various uses across a range of settings." 836,Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning,"Deep reinforcement learning (RL) algorithms suffer severe performance degradation when the interaction data is scarce, which limits their real-world application. Recently, visual representation learning has been shown to be effective and promising for boosting sample efficiency in RL. These methods usually rely on contrastive learning and data augmentation to train a transition model for state prediction, which is different from how the model is used in RL--performing value-based planning. Accordingly, the learned model may not be able to align well with the environment and generate consistent value predictions, especially when the state transition is not deterministic. To address this issue, we propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making. More specifically, VCR trains a model to predict the future state (also referred to as the ''imagined state'') based on the current one and a sequence of actions. Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values. Then a distance is computed and minimized to force the imagined state to produce a similar action value prediction as that by the real state. We develop two implementations of the above idea for the discrete and continuous action spaces respectively. We conduct experiments on Atari 100K and DeepMind Control Suite benchmarks to validate their effectiveness for improving sample efficiency. It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms." 837,Visual Auditor: Interactive Visualization for Detection and Summarization of Model Biases,"As machine learning (ML) systems become increasingly widespread, it is necessary to audit these systems for biases prior to their deployment. Recent research has developed algorithms for effectively identifying intersectional bias in the form of interpretable, underperforming subsets (or slices) of the data. However, these solutions and their insights are limited without a tool for visually understanding and interacting with the results of these algorithms. We propose Visual Auditor, an interactive visualization tool for auditing and summarizing model biases. Visual Auditor assists model validation by providing an interpretable overview of intersectional bias (bias that is present when examining populations defined by multiple features), details about relationships between problematic data slices, and a comparison between underperforming and overperforming data slices in a model. Our open-source tool runs directly in both computational notebooks and web browsers, making model auditing accessible and easily integrated into current ML development workflows. An observational user study in collaboration with domain experts at Fiddler AI highlights that our tool can help ML practitioners identify and understand model biases." 838,Learning the Ranking of Causal Effects with Confounded Data,"Decision makers often want to identify the individuals for whom some intervention or treatment will be most effective in order to decide who to treat. In such cases, decision makers would ideally like to rank potential recipients of the treatment according to their individual causal effects. However, the historical data available to estimate the causal effects could be confounded, and as a result, accurately estimating the effects could be impossible. We propose a new and less restrictive assumption about historical data, called the ranking preservation assumption (RPA), under which the ranking of the individual effects can be consistently estimated even if the effects themselves cannot be accurately estimated. Importantly, we find that confounding can be helpful for the estimation of the causal-effect ranking when the confounding bias is larger for individuals with larger causal effects, and that even when this is not the case, any detrimental impact of confounding can be corrected with larger training data when the RPA is met. We then analytically show that the RPA can be met in a variety of scenarios, including common business applications such as online advertising and customer retention. We support this finding with an empirical example in the context of online advertising. The example also shows how to evaluate the decision making of a confounded model in practice. The main takeaway is that what might traditionally be considered ""good"" data for causal estimation (i.e., unconfounded data) may not be necessary to make good causal decisions, so treatment assignment methods may work better than we give them credit for in the presence of confounding." 839,Infinite Impulse Response Graph Neural Networks for Cyberattack Localization in Smart Grids,"This study employs Infinite Impulse Response (IIR) Graph Neural Networks (GNN) to efficiently model the inherent graph network structure of the smart grid data to address the cyberattack localization problem. First, we numerically analyze the empirical frequency response of the Finite Impulse Response (FIR) and IIR graph filters (GFs) to approximate an ideal spectral response. We show that, for the same filter order, IIR GFs provide a better approximation to the desired spectral response and they also present the same level of approximation to a lower order GF due to their rational type filter response. Second, we propose an IIR GNN model to efficiently predict the presence of cyberattacks at the bus level. Finally, we evaluate the model under various cyberattacks at both sample-wise (SW) and bus-wise (BW) level, and compare the results with the existing architectures. It is experimentally verified that the proposed model outperforms the state-of-the-art FIR GNN model by 9.2% and 14% in terms of SW and BW localization, respectively." 840,Learning to learn online with neuromodulated synaptic plasticity in spiking neural networks,"We propose that in order to harness our understanding of neuroscience toward machine learning, we must first have powerful tools for training brain-like models of learning. Although substantial progress has been made toward understanding the dynamics of learning in the brain, neuroscience-derived models of learning have yet to demonstrate the same performance capabilities as methods in deep learning such as gradient descent. Inspired by the successes of machine learning using gradient descent, we demonstrate that models of neuromodulated synaptic plasticity from neuroscience can be trained in Spiking Neural Networks (SNNs) with a framework of learning to learn through gradient descent to address challenging online learning problems. This framework opens a new path toward developing neuroscience inspired online learning algorithms." 841,Domain Generalization with Relaxed Instance Frequency-wise Normalization for Multi-device Acoustic Scene Classification,"While using two-dimensional convolutional neural networks (2D-CNNs) in image processing, it is possible to manipulate domain information using channel statistics, and instance normalization has been a promising way to get domain-invariant features. However, unlike image processing, we analyze that domain-relevant information in an audio feature is dominant in frequency statistics rather than channel statistics. Motivated by our analysis, we introduce Relaxed Instance Frequency-wise Normalization (RFN): a plug-and-play, explicit normalization module along the frequency axis which can eliminate instance-specific domain discrepancy in an audio feature while relaxing undesirable loss of useful discriminative information. Empirically, simply adding RFN to networks shows clear margins compared to previous domain generalization approaches on acoustic scene classification and yields improved robustness for multiple audio devices. Especially, the proposed RFN won the DCASE2021 challenge TASK1A, low-complexity acoustic scene classification with multiple devices, with a clear margin, and RFN is an extended work of our technical report." 842,FetReg2021: A Challenge on Placental Vessel Segmentation and Registration in Fetoscopy,"Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to regulate blood exchange among twins. The procedure is particularly challenging due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation. Computer-assisted intervention (CAI) can provide surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision challenge, we released the first largescale multicentre TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. The challenge provided an opportunity for creating generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-centre fetoscopic data, we provide a benchmark for future research in this field." 843,Black Box Optimization Using QUBO and the Cross Entropy Method,"Black box optimization (BBO) can be used to optimize functions whose analytic form is unknown. A common approach to realize BBO is to learn a surrogate model which approximates the target black box function which can then be solved via white box optimization methods. In this paper we present our approach BOX-QUBO, where the surrogate model is a QUBO matrix. However, unlike in previous state-of-the-art approaches, this matrix is not trained entirely by regression, but mostly by classification between 'good' and 'bad' solutions. This better accounts for the low capacity of the QUBO matrix, resulting in significantly better solutions overall. We tested our approach against the state-of-the-art on four domains and in all of them BOX-QUBO showed significantly better results. A second contribution of this paper is the idea to also solve white box problems, i.e. problems which could be directly formulated as QUBO, by means of black box optimization in order to reduce the size of the QUBOs to their information-theoretic minimum. The experiments show that this significantly improves the results for MAX-$k$-SAT." 844,Multitask vocal burst modeling with ResNets and pre-trained paralinguistic Conformers,"This technical report presents the modeling approaches used in our submission to the ICML Expressive Vocalizations Workshop & Competition multitask track (ExVo-MultiTask). We first applied image classification models of various sizes on mel-spectrogram representations of the vocal bursts, as is standard in sound event detection literature. Results from these models show an increase of 21.24% over the baseline system with respect to the harmonic mean of the task metrics, and comprise our team's main submission to the MultiTask track. We then sought to characterize the headroom in the MultiTask track by applying a large pre-trained Conformer model that previously achieved state-of-the-art results on paralinguistic tasks like speech emotion recognition and mask detection. We additionally investigated the relationship between the sub-tasks of emotional expression, country of origin, and age prediction, and discovered that the best performing models are trained as single-task models, questioning whether the problem truly benefits from a multitask setting." 845,RAPid-Learn: A Framework for Learning to Recover for Handling Novelties in Open-World Environments,"We propose RAPid-Learn: Learning to Recover and Plan Again, a hybrid planning and learning method, to tackle the problem of adapting to sudden and unexpected changes in an agent's environment (i.e., novelties). RAPid-Learn is designed to formulate and solve modifications to a task's Markov Decision Process (MDPs) on-the-fly and is capable of exploiting domain knowledge to learn any new dynamics caused by the environmental changes. It is capable of exploiting the domain knowledge to learn action executors which can be further used to resolve execution impasses, leading to a successful plan execution. This novelty information is reflected in its updated domain model. We demonstrate its efficacy by introducing a wide variety of novelties in a gridworld environment inspired by Minecraft, and compare our algorithm with transfer learning baselines from the literature. Our method is (1) effective even in the presence of multiple novelties, (2) more sample efficient than transfer learning RL baselines, and (3) robust to incomplete model information, as opposed to pure symbolic planning approaches." 846,"Arithmetic Circuits, Structured Matrices and (not so) Deep Learning","This survey presents a necessarily incomplete (and biased) overview of results at the intersection of arithmetic circuit complexity, structured matrices and deep learning. Recently there has been some research activity in replacing unstructured weight matrices in neural networks by structured ones (with the aim of reducing the size of the corresponding deep learning models). Most of this work has been experimental and in this survey, we formalize the research question and show how a recent work that combines arithmetic circuit complexity, structured matrices and deep learning essentially answers this question. This survey is targeted at complexity theorists who might enjoy reading about how tools developed in arithmetic circuit complexity helped design (to the best of our knowledge) a new family of structured matrices, which in turn seem well-suited for applications in deep learning. However, we hope that folks primarily interested in deep learning would also appreciate the connections to complexity theory." 847,Variational Bayesian inference for CP tensor completion with side information,"We propose a message passing algorithm, based on variational Bayesian inference, for low-rank tensor completion with automatic rank determination in the canonical polyadic format when additional side information (SI) is given. The SI comes in the form of low-dimensional subspaces the contain the fiber spans of the tensor (columns, rows, tubes, etc.). We validate the regularization properties induced by SI with extensive numerical experiments on synthetic and real-world data and present the results about tensor recovery and rank determination. The results show that the number of samples required for successful completion is significantly reduced in the presence of SI. We also discuss the origin of a bump in the phase transition curves that exists when the dimensionality of SI is comparable with that of the tensor." 848,A Novel Approach For Analysis of Distributed Acoustic Sensing System Based on Deep Transfer Learning,"Distributed acoustic sensors (DAS) are effective apparatus which are widely used in many application areas for recording signals of various events with very high spatial resolution along the optical fiber. To detect and recognize the recorded events properly, advanced signal processing algorithms with high computational demands are crucial. Convolutional neural networks are highly capable tools for extracting spatial information and very suitable for event recognition applications in DAS. Long-short term memory (LSTM) is an effective instrument for processing sequential data. In this study, we proposed a multi-input multi-output, two stage feature extraction methodology that combines the capabilities of these neural network architectures with transfer learning to classify vibrations applied to an optical fiber by a piezo transducer. First, we extracted the differential amplitude and phase information from the Phase-OTDR recordings and stored them in a temporal-spatial data matrix. Then, we used a state-of-the-art pre-trained CNN without dense layers as a feature extractor in the first stage. In the second stage, we used LSTMs to further analyze the features extracted by the CNN. Finally, we used a dense layer to classify the extracted features. To observe the effect of the utilized CNN architecture, we tested our model with five state-of-the art pre-trained models (VGG-16, ResNet-50, DenseNet-121, MobileNet and Inception-v3). The results show that using the VGG-16 architecture in our framework manages to obtain 100% classification accuracy in 50 trainings and got the best results on our Phase-OTDR dataset. Outcomes of this study indicate that the pre-trained CNNs combined with LSTM are very suitable for the analysis of differential amplitude and phase information, represented in a temporal spatial data matrix which is promising for event recognition operations in DAS applications." 849,Analyzing the Effects of Classifier Lipschitzness on Explainers,"Machine learning methods are getting increasingly better at making predictions, but at the same time they are also becoming more complicated and less transparent. As a result, explainers are often relied on to provide interpretability to these black-box prediction models. As crucial diagnostics tools, it is important that these explainers themselves are reliable. In this paper we focus on one particular aspect of reliability, namely that an explainer should give similar explanations for similar data inputs. We formalize this notion by introducing and defining explainer astuteness, analogous to astuteness of classifiers. Our formalism is inspired by the concept of probabilistic Lipschitzness, which captures the probability of local smoothness of a function. For a variety of explainers (e.g., SHAP, RISE, CXPlain), we provide lower bound guarantees on the astuteness of these explainers given the Lipschitzness of the prediction function. These theoretical results imply that locally smooth prediction functions lend themselves to locally robust explanations. We evaluate these results empirically on simulated as well as real datasets." 850,Risk-averse Contextual Multi-armed Bandit Problem with Linear Payoffs,"In this paper we consider the contextual multi-armed bandit problem for linear payoffs under a risk-averse criterion. At each round, contexts are revealed for each arm, and the decision maker chooses one arm to pull and receives the corresponding reward. In particular, we consider mean-variance as the risk criterion, and the best arm is the one with the largest mean-variance reward. We apply the Thompson Sampling algorithm for the disjoint model, and provide a comprehensive regret analysis for a variant of the proposed algorithm. For $T$ rounds, $K$ actions, and $d$-dimensional feature vectors, we prove a regret bound of $O((1+\rho+\frac{1}{\rho}) d\ln T \ln \frac{K}{\delta}\sqrt{d K T^{1+2\epsilon} \ln \frac{K}{\delta} \frac{1}{\epsilon}})$ that holds with probability $1-\delta$ under the mean-variance criterion with risk tolerance $\rho$, for any $0<\epsilon<\frac{1}{2}$, $0<\delta<1$. The empirical performance of our proposed algorithms is demonstrated via a portfolio selection problem." 851,Vibration fault detection in wind turbines based on normal behaviour models without feature engineering,"Most wind turbines are remotely monitored 24/7 to allow for an early detection of operation problems and developing damage. We present a new fault detection method for vibration-monitored drivetrains that does not require any feature engineering. Our method relies on a simple model architecture to enable a straightforward implementation in practice. We propose to apply convolutional autoencoders for identifying and extracting the most relevant features from the half spectrum in an automated manner, saving time and effort. Thereby, a spectral model of the normal vibration response is learnt for the monitored component from past measurements. We demonstrate that the model can successfully distinguish damaged from healthy components and detect a damaged generator bearing and damaged gearbox parts from their vibration responses. Using measurements from commercial wind turbines and a test rig, we show that vibration-based fault detection in wind turbine drivetrains can be performed without the usual upfront definition of spectral features. Another advantage of the presented method is that the entire half spectrum is monitored instead of the usual focus on monitoring individual frequencies and harmonics." 852,Value Function Decomposition for Iterative Design of Reinforcement Learning Agents,"Designing reinforcement learning (RL) agents is typically a difficult process that requires numerous design iterations. Learning can fail for a multitude of reasons, and standard RL methods provide too few tools to provide insight into the exact cause. In this paper, we show how to integrate value decomposition into a broad class of actor-critic algorithms and use it to assist in the iterative agent-design process. Value decomposition separates a reward function into distinct components and learns value estimates for each. These value estimates provide insight into an agent's learning and decision-making process and enable new training methods to mitigate common problems. As a demonstration, we introduce SAC-D, a variant of soft actor-critic (SAC) adapted for value decomposition. SAC-D maintains similar performance to SAC, while learning a larger set of value predictions. We also introduce decomposition-based tools that exploit this information, including a new reward influence metric, which measures each reward component's effect on agent decision-making. Using these tools, we provide several demonstrations of decomposition's use in identifying and addressing problems in the design of both environments and agents. Value decomposition is broadly applicable and easy to incorporate into existing algorithms and workflows, making it a powerful tool in an RL practitioner's toolbox." 853,Gated Domain Units for Multi-source Domain Generalization,"Distribution shift (DS) is a common problem that deteriorates the performance of learning machines. To overcome this problem, we postulate that real-world distributions are composed of elementary distributions that remain invariant across different domains. We call this an invariant elementary distribution (I.E.D.) assumption. This invariance thus enables knowledge transfer to unseen domains. To exploit this assumption in domain generalization (DG), we developed a modular neural network layer that consists of Gated Domain Units (GDUs). Each GDU learns an embedding of an individual elementary domain that allows us to encode the domain similarities during the training. During inference, the GDUs compute similarities between an observation and each of the corresponding elementary distributions which are then used to form a weighted ensemble of learning machines. Because our layer is trained with backpropagation, it can be easily integrated into existing deep learning frameworks. Our evaluation on Digits5, ECG, Camelyon17, iWildCam, and FMoW shows a significant improvement in the performance on out-of-training target domains without any access to data from the target domains. This finding supports the validity of the I.E.D. assumption in real-world data distributions." 854,Joint Representation Training in Sequential Tasks with Shared Structure,"Classical theory in reinforcement learning (RL) predominantly focuses on the single task setting, where an agent learns to solve a task through trial-and-error experience, given access to data only from that task. However, many recent empirical works have demonstrated the significant practical benefits of leveraging a joint representation trained across multiple, related tasks. In this work we theoretically analyze such a setting, formalizing the concept of task relatedness as a shared state-action representation that admits linear dynamics in all the tasks. We introduce the Shared-MatrixRL algorithm for the setting of Multitask MatrixRL. In the presence of $P$ episodic tasks of dimension $d$ sharing a joint $r \ll d$ low-dimensional representation, we show the regret on the the $P$ tasks can be improved from $O(PHd\sqrt{NH})$ to $O((Hd\sqrt{rP} + HP\sqrt{rd})\sqrt{NH})$ over $N$ episodes of horizon $H$. These gains coincide with those observed in other linear models in contextual bandits and RL. In contrast with previous work that have studied multi task RL in other function approximation models, we show that in the presence of bilinear optimization oracle and finite state action spaces there exists a computationally efficient algorithm for multitask MatrixRL via a reduction to quadratic programming. We also develop a simple technique to shave off a $\sqrt{H}$ factor from the regret upper bounds of some episodic linear problems." 855,ZSON: Zero-Shot Object-Goal Navigation using Multimodal Goal Embeddings,"We present a scalable approach for learning open-world object-goal navigation (ObjectNav) -- the task of asking a virtual robot (agent) to find any instance of an object in an unexplored environment (e.g., ""find a sink""). Our approach is entirely zero-shot -- i.e., it does not require ObjectNav rewards or demonstrations of any kind. Instead, we train on the image-goal navigation (ImageNav) task, in which agents find the location where a picture (i.e., goal image) was captured. Specifically, we encode goal images into a multimodal, semantic embedding space to enable training semantic-goal navigation (SemanticNav) agents at scale in unannotated 3D environments (e.g., HM3D). After training, SemanticNav agents can be instructed to find objects described in free-form natural language (e.g., ""sink"", ""bathroom sink"", etc.) by projecting language goals into the same multimodal, semantic embedding space. As a result, our approach enables open-world ObjectNav. We extensively evaluate our agents on three ObjectNav datasets (Gibson, HM3D, and MP3D) and observe absolute improvements in success of 4.2% - 20.0% over existing zero-shot methods. For reference, these gains are similar or better than the 5% improvement in success between the Habitat 2020 and 2021 ObjectNav challenge winners. In an open-world setting, we discover that our agents can generalize to compound instructions with a room explicitly mentioned (e.g., ""Find a kitchen sink"") and when the target room can be inferred (e.g., ""Find a sink and a stove"")." 856,Predicting the Stability of Hierarchical Triple Systems with Convolutional Neural Networks,"Understanding the long-term evolution of hierarchical triple systems is challenging due to its inherent chaotic nature, and it requires computationally expensive simulations. Here we propose a convolutional neural network model to predict the stability of hierarchical triples by looking at their evolution during the first $5 \times 10^5$ inner binary orbits. We employ the regularized few-body code \textsc{tsunami} to simulate $5\times 10^6$ hierarchical triples, from which we generate a large training and test dataset. We develop twelve different network configurations that use different combinations of the triples' orbital elements and compare their performances. Our best model uses 6 time-series, namely, the semimajor axes ratio, the inner and outer eccentricities, the mutual inclination and the arguments of pericenter. This model achieves an area under the curve of over $95\%$ and informs of the relevant parameters to study triple systems stability. All trained models are made publicly available, allowing to predict the stability of hierarchical triple systems $200$ times faster than pure $N$-body methods." 857,Debiasing Learning for Membership Inference Attacks Against Recommender Systems,"Learned recommender systems may inadvertently leak information about their training data, leading to privacy violations. We investigate privacy threats faced by recommender systems through the lens of membership inference. In such attacks, an adversary aims to infer whether a user's data is used to train the target recommender. To achieve this, previous work has used a shadow recommender to derive training data for the attack model, and then predicts the membership by calculating difference vectors between users' historical interactions and recommended items. State-of-the-art methods face two challenging problems: (1) training data for the attack model is biased due to the gap between shadow and target recommenders, and (2) hidden states in recommenders are not observational, resulting in inaccurate estimations of difference vectors. To address the above limitations, we propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components: (1) a difference vector generator, (2) a disentangled encoder, (3) a weight estimator, and (4) an attack model. To mitigate the gap between recommenders, a variational auto-encoder (VAE) based disentangled encoder is devised to identify recommender invariant and specific features. To reduce the estimation bias, we design a weight estimator, assigning a truth-level score for each difference vector to indicate estimation accuracy. We evaluate DL-MIA against both general recommenders and sequential recommenders on three real-world datasets. Experimental results show that DL-MIA effectively alleviates training and estimation biases simultaneously, and achieves state-of-the-art attack performance." 858,Data Leakage in Federated Averaging,"Recent attacks have shown that user data can be recovered from FedSGD updates, thus breaking privacy. However, these attacks are of limited practical relevance as federated learning typically uses the FedAvg algorithm. Compared to FedSGD, recovering data from FedAvg updates is much harder as: (i) the updates are computed at unobserved intermediate network weights, (ii) a large number of batches are used, and (iii) labels and network weights vary simultaneously across client steps. In this work, we propose a new optimization-based attack which successfully attacks FedAvg by addressing the above challenges. First, we solve the optimization problem using automatic differentiation that forces a simulation of the client's update that generates the unobserved parameters for the recovered labels and inputs to match the received client update. Second, we address the large number of batches by relating images from different epochs with a permutation invariant prior. Third, we recover the labels by estimating the parameters of existing FedSGD attacks at every FedAvg step. On the popular FEMNIST dataset, we demonstrate that on average we successfully recover >45% of the client's images from realistic FedAvg updates computed on 10 local epochs of 10 batches each with 5 images, compared to only <10% using the baseline. Our findings show many real-world federated learning implementations based on FedAvg are vulnerable." 859,On Certifying and Improving Generalization to Unseen Domains,"Domain Generalization (DG) aims to learn models whose performance remains high on unseen domains encountered at test-time by using data from multiple related source domains. Many existing DG algorithms reduce the divergence between source distributions in a representation space to potentially align the unseen domain close to the sources. This is motivated by the analysis that explains generalization to unseen domains using distributional distance (such as the Wasserstein distance) to the sources. However, due to the openness of the DG objective, it is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets. In particular, we demonstrate that the accuracy of the models trained with DG methods varies significantly across unseen domains, generated from popular benchmark datasets. This highlights that the performance of DG methods on a few benchmark datasets may not be representative of their performance on unseen domains in the wild. To overcome this roadblock, we propose a universal certification framework based on distributionally robust optimization (DRO) that can efficiently certify the worst-case performance of any DG method. This enables a data-independent evaluation of a DG method complementary to the empirical evaluations on benchmark datasets. Furthermore, we propose a training algorithm that can be used with any DG method to provably improve their certified performance. Our empirical evaluation demonstrates the effectiveness of our method at significantly improving the worst-case loss (i.e., reducing the risk of failure of these models in the wild) without incurring a significant performance drop on benchmark datasets." 860,From Tensor Network Quantum States to Tensorial Recurrent Neural Networks,"We show that any matrix product state (MPS) can be exactly represented by a recurrent neural network (RNN) with a linear memory update. We generalize this RNN architecture to 2D lattices using a multilinear memory update. It supports perfect sampling and wave function evaluation in polynomial time, and can represent an area law of entanglement entropy. Numerical evidence shows that it can encode the wave function using a bond dimension lower by orders of magnitude when compared to MPS, with an accuracy that can be systematically improved by increasing the bond dimension." 861,Out of distribution robustness with pre-trained Bayesian neural networks,"We develop ShiftMatch, a new training-data-dependent likelihood for out of distribution (OOD) robustness in Bayesian neural networks (BNNs). ShiftMatch is inspired by the training-data-dependent ""EmpCov"" priors from Izmailov et al. (2021a) and efficiently matches test-time spatial correlations to those at training time. Critically, ShiftMatch is designed to leave neural network training unchanged, allowing it to use publically available samples from pretrained BNNs. Using pre-trained HMC samples, ShiftMatch gives strong performance improvements on CIFAR-10-C, outperforms EmpCov priors, and is perhaps the first Bayesian method capable of convincingly outperforming plain deep ensembles. ShiftMatch can be integrated with non-Bayesian methods like deep ensembles, where it offers smaller, but still considerable, performance improvements. Overall, Bayesian ShiftMatch gave slightly better accuracy than ensembles with ShiftMatch, though they both had very similar log-likelihoods." 862,Quantifying Inherent Randomness in Machine Learning Algorithms,"Most machine learning (ML) algorithms have several stochastic elements, and their performances are affected by these sources of randomness. This paper uses an empirical study to systematically examine the effects of two sources: randomness in model training and randomness in the partitioning of a dataset into training and test subsets. We quantify and compare the magnitude of the variation in predictive performance for the following ML algorithms: Random Forests (RFs), Gradient Boosting Machines (GBMs), and Feedforward Neural Networks (FFNNs). Among the different algorithms, randomness in model training causes larger variation for FFNNs compared to tree-based methods. This is to be expected as FFNNs have more stochastic elements that are part of their model initialization and training. We also found that random splitting of datasets leads to higher variation compared to the inherent randomness from model training. The variation from data splitting can be a major issue if the original dataset has considerable heterogeneity. Keywords: Model Training, Reproducibility, Variation" 863,Megapixel Image Generation with Step-Unrolled Denoising Autoencoders,"An ongoing trend in generative modelling research has been to push sample resolutions higher whilst simultaneously reducing computational requirements for training and sampling. We aim to push this trend further via the combination of techniques - each component representing the current pinnacle of efficiency in their respective areas. These include vector-quantized GAN (VQ-GAN), a vector-quantization (VQ) model capable of high levels of lossy - but perceptually insignificant - compression; hourglass transformers, a highly scaleable self-attention model; and step-unrolled denoising autoencoders (SUNDAE), a non-autoregressive (NAR) text generative model. Unexpectedly, our method highlights weaknesses in the original formulation of hourglass transformers when applied to multidimensional data. In light of this, we propose modifications to the resampling mechanism, applicable in any task applying hierarchical transformers to multidimensional data. Additionally, we demonstrate the scalability of SUNDAE to long sequence lengths - four times longer than prior work. Our proposed framework scales to high-resolutions ($1024 \times 1024$) and trains quickly (2-4 days). Crucially, the trained model produces diverse and realistic megapixel samples in approximately 2 seconds on a consumer-grade GPU (GTX 1080Ti). In general, the framework is flexible: supporting an arbitrary number of sampling steps, sample-wise self-stopping, self-correction capabilities, conditional generation, and a NAR formulation that allows for arbitrary inpainting masks. We obtain FID scores of 10.56 on FFHQ256 - close to the original VQ-GAN in less than half the sampling steps - and 21.85 on FFHQ1024 in only 100 sampling steps." 864,Segmentation-free PVC for Cardiac SPECT using a Densely-connected Multi-dimensional Dynamic Network,"In nuclear imaging, limited resolution causes partial volume effects (PVEs) that affect image sharpness and quantitative accuracy. Partial volume correction (PVC) methods incorporating high-resolution anatomical information from CT or MRI have been demonstrated to be effective. However, such anatomical-guided methods typically require tedious image registration and segmentation steps. Accurately segmented organ templates are also hard to obtain, particularly in cardiac SPECT imaging, due to the lack of hybrid SPECT/CT scanners with high-end CT and associated motion artifacts. Slight mis-registration/mis-segmentation would result in severe degradation in image quality after PVC. In this work, we develop a deep-learning-based method for fast cardiac SPECT PVC without anatomical information and associated organ segmentation. The proposed network involves a densely-connected multi-dimensional dynamic mechanism, allowing the convolutional kernels to be adapted based on the input images, even after the network is fully trained. Intramyocardial blood volume (IMBV) is introduced as an additional clinical-relevant loss function for network optimization. The proposed network demonstrated promising performance on 28 canine studies acquired on a GE Discovery NM/CT 570c dedicated cardiac SPECT scanner with a 64-slice CT using Technetium-99m-labeled red blood cells. This work showed that the proposed network with densely-connected dynamic mechanism produced superior results compared with the same network without such mechanism. Results also showed that the proposed network without anatomical information could produce images with statistically comparable IMBV measurements to the images generated by anatomical-guided PVC methods, which could be helpful in clinical translation." 865,HANF: Hyperparameter And Neural Architecture Search in Federated Learning,"Automated machine learning (AutoML) is an important step to make machine learning models being widely applied to solve real world problems. Despite numerous research advancement, machine learning methods are not fully utilized by industries mainly due to their data privacy and security regulations, high cost involved in storing and computing increasing amount of data at central location and most importantly lack of expertise. Hence, we introduce a novel framework, HANF - $\textbf{H}$yperparameter $\textbf{A}$nd $\textbf{N}$eural architecture search in $\textbf{F}$ederated learning as a step towards building an AutoML framework for data distributed across several data owner servers without any need for bringing the data to a central location. HANF jointly optimizes a neural architecture and non-architectural hyperparameters of a learning algorithm using gradient-based neural architecture search and $n$-armed bandit approach respectively in data distributed setting. We show that HANF efficiently finds the optimized neural architecture and also tunes the hyperparameters on data owner servers. Additionally, HANF can be applied in both, federated and non-federated settings. Empirically, we show that HANF converges towards well-suited architectures and non-architectural hyperparameter-sets using image-classification tasks." 866,Achievement and Fragility of Long-term Equitability,"Equipping current decision-making tools with notions of fairness, equitability, or other ethically motivated outcomes, is one of the top priorities in recent research efforts in machine learning, AI, and optimization. In this paper, we investigate how to allocate limited resources to {locally interacting} communities in a way to maximize a pertinent notion of equitability. In particular, we look at the dynamic setting where the allocation is repeated across multiple periods (e.g., yearly), the local communities evolve in the meantime (driven by the provided allocation), and the allocations are modulated by feedback coming from the communities themselves. We employ recent mathematical tools stemming from data-driven feedback online optimization, by which communities can learn their (possibly unknown) evolution, satisfaction, as well as they can share information with the deciding bodies. We design dynamic policies that converge to an allocation that maximize equitability in the long term. We further demonstrate our model and methodology with realistic examples of healthcare and education subsidies design in Sub-Saharian countries. One of the key empirical takeaways from our setting is that long-term equitability is fragile, in the sense that it can be easily lost when deciding bodies weigh in other factors (e.g., equality in allocation) in the allocation strategy. Moreover, a naive compromise, while not providing significant advantage to the communities, can promote inequality in social outcomes." 867,Source Localization of Graph Diffusion via Variational Autoencoders for Graph Inverse Problems,"Graph diffusion problems such as the propagation of rumors, computer viruses, or smart grid failures are ubiquitous and societal. Hence it is usually crucial to identify diffusion sources according to the current graph diffusion observations. Despite its tremendous necessity and significance in practice, source localization, as the inverse problem of graph diffusion, is extremely challenging as it is ill-posed: different sources may lead to the same graph diffusion patterns. Different from most traditional source localization methods, this paper focuses on a probabilistic manner to account for the uncertainty of different candidate sources. Such endeavors require overcoming challenges including 1) the uncertainty in graph diffusion source localization is hard to be quantified; 2) the complex patterns of the graph diffusion sources are difficult to be probabilistically characterized; 3) the generalization under any underlying diffusion patterns is hard to be imposed. To solve the above challenges, this paper presents a generic framework: Source Localization Variational AutoEncoder (SL-VAE) for locating the diffusion sources under arbitrary diffusion patterns. Particularly, we propose a probabilistic model that leverages the forward diffusion estimation model along with deep generative models to approximate the diffusion source distribution for quantifying the uncertainty. SL-VAE further utilizes prior knowledge of the source-observation pairs to characterize the complex patterns of diffusion sources by a learned generative prior. Lastly, a unified objective that integrates the forward diffusion estimation model is derived to enforce the model to generalize under arbitrary diffusion patterns. Extensive experiments are conducted on 7 real-world datasets to demonstrate the superiority of SL-VAE in reconstructing the diffusion sources by excelling other methods on average 20% in AUC score." 868,ModLaNets: Learning Generalisable Dynamics via Modularity and Physical Inductive Bias,"Deep learning models are able to approximate one specific dynamical system but struggle at learning generalisable dynamics, where dynamical systems obey the same laws of physics but contain different numbers of elements (e.g., double- and triple-pendulum systems). To relieve this issue, we proposed the Modular Lagrangian Network (ModLaNet), a structural neural network framework with modularity and physical inductive bias. This framework models the energy of each element using modularity and then construct the target dynamical system via Lagrangian mechanics. Modularity is beneficial for reusing trained networks and reducing the scale of networks and datasets. As a result, our framework can learn from the dynamics of simpler systems and extend to more complex ones, which is not feasible using other relevant physics-informed neural networks. We examine our framework for modelling double-pendulum or three-body systems with small training datasets, where our models achieve the best data efficiency and accuracy performance compared with counterparts. We also reorganise our models as extensions to model multi-pendulum and multi-body systems, demonstrating the intriguing reusable feature of our framework." 869,On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods,"Machine Learning (ML) models now inform a wide range of human decisions, but using ``black box'' models carries risks such as relying on spurious correlations or errant data. To address this, researchers have proposed methods for supplementing models with explanations of their predictions. However, robust evaluations of these methods' usefulness in real-world contexts have remained elusive, with experiments tending to rely on simplified settings or proxy tasks. We present an experimental study extending a prior explainable ML evaluation experiment and bringing the setup closer to the deployment setting by relaxing its simplifying assumptions. Our empirical study draws dramatically different conclusions than the prior work, highlighting how seemingly trivial experimental design choices can yield misleading results. Beyond the present experiment, we believe this work holds lessons about the necessity of situating the evaluation of any ML method and choosing appropriate tasks, data, users, and metrics to match the intended deployment contexts." 870,How to train accurate BNNs for embedded systems?,"A key enabler of deploying convolutional neural networks on resource-constrained embedded systems is the binary neural network (BNN). BNNs save on memory and simplify computation by binarizing both features and weights. Unfortunately, binarization is inevitably accompanied by a severe decrease in accuracy. To reduce the accuracy gap between binary and full-precision networks, many repair methods have been proposed in the recent past, which we have classified and put into a single overview in this chapter. The repair methods are divided into two main branches, training techniques and network topology changes, which can further be split into smaller categories. The latter category introduces additional cost (energy consumption or additional area) for an embedded system, while the former does not. From our overview, we observe that progress has been made in reducing the accuracy gap, but BNN papers are not aligned on what repair methods should be used to get highly accurate BNNs. Therefore, this chapter contains an empirical review that evaluates the benefits of many repair methods in isolation over the ResNet-20\&CIFAR10 and ResNet-18\&CIFAR100 benchmarks. We found three repair categories most beneficial: feature binarizer, feature normalization, and double residual. Based on this review we discuss future directions and research opportunities. We sketch the benefit and costs associated with BNNs on embedded systems because it remains to be seen whether BNNs will be able to close the accuracy gap while staying highly energy-efficient on resource-constrained embedded systems." 871,DeepAL for Regression Using $ε$-weighted Hybrid Query Strategy,"Designing an inexpensive approximate surrogate model that captures the salient features of an expensive high-fidelity behavior is a prevalent approach in design optimization. In recent times, Deep Learning (DL) models are being used as a promising surrogate computational model for engineering problems. However, the main challenge in creating a DL-based surrogate is to simulate/label a large number of design points, which is time-consuming for computationally costly and/or high-dimensional engineering problems. In the present work, we propose a novel sampling technique by combining the active learning (AL) method with DL. We call this method $\epsilon$-weighted hybrid query strategy ($\epsilon$-HQS) , which focuses on the evaluation of the surrogate at each learning iteration and provides an estimate of the failure probability of the surrogate in the Design Space. By reusing already collected training and test data, the learned failure probability guides the next iteration's sampling process to the region of the high probability of failure. During the empirical evaluation, better accuracy of the surrogate was observed in comparison to other methods of sample selection. We empirically evaluated this method in two different engineering design domains, finite element based static stress analysis of submarine pressure vessel(computationally costly process) and second submarine propeller design( high dimensional problem). https://github.com/vardhah/epsilon_weighted_Hybrid_Query_Strategy" 872,Learning sparse features can lead to overfitting in neural networks,"It is widely believed that the success of deep networks lies in their ability to learn a meaningful representation of the features of the data. Yet, understanding when and how this feature learning improves performance remains a challenge: for example, it is beneficial for modern architectures trained to classify images, whereas it is detrimental for fully-connected networks trained for the same task on the same data. Here we propose an explanation for this puzzle, by showing that feature learning can perform worse than lazy training (via random feature kernel or the NTK) as the former can lead to a sparser neural representation. Although sparsity is known to be essential for learning anisotropic data, it is detrimental when the target function is constant or smooth along certain directions of input space. We illustrate this phenomenon in two settings: (i) regression of Gaussian random functions on the d-dimensional unit sphere and (ii) classification of benchmark datasets of images. For (i), we compute the scaling of the generalization error with number of training points, and show that methods that do not learn features generalize better, even when the dimension of the input space is large. For (ii), we show empirically that learning features can indeed lead to sparse and thereby less smooth representations of the image predictors. This fact is plausibly responsible for deteriorating the performance, which is known to be correlated with smoothness along diffeomorphisms." 873,Bugs in Machine Learning-based Systems: A Faultload Benchmark,"The rapid escalation of applying Machine Learning (ML) in various domains has led to paying more attention to the quality of ML components. There is then a growth of techniques and tools aiming at improving the quality of ML components and integrating them into the ML-based system safely. Although most of these tools use bugs' lifecycle, there is no standard benchmark of bugs to assess their performance, compare them and discuss their advantages and weaknesses. In this study, we firstly investigate the reproducibility and verifiability of the bugs in ML-based systems and show the most important factors in each one. Then, we explore the challenges of generating a benchmark of bugs in ML-based software systems and provide a bug benchmark namely defect4ML that satisfies all criteria of standard benchmark, i.e. relevance, reproducibility, fairness, verifiability, and usability. This faultload benchmark contains 113 bugs reported by ML developers on GitHub and Stack Overflow, using two of the most popular ML frameworks: TensorFlow and Keras. defect4ML also addresses important challenges in Software Reliability Engineering of ML-based software systems, like: 1) fast changes in frameworks, by providing various bugs for different versions of frameworks, 2) code portability, by delivering similar bugs in different ML frameworks, 3) bug reproducibility, by providing fully reproducible bugs with complete information about required dependencies and data, and 4) lack of detailed information on bugs, by presenting links to the bugs' origins. defect4ML can be of interest to ML-based systems practitioners and researchers to assess their testing tools and techniques." 874,Analyzing the impact of SARS-CoV-2 variants on respiratory sound signals,"The COVID-19 outbreak resulted in multiple waves of infections that have been associated with different SARS-CoV-2 variants. Studies have reported differential impact of the variants on respiratory health of patients. We explore whether acoustic signals, collected from COVID-19 subjects, show computationally distinguishable acoustic patterns suggesting a possibility to predict the underlying virus variant. We analyze the Coswara dataset which is collected from three subject pools, namely, i) healthy, ii) COVID-19 subjects recorded during the delta variant dominant period, and iii) data from COVID-19 subjects recorded during the omicron surge. Our findings suggest that multiple sound categories, such as cough, breathing, and speech, indicate significant acoustic feature differences when comparing COVID-19 subjects with omicron and delta variants. The classification areas-under-the-curve are significantly above chance for differentiating subjects infected by omicron from those infected by delta. Using a score fusion from multiple sound categories, we obtained an area-under-the-curve of 89% and 52.4% sensitivity at 95% specificity. Additionally, a hierarchical three class approach was used to classify the acoustic data into healthy and COVID-19 positive, and further COVID-19 subjects into delta and omicron variants providing high level of 3-class classification accuracy. These results suggest new ways for designing sound based COVID-19 diagnosis approaches." 875,PSP: Million-level Protein Sequence Dataset for Protein Structure Prediction,"Proteins are essential component of human life and their structures are important for function and mechanism analysis. Recent work has shown the potential of AI-driven methods for protein structure prediction. However, the development of new models is restricted by the lack of dataset and benchmark training procedure. To the best of our knowledge, the existing open source datasets are far less to satisfy the needs of modern protein sequence-structure related research. To solve this problem, we present the first million-level protein structure prediction dataset with high coverage and diversity, named as PSP. This dataset consists of 570k true structure sequences (10TB) and 745k complementary distillation sequences (15TB). We provide in addition the benchmark training procedure for SOTA protein structure prediction model on this dataset. We validate the utility of this dataset for training by participating CAMEO contest in which our model won the first place. We hope our PSP dataset together with the training benchmark can enable a broader community of AI/biology researchers for AI-driven protein related research." 876,Iterative Sound Source Localization for Unknown Number of Sources,"Sound source localization aims to seek the direction of arrival (DOA) of all sound sources from the observed multi-channel audio. For the practical problem of unknown number of sources, existing localization algorithms attempt to predict a likelihood-based coding (i.e., spatial spectrum) and employ a pre-determined threshold to detect the source number and corresponding DOA value. However, these threshold-based algorithms are not stable since they are limited by the careful choice of threshold. To address this problem, we propose an iterative sound source localization approach called ISSL, which can iteratively extract each source's DOA without threshold until the termination criterion is met. Unlike threshold-based algorithms, ISSL designs an active source detector network based on binary classifier to accept residual spatial spectrum and decide whether to stop the iteration. By doing so, our ISSL can deal with an arbitrary number of sources, even more than the number of sources seen during the training stage. The experimental results show that our ISSL achieves significant performance improvements in both DOA estimation and source number detection compared with the existing threshold-based algorithms." 877,Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes,"This paper proposes a physically consistent Gaussian Process (GP) enabling the identification of uncertain Lagrangian systems. The function space is tailored according to the energy components of the Lagrangian and the differential equation structure, analytically guaranteeing physical and mathematical properties such as energy conservation and quadratic form. The novel formulation of Cholesky decomposed matrix kernels allow the probabilistic preservation of positive definiteness. Only differential input-to-output measurements of the function map are required while Gaussian noise is permitted in torques, velocities, and accelerations. We demonstrate the effectiveness of the approach in numerical simulation." 878,Using Autoencoders on Differentially Private Federated Learning GANs,"Machine learning has been applied to almost all fields of computer science over the past decades. The introduction of GANs allowed for new possibilities in fields of medical research and text prediction. However, these new fields work with ever more privacy-sensitive data. In order to maintain user privacy, a combination of federated learning, differential privacy and GANs can be used to work with private data without giving away a users' privacy. Recently, two implementations of such combinations have been published: DP-Fed-Avg GAN and GS-WGAN. This paper compares their performance and introduces an alternative version of DP-Fed-Avg GAN that makes use of denoising techniques to combat the loss in accuracy that generally occurs when applying differential privacy and federated learning to GANs. We also compare the novel adaptation of denoised DP-Fed-Avg GAN to the state-of-the-art implementations in this field." 879,"Data-driven reduced order models using invariant foliations, manifolds and autoencoders","This paper explores the question: how to identify a reduced order model from data. There are three ways to relate data to a model: invariant foliations, invariant manifolds and autoencoders. Invariant manifolds cannot be fitted to data unless a hardware in a loop system is used. Autoencoders only identify the portion of the phase space where the data is, which is not necessarily an invariant manifold. Therefore for off-line data the only option is an invariant foliation. We note that Koopman eigenfunctions also define invariant foliations, but they are limited by the assumption of linearity and resulting singularites. Finding an invariant foliation requires approximating high-dimensional functions. We propose two solutions. If an accurate reduced order model is sought, a sparse polynomial approximation is used, with polynomial coefficients that are sparse hierarchical tensors. If an invariant manifold is sought, as a leaf of a foliation, the required high-dimensional function can be approximated by a low-dimensional polynomial. The two methods can be combined to find an accurate reduced order model and an invariant manifold. We also analyse the reduced order model in case of a focus type equilibrium, typical in mechanical systems. We note that the nonlinear coordinate system defined by the invariant foliation and the invariant manifold distorts instantaneous frequencies and damping ratios, which we correct. Through examples we illustrate the calculation of invariant foliations and manifolds, and at the same time show that Koopman eigenfunctions and autoencoders fail to capture accurate reduced order models under the same conditions." 880,Reinforcement learning based adaptive metaheuristics,"Parameter adaptation, that is the capability to automatically adjust an algorithm's hyperparameters depending on the problem being faced, is one of the main trends in evolutionary computation applied to numerical optimization. While several handcrafted adaptation policies have been proposed over the years to address this problem, only few attempts have been done so far at applying machine learning to learn such policies. Here, we introduce a general-purpose framework for performing parameter adaptation in continuous-domain metaheuristics based on state-of-the-art reinforcement learning algorithms. We demonstrate the applicability of this framework on two algorithms, namely Covariance Matrix Adaptation Evolution Strategies (CMA-ES) and Differential Evolution (DE), for which we learn, respectively, adaptation policies for the step-size (for CMA-ES), and the scale factor and crossover rate (for DE). We train these policies on a set of 46 benchmark functions at different dimensionalities, with various inputs to the policies, in two settings: one policy per function, and one global policy for all functions. Compared, respectively, to the Cumulative Step-size Adaptation (CSA) policy and to two well-known adaptive DE variants (iDE and jDE), our policies are able to produce competitive results in the majority of cases, especially in the case of DE." 881,Adversarial Robustness of Deep Neural Networks: A Survey from a Formal Verification Perspective,"Neural networks have been widely applied in security applications such as spam and phishing detection, intrusion prevention, and malware detection. This black-box method, however, often has uncertainty and poor explainability in applications. Furthermore, neural networks themselves are often vulnerable to adversarial attacks. For those reasons, there is a high demand for trustworthy and rigorous methods to verify the robustness of neural network models. Adversarial robustness, which concerns the reliability of a neural network when dealing with maliciously manipulated inputs, is one of the hottest topics in security and machine learning. In this work, we survey existing literature in adversarial robustness verification for neural networks and collect 39 diversified research works across machine learning, security, and software engineering domains. We systematically analyze their approaches, including how robustness is formulated, what verification techniques are used, and the strengths and limitations of each technique. We provide a taxonomy from a formal verification perspective for a comprehensive understanding of this topic. We classify the existing techniques based on property specification, problem reduction, and reasoning strategies. We also demonstrate representative techniques that have been applied in existing studies with a sample model. Finally, we discuss open questions for future research." 882,MPClan: Protocol Suite for Privacy-Conscious Computations,"The growing volumes of data being collected and its analysis to provide better services are creating worries about digital privacy. To address privacy concerns and give practical solutions, the literature has relied on secure multiparty computation. However, recent research has mostly focused on the small-party honest-majority setting of up to four parties, noting efficiency concerns. In this work, we extend the strategies to support a larger number of participants in an honest-majority setting with efficiency at the center stage. Cast in the preprocessing paradigm, our semi-honest protocol improves the online complexity of the decade-old state-of-the-art protocol of Damg\aa rd and Nielson (CRYPTO'07). In addition to having an improved online communication cost, we can shut down almost half of the parties in the online phase, thereby saving up to 50% in the system's operational costs. Our maliciously secure protocol also enjoys similar benefits and requires only half of the parties, except for one-time verification, towards the end. To showcase the practicality of the designed protocols, we benchmark popular applications such as deep neural networks, graph neural networks, genome sequence matching, and biometric matching using prototype implementations. Our improved protocols aid in bringing up to 60-80% savings in monetary cost over prior work." 883,Computational Complexity Evaluation of Neural Network Applications in Signal Processing,"In this paper, we provide a systematic approach for assessing and comparing the computational complexity of neural network layers in digital signal processing. We provide and link four software-to-hardware complexity measures, defining how the different complexity metrics relate to the layers' hyper-parameters. This paper explains how to compute these four metrics for feed-forward and recurrent layers, and defines in which case we ought to use a particular metric depending on whether we characterize a more soft- or hardware-oriented application. One of the four metrics, called `the number of additions and bit shifts (NABS)', is newly introduced for heterogeneous quantization. NABS characterizes the impact of not only the bitwidth used in the operation but also the type of quantization used in the arithmetical operations. We intend this work to serve as a baseline for the different levels (purposes) of complexity estimation related to the neural networks' application in real-time digital signal processing, aiming at unifying the computational complexity estimation." 884,SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting,"Sequence clustering in a streaming environment is challenging because it is computationally expensive, and the sequences may evolve over time. K-medoids or Partitioning Around Medoids (PAM) is commonly used to cluster sequences since it supports alignment-based distances, and the k-centers being actual data items helps with cluster interpretability. However, offline k-medoids has no support for concept drift, while also being prohibitively expensive for clustering data streams. We therefore propose SECLEDS, a streaming variant of the k-medoids algorithm with constant memory footprint. SECLEDS has two unique properties: i) it uses multiple medoids per cluster, producing stable high-quality clusters, and ii) it handles concept drift using an intuitive Medoid Voting scheme for approximating cluster distances. Unlike existing adaptive algorithms that create new clusters for new concepts, SECLEDS follows a fundamentally different approach, where the clusters themselves evolve with an evolving stream. Using real and synthetic datasets, we empirically demonstrate that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimensionality, and number of clusters. We compare against three popular stream and batch clustering algorithms. The state-of-the-art BanditPAM is used as an offline benchmark. SECLEDS achieves comparable F1 score to BanditPAM while reducing the number of required distance computations by 83.7%. Importantly, SECLEDS outperforms all baselines by 138.7% when the stream contains drift. We also cluster real network traffic, and provide evidence that SECLEDS can support network bandwidths of up to 1.08 Gbps while using the (expensive) dynamic time warping distance." 885,Dynamic network congestion pricing based on deep reinforcement learning,"Traffic congestion is a serious problem in urban areas. Dynamic congestion pricing is one of the useful schemes to eliminate traffic congestion in strategic scale. However, in the reality, an optimal dynamic congestion pricing is very difficult or impossible to determine theoretically, because road networks are usually large and complicated, and behavior of road users is uncertain. To account for this challenge, this work proposes a dynamic congestion pricing method using deep reinforcement learning (DRL). It is designed to eliminate traffic congestion based on observable data in general large-scale road networks, by leveraging the data-driven nature of deep reinforcement learning. One of the novel elements of the proposed method is the distributed and cooperative learning scheme. Specifically, the DRL is implemented by a spatial-temporally distributed manner, and cooperation among DRL agents is established by novel techniques we call spatially shared reward and temporally switching learning. It enables fast and computationally efficient learning in large-scale networks. The numerical experiments using Sioux Falls Network showed that the proposed method works well thanks to the novel learning scheme." 886,ML-Based Approach for NFL Defensive Pass Interference Prediction Using GPS Tracking Data,"Defensive Pass Interference (DPI) is one of the most impactful penalties in the NFL. DPI is a spot foul, yielding an automatic first down to the team in possession. With such an influence on the game, referees have no room for a mistake. It is also a very rare event, which happens 1-2 times per 100 pass attempts. With technology improving and many IoT wearables being put on the athletes to collect valuable data, there is a solid ground for applying machine learning (ML) techniques to improve every aspect of the game. The work presented here is the first attempt in predicting DPI using player tracking GPS data. The data we used was collected by NFL's Next Gen Stats throughout the 2018 regular season. We present ML models for highly imbalanced time-series binary classification: LSTM, GRU, ANN, and Multivariate LSTM-FCN. Results showed that using GPS tracking data to predict DPI has limited success. The best performing models had high recall with low precision which resulted in the classification of many false positive examples. Looking closely at the data confirmed that there is just not enough information to determine whether a foul was committed. This study might serve as a filter for multi-step pipeline for video sequence classification which could be able to solve this problem." 887,"""You Can't Fix What You Can't Measure"": Privately Measuring Demographic Performance Disparities in Federated Learning","Federated learning allows many devices to collaborate in the training of machine learning models. As in traditional machine learning, there is a growing concern that models trained with federated learning may exhibit disparate performance for different demographic groups. Existing solutions to measure and ensure equal model performance across groups require access to information about group membership, but this access is not always available or desirable, especially under the privacy aspirations of federated learning. We study the feasibility of measuring such performance disparities while protecting the privacy of the user's group membership and the federated model's performance on the user's data. Protecting both is essential for privacy, because they may be correlated, and thus learning one may reveal the other. On the other hand, from the utility perspective, the privacy-preserved data should maintain the correlation to ensure the ability to perform accurate measurements of the performance disparity. We achieve both of these goals by developing locally differentially private mechanisms that preserve the correlations between group membership and model performance. To analyze the effectiveness of the mechanisms, we bound their error in estimating the disparity when optimized for a given privacy budget, and validate these bounds on synthetic data. Our results show that the error rapidly decreases for realistic numbers of participating clients, demonstrating that, contrary to what prior work suggested, protecting the privacy of protected attributes is not necessarily in conflict with identifying disparities in the performance of federated models." 888,Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in Coherent Optical Transmission Systems,"For the first time, recurrent and feedforward neural network-based equalizers for nonlinearity compensation are implemented in an FPGA, with a level of complexity comparable to that of a dispersion equalizer. We demonstrate that the NN-based equalizers can outperform a 1 step-per-span DBP." 889,MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-IID distribution,"Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled GANs to benefit from the rich distributed training data while preserving privacy. However, in a non-iid setting, current federated GAN architectures are unstable, struggling to learn the distinct features and vulnerable to mode collapse. In this paper, we propose a novel architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse and instability for non-iid datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e. high inception score) on average over 20 clients compared to baseline FLGAN." 890,SCAI: A Spectral data Classification framework with Adaptive Inference for the IoT platform,"Currently, it is a hot research topic to realize accurate, efficient, and real-time identification of massive spectral data with the help of deep learning and IoT technology. Deep neural networks played a key role in spectral analysis. However, the inference of deeper models is performed in a static manner, and cannot be adjusted according to the device. Not all samples need to allocate all computation to reach confident prediction, which hinders maximizing the overall performance. To address the above issues, we propose a Spectral data Classification framework with Adaptive Inference. Specifically, to allocate different computations for different samples while better exploiting the collaboration among different devices, we leverage Early-exit architecture, place intermediate classifiers at different depths of the architecture, and the model outputs the results when the prediction confidence reaches a preset threshold. We propose a training paradigm of self-distillation learning, the deepest classifier performs soft supervision on the shallow ones to maximize their performance and training speed. At the same time, to mitigate the vulnerability of performance to the location and number settings of intermediate classifiers in the Early-exit paradigm, we propose a Position-Adaptive residual network. It can adjust the number of layers in each block at different curve positions, so it can focus on important positions of the curve (e.g.: Raman peak), and accurately allocate the appropriate computational budget based on task performance and computing resources. To the best of our knowledge, this paper is the first attempt to conduct optimization by adaptive inference for spectral detection under the IoT platform. We conducted many experiments, the experimental results show that our proposed method can achieve higher performance with less computational budget than existing methods." 891,AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems,"It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that the class distribution is overall balanced. However, long-tail datasets are ubiquitous in a wide spectrum of applications, where the amount of head class instances is larger than the tail classes. Under such a scenario, AUC is a much more reasonable metric than accuracy since it is insensitive toward class distribution. Motivated by this, we present an early trial to explore adversarial training methods to optimize AUC. The main challenge lies in that the positive and negative examples are tightly coupled in the objective function. As a direct result, one cannot generate adversarial examples without a full scan of the dataset. To address this issue, based on a concavity regularization scheme, we reformulate the AUC optimization problem as a saddle point problem, where the objective becomes an instance-wise function. This leads to an end-to-end training protocol. Furthermore, we provide a convergence guarantee of the proposed algorithm. Our analysis differs from the existing studies since the algorithm is asked to generate adversarial examples by calculating the gradient of a min-max problem. Finally, the extensive experimental results show the performance and robustness of our algorithm in three long-tail datasets." 892,Neural Networks with A La Carte Selection of Activation Functions,"Activation functions (AFs), which are pivotal to the success (or failure) of a neural network, have received increased attention in recent years, with researchers seeking to design novel AFs that improve some aspect of network performance. In this paper we take another direction, wherein we combine a slew of known AFs into successful architectures, proposing three methods to do so beneficially: 1) generate AF architectures at random, 2) use Optuna, an automatic hyper-parameter optimization software framework, with a Tree-structured Parzen Estimator (TPE) sampler, and 3) use Optuna with a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) sampler. We show that all methods often produce significantly better results for 25 classification problems when compared with a standard network composed of ReLU hidden units and a softmax output unit. Optuna with the TPE sampler emerged as the best AF architecture-producing method." 893,MultiSAGE: a multiplex embedding algorithm for inter-layer link prediction,"Research on graph representation learning has received great attention in recent years. However, most of the studies so far have focused on the embedding of single-layer graphs. The few studies dealing with the problem of representation learning of multilayer structures rely on the strong hypothesis that the inter-layer links are known, and this limits the range of possible applications. Here we propose MultiSAGE, a generalization of the GraphSAGE algorithm that allows to embed multiplex networks. We show that MultiSAGE is capable to reconstruct both the intra-layer and the inter-layer connectivity, outperforming GraphSAGE, which has been designed for simple graphs. Next, through a comprehensive experimental analysis, we shed light also on the performance of the embedding, both in simple and in multiplex networks, showing that either the density of the graph or the randomness of the links strongly influences the quality of the embedding." 894,Modeling Adaptive Platoon and Reservation Based Autonomous Intersection Control: A Deep Reinforcement Learning Approach,"As a strategy to reduce travel delay and enhance energy efficiency, platooning of connected and autonomous vehicles (CAVs) at non-signalized intersections has become increasingly popular in academia. However, few studies have attempted to model the relation between the optimal platoon size and the traffic conditions around the intersection. To this end, this study proposes an adaptive platoon based autonomous intersection control model powered by deep reinforcement learning (DRL) technique. The model framework has following two levels: the first level adopts a First Come First Serve (FCFS) reservation based policy integrated with a nonconflicting lane selection mechanism to determine vehicles' passing priority; and the second level applies a deep Q-network algorithm to identify the optimal platoon size based on the real-time traffic condition of an intersection. When being tested on a traffic micro-simulator, our proposed model exhibits superior performances on travel efficiency and fuel conservation as compared to the state-of-the-art methods." 895,FLVoogd: Robust And Privacy Preserving Federated Learning,"In this work, we propose FLVoogd, an updated federated learning method in which servers and clients collaboratively eliminate Byzantine attacks while preserving privacy. In particular, servers use automatic Density-based Spatial Clustering of Applications with Noise (DBSCAN) combined with S2PC to cluster the benign majority without acquiring sensitive personal information. Meanwhile, clients build dual models and perform test-based distance controlling to adjust their local models toward the global one to achieve personalizing. Our framework is automatic and adaptive that servers/clients don't need to tune the parameters during the training. In addition, our framework leverages Secure Multi-party Computation (SMPC) operations, including multiplications, additions, and comparison, where costly operations, like division and square root, are not required. Evaluations are carried out on some conventional datasets from the image classification field. The result shows that FLVoogd can effectively reject malicious uploads in most scenarios; meanwhile, it avoids data leakage from the server-side." 896,Data-driven discovery of novel 2D materials by deep generative models,"Efficient algorithms to generate candidate crystal structures with good stability properties can play a key role in data-driven materials discovery. Here we show that a crystal diffusion variational autoencoder (CDVAE) is capable of generating two-dimensional (2D) materials of high chemical and structural diversity and formation energies mirroring the training structures. Specifically, we train the CDVAE on 2615 2D materials with energy above the convex hull $\Delta H_{\mathrm{hull}}< 0.3$ eV/atom, and generate 5003 materials that we relax using density functional theory (DFT). We also generate 14192 new crystals by systematic element substitution of the training structures. We find that the generative model and lattice decoration approach are complementary and yield materials with similar stability properties but very different crystal structures and chemical compositions. In total we find 11630 predicted new 2D materials, where 8599 of these have $\Delta H_{\mathrm{hull}}< 0.3$ eV/atom as the seed structures, while 2004 are within 50 meV of the convex hull and could potentially be synthesized. The relaxed atomic structures of all the materials are available in the open Computational 2D Materials Database (C2DB). Our work establishes the CDVAE as an efficient and reliable crystal generation machine, and significantly expands the space of 2D materials." 897,Geometry Interaction Knowledge Graph Embeddings,"Knowledge graph (KG) embeddings have shown great power in learning representations of entities and relations for link prediction tasks. Previous work usually embeds KGs into a single geometric space such as Euclidean space (zero curved), hyperbolic space (negatively curved) or hyperspherical space (positively curved) to maintain their specific geometric structures (e.g., chain, hierarchy and ring structures). However, the topological structure of KGs appears to be complicated, since it may contain multiple types of geometric structures simultaneously. Therefore, embedding KGs in a single space, no matter the Euclidean space, hyperbolic space or hyperspheric space, cannot capture the complex structures of KGs accurately. To overcome this challenge, we propose Geometry Interaction knowledge graph Embeddings (GIE), which learns spatial structures interactively between the Euclidean, hyperbolic and hyperspherical spaces. Theoretically, our proposed GIE can capture a richer set of relational information, model key inference patterns, and enable expressive semantic matching across entities. Experimental results on three well-established knowledge graph completion benchmarks show that our GIE achieves the state-of-the-art performance with fewer parameters." 898,Multi-Agent Deep Reinforcement Learning for Cost- and Delay-Sensitive Virtual Network Function Placement and Routing,"This paper proposes an effective and novel multiagent deep reinforcement learning (MADRL)-based method for solving the joint virtual network function (VNF) placement and routing (P&R), where multiple service requests with differentiated demands are delivered at the same time. The differentiated demands of the service requests are reflected by their delay- and cost-sensitive factors. We first construct a VNF P&R problem to jointly minimize a weighted sum of service delay and resource consumption cost, which is NP-complete. Then, the joint VNF P&R problem is decoupled into two iterative subtasks: placement subtask and routing subtask. Each subtask consists of multiple concurrent parallel sequential decision processes. By invoking the deep deterministic policy gradient method and multi-agent technique, an MADRL-P&R framework is designed to perform the two subtasks. The new joint reward and internal rewards mechanism is proposed to match the goals and constraints of the placement and routing subtasks. We also propose the parameter migration-based model-retraining method to deal with changing network topologies. Corroborated by experiments, the proposed MADRL-P&R framework is superior to its alternatives in terms of service cost and delay, and offers higher flexibility for personalized service demands. The parameter migration-based model-retraining method can efficiently accelerate convergence under moderate network topology changes." 899,Competence-based Multimodal Curriculum Learning for Medical Report Generation,"Medical report generation task, which targets to produce long and coherent descriptions of medical images, has attracted growing research interests recently. Different from the general image captioning tasks, medical report generation is more challenging for data-driven neural models. This is mainly due to 1) the serious data bias and 2) the limited medical data. To alleviate the data bias and make best use of available data, we propose a Competence-based Multimodal Curriculum Learning framework (CMCL). Specifically, CMCL simulates the learning process of radiologists and optimizes the model in a step by step manner. Firstly, CMCL estimates the difficulty of each training instance and evaluates the competence of current model; Secondly, CMCL selects the most suitable batch of training instances considering current model competence. By iterating above two steps, CMCL can gradually improve the model's performance. The experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance." 900,Aggregated Multi-output Gaussian Processes with Knowledge Transfer Across Domains,"Aggregate data often appear in various fields such as socio-economics and public security. The aggregate data are associated not with points but with supports (e.g., spatial regions in a city). Since the supports may have various granularities depending on attributes (e.g., poverty rate and crime rate), modeling such data is not straightforward. This article offers a multi-output Gaussian process (MoGP) model that infers functions for attributes using multiple aggregate datasets of respective granularities. In the proposed model, the function for each attribute is assumed to be a dependent GP modeled as a linear mixing of independent latent GPs. We design an observation model with an aggregation process for each attribute; the process is an integral of the GP over the corresponding support. We also introduce a prior distribution of the mixing weights, which allows a knowledge transfer across domains (e.g., cities) by sharing the prior. This is advantageous in such a situation where the spatially aggregated dataset in a city is too coarse to interpolate; the proposed model can still make accurate predictions of attributes by utilizing aggregate datasets in other cities. The inference of the proposed model is based on variational Bayes, which enables one to learn the model parameters using the aggregate datasets from multiple domains. The experiments demonstrate that the proposed model outperforms in the task of refining coarse-grained aggregate data on real-world datasets: Time series of air pollutants in Beijing and various kinds of spatial datasets from New York City and Chicago." 901,SANE-TTS: Stable And Natural End-to-End Multilingual Text-to-Speech,"In this paper, we present SANE-TTS, a stable and natural end-to-end multilingual TTS model. By the difficulty of obtaining multilingual corpus for given speaker, training multilingual TTS model with monolingual corpora is unavoidable. We introduce speaker regularization loss that improves speech naturalness during cross-lingual synthesis as well as domain adversarial training, which is applied in other multilingual TTS models. Furthermore, by adding speaker regularization loss, replacing speaker embedding with zero vector in duration predictor stabilizes cross-lingual inference. With this replacement, our model generates speeches with moderate rhythm regardless of source speaker in cross-lingual synthesis. In MOS evaluation, SANE-TTS achieves naturalness score above 3.80 both in cross-lingual and intralingual synthesis, where the ground truth score is 3.99. Also, SANE-TTS maintains speaker similarity close to that of ground truth even in cross-lingual inference. Audio samples are available on our web page." 902,Implicit Channel Learning for Machine Learning Applications in 6G Wireless Networks,"With the deployment of the fifth generation (5G) wireless systems gathering momentum across the world, possible technologies for 6G are under active research discussions. In particular, the role of machine learning (ML) in 6G is expected to enhance and aid emerging applications such as virtual and augmented reality, vehicular autonomy, and computer vision. This will result in large segments of wireless data traffic comprising image, video and speech. The ML algorithms process these for classification/recognition/estimation through the learning models located on cloud servers. This requires wireless transmission of data from edge devices to the cloud server. Channel estimation, handled separately from recognition step, is critical for accurate learning performance. Toward combining the learning for both channel and the ML data, we introduce implicit channel learning to perform the ML tasks without estimating the wireless channel. Here, the ML models are trained with channel-corrupted datasets in place of nominal data. Without channel estimation, the proposed approach exhibits approximately 60% improvement in image and speech classification tasks for diverse scenarios such as millimeter wave and IEEE 802.11p vehicular channels." 903,Self Supervised Learning for Few Shot Hyperspectral Image Classification,"Deep learning has proven to be a very effective approach for Hyperspectral Image (HSI) classification. However, deep neural networks require large annotated datasets to generalize well. This limits the applicability of deep learning for HSI classification, where manually labelling thousands of pixels for every scene is impractical. In this paper, we propose to leverage Self Supervised Learning (SSL) for HSI classification. We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels. Experimental results demonstrate that this approach significantly outperforms vanilla supervised learning." 904,Approximating 1-Wasserstein Distance with Trees,"Wasserstein distance, which measures the discrepancy between distributions, shows efficacy in various types of natural language processing (NLP) and computer vision (CV) applications. One of the challenges in estimating Wasserstein distance is that it is computationally expensive and does not scale well for many distribution comparison tasks. In this paper, we aim to approximate the 1-Wasserstein distance by the tree-Wasserstein distance (TWD), where TWD is a 1-Wasserstein distance with tree-based embedding and can be computed in linear time with respect to the number of nodes on a tree. More specifically, we propose a simple yet efficient L1-regularized approach to learning the weights of the edges in a tree. To this end, we first show that the 1-Wasserstein approximation problem can be formulated as a distance approximation problem using the shortest path distance on a tree. We then show that the shortest path distance can be represented by a linear model and can be formulated as a Lasso-based regression problem. Owing to the convex formulation, we can obtain a globally optimal solution efficiently. Moreover, we propose a tree-sliced variant of these methods. Through experiments, we demonstrated that the weighted TWD can accurately approximate the original 1-Wasserstein distance." 905,Prediction of Football Player Value using Bayesian Ensemble Approach,"The transfer fees of sports players have become astronomical. This is because bringing players of great future value to the club is essential for their survival. We present a case study on the key factors affecting the world's top soccer players' transfer fees based on the FIFA data analysis. To predict each player's market value, we propose an improved LightGBM model by optimizing its hyperparameter using a Tree-structured Parzen Estimator (TPE) algorithm. We identify prominent features by the SHapley Additive exPlanations (SHAP) algorithm. The proposed method has been compared against the baseline regression models (e.g., linear regression, lasso, elastic net, kernel ridge regression) and gradient boosting model without hyperparameter optimization. The optimized LightGBM model showed an excellent accuracy of approximately 3.8, 1.4, and 1.8 times on average compared to the regression baseline models, GBDT, and LightGBM model in terms of RMSE. Our model offers interpretability in deciding what attributes football clubs should consider in recruiting players in the future." 906,TreeDRNet:A Robust Deep Model for Long Term Time Series Forecasting,"Various deep learning models, especially some latest Transformer-based approaches, have greatly improved the state-of-art performance for long-term time series forecasting.However, those transformer-based models suffer a severe deterioration performance with prolonged input length, which prohibits them from using extended historical info.Moreover, these methods tend to handle complex examples in long-term forecasting with increased model complexity, which often leads to a significant increase in computation and less robustness in performance(e.g., overfitting). We propose a novel neural network architecture, called TreeDRNet, for more effective long-term forecasting. Inspired by robust regression, we introduce doubly residual link structure to make prediction more robust.Built upon Kolmogorov-Arnold representation theorem, we explicitly introduce feature selection, model ensemble, and a tree structure to further utilize the extended input sequence, which improves the robustness and representation power of TreeDRNet. Unlike previous deep models for sequential forecasting work, TreeDRNet is built entirely on multilayer perceptron and thus enjoys high computational efficiency. Our extensive empirical studies show that TreeDRNet is significantly more effective than state-of-the-art methods, reducing prediction errors by 20% to 40% for multivariate time series. In particular, TreeDRNet is over 10 times more efficient than transformer-based methods. The code will be released soon." 907,On Structural Explanation of Bias in Graph Neural Networks,"Graph Neural Networks (GNNs) have shown satisfying performance in various graph analytical problems. Hence, they have become the \emph{de facto} solution in a variety of decision-making scenarios. However, GNNs could yield biased results against certain demographic subgroups. Some recent works have empirically shown that the biased structure of the input network is a significant source of bias for GNNs. Nevertheless, no studies have systematically scrutinized which part of the input network structure leads to biased predictions for any given node. The low transparency on how the structure of the input network influences the bias in GNN outcome largely limits the safe adoption of GNNs in various decision-critical scenarios. In this paper, we study a novel research problem of structural explanation of bias in GNNs. Specifically, we propose a novel post-hoc explanation framework to identify two edge sets that can maximally account for the exhibited bias and maximally contribute to the fairness level of the GNN prediction for any given node, respectively. Such explanations not only provide a comprehensive understanding of bias/fairness of GNN predictions but also have practical significance in building an effective yet fair GNN model. Extensive experiments on real-world datasets validate the effectiveness of the proposed framework towards delivering effective structural explanations for the bias of GNNs. Open-source code can be found at https://github.com/yushundong/REFEREE." 908,zPROBE: Zero Peek Robustness Checks for Federated Learning,"Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thereby preventing leakage of the users' (private) training data from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the model accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., the median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and unscalable in the secure domain, as it requires sorting of all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage the derived statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy." 909,Classifying Unstructured Clinical Notes via Automatic Weak Supervision,"Healthcare providers usually record detailed notes of the clinical care delivered to each patient for clinical, research, and billing purposes. Due to the unstructured nature of these narratives, providers employ dedicated staff to assign diagnostic codes to patients' diagnoses using the International Classification of Diseases (ICD) coding system. This manual process is not only time-consuming but also costly and error-prone. Prior work demonstrated potential utility of Machine Learning (ML) methodology in automating this process, but it has relied on large quantities of manually labeled data to train the models. Additionally, diagnostic coding systems evolve with time, which makes traditional supervised learning strategies unable to generalize beyond local applications. In this work, we introduce a general weakly-supervised text classification framework that learns from class-label descriptions only, without the need to use any human-labeled documents. It leverages the linguistic domain knowledge stored within pre-trained language models and the data programming framework to assign code labels to individual texts. We demonstrate the efficacy and flexibility of our method by comparing it to state-of-the-art weak text classifiers across four real-world text classification datasets, in addition to assigning ICD codes to medical notes in the publicly available MIMIC-III database." 910,Symbolic-Regression Boosting,"Modifying standard gradient boosting by replacing the embedded weak learner in favor of a strong(er) one, we present SyRBo: Symbolic-Regression Boosting. Experiments over 98 regression datasets show that by adding a small number of boosting stages -- between 2--5 -- to a symbolic regressor, statistically significant improvements can often be attained. We note that coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to an extant symbolic regressor, often with beneficial results." 911,Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings,"We study reinforcement learning with function approximation for large-scale Partially Observable Markov Decision Processes (POMDPs) where the state space and observation space are large or even continuous. Particularly, we consider Hilbert space embeddings of POMDP where the feature of latent states and the feature of observations admit a conditional Hilbert space embedding of the observation emission process, and the latent state transition is deterministic. Under the function approximation setup where the optimal latent state-action $Q$-function is linear in the state feature, and the optimal $Q$-function has a gap in actions, we provide a \emph{computationally and statistically efficient} algorithm for finding the \emph{exact optimal} policy. We show our algorithm's computational and statistical complexities scale polynomially with respect to the horizon and the intrinsic dimension of the feature on the observation space. Furthermore, we show both the deterministic latent transitions and gap assumptions are necessary to avoid statistical complexity exponential in horizon or dimension. Since our guarantee does not have an explicit dependence on the size of the state and observation spaces, our algorithm provably scales to large-scale POMDPs." 912,Multi-modal Sensor Data Fusion for In-situ Classification of Animal Behavior Using Accelerometry and GNSS Data,"We examine using data from multiple sensing modes, i.e., accelerometry and global navigation satellite system (GNSS), for classifying animal behavior. We extract three new features from the GNSS data, namely, the distance from the water point, median speed, and median estimated horizontal position error. We consider two approaches for combining the information available from the accelerometry and GNSS data. The first approach is based on concatenating the features extracted from both sensor data and feeding the concatenated feature vector into a multi-layer perceptron (MLP) classifier. The second approach is based on fusing the posterior probabilities predicted by two MLP classifiers each taking the features extracted from the data of one sensor as input. We evaluate the performance of the developed multi-modal animal behavior classification algorithms using two real-world datasets collected via smart cattle collar and ear tags. The leave-one-animal-out cross-validation results show that both approaches improve the classification performance appreciably compared with using the data from only one sensing mode, in particular, for the infrequent but important behaviors of walking and drinking. The algorithms developed based on both approaches require rather small computational and memory resources hence are suitable for implementation on embedded systems of our collar and ear tags. However, the multi-modal animal behavior classification algorithm based on posterior probability fusion is preferable to the one based on feature concatenation as it delivers better classification accuracy, has less computational and memory complexity, is more robust to sensor data failure, and enjoys better modularity." 913,Synthesizing Rolling Bearing Fault Samples in New Conditions: A framework based on a modified CGAN,"Bearings are one of the vital components of rotating machines that are prone to unexpected faults. Therefore, bearing fault diagnosis and condition monitoring is essential for reducing operational costs and downtime in numerous industries. In various production conditions, bearings can be operated under a range of loads and speeds, which causes different vibration patterns associated with each fault type. Normal data is ample as systems usually work in desired conditions. On the other hand, fault data is rare, and in many conditions, there is no data recorded for the fault classes. Accessing fault data is crucial for developing data-driven fault diagnosis tools that can improve both the performance and safety of operations. To this end, a novel algorithm based on Conditional Generative Adversarial Networks (CGANs) is introduced. Trained on the normal and fault data on any actual fault conditions, this algorithm generates fault data from normal data of target conditions. The proposed method is validated on a real-world bearing dataset, and fault data are generated for different conditions. Several state-of-the-art classifiers and visualization models are implemented to evaluate the quality of the synthesized data. The results demonstrate the efficacy of the proposed algorithm." 914,A Multi-stage Framework with Mean Subspace Computation and Recursive Feedback for Online Unsupervised Domain Adaptation,"In this paper, we address the Online Unsupervised Domain Adaptation (OUDA) problem and propose a novel multi-stage framework to solve real-world situations when the target data are unlabeled and arriving online sequentially in batches. To project the data from the source and the target domains to a common subspace and manipulate the projected data in real-time, our proposed framework institutes a novel method, called an Incremental Computation of Mean-Subspace (ICMS) technique, which computes an approximation of mean-target subspace on a Grassmann manifold and is proven to be a close approximate to the Karcher mean. Furthermore, the transformation matrix computed from the mean-target subspace is applied to the next target data in the recursive-feedback stage, aligning the target data closer to the source domain. The computation of transformation matrix and the prediction of next-target subspace leverage the performance of the recursive-feedback stage by considering the cumulative temporal dependency among the flow of the target subspace on the Grassmann manifold. The labels of the transformed target data are predicted by the pre-trained source classifier, then the classifier is updated by the transformed data and predicted labels. Extensive experiments on six datasets were conducted to investigate in depth the effect and contribution of each stage in our proposed framework and its performance over previous approaches in terms of classification accuracy and computational speed. In addition, the experiments on traditional manifold-based learning models and neural-network-based learning models demonstrated the applicability of our proposed framework for various types of learning models." 915,Bilateral Network with Channel Splitting Network and Transformer for Thermal Image Super-Resolution,"In recent years, the Thermal Image Super-Resolution (TISR) problem has become an attractive research topic. TISR would been used in a wide range of fields, including military, medical, agricultural and animal ecology. Due to the success of PBVS-2020 and PBVS-2021 workshop challenge, the result of TISR keeps improving and attracts more researchers to sign up for PBVS-2022 challenge. In this paper, we will introduce the technical details of our submission to PBVS-2022 challenge designing a Bilateral Network with Channel Splitting Network and Transformer(BN-CSNT) to tackle the TISR problem. Firstly, we designed a context branch based on channel splitting network with transformer to obtain sufficient context information. Secondly, we designed a spatial branch with shallow transformer to extract low level features which can preserve the spatial information. Finally, for the context branch in order to fuse the features from channel splitting network and transformer, we proposed an attention refinement module, and then features from context branch and spatial branch are fused by proposed feature fusion module. The proposed method can achieve PSNR=33.64, SSIM=0.9263 for x4 and PSNR=21.08, SSIM=0.7803 for x2 in the PBVS-2022 challenge test dataset." 916,How many labelers do you have? A closer look at gold-standard labels,"The construction of most supervised learning datasets revolves around collecting multiple labels for each instance, then aggregating the labels to form a type of ``gold-standard.''. We question the wisdom of this pipeline by developing a (stylized) theoretical model of this process and analyzing its statistical consequences, showing how access to non-aggregated label information can make training well-calibrated models easier or -- in some cases -- even feasible, whereas it is impossible with only gold-standard labels. The entire story, however, is subtle, and the contrasts between aggregated and fuller label information depend on the particulars of the problem, where estimators that use aggregated information exhibit robust but slower rates of convergence, while estimators that can effectively leverage all labels converge more quickly if they have fidelity to (or can learn) the true labeling process. The theory we develop in the stylized model makes several predictions for real-world datasets, including when non-aggregate labels should improve learning performance, which we test to corroborate the validity of our predictions." 917,End-to-End Text-to-Speech Based on Latent Representation of Speaking Styles Using Spontaneous Dialogue,"The recent text-to-speech (TTS) has achieved quality comparable to that of humans; however, its application in spoken dialogue has not been widely studied. This study aims to realize a TTS that closely resembles human dialogue. First, we record and transcribe actual spontaneous dialogues. Then, the proposed dialogue TTS is trained in two stages: first stage, variational autoencoder (VAE)-VITS or Gaussian mixture variational autoencoder (GMVAE)-VITS is trained, which introduces an utterance-level latent variable into variational inference with adversarial learning for end-to-end text-to-speech (VITS), a recently proposed end-to-end TTS model. A style encoder that extracts a latent speaking style representation from speech is trained jointly with TTS. In the second stage, a style predictor is trained to predict the speaking style to be synthesized from dialogue history. During inference, by passing the speaking style representation predicted by the style predictor to VAE/GMVAE-VITS, speech can be synthesized in a style appropriate to the context of the dialogue. Subjective evaluation results demonstrate that the proposed method outperforms the original VITS in terms of dialogue-level naturalness." 918,BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping,"Methods for extracting audio and speech features have been studied since pioneering work on spectrum analysis decades ago. Recent efforts are guided by the ambition to develop general-purpose audio representations. For example, deep neural networks can extract optimal embeddings if they are trained on large audio datasets. This work extends existing methods based on self-supervised learning by bootstrapping, proposes various encoder architectures, and explores the effects of using different pre-training datasets. Lastly, we present a novel training framework to come up with a hybrid audio representation, which combines handcrafted and data-driven learned audio features. All the proposed representations were evaluated within the HEAR NeurIPS 2021 challenge for auditory scene classification and timestamp detection tasks. Our results indicate that the hybrid model with a convolutional transformer as the encoder yields superior performance in most HEAR challenge tasks." 919,How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections,"Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task." 920,A Grey-box Launch-profile Aware Model for C+L Band Raman Amplification,"Based on the physical features of Raman amplification, we propose a three-step modelling scheme based on neural networks (NN) and linear regression. Higher accuracy, less data requirements and lower computational complexity are demonstrated through simulations compared with the pure NN-based method." 921,A novel approach to increase scalability while training machine learning algorithms using Bfloat 16 in credit card fraud detection,"The use of credit cards has become quite common these days as digital banking has become the norm. With this increase, fraud in credit cards also has a huge problem and loss to the banks and customers alike. Normal fraud detection systems, are not able to detect the fraud since fraudsters emerge with new techniques to commit fraud. This creates the need to use machine learning-based software to detect frauds. Currently, the machine learning softwares that are available focuses only on the accuracy of detecting frauds but does not focus on the cost or time factors to detect. This research focuses on machine learning scalability for banks' credit card fraud detection systems. We have compared the existing machine learning algorithms and methods that are available with the newly proposed technique. The goal is to prove that using fewer bits for training a machine learning algorithm will result in a more scalable system, that will reduce the time and will also be less costly to implement." 922,Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning,"It has been a recent trend to leverage the power of supervised learning (SL) towards more effective reinforcement learning (RL) methods. We propose a novel phasic approach by alternating online RL and offline SL for tackling sparse-reward goal-conditioned problems. In the online phase, we perform RL training and collect rollout data while in the offline phase, we perform SL on those successful trajectories from the dataset. To further improve sample efficiency, we adopt additional techniques in the online phase including task reduction to generate more feasible trajectories and a value-difference-based intrinsic reward to alleviate the sparse-reward issue. We call this overall algorithm, PhAsic self-Imitative Reduction (PAIR). PAIR substantially outperforms both non-phasic RL and phasic SL baselines on sparse-reward goal-conditioned robotic control problems, including a challenging stacking task. PAIR is the first RL method that learns to stack 6 cubes with only 0/1 success rewards from scratch." 923,Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems,"We study Reinforcement Learning for partially observable dynamical systems using function approximation. We propose a new \textit{Partially Observable Bilinear Actor-Critic framework}, that is general enough to include models such as observable tabular Partially Observable Markov Decision Processes (POMDPs), observable Linear-Quadratic-Gaussian (LQG), Predictive State Representations (PSRs), as well as a newly introduced model Hilbert Space Embeddings of POMDPs and observable POMDPs with latent low-rank transition. Under this framework, we propose an actor-critic style algorithm that is capable of performing agnostic policy learning. Given a policy class that consists of memory based policies (that look at a fixed-length window of recent observations), and a value function class that consists of functions taking both memory and future observations as inputs, our algorithm learns to compete against the best memory-based policy in the given policy class. For certain examples such as undercomplete observable tabular POMDPs, observable LQGs and observable POMDPs with latent low-rank transition, by implicitly leveraging their special properties, our algorithm is even capable of competing against the globally optimal policy without paying an exponential dependence on the horizon in its sample complexity." 924,Three Applications of Conformal Prediction for Rating Breast Density in Mammography,"Breast cancer is the most common cancers and early detection from mammography screening is crucial in improving patient outcomes. Assessing mammographic breast density is clinically important as the denser breasts have higher risk and are more likely to occlude tumors. Manual assessment by experts is both time-consuming and subject to inter-rater variability. As such, there has been increased interest in the development of deep learning methods for mammographic breast density assessment. Despite deep learning having demonstrated impressive performance in several prediction tasks for applications in mammography, clinical deployment of deep learning systems in still relatively rare; historically, mammography Computer-Aided Diagnoses (CAD) have over-promised and failed to deliver. This is in part due to the inability to intuitively quantify uncertainty of the algorithm for the clinician, which would greatly enhance usability. Conformal prediction is well suited to increase reliably and trust in deep learning tools but they lack realistic evaluations on medical datasets. In this paper, we present a detailed analysis of three possible applications of conformal prediction applied to medical imaging tasks: distribution shift characterization, prediction quality improvement, and subgroup fairness analysis. Our results show the potential of distribution-free uncertainty quantification techniques to enhance trust on AI algorithms and expedite their translation to usage." 925,Knowledge Distillation via Weighted Ensemble of Teaching Assistants,"Knowledge distillation in machine learning is the process of transferring knowledge from a large model called the teacher to a smaller model called the student. Knowledge distillation is one of the techniques to compress the large network (teacher) to a smaller network (student) that can be deployed in small devices such as mobile phones. When the network size gap between the teacher and student increases, the performance of the student network decreases. To solve this problem, an intermediate model is employed between the teacher model and the student model known as the teaching assistant model, which in turn bridges the gap between the teacher and the student. In this research, we have shown that using multiple teaching assistant models, the student model (the smaller model) can be further improved. We combined these multiple teaching assistant models using weighted ensemble learning where we have used a differential evaluation optimization algorithm to generate the weight values." 926,Sampling Enclosing Subgraphs for Link Prediction,"Link prediction is a fundamental problem for graph-structured data (e.g., social networks, drug side-effect networks, etc.). Graph neural networks have offered robust solutions for this problem, specifically by learning the representation of the subgraph enclosing the target link (i.e., pair of nodes). However, these solutions do not scale well to large graphs as extraction and operation on enclosing subgraphs are computationally expensive, especially for large graphs. This paper presents a scalable link prediction solution, that we call ScaLed, which utilizes sparse enclosing subgraphs to make predictions. To extract sparse enclosing subgraphs, ScaLed takes multiple random walks from a target pair of nodes, then operates on the sampled enclosing subgraph induced by all visited nodes. By leveraging the smaller sampled enclosing subgraph, ScaLed can scale to larger graphs with much less overhead while maintaining high accuracy. ScaLed further provides the flexibility to control the trade-off between computation overhead and accuracy. Through comprehensive experiments, we have shown that ScaLed can produce comparable accuracy to those reported by the existing subgraph representation learning frameworks while being less computationally demanding." 927,"STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison","Machine learning (ML) offers powerful methods for detecting and modeling associations often in data with large feature spaces and complex associations. Many useful tools/packages (e.g. scikit-learn) have been developed to make the various elements of data handling, processing, modeling, and interpretation accessible. However, it is not trivial for most investigators to assemble these elements into a rigorous, replicatable, unbiased, and effective data analysis pipeline. Automated machine learning (AutoML) seeks to address these issues by simplifying the process of ML analysis for all. Here, we introduce STREAMLINE, a simple, transparent, end-to-end AutoML pipeline designed as a framework to easily conduct rigorous ML modeling and analysis (limited initially to binary classification). STREAMLINE is specifically designed to compare performance between datasets, ML algorithms, and other AutoML tools. It is unique among other autoML tools by offering a fully transparent and consistent baseline of comparison using a carefully designed series of pipeline elements including: (1) exploratory analysis, (2) basic data cleaning, (3) cross validation partitioning, (4) data scaling and imputation, (5) filter-based feature importance estimation, (6) collective feature selection, (7) ML modeling with `Optuna' hyperparameter optimization across 15 established algorithms (including less well-known Genetic Programming and rule-based ML), (8) evaluation across 16 classification metrics, (9) model feature importance estimation, (10) statistical significance comparisons, and (11) automatically exporting all results, plots, a PDF summary report, and models that can be easily applied to replication data." 928,The Real Deal: A Review of Challenges and Opportunities in Moving Reinforcement Learning-Based Traffic Signal Control Systems Towards Reality,"Traffic signal control (TSC) is a high-stakes domain that is growing in importance as traffic volume grows globally. An increasing number of works are applying reinforcement learning (RL) to TSC; RL can draw on an abundance of traffic data to improve signalling efficiency. However, RL-based signal controllers have never been deployed. In this work, we provide the first review of challenges that must be addressed before RL can be deployed for TSC. We focus on four challenges involving (1) uncertainty in detection, (2) reliability of communications, (3) compliance and interpretability, and (4) heterogeneous road users. We show that the literature on RL-based TSC has made some progress towards addressing each challenge. However, more work should take a systems thinking approach that considers the impacts of other pipeline components on RL." 929,Efficient and Accurate Top-$K$ Recovery from Choice Data,"The intersection of learning to rank and choice modeling is an active area of research with applications in e-commerce, information retrieval and the social sciences. In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items as efficiently as possible using passively collected discrete choice data, i.e., the user picks one item from a set of multiple items. Motivated by this practical consideration, we propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery i.e., correctly identifying all of the top $K$ items. We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models. We prove that in the limit, the choice-based Borda count algorithm produces the same top-$K$ estimate as the commonly used Maximum Likelihood Estimate method but the former's speed and simplicity brings considerable advantages in practice. Experiments on both synthetic and real datasets show that the counting algorithm is competitive with commonly used ranking algorithms in terms of accuracy while being several orders of magnitude faster." 930,A Disability Lens towards Biases in GPT-3 Generated Open-Ended Languages,"Language models (LM) are becoming prevalent in many language-based application spaces globally. Although these LMs are improving our day-to-day interactions with digital products, concerns remain whether open-ended languages or text generated from these models reveal any biases toward a specific group of people, thereby risking the usability of a certain product. There is a need to identify whether these models possess bias to improve the fairness in these models. This gap motivates our ongoing work, where we measured the two aspects of bias in GPT-3 generated text through a disability lens." 931,Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs,"3D-related inductive biases like translational invariance and rotational equivariance are indispensable to graph neural networks operating on 3D atomistic graphs such as molecules. Inspired by the success of Transformers in various domains, we study how to incorporate these inductive biases into Transformers. In this paper, we present Equiformer, a graph neural network leveraging the strength of Transformer architectures and incorporating $SE(3)/E(3)$-equivariant features based on irreducible representations (irreps). Irreps features encode equivariant information in channel dimensions without complicating graph structures. The simplicity enables us to directly incorporate them by replacing original operations with equivariant counterparts. Moreover, to better adapt Transformers to 3D graphs, we propose a novel equivariant graph attention, which considers both content and geometric information such as relative position contained in irreps features. To improve expressivity of the attention, we replace dot product attention with multi-layer perceptron attention and include non-linear message passing. We benchmark Equiformer on two quantum properties prediction datasets, QM9 and OC20. For QM9, among models trained with the same data partition, Equiformer achieves best results on 11 out of 12 regression tasks. For OC20, under the setting of training with IS2RE data and optionally IS2RS data, Equiformer improves upon state-of-the-art models. Code reproducing all main results will be available soon." 932,On making optimal transport robust to all outliers,"Optimal transport (OT) is known to be sensitive against outliers because of its marginal constraints. Outlier robust OT variants have been proposed based on the definition that outliers are samples which are expensive to move. In this paper, we show that this definition is restricted by considering the case where outliers are closer to the target measure than clean samples. We show that outlier robust OT fully transports these outliers leading to poor performances in practice. To tackle these outliers, we propose to detect them by relying on a classifier trained with adversarial training to classify source and target samples. A sample is then considered as an outlier if the prediction from the classifier is different from its assigned label. To decrease the influence of these outliers in the transport problem, we propose to either remove them from the problem or to increase the cost of moving them by using the classifier prediction. We show that we successfully detect these outliers and that they do not influence the transport problem on several experiments such as gradient flows, generative models and label propagation." 933,Task-Adaptive Few-shot Node Classification,"Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform \emph{node-level}, \emph{class-level}, and \emph{task-level} adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT." 934,Learning quantum symmetries with interactive quantum-classical variational algorithms,"A symmetry of a state $\lvert \psi \rangle$ is a unitary operator of which $\lvert \psi \rangle$ is an eigenvector. When $\lvert \psi \rangle$ is an unknown state supplied by a black-box oracle, the state's symmetries serve to characterize it, and often relegate much of the desired information about $\lvert \psi \rangle$. In this paper, we develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of $\lvert \psi \rangle$ with no a priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. Our scheme can be implemented efficiently on average with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We demonstrate our algorithm on representative families of states." 935,Similarity-aware Positive Instance Sampling for Graph Contrastive Pre-training,"Graph instance contrastive learning has been proved as an effective task for Graph Neural Network (GNN) pre-training. However, one key issue may seriously impede the representative power in existing works: Positive instances created by current methods often miss crucial information of graphs or even yield illegal instances (such as non-chemically-aware graphs in molecular generation). To remedy this issue, we propose to select positive graph instances directly from existing graphs in the training set, which ultimately maintains the legality and similarity to the target graphs. Our selection is based on certain domain-specific pair-wise similarity measurements as well as sampling from a hierarchical graph encoding similarity relations among graphs. Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph. We conduct extensive experiments on $13$ graph classification and node classification benchmark datasets from various domains. The results demonstrate that the GNN models pre-trained by our strategies can outperform those trained-from-scratch models as well as the variants obtained by existing methods." 936,Affinity-Aware Graph Networks,"Graph Neural Networks (GNNs) have emerged as a powerful technique for learning on relational data. Owing to the relatively limited number of message passing steps they perform -- and hence a smaller receptive field -- there has been significant interest in improving their expressivity by incorporating structural aspects of the underlying graph. In this paper, we explore the use of affinity measures as features in graph neural networks, in particular measures arising from random walks, including effective resistance, hitting and commute times. We propose message passing networks based on these features and evaluate their performance on a variety of node and graph property prediction tasks. Our architecture has lower computational complexity, while our features are invariant to the permutations of the underlying graph. The measures we compute allow the network to exploit the connectivity properties of the graph, thereby allowing us to outperform relevant benchmarks for a wide variety of tasks, often with significantly fewer message passing steps. On one of the largest publicly available graph regression datasets, OGB-LSC-PCQM4Mv1, we obtain the best known single-model validation MAE at the time of writing." 937,World Value Functions: Knowledge Representation for Learning and Planning,"We propose world value functions (WVFs), a type of goal-oriented general value function that represents how to solve not just a given task, but any other goal-reaching task in an agent's environment. This is achieved by equipping an agent with an internal goal space defined as all the world states where it experiences a terminal transition. The agent can then modify the standard task rewards to define its own reward function, which provably drives it to learn how to achieve all reachable internal goals, and the value of doing so in the current task. We demonstrate two key benefits of WVFs in the context of learning and planning. In particular, given a learned WVF, an agent can compute the optimal policy in a new task by simply estimating the task's reward function. Furthermore, we show that WVFs also implicitly encode the transition dynamics of the environment, and so can be used to perform planning. Experimental results show that WVFs can be learned faster than regular value functions, while their ability to infer the environment's dynamics can be used to integrate learning and planning methods to further improve sample efficiency." 938,Measuring Representational Robustness of Neural Networks Through Shared Invariances,"A major challenge in studying robustness in deep learning is defining the set of ``meaningless'' perturbations to which a given Neural Network (NN) should be invariant. Most work on robustness implicitly uses a human as the reference model to define such perturbations. Our work offers a new view on robustness by using another reference NN to define the set of perturbations a given NN should be invariant to, thus generalizing the reliance on a reference ``human NN'' to any NN. This makes measuring robustness equivalent to measuring the extent to which two NNs share invariances, for which we propose a measure called STIR. STIR re-purposes existing representation similarity measures to make them suitable for measuring shared invariances. Using our measure, we are able to gain insights into how shared invariances vary with changes in weight initialization, architecture, loss functions, and training dataset. Our implementation is available at: \url{https://github.com/nvedant07/STIR}." 939,Modeling Continuous Time Sequences with Intermittent Observations using Marked Temporal Point Processes,"A large fraction of data generated via human activities such as online purchases, health records, spatial mobility etc. can be represented as a sequence of events over a continuous-time. Learning deep learning models over these continuous-time event sequences is a non-trivial task as it involves modeling the ever-increasing event timestamps, inter-event time gaps, event types, and the influences between different events within and across different sequences. In recent years neural enhancements to marked temporal point processes (MTPP) have emerged as a powerful framework to model the underlying generative mechanism of asynchronous events localized in continuous time. However, most existing models and inference methods in the MTPP framework consider only the complete observation scenario i.e. the event sequence being modeled is completely observed with no missing events -- an ideal setting that is rarely applicable in real-world applications. A recent line of work which considers missing events while training MTPP utilizes supervised learning techniques that require additional knowledge of missing or observed label for each event in a sequence, which further restricts its practicability as in several scenarios the details of missing events is not known apriori. In this work, we provide a novel unsupervised model and inference method for learning MTPP in presence of event sequences with missing events. Specifically, we first model the generative processes of observed events and missing events using two MTPP, where the missing events are represented as latent random variables. Then, we devise an unsupervised training method that jointly learns both the MTPP by means of variational inference. Such a formulation can effectively impute the missing data among the observed events and can identify the optimal position of missing events in a sequence." 940,QbyE-MLPMixer: Query-by-Example Open-Vocabulary Keyword Spotting using MLPMixer,"Current keyword spotting systems are typically trained with a large amount of pre-defined keywords. Recognizing keywords in an open-vocabulary setting is essential for personalizing smart device interaction. Towards this goal, we propose a pure MLP-based neural network that is based on MLPMixer - an MLP model architecture that effectively replaces the attention mechanism in Vision Transformers. We investigate different ways of adapting the MLPMixer architecture to the QbyE open-vocabulary keyword spotting task. Comparisons with the state-of-the-art RNN and CNN models show that our method achieves better performance in challenging situations (10dB and 6dB environments) on both the publicly available Hey-Snips dataset and a larger scale internal dataset with 400 speakers. Our proposed model also has a smaller number of parameters and MACs compared to the baseline models." 941,Set Norm and Equivariant Skip Connections: Putting the Deep in Deep Sets,"Permutation invariant neural networks are a promising tool for making predictions from sets. However, we show that existing permutation invariant architectures, Deep Sets and Set Transformer, can suffer from vanishing or exploding gradients when they are deep. Additionally, layer norm, the normalization of choice in Set Transformer, can hurt performance by removing information useful for prediction. To address these issues, we introduce the clean path principle for equivariant residual connections and develop set norm, a normalization tailored for sets. With these, we build Deep Sets++ and Set Transformer++, models that reach high depths with comparable or better performance than their original counterparts on a diverse suite of tasks. We additionally introduce Flow-RBC, a new single-cell dataset and real-world application of permutation invariant prediction. We open-source our data and code here: https://github.com/rajesh-lab/deep_permutation_invariant." 942,Learning Viewpoint-Agnostic Visual Representations by Recovering Tokens in 3D Space,"Humans are remarkably flexible in understanding viewpoint changes due to visual cortex supporting the perception of 3D structure. In contrast, most of the computer vision models that learn visual representation from a pool of 2D images often fail to generalize over novel camera viewpoints. Recently, the vision architectures have shifted towards convolution-free architectures, visual Transformers, which operate on tokens derived from image patches. However, neither these Transformers nor 2D convolutional networks perform explicit operations to learn viewpoint-agnostic representation for visual understanding. To this end, we propose a 3D Token Representation Layer (3DTRL) that estimates the 3D positional information of the visual tokens and leverages it for learning viewpoint-agnostic representations. The key elements of 3DTRL include a pseudo-depth estimator and a learned camera matrix to impose geometric transformations on the tokens. These enable 3DTRL to recover the 3D positional information of the tokens from 2D patches. In practice, 3DTRL is easily plugged-in into a Transformer. Our experiments demonstrate the effectiveness of 3DTRL in many vision tasks including image classification, multi-view video alignment, and action recognition. The models with 3DTRL outperform their backbone Transformers in all the tasks with minimal added computation. Our project page is at https://www3.cs.stonybrook.edu/~jishang/3dtrl/3dtrl.html" 943,MaskViT: Masked Visual Pre-Training for Video Prediction,"The ability to predict future visual observations conditioned on past observations and motor commands can enable embodied agents to plan solutions to a variety of tasks in complex environments. This work shows that we can create good video prediction models by pre-training transformers via masked visual modeling. Our approach, named MaskViT, is based on two simple design decisions. First, for memory and training efficiency, we use two types of window attention: spatial and spatiotemporal. Second, during training, we mask a variable percentage of tokens instead of a fixed mask ratio. For inference, MaskViT generates all tokens via iterative refinement where we incrementally decrease the masking ratio following a mask scheduling function. On several datasets we demonstrate that MaskViT outperforms prior works in video prediction, is parameter efficient, and can generate high-resolution videos (256x256). Further, we demonstrate the benefits of inference speedup (up to 512x) due to iterative decoding by using MaskViT for planning on a real robot. Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling with minimal domain knowledge." 944,On the Parameterization and Initialization of Diagonal State Space Models,"State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark." 945,DDPM-CD: Remote Sensing Change Detection using Denoising Diffusion Probabilistic Models,"Human civilization has an increasingly powerful influence on the earth system, and earth observations are an invaluable tool for assessing and mitigating the negative impacts. To this end, observing precisely defined changes on Earth's surface is essential, and we propose an effective way to achieve this goal. Notably, our change detection (CD)/ segmentation method proposes a novel way to incorporate the millions of off-the-shelf, unlabeled, remote sensing images available through different earth observation programs into the training process through denoising diffusion probabilistic models. We first leverage the information from these off-the-shelf, uncurated, and unlabeled remote sensing images by using a pre-trained denoising diffusion probabilistic model and then employ the multi-scale feature representations from the diffusion model decoder to train a lightweight CD classifier to detect precise changes. The experiments performed on four publically available CD datasets show that the proposed approach achieves remarkably better results than the state-of-the-art methods in F1, IoU, and overall accuracy. Code and pre-trained models are available at: https://github.com/wgcban/ddpm-cd" 946,Provably Efficient Model-Free Constrained RL with Linear Function Approximation,"We study the constrained reinforcement learning problem, in which an agent aims to maximize the expected cumulative reward subject to a constraint on the expected total value of a utility function. In contrast to existing model-based approaches or model-free methods accompanied with a `simulator', we aim to develop the first model-free, simulator-free algorithm that achieves a sublinear regret and a sublinear constraint violation even in large-scale systems. To this end, we consider the episodic constrained Markov decision processes with linear function approximation, where the transition dynamics and the reward function can be represented as a linear function of some known feature mapping. We show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret and $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ constraint violation bounds can be achieved, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps. Our bounds are attained without explicitly estimating the unknown transition model or requiring a simulator, and they depend on the state space only through the dimension of the feature mapping. Hence our bounds hold even when the number of states goes to infinity. Our main results are achieved via novel adaptations of the standard LSVI-UCB algorithms. In particular, we first introduce primal-dual optimization into the LSVI-UCB algorithm to balance between regret and constraint violation. More importantly, we replace the standard greedy selection with respect to the state-action function in LSVI-UCB with a soft-max policy. This turns out to be key in establishing uniform concentration for the constrained case via its approximation-smoothness trade-off. We also show that one can achieve an even zero constraint violation while still maintaining the same order with respect to $T$." 947,On the Generalizability and Predictability of Recommender Systems,"While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, ""how do we choose the right algorithm for a new dataset and performance metric?"" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric, however, there are also strong correlations between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric: https://github.com/naszilla/reczilla." 948,Predicting the meal macronutrient composition from continuous glucose monitors,"Sustained high levels of blood glucose in type 2 diabetes (T2DM) can have disastrous long-term health consequences. An essential component of clinical interventions for T2DM is monitoring dietary intake to keep plasma glucose levels within an acceptable range. Yet, current techniques to monitor food intake are time intensive and error prone. To address this issue, we are developing techniques to automatically monitor food intake and the composition of those foods using continuous glucose monitors (CGMs). This article presents the results of a clinical study in which participants consumed nine standardized meals with known macronutrients amounts (carbohydrate, protein, and fat) while wearing a CGM. We built a multitask neural network to estimate the macronutrient composition from the CGM signal, and compared it against a baseline linear regression. The best prediction result comes from our proposed neural network, trained with subject-dependent data, as measured by root mean squared relative error and correlation coefficient. These findings suggest that it is possible to estimate macronutrient composition from CGM signals, opening the possibility to develop automatic techniques to track food intake." 949,A Topological characterisation of Weisfeiler-Leman equivalence classes,"Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs. The most popular and successful GNNs are based on message passing schemes. Such schemes inherently have limited expressive power when it comes to distinguishing two non-isomorphic graphs. In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish. We then generate arbitrarily many non-isomorphic graphs that cannot be distinguished by GNNs, leading to the GraphCovers dataset. We also show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes. Finally, we test the GraphCovers dataset on several GNN architectures, showing that none of them can distinguish any two graphs it contains." 950,Sample Condensation in Online Continual Learning,"Online Continual learning is a challenging learning scenario where the model must learn from a non-stationary stream of data where each sample is seen only once. The main challenge is to incrementally learn while avoiding catastrophic forgetting, namely the problem of forgetting previously acquired knowledge while learning from new data. A popular solution in these scenario is to use a small memory to retain old data and rehearse them over time. Unfortunately, due to the limited memory size, the quality of the memory will deteriorate over time. In this paper we propose OLCGM, a novel replay-based continual learning strategy that uses knowledge condensation techniques to continuously compress the memory and achieve a better use of its limited size. The sample condensation step compresses old samples, instead of removing them like other replay strategies. As a result, the experiments show that, whenever the memory budget is limited compared to the complexity of the data, OLCGM improves the final accuracy compared to state-of-the-art replay strategies." 951,Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features,"Decision trees are one of the most useful and popular methods in the machine learning toolbox. In this paper, we consider the problem of learning optimal decision trees, a combinatorial optimization problem that is challenging to solve at scale. A common approach in the literature is to use greedy heuristics, which may not be optimal. Recently there has been significant interest in learning optimal decision trees using various approaches (e.g., based on integer programming, dynamic programming) -- to achieve computational scalability, most of these approaches focus on classification tasks with binary features. In this paper, we present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees. Different from existing customized approaches, we consider both regression and classification tasks with continuous features. The basic idea underlying our approach is to split the search space based on the quantiles of the feature distribution -- leading to upper and lower bounds for the underlying optimization problem along the BnB iterations. Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets." 952,Non-Determinism and the Lawlessness of ML Code,"Legal literature on machine learning (ML) tends to focus on harms, and as a result tends to reason about individual model outcomes and summary error rates. This focus on model-level outcomes and errors has masked important aspects of ML that are rooted in its inherent non-determinism. We show that the effects of non-determinism, and consequently its implications for the law, instead become clearer from the perspective of reasoning about ML outputs as probability distributions over possible outcomes. This distributional viewpoint accounts for non-determinism by emphasizing the possible outcomes of ML. Importantly, this type of reasoning is not exclusive with current legal reasoning; it complements (and in fact can strengthen) analyses concerning individual, concrete outcomes for specific automated decisions. By clarifying the important role of non-determinism, we demonstrate that ML code falls outside of the cyberlaw frame of treating ""code as law,"" as this frame assumes that code is deterministic. We conclude with a brief discussion of what work ML can do to constrain the potentially harm-inducing effects of non-determinism, and we clarify where the law must do work to bridge the gap between its current individual-outcome focus and the distributional approach that we recommend." 953,CoSP: Co-supervised pretraining of pocket and ligand,"Can we inject the pocket-ligand interaction knowledge into the pre-trained model and jointly learn their chemical space? Pretraining molecules and proteins has attracted considerable attention in recent years, while most of these approaches focus on learning one of the chemical spaces and lack the injection of biological knowledge. We propose a co-supervised pretraining (CoSP) framework to simultaneously learn 3D pocket and ligand representations. We use a gated geometric message passing layer to model both 3D pockets and ligands, where each node's chemical features, geometric position and orientation are considered. To learn biological meaningful embeddings, we inject the pocket-ligand interaction knowledge into the pretraining model via contrastive loss. Considering the specificity of molecules, we further propose a chemical similarity-enhanced negative sampling strategy to improve the contrastive learning performance. Through extensive experiments, we conclude that CoSP can achieve competitive results in pocket matching, molecule property predictions, and virtual screening." 954,Inductive Conformal Prediction: A Straightforward Introduction with Examples in Python,"Inductive Conformal Prediction (ICP) is a set of distribution-free and model agnostic algorithms devised to predict with a user-defined confidence with coverage guarantee. Instead of having point predictions, i.e., a real number in the case of regression or a single class in multi class classification, models calibrated using ICP output an interval or a set of classes, respectively. ICP takes special importance in high-risk settings where we want the true output to belong to the prediction set with high probability. As an example, a classification model might output that given a magnetic resonance image a patient has no latent diseases to report. However, this model output was based on the most likely class, the second most likely class might tell that the patient has a 15% chance of brain tumor or other severe disease and therefore further exams should be conducted. Using ICP is therefore way more informative and we believe that should be the standard way of producing forecasts. This paper is a hands-on introduction, this means that we will provide examples as we introduce the theory." 955,Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos,"Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for training models with broad, general capabilities for text, images, and other modalities. However, for many sequential decision domains such as robotics, video games, and computer use, publicly available data does not contain the labels required to train behavioral priors in the same way. We extend the internet-scale pretraining paradigm to sequential decision domains through semi-supervised imitation learning wherein agents learn to act by watching online unlabeled videos. Specifically, we show that with a small amount of labeled data we can train an inverse dynamics model accurate enough to label a huge unlabeled source of online data -- here, online videos of people playing Minecraft -- from which we can then train a general behavioral prior. Despite using the native human interface (mouse and keyboard at 20Hz), we show that this behavioral prior has nontrivial zero-shot capabilities and that it can be fine-tuned, with both imitation learning and reinforcement learning, to hard-exploration tasks that are impossible to learn from scratch via reinforcement learning. For many tasks our models exhibit human-level performance, and we are the first to report computer agents that can craft diamond tools, which can take proficient humans upwards of 20 minutes (24,000 environment actions) of gameplay to accomplish." 956,Authentication of Copy Detection Patterns under Machine Learning Attacks: A Supervised Approach,"Copy detection patterns (CDP) are an attractive technology that allows manufacturers to defend their products against counterfeiting. The main assumption behind the protection mechanism of CDP is that these codes printed with the smallest symbol size (1x1) on an industrial printer cannot be copied or cloned with sufficient accuracy due to data processing inequality. However, previous works have shown that Machine Learning (ML) based attacks can produce high-quality fakes, resulting in decreased accuracy of authentication based on traditional feature-based authentication systems. While Deep Learning (DL) can be used as a part of the authentication system, to the best of our knowledge, none of the previous works has studied the performance of a DL-based authentication system against ML-based attacks on CDP with 1x1 symbol size. In this work, we study such a performance assuming a supervised learning (SL) setting." 957,Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark,"We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 $\mu$s and energy consumption as low as 30 $\mu$J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools." 958,Chasing Convex Bodies and Functions with Black-Box Advice,"We consider the problem of convex function chasing with black-box advice, where an online decision-maker aims to minimize the total cost of making and switching between decisions in a normed vector space, aided by black-box advice such as the decisions of a machine-learned algorithm. The decision-maker seeks cost comparable to the advice when it performs well, known as $\textit{consistency}$, while also ensuring worst-case $\textit{robustness}$ even when the advice is adversarial. We first consider the common paradigm of algorithms that switch between the decisions of the advice and a competitive algorithm, showing that no algorithm in this class can improve upon 3-consistency while staying robust. We then propose two novel algorithms that bypass this limitation by exploiting the problem's convexity. The first, INTERP, achieves $(\sqrt{2}+\epsilon)$-consistency and $\mathcal{O}(\frac{C}{\epsilon^2})$-robustness for any $\epsilon > 0$, where $C$ is the competitive ratio of an algorithm for convex function chasing or a subclass thereof. The second, BDINTERP, achieves $(1+\epsilon)$-consistency and $\mathcal{O}(\frac{CD}{\epsilon})$-robustness when the problem has bounded diameter $D$. Further, we show that BDINTERP achieves near-optimal consistency-robustness trade-off for the special case where cost functions are $\alpha$-polyhedral." 959,Graph Neural Networks for Temperature-Dependent Activity Coefficient Prediction of Solutes in Ionic Liquids,"Ionic liquids (ILs) are important solvents for sustainable processes and predicting activity coefficients (ACs) of solutes in ILs is needed. Recently, matrix completion methods (MCMs), transformers, and graph neural networks (GNNs) have shown high accuracy in predicting ACs of binary mixtures, superior to well-established models, e.g., COSMO-RS and UNIFAC. GNNs are particularly promising here as they learn a molecular graph-to-property relationship without pretraining, typically required for transformers, and are, unlike MCMs, applicable to molecules not included in training. For ILs, however, GNN applications are currently missing. Herein, we present a GNN to predict temperature-dependent infinite dilution ACs of solutes in ILs. We train the GNN on a database including more than 40,000 AC values and compare it to a state-of-the-art MCM. The GNN and MCM achieve similar high prediction performance, with the GNN additionally enabling high-quality predictions for ACs of solutions that contain ILs and solutes not considered during training." 960,Single-phase deep learning in cortico-cortical networks,"The error-backpropagation (backprop) algorithm remains the most common solution to the credit assignment problem in artificial neural networks. In neuroscience, it is unclear whether the brain could adopt a similar strategy to correctly modify its synapses. Recent models have attempted to bridge this gap while being consistent with a range of experimental observations. However, these models are either unable to effectively backpropagate error signals across multiple layers or require a multi-phase learning process, neither of which are reminiscent of learning in the brain. Here, we introduce a new model, bursting cortico-cortical networks (BurstCCN), which solves these issues by integrating known properties of cortical networks namely bursting activity, short-term plasticity (STP) and dendrite-targeting interneurons. BurstCCN relies on burst multiplexing via connection-type-specific STP to propagate backprop-like error signals within deep cortical networks. These error signals are encoded at distal dendrites and induce burst-dependent plasticity as a result of excitatory-inhibitory topdown inputs. First, we demonstrate that our model can effectively backpropagate errors through multiple layers using a single-phase learning process. Next, we show both empirically and analytically that learning in our model approximates backprop-derived gradients. Finally, we demonstrate that our model is capable of learning complex image classification tasks (MNIST and CIFAR-10). Overall, our results suggest that cortical features across sub-cellular, cellular, microcircuit and systems levels jointly underlie single-phase efficient deep learning in the brain." 961,The DEBS 2022 Grand Challenge: Detecting Trading Trends in Financial Tick Data,"The DEBS Grand Challenge (GC) is an annual programming competition open to practitioners from both academia and industry. The GC 2022 edition focuses on real-time complex event processing of high-volume tick data provided by Infront Financial Technology GmbH. The goal of the challenge is to efficiently compute specific trend indicators and detect patterns in these indicators like those used by real-life traders to decide on buying or selling in financial markets. The data set Trading Data used for benchmarking contains 289 million tick events from approximately 5500+ financial instruments that had been traded on the three major exchanges Amsterdam (NL), Paris (FR), and Frankfurt am Main (GER) over the course of a full week in 2021. The data set is made publicly available. In addition to correctness and performance, submissions must explicitly focus on reusability and practicability. Hence, participants must address specific nonfunctional requirements and are asked to build upon open-source platforms. This paper describes the required scenario and the data set Trading Data, defines the queries of the problem statement, and explains the enhancements made to the evaluation platform Challenger that handles data distribution, dynamic subscriptions, and remote evaluation of the submissions." 962,Measuring the Feasibility of Analogical Transfer using Complexity,"Analogies are 4-ary relations of the form ""A is to B as C is to D"". While focus has been mostly on how to solve an analogy, i.e. how to find correct values of D given A, B and C, less attention has been drawn on whether solving such an analogy was actually feasible. In this paper, we propose a quantification of the transferability of a source case (A and B) to solve a target problem C. This quantification is based on a complexity minimization principle which has been demonstrated to be efficient for solving analogies. We illustrate these notions on morphological analogies and show its connections with machine learning, and in particular with Unsupervised Domain Adaptation." 963,Classical surrogates for quantum learning models,"The advent of noisy intermediate-scale quantum computers has put the search for possible applications to the forefront of quantum information science. One area where hopes for an advantage through near-term quantum computers are high is quantum machine learning, where variational quantum learning models based on parametrized quantum circuits are discussed. In this work, we introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model and reproduces its input-output relations. As inference can be performed classically, the existence of a classical surrogate greatly enhances the applicability of a quantum learning strategy. However, the classical surrogate also challenges possible advantages of quantum schemes. As it is possible to directly optimize the ansatz of the classical surrogate, they create a natural benchmark the quantum model has to outperform. We show that large classes of well-analyzed re-uploading models have a classical surrogate. We conducted numerical experiments and found that these quantum models show no advantage in performance or trainability in the problems we analyze. This leaves only generalization capability as possible point of quantum advantage and emphasizes the dire need for a better understanding of inductive biases of quantum learning models." 964,NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds,"In order for artificial agents to perform useful tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification. This practice restricts novelties to well-framed images of distinct object types. We suggest that new benchmarks are needed to represent the challenges of navigating an open world. Our new NovelCraft dataset contains multi-modal episodic data of the images and symbolic world-states seen by an agent completing a pogo-stick assembly task within a video game world. In some episodes, we insert novel objects that can impact gameplay. Novelty can vary in size, position, and occlusion within complex scenes. We benchmark state-of-the-art novelty detection and generalized category discovery models with a focus on comprehensive evaluation. Results suggest an opportunity for future research: models aware of task-specific costs of different types of mistakes could more effectively detect and adapt to novelty in open worlds." 965,Walk the Random Walk: Learning to Discover and Reach Goals Without Supervision,"Learning a diverse set of skills by interacting with an environment without any external supervision is an important challenge. In particular, obtaining a goal-conditioned agent that can reach any given state is useful in many applications. We propose a novel method for training such a goal-conditioned agent without any external rewards or any domain knowledge. We use random walk to train a reachability network that predicts the similarity between two states. This reachability network is then used in building goal memory containing past observations that are diverse and well-balanced. Finally, we train a goal-conditioned policy network with goals sampled from the goal memory and reward it by the reachability network and the goal memory. All the components are kept updated throughout training as the agent discovers and learns new goals. We apply our method to a continuous control navigation and robotic manipulation tasks." 966,Self-Supervised Training with Autoencoders for Visual Anomaly Detection,"Deep convolutional autoencoders provide an effective tool for learning non-linear dimensionality reduction in an unsupervised way. Recently, they have been used for the task of anomaly detection in the visual domain. By optimising for the reconstruction error using anomaly-free examples, the common belief is that a trained network will have difficulties to reconstruct anomalous parts during the test phase. This is usually done by controlling the capacity of the network by either reducing the size of the bottleneck layer or enforcing sparsity constraints on its activations. However, neither of these techniques does explicitly penalise reconstruction of anomalous signals often resulting in a poor detection. We tackle this problem by adapting a self-supervised learning regime which allows to use discriminative information during training while regularising the model to focus on the data manifold by means of a modified reconstruction error resulting in an accurate detection. Unlike related approaches, the inference of the proposed method during training and prediction is very efficient processing the whole input image in one single step. Our experiments on the MVTec Anomaly Detection dataset demonstrate high recognition and localisation performance of the proposed method. On the texture-subset, in particular, our approach consistently outperforms a bunch of recent anomaly detection methods by a big margin." 967,Measurement and applications of position bias in a marketplace search engine,"Search engines intentionally influence user behavior by picking and ranking the list of results. Users engage with the highest results both because of their prominent placement and because they are typically the most relevant documents. Search engine ranking algorithms need to identify relevance while incorporating the influence of the search engine itself. This paper describes our efforts at Thumbtack to understand the impact of ranking, including the empirical results of a randomization program. In the context of a consumer marketplace we discuss practical details of model choice, experiment design, bias calculation, and machine learning model adaptation. We include a novel discussion of how ranking bias may not only affect labels, but also model features. The randomization program led to improved models, motivated internal scenario analysis, and enabled user-facing scenario tooling." 968,AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models,"The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a \textit{syntactic subspace}, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages." 969,Deep Reinforcement Learning-Assisted Federated Learning for Robust Short-term Utility Demand Forecasting in Electricity Wholesale Markets,"Short-term load forecasting (STLF) plays a significant role in the operation of electricity trading markets. Considering the growing concern of data privacy, federated learning (FL) is increasingly adopted to train STLF models for utility companies (UCs) in recent research. Inspiringly, in wholesale markets, as it is not realistic for power plants (PPs) to access UCs' data directly, FL is definitely a feasible solution of obtaining an accurate STLF model for PPs. However, due to FL's distributed nature and intense competition among UCs, defects increasingly occur and lead to poor performance of the STLF model, indicating that simply adopting FL is not enough. In this paper, we propose a DRL-assisted FL approach, DEfect-AwaRe federated soft actor-critic (DearFSAC), to robustly train an accurate STLF model for PPs to forecast precise short-term utility electricity demand. Firstly. we design a STLF model based on long short-term memory (LSTM) using just historical load data and time data. Furthermore, considering the uncertainty of defects occurrence, a deep reinforcement learning (DRL) algorithm is adopted to assist FL by alleviating model degradation caused by defects. In addition, for faster convergence of FL training, an auto-encoder is designed for both dimension reduction and quality evaluation of uploaded models. In the simulations, we validate our approach on real data of Helsinki's UCs in 2019. The results show that DearFSAC outperforms all the other approaches no matter if defects occur or not." 970,Reinforcement Learning under Partial Observability Guided by Learned Environment Models,"In practical applications, we can rarely assume full observability of a system's environment, despite such knowledge being important for determining a reactive control system's precise interaction with its environment. Therefore, we propose an approach for reinforcement learning (RL) in partially observable environments. While assuming that the environment behaves like a partially observable Markov decision process with known discrete actions, we assume no knowledge about its structure or transition probabilities. Our approach combines Q-learning with IoAlergia, a method for learning Markov decision processes (MDP). By learning MDP models of the environment from episodes of the RL agent, we enable RL in partially observable domains without explicit, additional memory to track previous interactions for dealing with ambiguities stemming from partial observability. We instead provide RL with additional observations in the form of abstract environment states by simulating new experiences on learned environment models to track the explored states. In our evaluation, we report on the validity of our approach and its promising performance in comparison to six state-of-the-art deep RL techniques with recurrent neural networks and fixed memory." 971,A Temporal Extension of Latent Dirichlet Allocation for Unsupervised Acoustic Unit Discovery,"Latent Dirichlet allocation (LDA) is widely used for unsupervised topic modelling on sets of documents. No temporal information is used in the model. However, there is often a relationship between the corresponding topics of consecutive tokens. In this paper, we present an extension to LDA that uses a Markov chain to model temporal information. We use this new model for acoustic unit discovery from speech. As input tokens, the model takes a discretised encoding of speech from a vector quantised (VQ) neural network with 512 codes. The goal is then to map these 512 VQ codes to 50 phone-like units (topics) in order to more closely resemble true phones. In contrast to the base LDA, which only considers how VQ codes co-occur within utterances (documents), the Markov chain LDA additionally captures how consecutive codes follow one another. This extension leads to an increase in cluster quality and phone segmentation results compared to the base LDA. Compared to a recent vector quantised neural network approach that also learns 50 units, the extended LDA model performs better in phone segmentation but worse in mutual information." 972,Efficient Transformer-based Speech Enhancement Using Long Frames and STFT Magnitudes,"The SepFormer architecture shows very good results in speech separation. Like other learned-encoder models, it uses short frames, as they have been shown to obtain better performance in these cases. This results in a large number of frames at the input, which is problematic; since the SepFormer is transformer-based, its computational complexity drastically increases with longer sequences. In this paper, we employ the SepFormer in a speech enhancement task and show that by replacing the learned-encoder features with a magnitude short-time Fourier transform (STFT) representation, we can use long frames without compromising perceptual enhancement performance. We obtained equivalent quality and intelligibility evaluation scores while reducing the number of operations by a factor of approximately 8 for a 10-second utterance." 973,Learning Agile Skills via Adversarial Imitation of Rough Partial Demonstrations,"Learning agile skills is one of the main challenges in robotics. To this end, reinforcement learning approaches have achieved impressive results. These methods require explicit task information in terms of a reward function or an expert that can be queried in simulation to provide a target control output, which limits their applicability. In this work, we propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations for successful skill acquirement where reference or expert demonstrations are not easily accessible. Moreover, we show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors. Finally, the obtained skills such as a backflip are tested on an agile quadruped robot called Solo 8 and present faithful replication of hand-held human demonstrations." 974,A generalised form for a homogeneous population of structures using an overlapping mixture of Gaussian processes,"Reductions in natural frequency are often used as a damage indicator for structural health monitoring (SHM) purposes. However, fluctuations in operational and environmental conditions, changes in boundary conditions, and slight differences among nominally-identical structures can also affect stiffness, producing frequency changes that mimic or mask damage. This variability has limited the practical implementation and generalisation of SHM technologies. The aim of this work is to investigate the effects of normal variation, and to identify methods that account for the resulting uncertainty. This work considers vibration data collected from a set of four healthy full-scale composite helicopter blades. The blades were nominally-identical but distinct, and slight differences in material properties and geometry among the blades caused significant variability in the frequency response functions, which presented as four separate trajectories across the input space. In this paper, an overlapping mixture of Gaussian processes (OMGP), was used to generate labels and quantify the uncertainty of normal-condition frequency response data from the helicopter blades. Using a population-based approach, the OMGP model provided a generic representation, called a form, to characterise the normal condition of the blades. Additional simulated data were then compared against the form and evaluated for damage using a marginal-likelihood novelty index." 975,EFFGAN: Ensembles of fine-tuned federated GANs,"Generative adversarial networks have proven to be a powerful tool for learning complex and high-dimensional data distributions, but issues such as mode collapse have been shown to make it difficult to train them. This is an even harder problem when the data is decentralized over several clients in a federated learning setup, as problems such as client drift and non-iid data make it hard for federated averaging to converge. In this work, we study the task of how to learn a data distribution when training data is heterogeneously decentralized over clients and cannot be shared. Our goal is to sample from this distribution centrally, while the data never leaves the clients. We show using standard benchmark image datasets that existing approaches fail in this setting, experiencing so-called client drift when the local number of epochs becomes to large. We thus propose a novel approach we call EFFGAN: Ensembles of fine-tuned federated GANs. Being an ensemble of local expert generators, EFFGAN is able to learn the data distribution over all clients and mitigate client drift. It is able to train with a large number of local epochs, making it more communication efficient than previous works." 976,Capacity Optimality of OAMP in Coded Large Unitarily Invariant Systems,"This paper investigates a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary fixed signal distribution, and forward error control (FEC) coding. Several area properties are established based on the state evolution of orthogonal approximate message passing (OAMP) in an un-coded LUIS. Under the assumptions that the state evolution for joint OAMP and FEC decoding is correct and the replica method is reliable, we analyze the achievable rate of OAMP. We prove that OAMP reaches the constrained capacity predicted by the replica method of the LUIS with an arbitrary signal distribution based on matched FEC coding. Meanwhile, we elaborate a constrained capacity-achieving coding principle for LUIS, based on which irregular low-density parity-check (LDPC) codes are optimized for binary signaling in the simulation results. We show that OAMP with the optimized codes has significant performance improvement over the un-optimized ones and the well-known Turbo linear MMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, constrained capacity-approaching bit error rate (BER) performances are observed under various channel conditions." 977,Sufficient Statistic Memory Approximate Message Passing,"Approximate message passing (AMP) type algorithms have been widely used in the signal reconstruction of certain large random linear systems. A key feature of the AMP-type algorithms is that their dynamics can be correctly described by state evolution. However, state evolution does not necessarily guarantee the convergence of iterative algorithms. To solve the convergence problem of AMP-type algorithms in principle, this paper proposes a memory AMP (MAMP) under a sufficient statistic condition, named sufficient statistic MAMP (SS-MAMP). We show that the covariance matrices of SS-MAMP are L-banded and convergent. Given an arbitrary MAMP, we can construct the SS-MAMP by damping, which not only ensures the convergence, but also preserves the orthogonality, i.e., its dynamics can be correctly described by state evolution." 978,Backward baselines: Is your model predicting the past?,"When does a machine learning model predict the future of individuals and when does it recite patterns that predate the individuals? In this work, we propose a distinction between these two pathways of prediction, supported by theoretical, empirical, and normative arguments. At the center of our proposal is a family of simple and efficient statistical tests, called backward baselines, that demonstrate if, and to which extent, a model recounts the past. Our statistical theory provides guidance for interpreting backward baselines, establishing equivalences between different baselines and familiar statistical concepts. Concretely, we derive a meaningful backward baseline for auditing a prediction system as a black box, given only background variables and the system's predictions. Empirically, we evaluate the framework on different prediction tasks derived from longitudinal panel surveys, demonstrating the ease and effectiveness of incorporating backward baselines into the practice of machine learning." 979,Adversarial Zoom Lens: A Novel Physical-World Attack to DNNs,"Although deep neural networks (DNNs) are known to be fragile, no one has studied the effects of zooming-in and zooming-out of images in the physical world on DNNs performance. In this paper, we demonstrate a novel physical adversarial attack technique called Adversarial Zoom Lens (AdvZL), which uses a zoom lens to zoom in and out of pictures of the physical world, fooling DNNs without changing the characteristics of the target object. The proposed method is so far the only adversarial attack technique that does not add physical adversarial perturbation attack DNNs. In a digital environment, we construct a data set based on AdvZL to verify the antagonism of equal-scale enlarged images to DNNs. In the physical environment, we manipulate the zoom lens to zoom in and out of the target object, and generate adversarial samples. The experimental results demonstrate the effectiveness of AdvZL in both digital and physical environments. We further analyze the antagonism of the proposed data set to the improved DNNs. On the other hand, we provide a guideline for defense against AdvZL by means of adversarial training. Finally, we look into the threat possibilities of the proposed approach to future autonomous driving and variant attack ideas similar to the proposed attack." 980,Conformer Based Elderly Speech Recognition System for Alzheimer's Disease Detection,"Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care to delay further progression. This paper presents the development of a state-of-the-art Conformer based speech recognition system built on the DementiaBank Pitt corpus for automatic AD detection. The baseline Conformer system trained with speed perturbation and SpecAugment based data augmentation is significantly improved by incorporating a set of purposefully designed modeling features, including neural architecture search based auto-configuration of domain-specific Conformer hyper-parameters in addition to parameter fine-tuning; fine-grained elderly speaker adaptation using learning hidden unit contributions (LHUC); and two-pass cross-system rescoring based combination with hybrid TDNN systems. An overall word error rate (WER) reduction of 13.6% absolute (34.8% relative) was obtained on the evaluation data of 48 elderly speakers. Using the final systems' recognition outputs to extract textual features, the best-published speech recognition based AD detection accuracy of 91.7% was obtained." 981,Epidemic Control Modeling using Parsimonious Models and Markov Decision Processes,"Many countries have experienced at least two waves of the COVID-19 pandemic. The second wave is far more dangerous as distinct strains appear more harmful to human health, but it stems from the complacency about the first wave. This paper introduces a parsimonious yet representative stochastic epidemic model that simulates the uncertain spread of the disease regardless of the latency and recovery time distributions. We also propose a Markov decision process to seek an optimal trade-off between the usage of the healthcare system and the economic costs of an epidemic. We apply the model to COVID-19 data from New Delhi, India and simulate the epidemic spread with different policy review times. The results show that the optimal policy acts swiftly to curb the epidemic in the first wave, thus avoiding the collapse of the healthcare system and the future costs of posterior outbreaks. An analysis of the recent collapse of the healthcare system of India during the second COVID-19 wave suggests that many lives could have been preserved if swift mitigation was promoted after the first wave." 982,Indecision Trees: Learning Argument-Based Reasoning under Quantified Uncertainty,"Using Machine Learning systems in the real world can often be problematic, with inexplicable black-box models, the assumed certainty of imperfect measurements, or providing a single classification instead of a probability distribution. This paper introduces Indecision Trees, a modification to Decision Trees which learn under uncertainty, can perform inference under uncertainty, provide a robust distribution over the possible labels, and can be disassembled into a set of logical arguments for use in other reasoning systems." 983,Optimizing Two-way Partial AUC with an End-to-end Framework,"The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge that a skillful classifier should simultaneously embrace a high TPR and a low FPR, we turn to study a more general variant called Two-way Partial AUC (TPAUC), where only the region with $\mathsf{TPR} \ge \alpha, \mathsf{FPR} \le \beta$ is included in the area. Moreover, recent work shows that the TPAUC is essentially inconsistent with the existing Partial AUC metrics where only the FPR range is restricted, opening a new problem to seek solutions to leverage high TPAUC. Motivated by this, we present the first trial in this paper to optimize this new metric. The critical challenge along this course lies in the difficulty of performing gradient-based optimization with end-to-end stochastic training, even with a proper choice of surrogate loss. To address this issue, we propose a generic framework to construct surrogate optimization problems, which supports efficient end-to-end training with deep learning. Moreover, our theoretical analyses show that: 1) the objective function of the surrogate problems will achieve an upper bound of the original problem under mild conditions, and 2) optimizing the surrogate problems leads to good generalization performance in terms of TPAUC with a high probability. Finally, empirical studies over several benchmark datasets speak to the efficacy of our framework." 984,"Pruned RNN-T for fast, memory-efficient ASR training","The RNN-Transducer (RNN-T) framework for speech recognition has been growing in popularity, particularly for deployed real-time ASR systems, because it combines high accuracy with naturally streaming recognition. One of the drawbacks of RNN-T is that its loss function is relatively slow to compute, and can use a lot of memory. Excessive GPU memory usage can make it impractical to use RNN-T loss in cases where the vocabulary size is large: for example, for Chinese character-based ASR. We introduce a method for faster and more memory-efficient RNN-T loss computation. We first obtain pruning bounds for the RNN-T recursion using a simple joiner network that is linear in the encoder and decoder embeddings; we can evaluate this without using much memory. We then use those pruning bounds to evaluate the full, non-linear joiner network." 985,Invariant Causal Mechanisms through Distribution Matching,"Learning representations that capture the underlying data generating process is a key problem for data efficient and robust use of neural networks. One key property for robustness which the learned representation should capture and which recently received a lot of attention is described by the notion of invariance. In this work we provide a causal perspective and new algorithm for learning invariant representations. Empirically we show that this algorithm works well on a diverse set of tasks and in particular we observe state-of-the-art performance on domain generalization, where we are able to significantly boost the score of existing models." 986,LBDMIDS: LSTM Based Deep Learning Model for Intrusion Detection Systems for IoT Networks,"In the recent years, we have witnessed a huge growth in the number of Internet of Things (IoT) and edge devices being used in our everyday activities. This demands the security of these devices from cyber attacks to be improved to protect its users. For years, Machine Learning (ML) techniques have been used to develop Network Intrusion Detection Systems (NIDS) with the aim of increasing their reliability/robustness. Among the earlier ML techniques DT performed well. In the recent years, Deep Learning (DL) techniques have been used in an attempt to build more reliable systems. In this paper, a Deep Learning enabled Long Short Term Memory (LSTM) Autoencoder and a 13-feature Deep Neural Network (DNN) models were developed which performed a lot better in terms of accuracy on UNSW-NB15 and Bot-IoT datsets. Hence we proposed LBDMIDS, where we developed NIDS models based on variants of LSTMs namely, stacked LSTM and bidirectional LSTM and validated their performance on the UNSW\_NB15 and BoT\-IoT datasets. This paper concludes that these variants in LBDMIDS outperform classic ML techniques and perform similarly to the DNN models that have been suggested in the past." 987,Waypoint Generation in Row-based Crops with Deep Learning and Contrastive Clustering,"The development of precision agriculture has gradually introduced automation in the agricultural process to support and rationalize all the activities related to field management. In particular, service robotics plays a predominant role in this evolution by deploying autonomous agents able to navigate in fields while executing different tasks without the need for human intervention, such as monitoring, spraying and harvesting. In this context, global path planning is the first necessary step for every robotic mission and ensures that the navigation is performed efficiently and with complete field coverage. In this paper, we propose a learning-based approach to tackle waypoint generation for planning a navigation path for row-based crops, starting from a top-view map of the region-of-interest. We present a novel methodology for waypoint clustering based on a contrastive loss, able to project the points to a separable latent space. The proposed deep neural network can simultaneously predict the waypoint position and cluster assignment with two specialized heads in a single forward pass. The extensive experimentation on simulated and real-world images demonstrates that the proposed approach effectively solves the waypoint generation problem for both straight and curved row-based crops, overcoming the limitations of previous state-of-the-art methodologies." 988,Improving decision-making via risk-based active learning: Probabilistic discriminative classifiers,"Gaining the ability to make informed decisions on operation and maintenance of structures provides motivation for the implementation of structural health monitoring (SHM) systems. However, descriptive labels for measured data corresponding to health-states of the monitored system are often unavailable. This issue limits the applicability of fully-supervised machine learning paradigms for the development of statistical classifiers to be used in decision-support in SHM systems. One approach to dealing with this problem is risk-based active learning. In such an approach, data-label querying is guided according to the expected value of perfect information for incipient data points. For risk-based active learning in SHM, the value of information is evaluated with respect to a maintenance decision process, and the data-label querying corresponds to the inspection of a structure to determine its health state. In the context of SHM, risk-based active learning has only been considered for generative classifiers. The current paper demonstrates several advantages of using an alternative type of classifier -- discriminative models. Using the Z24 Bridge dataset as a case study, it is shown that discriminative classifiers have benefits, in the context of SHM decision-support, including improved robustness to sampling bias, and reduced expenditure on structural inspections." 989,Prototype-Anchored Learning for Learning with Imperfect Annotations,"The success of deep neural networks greatly relies on the availability of large amounts of high-quality annotated data, which however are difficult or expensive to obtain. The resulting labels may be class imbalanced, noisy or human biased. It is challenging to learn unbiased classification models from imperfectly annotated datasets, on which we usually suffer from overfitting or underfitting. In this work, we thoroughly investigate the popular softmax loss and margin-based loss, and offer a feasible approach to tighten the generalization error bound by maximizing the minimal sample margin. We further derive the optimality condition for this purpose, which indicates how the class prototypes should be anchored. Motivated by theoretical analysis, we propose a simple yet effective method, namely prototype-anchored learning (PAL), which can be easily incorporated into various learning-based classification schemes to handle imperfect annotation. We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets." 990,Disentangling representations in Restricted Boltzmann Machines without adversaries,"A goal of unsupervised machine learning is to disentangle representations of complex high-dimensional data, allowing for interpreting the significant latent factors of variation in the data as well as for manipulating them to generate new data with desirable features. These methods often rely on an adversarial scheme, in which representations are tuned to avoid discriminators from being able to reconstruct specific data information (labels). We propose a simple, effective way of disentangling representations without any need to train adversarial discriminators, and apply our approach to Restricted Boltzmann Machines (RBM), one of the simplest representation-based generative models. Our approach relies on the introduction of adequate constraints on the weights during training, which allows us to concentrate information about labels on a small subset of latent variables. The effectiveness of the approach is illustrated on the MNIST dataset, the two-dimensional Ising model, and taxonomy of protein families. In addition, we show how our framework allows for computing the cost, in terms of log-likelihood of the data, associated to the disentanglement of their representations." 991,Learning Towards the Largest Margins,"One of the main challenges for feature representation in deep learning-based classification is the design of appropriate loss functions that exhibit strong discriminative power. The classical softmax loss does not explicitly encourage discriminative learning of features. A popular direction of research is to incorporate margins in well-established losses in order to enforce extra intra-class compactness and inter-class separability, which, however, were developed through heuristic means, as opposed to rigorous mathematical principles. In this work, we attempt to address this limitation by formulating the principled optimization objective as learning towards the largest margins. Specifically, we firstly define the class margin as the measure of inter-class separability, and the sample margin as the measure of intra-class compactness. Accordingly, to encourage discriminative representation of features, the loss function should promote the largest possible margins for both classes and samples. Furthermore, we derive a generalized margin softmax loss to draw general conclusions for the existing margin-based losses. Not only does this principled framework offer new perspectives to understand and interpret existing margin-based losses, but it also provides new insights that can guide the design of new tools, including sample margin regularization and largest margin softmax loss for the class-balanced case, and zero-centroid regularization for the class-imbalanced case. Experimental results demonstrate the effectiveness of our strategy on a variety of tasks, including visual classification, imbalanced classification, person re-identification, and face verification." 992,Optimization paper production through digitalization by developing an assistance system for machine operators including quality forecast: a concept,"Nowadays cross-industry ranging challenges include the reduction of greenhouse gas emission and enabling a circular economy. However, the production of paper from waste paper is still a highly resource intensive task, especially in terms of energy consumption. While paper machines produce a lot of data, we have identified a lack of utilization of it and implement a concept using an operator assistance system and state-of-the-art machine learning techniques, e.g., classification, forecasting and alarm flood handling algorithms, to support daily operator tasks. Our main objective is to provide situation-specific knowledge to machine operators utilizing available data. We expect this will result in better adjusted parameters and therefore a lower footprint of the paper machines." 993,Human-in-the-Loop Large-Scale Predictive Maintenance of Workstations,"Predictive maintenance (PdM) is the task of scheduling maintenance operations based on a statistical analysis of the system's condition. We propose a human-in-the-loop PdM approach in which a machine learning system predicts future problems in sets of workstations (computers, laptops, and servers). Our system interacts with domain experts to improve predictions and elicit their knowledge. In our approach, domain experts are included in the loop not only as providers of correct labels, as in traditional active learning, but as a source of explicit decision rule feedback. The system is automated and designed to be easily extended to novel domains, such as maintaining workstations of several organizations. In addition, we develop a simulator for reproducible experiments in a controlled environment and deploy the system in a large-scale case of real-life workstations PdM with thousands of workstations for dozens of companies." 994,Few-Shot Non-Parametric Learning with Deep Latent Variable Model,"Most real-world problems that machine learning algorithms are expected to solve face the situation with 1) unknown data distribution; 2) little domain-specific knowledge; and 3) datasets with limited annotation. We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV), a learning framework for any dataset with abundant unlabeled data but very few labeled ones. By only training a generative model in an unsupervised way, the framework utilizes the data distribution to build a compressor. Using a compressor-based distance metric derived from Kolmogorov complexity, together with few labeled data, NPC-LV classifies without further training. We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime and even outperform semi-supervised learning methods on CIFAR-10. We demonstrate how and when negative evidence lowerbound (nELBO) can be used as an approximate compressed length for classification. By revealing the correlation between compression rate and classification accuracy, we illustrate that under NPC-LV, the improvement of generative models can enhance downstream classification accuracy." 995,LED: Latent Variable-based Estimation of Density,"Modern generative models are roughly divided into two main categories: (1) models that can produce high-quality random samples, but cannot estimate the exact density of new data points and (2) those that provide exact density estimation, at the expense of sample quality and compactness of the latent space. In this work we propose LED, a new generative model closely related to GANs, that allows not only efficient sampling but also efficient density estimation. By maximizing log-likelihood on the output of the discriminator, we arrive at an alternative adversarial optimization objective that encourages generated data diversity. This formulation provides insights into the relationships between several popular generative models. Additionally, we construct a flow-based generator that can compute exact probabilities for generated samples, while allowing low-dimensional latent variables as input. Our experimental results, on various datasets, show that our density estimator produces accurate estimates, while retaining good quality in the generated samples." 996,A Geometric Method for Improved Uncertainty Estimation in Real-time,"Machine learning classifiers are probabilistic in nature, and thus inevitably involve uncertainty. Predicting the probability of a specific input to be correct is called uncertainty (or confidence) estimation and is crucial for risk management. Post-hoc model calibrations can improve models' uncertainty estimations without the need for retraining, and without changing the model. Our work puts forward a geometric-based approach for uncertainty estimation. Roughly speaking, we use the geometric distance of the current input from the existing training inputs as a signal for estimating uncertainty and then calibrate that signal (instead of the model's estimation) using standard post-hoc calibration techniques. We show that our method yields better uncertainty estimations than recently proposed approaches by extensively evaluating multiple datasets and models. In addition, we also demonstrate the possibility of performing our approach in near real-time applications. Our code is available at our Github https://github.com/NoSleepDeveloper/Geometric-Calibrator." 997,Evaluating Generative Patent Language Models,"This research aims to build generative language models in the patent domain and to evaluate the models from a human-centric perspective. The evaluation metric is to calculate the ratio of keystrokes that can be saved for a user in an autocomplete context based on the prediction of the generative models. The performance of models in different sizes can also be evaluated in such a metric by measuring a number of newly granted patents. On the basis of the metric, it is found that the largest model is not necessarily the best. Several models are pre-trained from scratch with patent corpus and are released. The experiments in this manuscript focus on patent claims, but the ideas and implementation can be applied to other parts of a patent document. Furthermore, this research is motivated to measure how close the pre-trained language model can generate a newly granted patent claim. Or, conversely, the task is to measure the probabilities for the model to generate each token text given the newly granted patent claim. In addition, this manuscript raises several legal implications on patent law for potential interdisciplinary research in the future. In particular, can the metric based on model prediction be a metric to measure the nonobviousness requirement in the patent law?" 998,A Manifold-based Airfoil Geometric-feature Extraction and Discrepant Data Fusion Learning Method,"Geometrical shape of airfoils, together with the corresponding flight conditions, are crucial factors for aerodynamic performances prediction. The obtained airfoils geometrical features in most existing approaches (e.g., geometrical parameters extraction, polynomial description and deep learning) are in Euclidean space. State-of-the-art studies showed that curves or surfaces of an airfoil formed a manifold in Riemannian space. Therefore, the features extracted by existing methods are not sufficient to reflect the geometric-features of airfoils. Meanwhile, flight conditions and geometric features are greatly discrepant with different types, the relevant knowledge of the influence of these two factors that on final aerodynamic performances predictions must be evaluated and learned to improve prediction accuracy. Motivated by the advantages of manifold theory and multi-task learning, we propose a manifold-based airfoil geometric-feature extraction and discrepant data fusion learning method (MDF) to extract geometric-features of airfoils in Riemannian space (we call them manifold-features) and further fuse the manifold-features with flight conditions to predict aerodynamic performances. Experimental results show that our method could extract geometric-features of airfoils more accurately compared with existing methods, that the average MSE of re-built airfoils is reduced by 56.33%, and while keeping the same predicted accuracy level of CL, the MSE of CD predicted by MDF is further reduced by 35.37%." 999,Rethinking Collaborative Metric Learning: Toward an Efficient Alternative without Negative Sampling,"The recently proposed Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS) owing to its simplicity and effectiveness. Typically, the existing literature of CML depends largely on the \textit{negative sampling} strategy to alleviate the time-consuming burden of pairwise computation. However, in this work, by taking a theoretical analysis, we find that negative sampling would lead to a biased estimation of the generalization error. Specifically, we show that the sampling-based CML would introduce a bias term in the generalization bound, which is quantified by the per-user \textit{Total Variance} (TV) between the distribution induced by negative sampling and the ground truth distribution. This suggests that optimizing the sampling-based CML loss function does not ensure a small generalization error even with sufficiently large training data. Moreover, we show that the bias term will vanish without the negative sampling strategy. Motivated by this, we propose an efficient alternative without negative sampling for CML named \textit{Sampling-Free Collaborative Metric Learning} (SFCML), to get rid of the sampling bias in a practical sense. Finally, comprehensive experiments over seven benchmark datasets speak to the superiority of the proposed algorithm." 1000,Stochastic Langevin Differential Inclusions with Applications to Machine Learning,"Stochastic differential equations of Langevin-diffusion form have received significant recent, thanks to their foundational role in both Bayesian sampling algorithms and optimization in machine learning. In the latter, they serve as a conceptual model of the stochastic gradient flow in training over-parametrized models. However, the literature typically assumes smoothness of the potential, whose gradient is the drift term. Nevertheless, there are many problems, for which the potential function is not continuously differentiable, and hence the drift is not Lipschitz-continuous everywhere. This is exemplified by robust losses and Rectified Linear Units in regression problems. In this paper, we show some foundational results regarding the flow and asymptotic properties of Langevin-type Stochastic Differential Inclusions under assumptions appropriate to the machine-learning settings. In particular, we show strong existence of the solution, as well as asymptotic minimization of the canonical Free Energy Functional." 1001,Explanatory causal effects for model agnostic explanations,"This paper studies the problem of estimating the contributions of features to the prediction of a specific instance by a machine learning model and the overall contribution of a feature to the model. The causal effect of a feature (variable) on the predicted outcome reflects the contribution of the feature to a prediction very well. A challenge is that most existing causal effects cannot be estimated from data without a known causal graph. In this paper, we define an explanatory causal effect based on a hypothetical ideal experiment. The definition brings several benefits to model agnostic explanations. First, explanations are transparent and have causal meanings. Second, the explanatory causal effect estimation can be data driven. Third, the causal effects provide both a local explanation for a specific prediction and a global explanation showing the overall importance of a feature in a predictive model. We further propose a method using individual and combined variables based on explanatory causal effects for explanations. We show the definition and the method work with experiments on some real-world data sets." 1002,Low-Rank Mirror-Prox for Nonsmooth and Low-Rank Matrix Optimization Problems,"Low-rank and nonsmooth matrix optimization problems capture many fundamental tasks in statistics and machine learning. While significant progress has been made in recent years in developing efficient methods for \textit{smooth} low-rank optimization problems that avoid maintaining high-rank matrices and computing expensive high-rank SVDs, advances for nonsmooth problems have been slow paced. In this paper we consider standard convex relaxations for such problems. Mainly, we prove that under a \textit{strict complementarity} condition and under the relatively mild assumption that the nonsmooth objective can be written as a maximum of smooth functions, approximated variants of two popular \textit{mirror-prox} methods: the Euclidean \textit{extragradient method} and mirror-prox with \textit{matrix exponentiated gradient updates}, when initialized with a ""warm-start"", converge to an optimal solution with rate $O(1/t)$, while requiring only two \textit{low-rank} SVDs per iteration. Moreover, for the extragradient method we also consider relaxed versions of strict complementarity which yield a trade-off between the rank of the SVDs required and the radius of the ball in which we need to initialize the method. We support our theoretical results with empirical experiments on several nonsmooth low-rank matrix recovery tasks, demonstrating both the plausibility of the strict complementarity assumption, and the efficient convergence of our proposed low-rank mirror-prox variants." 1003,Utilizing Expert Features for Contrastive Learning of Time-Series Representations,"We present an approach that incorporates expert knowledge for time-series representation learning. Our method employs expert features to replace the commonly used data transformations in previous contrastive learning approaches. We do this since time-series data frequently stems from the industrial or medical field where expert features are often available from domain experts, while transformations are generally elusive for time-series data. We start by proposing two properties that useful time-series representations should fulfill and show that current representation learning approaches do not ensure these properties. We therefore devise ExpCLR, a novel contrastive learning approach built on an objective that utilizes expert features to encourage both properties for the learned representation. Finally, we demonstrate on three real-world time-series datasets that ExpCLR surpasses several state-of-the-art methods for both unsupervised and semi-supervised representation learning." 1004,Quantum Approximation of Normalized Schatten Norms and Applications to Learning,"Efficient measures to determine similarity of quantum states, such as the fidelity metric, have been widely studied. In this paper, we address the problem of defining a similarity measure for quantum operations that can be \textit{efficiently estimated}. Given two quantum operations, $U_1$ and $U_2$, represented in their circuit forms, we first develop a quantum sampling circuit to estimate the normalized Schatten 2-norm of their difference ($\| U_1-U_2 \|_{S_2}$) with precision $\epsilon$, using only one clean qubit and one classical random variable. We prove a Poly$(\frac{1}{\epsilon})$ upper bound on the sample complexity, which is independent of the size of the quantum system. We then show that such a similarity metric is directly related to a functional definition of similarity of unitary operations using the conventional fidelity metric of quantum states ($F$): If $\| U_1-U_2 \|_{S_2}$ is sufficiently small (e.g. $ \leq \frac{\epsilon}{1+\sqrt{2(1/\delta - 1)}}$) then the fidelity of states obtained by processing the same randomly and uniformly picked pure state, $|\psi \rangle$, is as high as needed ($F({U}_1 |\psi \rangle, {U}_2 |\psi \rangle)\geq 1-\epsilon$) with probability exceeding $1-\delta$. We provide example applications of this efficient similarity metric estimation framework to quantum circuit learning tasks, such as finding the square root of a given unitary operation." 1005,CGAR: Critic Guided Action Redistribution in Reinforcement Leaning,"Training a game-playing reinforcement learning agent requires multiple interactions with the environment. Ignorant random exploration may cause a waste of time and resources. It's essential to alleviate such waste. As discussed in this paper, under the settings of the off-policy actor critic algorithms, we demonstrate that the critic can bring more expected discounted rewards than or at least equal to the actor. Thus, the Q value predicted by the critic is a better signal to redistribute the action originally sampled from the policy distribution predicted by the actor. This paper introduces the novel Critic Guided Action Redistribution (CGAR) algorithm and tests it on the OpenAI MuJoCo tasks. The experimental results demonstrate that our method improves the sample efficiency and achieves state-of-the-art performance. Our code can be found at https://github.com/tairanhuang/CGAR." 1006,Gradual Domain Adaptation via Normalizing Flows,"Conventional domain adaptation methods do not work well when a large gap exists between the source and the target domain. Gradual domain adaptation is one of the approaches to address the problem by leveraging the intermediate domain, which gradually shifts from the source to the target domain. The previous work assumed that the number of the intermediate domains is large and the distance of the adjacent domains is small; hence, the gradual domain adaptation algorithm by self-training with unlabeled datasets was applicable. In practice, however, gradual self-training will fail because the number of the intermediate domains is limited, and the distance of the adjacent domains is large. We propose using normalizing flows to mitigate this problem while maintaining the framework of unsupervised domain adaptation. We generate pseudo intermediate domains from normalizing flows and then use them for gradual domain adaptation. We evaluate our method by experiments with real-world datasets and confirm that our proposed method mitigates the above explained problem and improves the classification performance." 1007,Nearly Minimax Optimal Reinforcement Learning with Linear Function Approximation,"We study reinforcement learning with linear function approximation where the transition probability and reward functions are linear with respect to a feature mapping $\boldsymbol{\phi}(s,a)$. Specifically, we consider the episodic inhomogeneous linear Markov Decision Process (MDP), and propose a novel computation-efficient algorithm, LSVI-UCB$^+$, which achieves an $\widetilde{O}(Hd\sqrt{T})$ regret bound where $H$ is the episode length, $d$ is the feature dimension, and $T$ is the number of steps. LSVI-UCB$^+$ builds on weighted ridge regression and upper confidence value iteration with a Bernstein-type exploration bonus. Our statistical results are obtained with novel analytical tools, including a new Bernstein self-normalized bound with conservatism on elliptical potentials, and refined analysis of the correction term. To the best of our knowledge, this is the first minimax optimal algorithm for linear MDPs up to logarithmic factors, which closes the $\sqrt{Hd}$ gap between the best known upper bound of $\widetilde{O}(\sqrt{H^3d^3T})$ in \cite{jin2020provably} and lower bound of $\Omega(Hd\sqrt{T})$ for linear MDPs." 1008,On Pre-Training for Federated Learning,"In most of the literature on federated learning (FL), neural networks are initialized with random weights. In this paper, we present an empirical study on the effect of pre-training on FL. Specifically, we aim to investigate if pre-training can alleviate the drastic accuracy drop when clients' decentralized data are non-IID. We focus on FedAvg, the fundamental and most widely used FL algorithm. We found that pre-training does largely close the gap between FedAvg and centralized learning under non-IID data, but this does not come from alleviating the well-known model drifting problem in FedAvg's local training. Instead, how pre-training helps FedAvg is by making FedAvg's global aggregation more stable. When pre-training using real data is not feasible for FL, we propose a novel approach to pre-train with synthetic data. On various image datasets (including one for segmentation), our approach with synthetic pre-training leads to a notable gain, essentially a critical step toward scaling up federated learning for real-world applications." 1009,Patient Aware Active Learning for Fine-Grained OCT Classification,"This paper considers making active learning more sensible from a medical perspective. In practice, a disease manifests itself in different forms across patient cohorts. Existing frameworks have primarily used mathematical constructs to engineer uncertainty or diversity-based methods for selecting the most informative samples. However, such algorithms do not present themselves naturally as usable by the medical community and healthcare providers. Thus, their deployment in clinical settings is very limited, if any. For this purpose, we propose a framework that incorporates clinical insights into the sample selection process of active learning that can be incorporated with existing algorithms. Our medically interpretable active learning framework captures diverse disease manifestations from patients to improve generalization performance of OCT classification. After comprehensive experiments, we report that incorporating patient insights within the active learning framework yields performance that matches or surpasses five commonly used paradigms on two architectures with a dataset having imbalanced patient distributions. Also, the framework integrates within existing medical practices and thus can be used by healthcare providers." 1010,A Framework for Understanding Model Extraction Attack and Defense,"The privacy of machine learning models has become a significant concern in many emerging Machine-Learning-as-a-Service applications, where prediction services based on well-trained models are offered to users via pay-per-query. The lack of a defense mechanism can impose a high risk on the privacy of the server's model since an adversary could efficiently steal the model by querying only a few `good' data points. The interplay between a server's defense and an adversary's attack inevitably leads to an arms race dilemma, as commonly seen in Adversarial Machine Learning. To study the fundamental tradeoffs between model utility from a benign user's view and privacy from an adversary's view, we develop new metrics to quantify such tradeoffs, analyze their theoretical properties, and develop an optimization problem to understand the optimal adversarial attack and defense strategies. The developed concepts and theory match the empirical findings on the `equilibrium' between privacy and utility. In terms of optimization, the key ingredient that enables our results is a unified representation of the attack-defense problem as a min-max bi-level problem. The developed results will be demonstrated by examples and experiments." 1011,RetroGraph: Retrosynthetic Planning with Graph Search,"Retrosynthetic planning, which aims to find a reaction pathway to synthesize a target molecule, plays an important role in chemistry and drug discovery. This task is usually modeled as a search problem. Recently, data-driven methods have attracted many research interests and shown promising results for retrosynthetic planning. We observe that the same intermediate molecules are visited many times in the searching process, and they are usually independently treated in previous tree-based methods (e.g., AND-OR tree search, Monte Carlo tree search). Such redundancies make the search process inefficient. We propose a graph-based search policy that eliminates the redundant explorations of any intermediate molecules. As searching over a graph is more complicated than over a tree, we further adopt a graph neural network to guide the search over graphs. Meanwhile, our method can search a batch of targets together in the graph and remove the inter-target duplication in the tree-based search methods. Experimental results on two datasets demonstrate the effectiveness of our method. Especially on the widely used USPTO benchmark, we improve the search success rate to 99.47%, advancing previous state-of-the-art performance for 2.6 points." 1012,Predicting the Geoeffectiveness of CMEs Using Machine Learning,"Coronal mass ejections (CMEs) are the most geoeffective space weather phenomena, being associated with large geomagnetic storms, having the potential to cause disturbances to telecommunication, satellite network disruptions, power grid damages and failures. Thus, considering these storms' potential effects on human activities, accurate forecasts of the geoeffectiveness of CMEs are paramount. This work focuses on experimenting with different machine learning methods trained on white-light coronagraph datasets of close to sun CMEs, to estimate whether such a newly erupting ejection has the potential to induce geomagnetic activity. We developed binary classification models using logistic regression, K-Nearest Neighbors, Support Vector Machines, feed forward artificial neural networks, as well as ensemble models. At this time, we limited our forecast to exclusively use solar onset parameters, to ensure extended warning times. We discuss the main challenges of this task, namely the extreme imbalance between the number of geoeffective and ineffective events in our dataset, along with their numerous similarities and the limited number of available variables. We show that even in such conditions, adequate hit rates can be achieved with these models." 1013,Modular Conformal Calibration,"Uncertainty estimates must be calibrated (i.e., accurate) and sharp (i.e., informative) in order to be useful. This has motivated a variety of methods for recalibration, which use held-out data to turn an uncalibrated model into a calibrated model. However, the applicability of existing methods is limited due to their assumption that the original model is also a probabilistic model. We introduce a versatile class of algorithms for recalibration in regression that we call Modular Conformal Calibration (MCC). This framework allows one to transform any regression model into a calibrated probabilistic model. The modular design of MCC allows us to make simple adjustments to existing algorithms that enable well-behaved distribution predictions. We also provide finite-sample calibration guarantees for MCC algorithms. Our framework recovers isotonic recalibration, conformal calibration, and conformal interval prediction, implying that our theoretical results apply to those methods as well. Finally, we conduct an empirical study of MCC on 17 regression datasets. Our results show that new algorithms designed in our framework achieve near-perfect calibration and improve sharpness relative to existing methods." 1014,InfoAT: Improving Adversarial Training Using the Information Bottleneck Principle,"Adversarial training (AT) has shown excellent high performance in defending against adversarial examples. Recent studies demonstrate that examples are not equally important to the final robustness of models during AT, that is, the so-called hard examples that can be attacked easily exhibit more influence than robust examples on the final robustness. Therefore, guaranteeing the robustness of hard examples is crucial for improving the final robustness of the model. However, defining effective heuristics to search for hard examples is still difficult. In this article, inspired by the information bottleneck (IB) principle, we uncover that an example with high mutual information of the input and its associated latent representation is more likely to be attacked. Based on this observation, we propose a novel and effective adversarial training method (InfoAT). InfoAT is encouraged to find examples with high mutual information and exploit them efficiently to improve the final robustness of models. Experimental results show that InfoAT achieves the best robustness among different datasets and models in comparison with several state-of-the-art methods." 1015,Content Popularity Prediction Based on Quantized Federated Bayesian Learning in Fog Radio Access Networks,"In this paper, we investigate the content popularity prediction problem in cache-enabled fog radio access networks (F-RANs). In order to predict the content popularity with high accuracy and low complexity, we propose a Gaussian process based regressor to model the content request pattern. Firstly, the relationship between content features and popularity is captured by our proposed model. Then, we utilize Bayesian learning to train the model parameters, which is robust to overfitting. However, Bayesian methods are usually unable to find a closed-form expression of the posterior distribution. To tackle this issue, we apply a stochastic variance reduced gradient Hamiltonian Monte Carlo (SVRG-HMC) method to approximate the posterior distribution. To utilize the computing resources of other fog access points (F-APs) and to reduce the communications overhead, we propose a quantized federated learning (FL) framework combining with Bayesian learning. The quantized federated Bayesian learning framework allows each F-AP to send gradients to the cloud server after quantizing and encoding. It can achieve a tradeoff between prediction accuracy and communications overhead effectively. Simulation results show that the performance of our proposed policy outperforms the existing policies." 1016,pyKT: A Python Library to Benchmark Deep Learning based Knowledge Tracing Models,"Knowledge tracing (KT) is the task of using students' historical learning interaction data to model their knowledge mastery over time so as to make predictions on their future interaction performance. Recently, remarkable progress has been made of using various deep learning techniques to solve the KT problem. However, the success behind deep learning based knowledge tracing (DLKT) approaches is still left somewhat mysterious and proper measurement and analysis of these DLKT approaches remain a challenge. First, data preprocessing procedures in existing works are often private and/or custom, which limits experimental standardization. Furthermore, existing DLKT studies often differ in terms of the evaluation protocol and are far away real-world educational contexts. To address these problems, we introduce a comprehensive python based benchmark platform, \textsc{pyKT}, to guarantee valid comparisons across DLKT methods via thorough evaluations. The \textsc{pyKT} library consists of a standardized set of integrated data preprocessing procedures on 7 popular datasets across different domains, and 10 frequently compared DLKT model implementations for transparent experiments. Results from our fine-grained and rigorous empirical KT studies yield a set of observations and suggestions for effective DLKT, e.g., wrong evaluation setting may cause label leakage that generally leads to performance inflation; and the improvement of many DLKT approaches is minimal compared to the very first DLKT model proposed by Piech et al. \cite{piech2015deep}. We have open sourced \textsc{pyKT} and our experimental results at \url{https://pykt.org/}. We welcome contributions from other research groups and practitioners." 1017,Efficient Adaptive Federated Optimization of Federated Learning for IoT,"The proliferation of the Internet of Things (IoT) and widespread use of devices with sensing, computing, and communication capabilities have motivated intelligent applications empowered by artificial intelligence. The classical artificial intelligence algorithms require centralized data collection and processing which are challenging in realistic intelligent IoT applications due to growing data privacy concerns and distributed datasets. Federated Learning (FL) has emerged as a distributed privacy-preserving learning framework that enables IoT devices to train global model through sharing model parameters. However, inefficiency due to frequent parameters transmissions significantly reduce FL performance. Existing acceleration algorithms consist of two main type including local update considering trade-offs between communication and computation and parameter compression considering trade-offs between communication and precision. Jointly considering these two trade-offs and adaptively balancing their impacts on convergence have remained unresolved. To solve the problem, this paper proposes a novel efficient adaptive federated optimization (EAFO) algorithm to improve efficiency of FL, which minimizes the learning error via jointly considering two variables including local update and parameter compression and enables FL to adaptively adjust the two variables and balance trade-offs among computation, communication and precision. The experiment results illustrate that comparing with state-of-the-art algorithms, the proposed EAFO can achieve higher accuracies faster." 1018,Context matters for fairness -- a case study on the effect of spatial distribution shifts,"With the ever growing involvement of data-driven AI-based decision making technologies in our daily social lives, the fairness of these systems is becoming a crucial phenomenon. However, an important and often challenging aspect in utilizing such systems is to distinguish validity for the range of their application especially under distribution shifts, i.e., when a model is deployed on data with different distribution than the training set. In this paper, we present a case study on the newly released American Census datasets, a reconstruction of the popular Adult dataset, to illustrate the importance of context for fairness and show how remarkably can spatial distribution shifts affect predictive- and fairness-related performance of a model. The problem persists for fairness-aware learning models with the effects of context-specific fairness interventions differing across the states and different population groups. Our study suggests that robustness to distribution shifts is necessary before deploying a model to another context." 1019,Shilling Black-box Recommender Systems by Learning to Generate Fake User Profiles,"Due to the pivotal role of Recommender Systems (RS) in guiding customers towards the purchase, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study Shilling Attack where an adversarial party injects a number of fake user profiles for improper purposes. Conventional Shilling Attack approaches lack attack transferability (i.e., attacks are not effective on some victim RS models) and/or attack invisibility (i.e., injected profiles can be easily detected). To overcome these issues, we present Leg-UP, a novel attack model based on the Generative Adversarial Network. Leg-UP learns user behavior patterns from real users in the sampled ``templates'' and constructs fake user profiles. To simulate real users, the generator in Leg-UP directly outputs discrete ratings. To enhance attack transferability, the parameters of the generator are optimized by maximizing the attack performance on a surrogate RS model. To improve attack invisibility, Leg-UP adopts a discriminator to guide the generator to generate undetectable fake user profiles. Experiments on benchmarks have shown that Leg-UP exceeds state-of-the-art Shilling Attack methods on a wide range of victim RS models. The source code of our work is available at: https://github.com/XMUDM/ShillingAttack." 1020,Recursive Reinforcement Learning,"Recursion is the fundamental paradigm to finitely describe potentially infinite objects. As state-of-the-art reinforcement learning (RL) algorithms cannot directly reason about recursion, they must rely on the practitioner's ingenuity in designing a suitable ""flat"" representation of the environment. The resulting manual feature constructions and approximations are cumbersome and error-prone; their lack of transparency hampers scalability. To overcome these challenges, we develop RL algorithms capable of computing optimal policies in environments described as a collection of Markov decision processes (MDPs) that can recursively invoke one another. Each constituent MDP is characterized by several entry and exit points that correspond to input and output values of these invocations. These recursive MDPs (or RMDPs) are expressively equivalent to probabilistic pushdown systems (with call-stack playing the role of the pushdown stack), and can model probabilistic programs with recursive procedural calls. We introduce Recursive Q-learning -- a model-free RL algorithm for RMDPs -- and prove that it converges for finite, single-exit and deterministic multi-exit RMDPs under mild assumptions." 1021,On a class of geodesically convex optimization problems solved via Euclidean MM methods,"We study geodesically convex (g-convex) problems that can be written as a difference of Euclidean convex functions. This structure arises in several optimization problems in statistics and machine learning, e.g., for matrix scaling, M-estimators for covariances, and Brascamp-Lieb inequalities. Our work offers efficient algorithms that on the one hand exploit g-convexity to ensure global optimality along with guarantees on iteration complexity. On the other hand, the split structure permits us to develop Euclidean Majorization-Minorization algorithms that help us bypass the need to compute expensive Riemannian operations such as exponential maps and parallel transport. We illustrate our results by specializing them to a few concrete optimization problems that have been previously studied in the machine learning literature. Ultimately, we hope our work helps motivate the broader search for mixed Euclidean-Riemannian optimization algorithms." 1022,Functional Nonlinear Learning,"Using representations of functional data can be more convenient and beneficial in subsequent statistical models than direct observations. These representations, in a lower-dimensional space, extract and compress information from individual curves. The existing representation learning approaches in functional data analysis usually use linear mapping in parallel to those from multivariate analysis, e.g., functional principal component analysis (FPCA). However, functions, as infinite-dimensional objects, sometimes have nonlinear structures that cannot be uncovered by linear mapping. Linear methods will be more overwhelmed given multivariate functional data. For that matter, this paper proposes a functional nonlinear learning (FunNoL) method to sufficiently represent multivariate functional data in a lower-dimensional feature space. Furthermore, we merge a classification model for enriching the ability of representations in predicting curve labels. Hence, representations from FunNoL can be used for both curve reconstruction and classification. Additionally, we have endowed the proposed model with the ability to address the missing observation problem as well as to further denoise observations. The resulting representations are robust to observations that are locally disturbed by uncontrollable random noises. We apply the proposed FunNoL method to several real data sets and show that FunNoL can achieve better classifications than FPCA, especially in the multivariate functional data setting. Simulation studies have shown that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity." 1023,Input-agnostic Certified Group Fairness via Gaussian Parameter Smoothing,"Only recently, researchers attempt to provide classification algorithms with provable group fairness guarantees. Most of these algorithms suffer from harassment caused by the requirement that the training and deployment data follow the same distribution. This paper proposes an input-agnostic certified group fairness algorithm, FairSmooth, for improving the fairness of classification models while maintaining the remarkable prediction accuracy. A Gaussian parameter smoothing method is developed to transform base classifiers into their smooth versions. An optimal individual smooth classifier is learnt for each group with only the data regarding the group and an overall smooth classifier for all groups is generated by averaging the parameters of all the individual smooth ones. By leveraging the theory of nonlinear functional analysis, the smooth classifiers are reformulated as output functions of a Nemytskii operator. Theoretical analysis is conducted to derive that the Nemytskii operator is smooth and induces a Frechet differentiable smooth manifold. We theoretically demonstrate that the smooth manifold has a global Lipschitz constant that is independent of the domain of the input data, which derives the input-agnostic certified group fairness." 1024,Consistency of Neural Networks with Regularization,"Neural networks have attracted a lot of attention due to its success in applications such as natural language processing and computer vision. For large scale data, due to the tremendous number of parameters in neural networks, overfitting is an issue in training neural networks. To avoid overfitting, one common approach is to penalize the parameters especially the weights in neural networks. Although neural networks has demonstrated its advantages in many applications, the theoretical foundation of penalized neural networks has not been well-established. Our goal of this paper is to propose the general framework of neural networks with regularization and prove its consistency. Under certain conditions, the estimated neural network will converge to true underlying function as the sample size increases. The method of sieves and the theory on minimal neural networks are used to overcome the issue of unidentifiability for the parameters. Two types of activation functions: hyperbolic tangent function(Tanh) and rectified linear unit(ReLU) have been taken into consideration. Simulations have been conducted to verify the validation of theorem of consistency." 1025,FINGER: Fast Inference for Graph-based Approximate Nearest Neighbor Search,"Approximate K-Nearest Neighbor Search (AKNNS) has now become ubiquitous in modern applications, for example, as a fast search procedure with two tower deep learning models. Graph-based methods for AKNNS in particular have received great attention due to their superior performance. These methods rely on greedy graph search to traverse the data points as embedding vectors in a database. Under this greedy search scheme, we make a key observation: many distance computations do not influence search updates so these computations can be approximated without hurting performance. As a result, we propose FINGER, a fast inference method to achieve efficient graph search. FINGER approximates the distance function by estimating angles between neighboring residual vectors with low-rank bases and distribution matching. The approximated distance can be used to bypass unnecessary computations, which leads to faster searches. Empirically, accelerating a popular graph-based method named HNSW by FINGER is shown to outperform existing graph-based methods by 20%-60% across different benchmark datasets." 1026,The ArtBench Dataset: Benchmarking Generative Models with Artworks,"We introduce ArtBench-10, the first class-balanced, high-quality, cleanly annotated, and standardized dataset for benchmarking artwork generation. It comprises 60,000 images of artwork from 10 distinctive artistic styles, with 5,000 training images and 1,000 testing images per style. ArtBench-10 has several advantages over previous artwork datasets. Firstly, it is class-balanced while most previous artwork datasets suffer from the long tail class distributions. Secondly, the images are of high quality with clean annotations. Thirdly, ArtBench-10 is created with standardized data collection, annotation, filtering, and preprocessing procedures. We provide three versions of the dataset with different resolutions ($32\times32$, $256\times256$, and original image size), formatted in a way that is easy to be incorporated by popular machine learning frameworks. We also conduct extensive benchmarking experiments using representative image synthesis models with ArtBench-10 and present in-depth analysis. The dataset is available at https://github.com/liaopeiyuan/artbench under a Fair Use license." 1027,Curious Exploration via Structured World Models Yields Zero-Shot Object Manipulation,"It has been a long-standing dream to design artificial agents that explore their environment efficiently via intrinsic motivation, similar to how children perform curious free play. Despite recent advances in intrinsically motivated reinforcement learning (RL), sample-efficient exploration in object manipulation scenarios remains a significant challenge as most of the relevant information lies in the sparse agent-object and object-object interactions. In this paper, we propose to use structured world models to incorporate relational inductive biases in the control loop to achieve sample-efficient and interaction-rich exploration in compositional multi-object environments. By planning for future novelty inside structured world models, our method generates free-play behavior that starts to interact with objects early on and develops more complex behavior over time. Instead of using models only to compute intrinsic rewards, as commonly done, our method showcases that the self-reinforcing cycle between good models and good exploration also opens up another avenue: zero-shot generalization to downstream tasks via model-based planning. After the entirely intrinsic task-agnostic exploration phase, our method solves challenging downstream tasks such as stacking, flipping, pick & place, and throwing that generalizes to unseen numbers and arrangements of objects without any additional training." 1028,Program Targeting with Machine Learning and Mobile Phone Data: Evidence from an Anti-Poverty Intervention in Afghanistan,"Can mobile phone data improve program targeting? By combining rich survey data from a ""big push"" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from ineligible households. We show that machine learning methods leveraging mobile phone data can identify ultra-poor households nearly as accurately as survey-based measures of consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source." 1029,Learning Representations for Control with Hierarchical Forward Models,"Learning control from pixels is difficult for reinforcement learning (RL) agents because representation learning and policy learning are intertwined. Previous approaches remedy this issue with auxiliary representation learning tasks, but they either do not consider the temporal aspect of the problem or only consider single-step transitions. Instead, we propose Hierarchical $k$-Step Latent (HKSL), an auxiliary task that learns representations via a hierarchy of forward models that operate at varying magnitudes of step skipping while also learning to communicate between levels in the hierarchy. We evaluate HKSL in a suite of 30 robotic control tasks and find that HKSL either reaches higher episodic returns or converges to maximum performance more quickly than several current baselines. Also, we find that levels in HKSL's hierarchy can learn to specialize in long- or short-term consequences of agent actions, thereby providing the downstream control policy with more informative representations. Finally, we determine that communication channels between hierarchy levels organize information based on both sides of the communication process, which improves sample efficiency." 1030,Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise,"Bi-stochastic normalization of kernelized graph affinity matrix provides an alternative normalization scheme for graph Laplacian methods in graph-based data analysis and can be computed efficiently by Sinkhorn-Knopp (SK) iterations in practice. This paper proves the convergence of the bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates when $n$ data points are i.i.d. sampled from a general $d$-dimensional manifold embedded in a possibly high-dimensional space. Under certain joint limit of $n \to \infty$ and kernel bandwidth $\epsilon \to 0$, the point-wise convergence rate of the graph Laplacian operator (under 2-norm) is proved to be $ O( n^{-1/(d/2+3)})$ at finite large $n$ up to log factors, achieved at the scaling of $\epsilon \sim n^{-1/(d/2+3)} $. When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency which matches the rate for clean manifold data up to an additional error term proportional to the boundedness of mutual inner-products of the noise vectors. Our analysis suggests that, under the setting being considered in this paper, not exact bi-stochastic normalization but an approximate one will achieve the same consistency rate. Motivated by the analysis, we propose an approximate and constrained matrix scaling problem that can be solved by SK iterations with early termination, and apply to simulated manifold data both clean and with outlier noise. Numerical experiments support our theoretical results and show the robustness of bi-stochastically normalized graph Laplacian to outlier noise." 1031,GACT: Activation Compressed Training for General Architectures,"Training large neural network (NN) models requires extensive memory resources, and Activation Compressed Training (ACT) is a promising approach to reduce training memory footprint. This paper presents GACT, an ACT framework to support a broad range of machine learning tasks for generic NN architectures with limited domain knowledge. By analyzing a linearized version of ACT's approximate gradient, we prove the convergence of GACT without prior knowledge on operator type or model architecture. To make training stable, we propose an algorithm that decides the compression ratio for each tensor by estimating its impact on the gradient at run time. We implement GACT as a PyTorch library that readily applies to any NN architecture. GACT reduces the activation memory for convolutional NNs, transformers, and graph NNs by up to 8.1x, enabling training with a 4.2x to 24.7x larger batch size, with negligible accuracy loss." 1032,Projection-free Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data,"We study a projection-free conditional gradient-type algorithm for constrained nonconvex stochastic optimization problems with Markovian data. In particular, we focus on the case when the transition kernel of the Markov chain is state-dependent. Such stochastic optimization problems arise in various machine learning problems including strategic classification and reinforcement learning. For this problem, we establish that the number of calls to the stochastic first-order oracle and the linear minimization oracle to obtain an appropriately defined $\epsilon$-stationary point, are of the order $\mathcal{O}(1/\epsilon^{2.5})$ and $\mathcal{O}(1/\epsilon^{5.5})$ respectively. We also empirically demonstrate the performance of our algorithm on the problem of strategic classification with neural networks." 1033,Synthetic Data-Based Simulators for Recommender Systems: A Survey,"This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial recommender engines. We start with the motivation behind the development of frameworks implementing the simulations -- simulators -- and the usage of them for training and testing recommender systems of different types (including Reinforcement Learning ones). Furthermore, we provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness and moreover make a summary of the simulators found in the research literature. Besides other things, we discuss the building blocks of simulators: methods for synthetic data (user, item, user-item responses) generation, methods for what-if experimental analysis, methods and datasets used for simulation quality evaluation (including the methods that monitor and/or close possible simulation-to-reality gaps), and methods for summarization of experimental simulation results. Finally, this survey considers emerging topics and open problems in the field." 1034,Optimistic Linear Support and Successor Features as a Basis for Optimal Policy Transfer,"In many real-world applications, reinforcement learning (RL) agents might have to solve multiple tasks, each one typically modeled via a reward function. If reward functions are expressed linearly, and the agent has previously learned a set of policies for different tasks, successor features (SFs) can be exploited to combine such policies and identify reasonable solutions for new problems. However, the identified solutions are not guaranteed to be optimal. We introduce a novel algorithm that addresses this limitation. It allows RL agents to combine existing policies and directly identify optimal policies for arbitrary new problems, without requiring any further interactions with the environment. We first show (under mild assumptions) that the transfer learning problem tackled by SFs is equivalent to the problem of learning to optimize multiple objectives in RL. We then introduce an SF-based extension of the Optimistic Linear Support algorithm to learn a set of policies whose SFs form a convex coverage set. We prove that policies in this set can be combined via generalized policy improvement to construct optimal behaviors for any new linearly-expressible tasks, without requiring any additional training samples. We empirically show that our method outperforms state-of-the-art competing algorithms both in discrete and continuous domains under value function approximation." 1035,Community Recovery in the Geometric Block Model,"To capture inherent geometric features of many community detection problems, we propose to use a new random graph model of communities that we call a \emph{Geometric Block Model}. The geometric block model builds on the \emph{random geometric graphs} (Gilbert, 1961), one of the basic models of random graphs for spatial networks, in the same way that the well-studied stochastic block model builds on the Erd\H{o}s-R\'{en}yi random graphs. It is also a natural extension of random community models inspired by the recent theoretical and practical advancements in community detection. To analyze the geometric block model, we first provide new connectivity results for \emph{random annulus graphs} which are generalizations of random geometric graphs. The connectivity properties of geometric graphs have been studied since their introduction, and analyzing them has been difficult due to correlated edge formation. We then use the connectivity results of random annulus graphs to provide necessary and sufficient conditions for efficient recovery of communities for the geometric block model. We show that a simple triangle-counting algorithm to detect communities in the geometric block model is near-optimal. For this we consider two regimes of graph density. In the regime where the average degree of the graph grows logarithmically with number of vertices, we show that our algorithm performs extremely well, both theoretically and practically. In contrast, the triangle-counting algorithm is far from being optimum for the stochastic block model in the logarithmic degree regime. We also look at the regime where the average degree of the graph grows linearly with the number of vertices $n$, and hence to store the graph one needs $\Theta(n^2)$ memory. We show that our algorithm needs to store only $O(n \log n)$ edges in this regime to recover the latent communities." 1036,Latent Policies for Adversarial Imitation Learning,"This paper considers learning robot locomotion and manipulation tasks from expert demonstrations. Generative adversarial imitation learning (GAIL) trains a discriminator that distinguishes expert from agent transitions, and in turn use a reward defined by the discriminator output to optimize a policy generator for the agent. This generative adversarial training approach is very powerful but depends on a delicate balance between the discriminator and the generator training. In high-dimensional problems, the discriminator training may easily overfit or exploit associations with task-irrelevant features for transition classification. A key insight of this work is that performing imitation learning in a suitable latent task space makes the training process stable, even in challenging high-dimensional problems. We use an action encoder-decoder model to obtain a low-dimensional latent action space and train a LAtent Policy using Adversarial imitation Learning (LAPAL). The encoder-decoder model can be trained offline from state-action pairs to obtain a task-agnostic latent action representation or online, simultaneously with the discriminator and generator training, to obtain a task-aware latent action representation. We demonstrate that LAPAL training is stable, with near-monotonic performance improvement, and achieves expert performance in most locomotion and manipulation tasks, while a GAIL baseline converges slower and does not achieve expert performance in high-dimensional environments." 1037,Neural Implicit Manifold Learning for Topology-Aware Generative Modelling,"Natural data observed in $\mathbb{R}^n$ is often constrained to an $m$-dimensional manifold $\mathcal{M}$, where $m < n$. Current generative models represent this manifold by mapping an $m$-dimensional latent variable through a neural network $f_\theta: \mathbb{R}^m \to \mathbb{R}^n$. Such procedures, which we call pushforward models, incur a straightforward limitation: manifolds cannot in general be represented with a single parameterization, meaning that attempts to do so will incur either computational instability or the inability to learn probability densities within the manifold. To remedy this problem, we propose to model $\mathcal{M}$ as a neural implicit manifold: the set of zeros of a neural network. To learn the data distribution within $\mathcal{M}$, we introduce constrained energy-based models, which use a constrained variant of Langevin dynamics to train and sample within the learned manifold. The resulting model can be manipulated with an arithmetic of manifolds which allows practitioners to take unions and intersections of model manifolds. In experiments on synthetic and natural data, we show that constrained EBMs can learn manifold-supported distributions with complex topologies more accurately than pushforward models." 1038,Langevin Monte Carlo for Contextual Bandits,"We study the efficiency of Thompson sampling for contextual bandits. Existing Thompson sampling-based algorithms need to construct a Laplace approximation (i.e., a Gaussian distribution) of the posterior distribution, which is inefficient to sample in high dimensional applications for general covariance matrices. Moreover, the Gaussian approximation may not be a good surrogate for the posterior distribution for general reward generating functions. We propose an efficient posterior sampling algorithm, viz., Langevin Monte Carlo Thompson Sampling (LMC-TS), that uses Markov Chain Monte Carlo (MCMC) methods to directly sample from the posterior distribution in contextual bandits. Our method is computationally efficient since it only needs to perform noisy gradient descent updates without constructing the Laplace approximation of the posterior distribution. We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits, viz., linear contextual bandits. We conduct experiments on both synthetic data and real-world datasets on different contextual bandit models, which demonstrates that directly sampling from the posterior is both computationally efficient and competitive in performance." 1039,Behavior Transformers: Cloning $k$ modes with one stone,"While behavior learning has made impressive progress in recent times, it lags behind computer vision and natural language processing due to its inability to leverage large, human-generated datasets. Human behaviors have wide variance, multiple modes, and human demonstrations typically do not come with reward labels. These properties limit the applicability of current methods in Offline RL and Behavioral Cloning to learn from large, pre-collected datasets. In this work, we present Behavior Transformer (BeT), a new technique to model unlabeled demonstration data with multiple modes. BeT retrofits standard transformer architectures with action discretization coupled with a multi-task action correction inspired by offset prediction in object detection. This allows us to leverage the multi-modal modeling ability of modern transformers to predict multi-modal continuous actions. We experimentally evaluate BeT on a variety of robotic manipulation and self-driving behavior datasets. We show that BeT significantly improves over prior state-of-the-art work on solving demonstrated tasks while capturing the major modes present in the pre-collected datasets. Finally, through an extensive ablation study, we analyze the importance of every crucial component in BeT. Videos of behavior generated by BeT are available at https://notmahi.github.io/bet" 1040,GEMv2: Multilingual NLG Benchmarking in a Single Line of Code,"Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark." 1041,Provable Acceleration of Heavy Ball beyond Quadratics for a Class of Polyak-Łojasiewicz Functions when the Non-Convexity is Averaged-Out,"Heavy Ball (HB) nowadays is one of the most popular momentum methods in non-convex optimization. It has been widely observed that incorporating the Heavy Ball dynamic in gradient-based methods accelerates the training process of modern machine learning models. However, the progress on establishing its theoretical foundation of acceleration is apparently far behind its empirical success. Existing provable acceleration results are of the quadratic or close-to-quadratic functions, as the current techniques of showing HB's acceleration are limited to the case when the Hessian is fixed. In this work, we develop some new techniques that help show acceleration beyond quadratics, which is achieved by analyzing how the change of the Hessian at two consecutive time points affects the convergence speed. Based on our technical results, a class of Polyak-\L{}ojasiewicz (PL) optimization problems for which provable acceleration can be achieved via HB is identified. Moreover, our analysis demonstrates a benefit of adaptively setting the momentum parameter." 1042,Concentration inequalities and optimal number of layers for stochastic deep neural networks,"We state concentration and martingale inequalities for the output of the hidden layers of a stochastic deep neural network (SDNN), as well as for the output of the whole SDNN. These results allow us to introduce an expected classifier (EC), and to give probabilistic upper bound for the classification error of the EC. We also state the optimal number of layers for the SDNN via an optimal stopping procedure. We apply our analysis to a stochastic version of a feedforward neural network with ReLU activation function." 1043,FedorAS: Federated Architecture Search under system heterogeneity,"Federated learning (FL) has recently gained considerable attention due to its ability to use decentralised data while preserving privacy. However, it also poses additional challenges related to the heterogeneity of the participating devices, both in terms of their computational capabilities and contributed data. Meanwhile, Neural Architecture Search (NAS) has been successfully used with centralised datasets, producing state-of-the-art results in constrained (hardware-aware) and unconstrained settings. However, even the most recent work laying at the intersection of NAS and FL assumes homogeneous compute environment with datacenter-grade hardware and does not address the issues of working with constrained, heterogeneous devices. As a result, practical usage of NAS in a federated setting remains an open problem that we address in our work. We design our system, FedorAS, to discover and train promising architectures when dealing with devices of varying capabilities holding non-IID distributed data, and present empirical evidence of its effectiveness across different settings. Specifically, we evaluate FedorAS across datasets spanning three different modalities (vision, speech, text) and show its better performance compared to state-of-the-art federated solutions, while maintaining resource efficiency." 1044,Correct and Certify: A New Approach to Self-Supervised 3D-Object Perception,"We consider an object pose estimation and model fitting problem, where - given a partial point cloud of an object - the goal is to estimate the object pose by fitting a CAD model to the sensor data. We solve this problem by combining (i) a semantic keypoint-based pose estimation model, (ii) a novel self-supervised training approach, and (iii) a certification procedure, that not only verifies whether the output produced by the model is correct or not, but also flags uniqueness of the produced solution. The semantic keypoint detector model is initially trained in simulation and does not perform well on real-data due to the domain gap. Our self-supervised training procedure uses a corrector and a certification module to improve the detector. The corrector module corrects the detected keypoints to compensate for the domain gap, and is implemented as a declarative layer, for which we develop a simple differentiation rule. The certification module declares whether the corrected output produced by the model is certifiable (i.e. correct) or not. At each iteration, the approach optimizes over the loss induced only by the certifiable input-output pairs. As training progresses, we see that the fraction of outputs that are certifiable increases, eventually reaching near $100\%$ in many cases. We also introduce the notion of strong certifiability wherein the model can determine if the predicted object model fit is unique or not. The detected semantic keypoints help us implement this in the forward pass. We conduct extensive experiments to evaluate the performance of the corrector, the certification, and the proposed self-supervised training using the ShapeNet and YCB datasets, and show the proposed approach achieves performance comparable to fully supervised baselines while not requiring pose or keypoint supervision on real data." 1045,VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives,"Many past works aim to improve visual reasoning in models by supervising feature importance (estimated by model explanation techniques) with human annotations such as highlights of important image regions. However, recent work has shown that performance gains from feature importance (FI) supervision for Visual Question Answering (VQA) tasks persist even with random supervision, suggesting that these methods do not meaningfully align model FI with human FI. In this paper, we show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason (RRR) metrics by optimizing for four key model objectives: (1) accurate predictions given limited but sufficient information (Sufficiency); (2) max-entropy predictions given no important information (Uncertainty); (3) invariance of predictions to changes in unimportant features (Invariance); and (4) alignment between model FI explanations and human FI explanations (Plausibility). Our best performing method, Visual Feature Importance Supervision (VisFIS), outperforms strong baselines on benchmark VQA datasets in terms of both in-distribution and out-of-distribution accuracy. While past work suggests that the mechanism for improved accuracy is through improved explanation plausibility, we show that this relationship depends crucially on explanation faithfulness (whether explanations truly represent the model's internal reasoning). Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful. Lastly, we show that, surprisingly, RRR metrics are not predictive of out-of-distribution model accuracy when controlling for a model's in-distribution accuracy, which calls into question the value of these metrics for evaluating model reasoning. All supporting code is available at https://github.com/zfying/visfis" 1046,Constant-Factor Approximation Algorithms for Socially Fair $k$-Clustering,"We study approximation algorithms for the socially fair $(\ell_p, k)$-clustering problem with $m$ groups, whose special cases include the socially fair $k$-median ($p=1$) and socially fair $k$-means ($p=2$) problems. We present (1) a polynomial-time $(5+2\sqrt{6})^p$-approximation with at most $k+m$ centers (2) a $(5+2\sqrt{6}+\epsilon)^p$-approximation with $k$ centers in time $n^{2^{O(p)}\cdot m^2}$, and (3) a $(15+6\sqrt{6})^p$ approximation with $k$ centers in time $k^{m}\cdot\text{poly}(n)$. The first result is obtained via a refinement of the iterative rounding method using a sequence of linear programs. The latter two results are obtained by converting a solution with up to $k+m$ centers to one with $k$ centers using sparsification methods for (2) and via an exhaustive search for (3). We also compare the performance of our algorithms with existing bicriteria algorithms as well as exactly $k$ center approximation algorithms on benchmark datasets, and find that our algorithms also outperform existing methods in practice." 1047,Multi-Agent Car Parking using Reinforcement Learning,"As the industry of autonomous driving grows, so does the potential interaction of groups of autonomous cars. Combined with the advancement of Artificial Intelligence and simulation, such groups can be simulated, and safety-critical models can be learned controlling the cars within. This study applies reinforcement learning to the problem of multi-agent car parking, where groups of cars aim to efficiently park themselves, while remaining safe and rational. Utilising robust tools and machine learning frameworks, we design and implement a flexible car parking environment in the form of a Markov decision process with independent learners, exploiting multi-agent communication. We implement a suite of tools to perform experiments at scale, obtaining models parking up to 7 cars with over a 98.1% success rate, significantly beating existing single-agent models. We also obtain several results relating to competitive and collaborative behaviours exhibited by the cars in our environment, with varying densities and levels of communication. Notably, we discover a form of collaboration that cannot arise without competition, and a 'leaky' form of collaboration whereby agents collaborate without sufficient state. Such work has numerous potential applications in the autonomous driving and fleet management industries, and provides several useful techniques and benchmarks for the application of reinforcement learning to multi-agent car parking." 1048,General Univariate Estimation-of-Distribution Algorithms,"We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs \emph{compact genetic algorithm}, \emph{univariate marginal distribution algorithm} and \emph{population-based incremental learning} as well as the \emph{max-min ant system} with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks." 1049,Learning Optimal Treatment Strategies for Sepsis Using Offline Reinforcement Learning in Continuous Space,"Sepsis is a leading cause of death in the ICU. It is a disease requiring complex interventions in a short period of time, but its optimal treatment strategy remains uncertain. Evidence suggests that the practices of currently used treatment strategies are problematic and may cause harm to patients. To address this decision problem, we propose a new medical decision model based on historical data to help clinicians recommend the best reference option for real-time treatment. Our model combines offline reinforcement learning with deep reinforcement learning to address the problem that traditional reinforcement learning in healthcare cannot interact with the environment, enabling our model to make decisions in a continuous state-action space. We demonstrate that, on average, the treatments recommended by the model are more valuable and reliable than those recommended by clinicians. In a large validation dataset, we found that patients whose actual doses from clinicians matched the AI's decisions had the lowest mortality rates. Our model provides personalized, clinically interpretable treatment decisions for sepsis that can improve patient care." 1050,Independent evaluation of state-of-the-art deep networks for mammography,"Deep neural models have shown remarkable performance in image recognition tasks, whenever large datasets of labeled images are available. The largest datasets in radiology are available for screening mammography. Recent reports, including in high impact journals, document performance of deep models at or above that of trained radiologists. What is not yet known is whether performance of these trained models is robust and replicates across datasets. Here we evaluate performance of five published state-of-the-art models on four publicly available mammography datasets. The limited size of public datasets precludes retraining the model and so we are limited to evaluate those models that have been made available with pre-trained parameters. Where test data was available, we replicated published results. However, the trained models performed poorly on out-of-sample data, except when based on all four standard views of a mammographic exam. We conclude that future progress will depend on a concerted effort to make more diverse and larger mammography datasets publicly available. Meanwhile, results that are not accompanied by a release of trained models for independent validation should be judged cautiously." 1051,Towards Unsupervised Content Disentanglement in Sentence Representations via Syntactic Roles,"Linking neural representations to linguistic factors is crucial in order to build and analyze NLP models interpretable by humans. Among these factors, syntactic roles (e.g. subjects, direct objects,$\dots$) and their realizations are essential markers since they can be understood as a decomposition of predicative structures and thus the meaning of sentences. Starting from a deep probabilistic generative model with attention, we measure the interaction between latent variables and realizations of syntactic roles and show that it is possible to obtain, without supervision, representations of sentences where different syntactic roles correspond to clearly identified different latent variables. The probabilistic model we propose is an Attention-Driven Variational Autoencoder (ADVAE). Drawing inspiration from Transformer-based machine translation models, ADVAEs enable the analysis of the interactions between latent variables and input tokens through attention. We also develop an evaluation protocol to measure disentanglement with regard to the realizations of syntactic roles. This protocol is based on attention maxima for the encoder and on latent variable perturbations for the decoder. Our experiments on raw English text from the SNLI dataset show that $\textit{i)}$ disentanglement of syntactic roles can be induced without supervision, $\textit{ii)}$ ADVAE separates syntactic roles better than classical sequence VAEs and Transformer VAEs, $\textit{iii)}$ realizations of syntactic roles can be separately modified in sentences by mere intervention on the associated latent variables. Our work constitutes a first step towards unsupervised controllable content generation. The code for our work is publicly available." 1052,Active Learning with Safety Constraints,"Active learning methods have shown great promise in reducing the number of samples necessary for learning. As automated learning systems are adopted into real-time, real-world decision-making pipelines, it is increasingly important that such algorithms are designed with safety in mind. In this work we investigate the complexity of learning the best safe decision in interactive environments. We reduce this problem to a constrained linear bandits problem, where our goal is to find the best arm satisfying certain (unknown) safety constraints. We propose an adaptive experimental design-based algorithm, which we show efficiently trades off between the difficulty of showing an arm is unsafe vs suboptimal. To our knowledge, our results are the first on best-arm identification in linear bandits with safety constraints. In practice, we demonstrate that this approach performs well on synthetic and real world datasets." 1053,"On the Role of Spatial, Spectral, and Temporal Processing for DNN-based Non-linear Multi-channel Speech Enhancement","Employing deep neural networks (DNNs) to directly learn filters for multi-channel speech enhancement has potentially two key advantages over a traditional approach combining a linear spatial filter with an independent tempo-spectral post-filter: 1) non-linear spatial filtering allows to overcome potential restrictions originating from a linear processing model and 2) joint processing of spatial and tempo-spectral information allows to exploit interdependencies between different sources of information. A variety of DNN-based non-linear filters have been proposed recently, for which good enhancement performance is reported. However, little is known about the internal mechanisms which turns network architecture design into a game of chance. Therefore, in this paper, we perform experiments to better understand the internal processing of spatial, spectral and temporal information by DNN-based non-linear filters. On the one hand, our experiments in a difficult speech extraction scenario confirm the importance of non-linear spatial filtering, which outperforms an oracle linear spatial filter by 0.24 POLQA score. On the other hand, we demonstrate that joint processing results in a large performance gap of 0.4 POLQA score between network architectures exploiting spectral versus temporal information besides spatial information." 1054,Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation,"It is common in computer vision to be confronted with domain shift: images which have the same class but different acquisition conditions. In domain adaptation (DA), one wants to classify unlabeled target images using source labeled images. Unfortunately, deep neural networks trained on a source training set perform poorly on target images which do not belong to the training domain. One strategy to improve these performances is to align the source and target image distributions in an embedded space using optimal transport (OT). However OT can cause negative transfer, i.e. aligning samples with different labels, which leads to overfitting especially in the presence of label shift between domains. In this work, we mitigate negative alignment by explaining it as a noisy label assignment to target images. We then mitigate its effect by appropriate regularization. We propose to couple the MixUp regularization \citep{zhang2018mixup} with a loss that is robust to noisy labels in order to improve domain adaptation performance. We show in an extensive ablation study that a combination of the two techniques is critical to achieve improved performance. Finally, we evaluate our method, called \textsc{mixunbot}, on several benchmarks and real-world DA problems." 1055,Cold Posteriors through PAC-Bayes,"We investigate the cold posterior effect through the lens of PAC-Bayes generalization bounds. We argue that in the non-asymptotic setting, when the number of training samples is (relatively) small, discussions of the cold posterior effect should take into account that approximate Bayesian inference does not readily provide guarantees of performance on out-of-sample data. Instead, out-of-sample error is better described through a generalization bound. In this context, we explore the connections between the ELBO objective from variational inference and the PAC-Bayes objectives. We note that, while the ELBO and PAC-Bayes objectives are similar, the latter objectives naturally contain a temperature parameter $\lambda$ which is not restricted to be $\lambda=1$. For both regression and classification tasks, in the case of isotropic Laplace approximations to the posterior, we show how this PAC-Bayesian interpretation of the temperature parameter captures the cold posterior effect." 1056,Neural Inverse Transform Sampler,"Any explicit functional representation $f$ of a density is hampered by two main obstacles when we wish to use it as a generative model: designing $f$ so that sampling is fast, and estimating $Z = \int f$ so that $Z^{-1}f$ integrates to 1. This becomes increasingly complicated as $f$ itself becomes complicated. In this paper, we show that when modeling one-dimensional conditional densities with a neural network, $Z$ can be exactly and efficiently computed by letting the network represent the cumulative distribution function of a target density, and applying a generalized fundamental theorem of calculus. We also derive a fast algorithm for sampling from the resulting representation by the inverse transform method. By extending these principles to higher dimensions, we introduce the \textbf{Neural Inverse Transform Sampler (NITS)}, a novel deep learning framework for modeling and sampling from general, multidimensional, compactly-supported probability densities. NITS is a highly expressive density estimator that boasts end-to-end differentiability, fast sampling, and exact and cheap likelihood evaluation. We demonstrate the applicability of NITS by applying it to realistic, high-dimensional density estimation tasks: likelihood-based generative modeling on the CIFAR-10 dataset, and density estimation on the UCI suite of benchmark datasets, where NITS produces compelling results rivaling or surpassing the state of the art." 1057,Ordered Subgraph Aggregation Networks,"Numerous subgraph-enhanced graph neural networks (GNNs) have emerged recently, provably boosting the expressive power of standard (message-passing) GNNs. However, there is a limited understanding of how these approaches relate to each other and to the Weisfeiler--Leman hierarchy. Moreover, current approaches either use all subgraphs of a given size, sample them uniformly at random, or use hand-crafted heuristics instead of learning to select subgraphs in a data-driven manner. Here, we offer a unified way to study such architectures by introducing a theoretical framework and extending the known expressivity results of subgraph-enhanced GNNs. Concretely, we show that increasing subgraph size always increases the expressive power and develop a better understanding of their limitations by relating them to the established $k\text{-}\mathsf{WL}$ hierarchy. In addition, we explore different approaches for learning to sample subgraphs using recent methods for backpropagating through complex discrete probability distributions. Empirically, we study the predictive performance of different subgraph-enhanced GNNs, showing that our data-driven architectures increase prediction accuracy on standard benchmark datasets compared to non-data-driven subgraph-enhanced graph neural networks while reducing computation time." 1058,Sharing pattern submodels for prediction with missing values,"Missing values are unavoidable in many applications of machine learning and present a challenge both during training and at test time. When variables are missing in recurring patterns, fitting separate pattern submodels have been proposed as a solution. However, independent models do not make efficient use of all available data. Conversely, fitting a shared model to the full data set typically relies on imputation which may be suboptimal when missingness depends on unobserved factors. We propose an alternative approach, called sharing pattern submodels, which make predictions that are a) robust to missing values at test time, b) maintains or improves the predictive power of pattern submodels, and c) has a short description enabling improved interpretability. We identify cases where sharing is provably optimal, even when missingness itself is predictive and when the prediction target depends on unobserved variables. Classification and regression experiments on synthetic data and two healthcare data sets demonstrate that our models achieve a favorable trade-off between pattern specialization and information sharing." 1059,Then and Now: Quantifying the Longitudinal Validity of Self-Disclosed Depression Diagnoses,"Self-disclosed mental health diagnoses, which serve as ground truth annotations of mental health status in the absence of clinical measures, underpin the conclusions behind most computational studies of mental health language from the last decade. However, psychiatric conditions are dynamic; a prior depression diagnosis may no longer be indicative of an individual's mental health, either due to treatment or other mitigating factors. We ask: to what extent are self-disclosures of mental health diagnoses actually relevant over time? We analyze recent activity from individuals who disclosed a depression diagnosis on social media over five years ago and, in turn, acquire a new understanding of how presentations of mental health status on social media manifest longitudinally. We also provide expanded evidence for the presence of personality-related biases in datasets curated using self-disclosed diagnoses. Our findings motivate three practical recommendations for improving mental health datasets curated using self-disclosed diagnoses: 1) Annotate diagnosis dates and psychiatric comorbidities; 2) Sample control groups using propensity score matching; 3) Identify and remove spurious correlations introduced by selection bias." 1060,reStructured Pre-training,"In this work, we try to decipher the internal connection of NLP technology development in the past decades, searching for essence, which rewards us with a (potential) new learning paradigm for NLP tasks, dubbed as reStructured Pre-training (RST). In such a paradigm, the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing. Based on that, we operationalize the simple principle that a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. We achieve this by pre-training models over restructured data that consist of a variety of valuable information instead of raw data after overcoming several engineering challenges. Experimentally, RST models not only surpass strong competitors (e.g., T0) on 52/55 popular datasets from a variety of NLP tasks, but also achieve superior performance in National College Entrance Examination - English (Gaokao-English),the most authoritative examination in China. Specifically, the proposed system Qin achieves 40 points higher than the average scores made by students and 15 points higher than GPT3 with 1/16 parameters. In particular, Qin gets a high score of 138.5 (the full mark is 150) in the 2018 English exam (national paper III). We have released the Gaokao Benchmark with an online submission platform. In addition, we test our model in the 2022 College Entrance Examination English that happened a few days ago (2022.06.08), and it gets a total score of 134 (v.s. GPT3's 108)." 1061,Discussion of `Multiscale Fisher's Independence Test for Multivariate Dependence',"We discuss how MultiFIT, the Multiscale Fisher's Independence Test for Multivariate Dependence proposed by Gorsky and Ma (2022), compares to existing linear-time kernel tests based on the Hilbert-Schmidt independence criterion (HSIC). We highlight the fact that the levels of the kernel tests at any finite sample size can be controlled exactly, as it is the case with the level of MultiFIT. In our experiments, we observe some of the performance limitations of MultiFIT in terms of test power." 1062,Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries,"Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most prominent form of subgraph methods, which employs node-based subgraph selection policies such as ego-networks or node marking and deletion. We address two central questions: (1) What is the upper-bound of the expressive power of these methods? and (2) What is the family of equivariant message passing layers on these sets of subgraphs?. Our first step in answering these questions is a novel symmetry analysis which shows that modelling the symmetries of node-based subgraph collections requires a significantly smaller symmetry group than the one adopted in previous works. This analysis is then used to establish a link between Subgraph GNNs and Invariant Graph Networks (IGNs). We answer the questions above by first bounding the expressive power of subgraph methods by 3-WL, and then proposing a general family of message-passing layers for subgraph methods that generalises all previous node-based Subgraph GNNs. Finally, we design a novel Subgraph GNN dubbed SUN, which theoretically unifies previous architectures while providing better empirical performance on multiple benchmarks." 1063,Variational Causal Dynamics: Discovering Modular World Models from Interventions,"Latent world models allow agents to reason about complex environments with high-dimensional observations. However, adapting to new environments and effectively leveraging previous knowledge remain significant challenges. We present variational causal dynamics (VCD), a structured world model that exploits the invariance of causal mechanisms across environments to achieve fast and modular adaptation. By causally factorising a transition model, VCD is able to identify reusable components across different environments. This is achieved by combining causal discovery and variational inference to learn a latent representation and transition model jointly in an unsupervised manner. Specifically, we optimise the evidence lower bound jointly over a representation model and a transition model structured as a causal graphical model. In evaluations on simulated environments with state and image observations, we show that VCD is able to successfully identify causal variables, and to discover consistent causal structures across different environments. Moreover, given a small number of observations in a previously unseen, intervened environment, VCD is able to identify the sparse changes in the dynamics and to adapt efficiently. In doing so, VCD significantly extends the capabilities of the current state-of-the-art in latent world models while also comparing favourably in terms of prediction accuracy." 1064,tntorch: Tensor Network Learning with PyTorch,"We present tntorch, a tensor learning framework that supports multiple decompositions (including Candecomp/Parafac, Tucker, and Tensor Train) under a unified interface. With our library, the user can learn and handle low-rank tensors with automatic differentiation, seamless GPU support, and the convenience of PyTorch's API. Besides decomposition algorithms, tntorch implements differentiable tensor algebra, rank truncation, cross-approximation, batch processing, comprehensive tensor arithmetics, and more." 1065,Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models,"With the rapid development of eXplainable Artificial Intelligence (XAI), a long line of past work has shown concerns about the Out-of-Distribution (OOD) problem in perturbation-based post-hoc XAI models and explanations are socially misaligned. We explore the limitations of post-hoc explanation methods that use approximators to mimic the behavior of black-box models. Then we propose eXplanation-based Counterfactual Retraining (XCR), which extracts feature importance fastly. XCR applies the explanations generated by the XAI model as counterfactual input to retrain the black-box model to address OOD and social misalignment problems. Evaluation of popular image datasets shows that XCR can improve model performance when only retaining 12.5% of the most crucial features without changing the black-box model structure. Furthermore, the evaluation of the benchmark of corruption datasets shows that the XCR is very helpful for improving model robustness and positively impacts the calibration of OOD problems. Even though not calibrated in the validation set like some OOD calibration methods, the corrupted data metric outperforms existing methods. Our method also beats current OOD calibration methods on the OOD calibration metric if calibration on the validation set is applied." 1066,"A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta","Mini-batch SGD with momentum is a fundamental algorithm for learning large predictive models. In this paper we develop a new analytic framework to analyze mini-batch SGD for linear models at different momenta and sizes of batches. Our key idea is to describe the loss value sequence in terms of its generating function, which can be written in a compact form assuming a diagonal approximation for the second moments of model weights. By analyzing this generating function, we deduce various conclusions on the convergence conditions, phase structure of the model, and optimal learning settings. As a few examples, we show that 1) the optimization trajectory can generally switch from the ""signal-dominated"" to the ""noise-dominated"" phase, at a time scale that can be predicted analytically; 2) in the ""signal-dominated"" (but not the ""noise-dominated"") phase it is favorable to choose a large effective learning rate, however its value must be limited for any finite batch size to avoid divergence; 3) optimal convergence rate can be achieved at a negative momentum. We verify our theoretical predictions by extensive experiments with MNIST and synthetic problems, and find a good quantitative agreement." 1067,Near-optimal control of dynamical systems with neural ordinary differential equations,"Optimal control problems naturally arise in many scientific applications where one wishes to steer a dynamical system from a certain initial state $\mathbf{x}_0$ to a desired target state $\mathbf{x}^*$ in finite time $T$. Recent advances in deep learning and neural network-based optimization have contributed to the development of methods that can help solve control problems involving high-dimensional dynamical systems. In particular, the framework of neural ordinary differential equations (neural ODEs) provides an efficient means to iteratively approximate continuous time control functions associated with analytically intractable and computationally demanding control tasks. Although neural ODE controllers have shown great potential in solving complex control problems, the understanding of the effects of hyperparameters such as network structure and optimizers on learning performance is still very limited. Our work aims at addressing some of these knowledge gaps to conduct efficient hyperparameter optimization. To this end, we first analyze how truncated and non-truncated backpropagation through time affect runtime performance and the ability of neural networks to learn optimal control functions. Using analytical and numerical methods, we then study the role of parameter initializations, optimizers, and neural-network architecture. Finally, we connect our results to the ability of neural ODE controllers to implicitly regularize control energy." 1068,Beyond RMSE: Do machine-learned models of road user interaction produce human-like behavior?,"Autonomous vehicles use a variety of sensors and machine-learned models to predict the behavior of surrounding road users. Most of the machine-learned models in the literature focus on quantitative error metrics like the root mean square error (RMSE) to learn and report their models' capabilities. This focus on quantitative error metrics tends to ignore the more important behavioral aspect of the models, raising the question of whether these models really predict human-like behavior. Thus, we propose to analyze the output of machine-learned models much like we would analyze human data in conventional behavioral research. We introduce quantitative metrics to demonstrate presence of three different behavioral phenomena in a naturalistic highway driving dataset: 1) The kinematics-dependence of who passes a merging point first 2) Lane change by an on-highway vehicle to accommodate an on-ramp vehicle 3) Lane changes by vehicles on the highway to avoid lead vehicle conflicts. Then, we analyze the behavior of three machine-learned models using the same metrics. Even though the models' RMSE value differed, all the models captured the kinematic-dependent merging behavior but struggled at varying degrees to capture the more nuanced courtesy lane change and highway lane change behavior. Additionally, the collision aversion analysis during lane changes showed that the models struggled to capture the physical aspect of human driving: leaving adequate gap between the vehicles. Thus, our analysis highlighted the inadequacy of simple quantitative metrics and the need to take a broader behavioral perspective when analyzing machine-learned models of human driving predictions." 1069,OpenXAI: Towards a Transparent Evaluation of Model Explanations,"While several types of post hoc explanation methods (e.g., feature attribution methods) have been proposed in recent literature, there is little to no work on systematically benchmarking these methods in an efficient and transparent manner. Here, we introduce OpenXAI, a comprehensive and extensible open source framework for evaluating and benchmarking post hoc explanation methods. OpenXAI comprises of the following key components: (i) a flexible synthetic data generator and a collection of diverse real-world datasets, pre-trained models, and state-of-the-art feature attribution methods, (ii) open-source implementations of twenty-two quantitative metrics for evaluating faithfulness, stability (robustness), and fairness of explanation methods, and (iii) the first ever public XAI leaderboards to benchmark explanations. OpenXAI is easily extensible, as users can readily evaluate custom explanation methods and incorporate them into our leaderboards. Overall, OpenXAI provides an automated end-to-end pipeline that not only simplifies and standardizes the evaluation of post hoc explanation methods, but also promotes transparency and reproducibility in benchmarking these methods. OpenXAI datasets and data loaders, implementations of state-of-the-art explanation methods and evaluation metrics, as well as leaderboards are publicly available at https://open-xai.github.io/." 1070,Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks,"Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting. However, as in the simpler homogeneous GNN case, message-passing-based heterogeneous GNNs may struggle to balance between resisting the oversmoothing occuring in deep models and capturing long-range dependencies graph structured data. Moreover, the complexity of this trade-off is compounded in the heterogeneous graph case due to the disparate heterophily relationships between nodes of different types. To address these issues, we proposed a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function. The corresponding minimizer is fully differentiable with respect to the energy function parameters, such that bilevel optimization can be applied to effectively learn a functional form whose minimum provides optimal node representations for subsequent classification tasks. In particular, this methodology allows us to model diverse heterophily relationships between different node types while avoiding oversmoothing effects. Experimental results on 8 heterogeneous graph benchmarks demonstrates that our proposed method can achieve competitive node classification accuracy." 1071,Noisy $\ell^{0}$-Sparse Subspace Clustering on Dimensionality Reduced Data,"Sparse subspace clustering methods with sparsity induced by $\ell^{0}$-norm, such as $\ell^{0}$-Sparse Subspace Clustering ($\ell^{0}$-SSC)~\citep{YangFJYH16-L0SSC-ijcv}, are demonstrated to be more effective than its $\ell^{1}$ counterpart such as Sparse Subspace Clustering (SSC)~\citep{ElhamifarV13}. However, the theoretical analysis of $\ell^{0}$-SSC is restricted to clean data that lie exactly in subspaces. Real data often suffer from noise and they may lie close to subspaces. In this paper, we show that an optimal solution to the optimization problem of noisy $\ell^{0}$-SSC achieves subspace detection property (SDP), a key element with which data from different subspaces are separated, under deterministic and semi-random model. Our results provide theoretical guarantee on the correctness of noisy $\ell^{0}$-SSC in terms of SDP on noisy data for the first time, which reveals the advantage of noisy $\ell^{0}$-SSC in terms of much less restrictive condition on subspace affinity. In order to improve the efficiency of noisy $\ell^{0}$-SSC, we propose Noisy-DR-$\ell^{0}$-SSC which provably recovers the subspaces on dimensionality reduced data. Noisy-DR-$\ell^{0}$-SSC first projects the data onto a lower dimensional space by random projection, then performs noisy $\ell^{0}$-SSC on the projected data for improved efficiency. Experimental results demonstrate the effectiveness of Noisy-DR-$\ell^{0}$-SSC." 1072,AlphaMLDigger: A Novel Machine Learning Solution to Explore Excess Return on Investment,"How to quickly and automatically mine effective information and serve investment decisions has attracted more and more attention from academia and industry. And new challenges have been raised with the global pandemic. This paper proposes a two-phase AlphaMLDigger that effectively finds excessive returns in the highly fluctuated market. In phase 1, a deep sequential NLP model is proposed to transfer blogs on Sina Microblog to market sentiment. In phase 2, the predicted market sentiment is combined with social network indicator features and stock market history features to predict the stock movements with different Machine Learning models and optimizers. The results show that our AlphaMLDigger achieves higher accuracy in the test set than previous works and is robust to the negative impact of COVID-19 to some extent." 1073,Answer Fast: Accelerating BERT on the Tensor Streaming Processor,"Transformers have become a predominant machine learning workload, they are not only the de-facto standard for natural language processing tasks, but they are also being deployed in other domains such as vision and speech recognition. Many of the transformer-based applications are real-time systems such as machine translation and web search. These real time systems often come with strict end-to-end inference latency requirements. Unfortunately, while the majority of the transformer computation comes from matrix multiplications, transformers also include several non-linear components that tend to become the bottleneck during an inference. In this work, we accelerate the inference of BERT models on the tensor streaming processor. By carefully fusing all the nonlinear components with the matrix multiplication components, we are able to efficiently utilize the on-chip matrix multiplication units resulting in a deterministic tail latency of 130 $\mu$s for a batch-1 inference through BERT-base, which is 6X faster than the current state-of-the-art." 1074,Surgical-VQA: Visual Question Answering in Surgical Scenes using Transformer,"Visual question answering (VQA) in surgery is largely unexplored. Expert surgeons are scarce and are often overloaded with clinical and academic workloads. This overload often limits their time answering questionnaires from patients, medical students or junior residents related to surgical procedures. At times, students and junior residents also refrain from asking too many questions during classes to reduce disruption. While computer-aided simulators and recording of past surgical procedures have been made available for them to observe and improve their skills, they still hugely rely on medical experts to answer their questions. Having a Surgical-VQA system as a reliable 'second opinion' could act as a backup and ease the load on the medical experts in answering these questions. The lack of annotated medical data and the presence of domain-specific terms has limited the exploration of VQA for surgical procedures. In this work, we design a Surgical-VQA task that answers questionnaires on surgical procedures based on the surgical scene. Extending the MICCAI endoscopic vision challenge 2018 dataset and workflow recognition dataset further, we introduce two Surgical-VQA datasets with classification and sentence-based answers. To perform Surgical-VQA, we employ vision-text transformers models. We further introduce a residual MLP-based VisualBert encoder model that enforces interaction between visual and text tokens, improving performance in classification-based answering. Furthermore, we study the influence of the number of input image patches and temporal visual features on the model performance in both classification and sentence-based answering." 1075,Dynamic Restrained Uncertainty Weighting Loss for Multitask Learning of Vocal Expression,"We propose a novel Dynamic Restrained Uncertainty Weighting Loss to experimentally handle the problem of balancing the contributions of multiple tasks on the ICML ExVo 2022 Challenge. The multitask aims to recognize expressed emotions and demographic traits from vocal bursts jointly. Our strategy combines the advantages of Uncertainty Weight and Dynamic Weight Average, by extending weights with a restraint term to make the learning process more explainable. We use a lightweight multi-exit CNN architecture to implement our proposed loss approach. The experimental H-Mean score (0.394) shows a substantial improvement over the baseline H-Mean score (0.335)." 1076,Automated GI tract segmentation using deep learning,"The job of Radiation oncologists is to deliver x-ray beams pointed toward the tumor and at the same time avoid the stomach and intestines. With MR-Linacs (magnetic resonance imaging and linear accelerator systems), oncologists can visualize the position of the tumor and allow for precise dose according to tumor cell presence which can vary from day to day. The current job of outlining the position of the stomach and intestines to adjust the X-ray beams direction for the dose delivery to the tumor while avoiding the organs. This is a time-consuming and labor-intensive process that can easily prolong treatments from 15 minutes to an hour a day unless deep learning methods can automate the segmentation process. This paper discusses an automated segmentation process using deep learning to make this process faster and allow more patients to get effective treatment." 1077,KeyCLD: Learning Constrained Lagrangian Dynamics in Keypoint Coordinates from Images,"We present KeyCLD, a framework to learn Lagrangian dynamics from images. Learned keypoints represent semantic landmarks in images and can directly represent state dynamics. Interpreting this state as Cartesian coordinates coupled with explicit holonomic constraints, allows expressing the dynamics with a constrained Lagrangian. Our method explicitly models kinetic and potential energy, thus allowing energy based control. We are the first to demonstrate learning of Lagrangian dynamics from images on the dm_control pendulum, cartpole and acrobot environments. This is a step forward towards learning Lagrangian dynamics from real-world images, since previous work in literature was only applied to minimalistic images with monochromatic shapes on empty backgrounds. Please refer to our project page for code and additional results: https://rdaems.github.io/keycld/" 1078,ROSE: A RObust and SEcure DNN Watermarking,"Protecting the Intellectual Property rights of DNN models is of primary importance prior to their deployment. So far, the proposed methods either necessitate changes to internal model parameters or the machine learning pipeline, or they fail to meet both the security and robustness requirements. This paper proposes a lightweight, robust, and secure black-box DNN watermarking protocol that takes advantage of cryptographic one-way functions as well as the injection of in-task key image-label pairs during the training process. These pairs are later used to prove DNN model ownership during testing. The main feature is that the value of the proof and its security are measurable. The extensive experiments watermarking image classification models for various datasets as well as exposing them to a variety of attacks, show that it provides protection while maintaining an adequate level of security and robustness." 1079,Agent-based Graph Neural Networks,"We present a novel graph neural network we call AgentNet, which is designed specifically for graph-level tasks. AgentNet is inspired by sublinear algorithms, featuring a computational complexity that is independent of the graph size. The architecture of AgentNet differs fundamentally from the architectures of known graph neural networks. In AgentNet, some trained \textit{neural agents} intelligently walk the graph, and then collectively decide on the output. We provide an extensive theoretical analysis of AgentNet: We show that the agents can learn to systematically explore their neighborhood and that AgentNet can distinguish some structures that are even indistinguishable by 3-WL. Moreover, AgentNet is able to separate any two graphs which are sufficiently different in terms of subgraphs. We confirm these theoretical results with synthetic experiments on hard-to-distinguish graphs and real-world graph classification tasks. In both cases, we compare favorably not only to standard GNNs but also to computationally more expensive GNN extensions." 1080,Auto-Encoding Adversarial Imitation Learning,"Reinforcement learning (RL) provides a powerful framework for decision-making, but its application in practice often requires a carefully designed reward function. Adversarial Imitation Learning (AIL) sheds light on automatic policy acquisition without access to the reward signal from the environment. In this work, we propose Auto-Encoding Adversarial Imitation Learning (AEAIL), a robust and scalable AIL framework. To induce expert policies from demonstrations, AEAIL utilizes the reconstruction error of an auto-encoder as a reward signal, which provides more information for optimizing policies than the prior discriminator-based ones. Subsequently, we use the derived objective functions to train the auto-encoder and the agent policy. Experiments show that our AEAIL performs superior compared to state-of-the-art methods in the MuJoCo environments. More importantly, AEAIL shows much better robustness when the expert demonstrations are noisy. Specifically, our method achieves $16.4\%$ and $47.2\%$ relative improvement overall compared to the best baseline FAIRL and PWIL on clean and noisy expert data, respectively. Video results, open-source code and dataset are available in https://sites.google.com/view/auto-encoding-imitation." 1081,A Simple Baseline for Domain Adaptation in End to End ASR Systems Using Synthetic Data,"Automatic Speech Recognition(ASR) has been dominated by deep learning-based end-to-end speech recognition models. These approaches require large amounts of labeled data in the form of audio-text pairs. Moreover, these models are more susceptible to domain shift as compared to traditional models. It is common practice to train generic ASR models and then adapt them to target domains using comparatively smaller data sets. We consider a more extreme case of domain adaptation where text-only corpus is available. In this work, we propose a simple baseline technique for domain adaptation in end-to-end speech recognition models. We convert the text-only corpus to audio data using single speaker Text to Speech (TTS) engine. The parallel data in the target domain is then used to fine-tune the final dense layer of generic ASR models. We show that single speaker synthetic TTS data coupled with final dense layer only fine-tuning provides reasonable improvements in word error rates. We use text data from address and e-commerce search domains to show the effectiveness of our low-cost baseline approach on CTC and attention-based models." 1082,A Systematic Comparison of Phonetic Aware Techniques for Speech Enhancement,"Speech enhancement has seen great improvement in recent years using end-to-end neural networks. However, most models are agnostic to the spoken phonetic content. Recently, several studies suggested phonetic-aware speech enhancement, mostly using perceptual supervision. Yet, injecting phonetic features during model optimization can take additional forms (e.g., model conditioning). In this paper, we conduct a systematic comparison between different methods of incorporating phonetic information in a speech enhancement model. By conducting a series of controlled experiments, we observe the influence of different phonetic content models as well as various feature-injection techniques on enhancement performance, considering both causal and non-causal models. Specifically, we evaluate three settings for injecting phonetic information, namely: i) feature conditioning; ii) perceptual supervision; and iii) regularization. Phonetic features are obtained using an intermediate layer of either a supervised pre-trained Automatic Speech Recognition (ASR) model or by using a pre-trained Self-Supervised Learning (SSL) model. We further observe the effect of choosing different embedding layers on performance, considering both manual and learned configurations. Results suggest that using a SSL model as phonetic features outperforms the ASR one in most cases. Interestingly, the conditioning setting performs best among the evaluated configurations." 1083,Neural Networks as Paths through the Space of Representations,"Deep neural networks implement a sequence of layer-by-layer operations that are each relatively easy to understand, but the resulting overall computation is generally difficult to understand. We develop a simple idea for interpreting the layer-by-layer construction of useful representations: the role of each layer is to reformat information to reduce the ""distance"" to the target outputs. We formalize this intuitive idea of ""distance"" by leveraging recent work on metric representational similarity, and show how it leads to a rich space of geometric concepts. With this framework, the layer-wise computation implemented by a deep neural network can be viewed as a path in a high-dimensional representation space. We develop tools to characterize the geometry of these in terms of distances, angles, and geodesics. We then ask three sets of questions of residual networks trained on CIFAR-10: (1) how straight are paths, and how does each layer contribute towards the target? (2) how do these properties emerge over training? and (3) how similar are the paths taken by wider versus deeper networks? We conclude by sketching additional ways that this kind of representational geometry can be used to understand and interpret network training, or to prescriptively improve network architectures to suit a task." 1084,Graph Neural Networks as Gradient Flows,"Dynamical systems minimizing an energy are ubiquitous in geometry and physics. We propose a gradient flow framework for GNNs where the equations follow the direction of steepest descent of a learnable energy. This approach allows to explain the GNN evolution from a multi-particle perspective as learning attractive and repulsive forces in feature space via the positive and negative eigenvalues of a symmetric ""channel-mixing"" matrix. We perform spectral analysis of the solutions and conclude that gradient flow graph convolutional models can induce a dynamics dominated by the graph high frequencies which is desirable for heterophilic datasets. We also describe structural constraints on common GNN architectures allowing to interpret them as gradient flows. We perform thorough ablation studies corroborating our theoretical analysis and show competitive performance of simple and lightweight models on real-world homophilic and heterophilic datasets." 1085,Traffic Congestion Prediction Using Machine Learning Techniques,"The prediction of traffic congestion can serve a crucial role in making future decisions. Although many studies have been conducted regarding congestion, most of these could not cover all the important factors (e.g., weather conditions). We proposed a prediction model for traffic congestion that can predict congestion based on day, time and several weather data (e.g., temperature, humidity). To evaluate our model, it has been tested against the traffic data of New Delhi. With this model, congestion of a road can be predicted one week ahead with an average RMSE of 1.12. Therefore, this model can be used to take preventive measure beforehand." 1086,Diagnostic Tool for Out-of-Sample Model Evaluation,"Assessment of model fitness is an important step in many problems. Models are typically fitted to training data by minimizing a loss function, such as the squared-error or negative log-likelihood, and it is natural to desire low losses on future data. This letter considers the use of a test data set to characterize the out-of-sample losses of a model. We propose a simple model diagnostic tool that provides finite-sample guarantees under weak assumptions. The tool is computationally efficient and can be interpreted as an empirical quantile. Several numerical experiments are presented to show how the proposed method quantifies the impact of distribution shifts, aids the analysis of regression, and enables model selection as well as hyper-parameter tuning." 1087,Multi-task twin support vector machine with Universum data,"Multi-task learning (MTL) has emerged as a promising topic of machine learning in recent years, aiming to enhance the performance of numerous related learning tasks by exploiting beneficial information. During the training phase, most of the existing multi-task learning models concentrate entirely on the target task data and ignore the non-target task data contained in the target tasks. To address this issue, Universum data, that do not correspond to any class of a classification problem, may be used as prior knowledge in the training model. This study looks at the challenge of multi-task learning using Universum data to employ non-target task data, which leads to better performance. It proposes a multi-task twin support vector machine with Universum data (UMTSVM) and provides two approaches to its solution. The first approach takes into account the dual formulation of UMTSVM and tries to solve a quadratic programming problem. The second approach formulates a least-squares version of UMTSVM and refers to it as LS-UMTSVM to further increase the generalization performance. The solution of the two primal problems in LS-UMTSVM is simplified to solving just two systems of linear equations, resulting in an incredibly simple and quick approach. Numerical experiments on several popular multi-task data sets and medical data sets demonstrate the efficiency of the proposed methods." 1088,Defect Prediction Using Stylistic Metrics,"Defect prediction is one of the most popular research topics due to its potential to minimize software quality assurance efforts. Existing approaches have examined defect prediction from various perspectives such as complexity and developer metrics. However, none of these consider programming style for defect prediction. This paper aims at analyzing the impact of stylistic metrics on both within-project and crossproject defect prediction. For prediction, 4 widely used machine learning algorithms namely Naive Bayes, Support Vector Machine, Decision Tree and Logistic Regression are used. The experiment is conducted on 14 releases of 5 popular, open source projects. F1, Precision and Recall are inspected to evaluate the results. Results reveal that stylistic metrics are a good predictor of defects." 1089,POGEMA: Partially Observable Grid Environment for Multiple Agents,"We introduce POGEMA (https://github.com/AIRI-Institute/pogema) a sandbox for challenging partially observable multi-agent pathfinding (PO-MAPF) problems . This is a grid-based environment that was specifically designed to be a flexible, tunable and scalable benchmark. It can be tailored to a variety of PO-MAPF, which can serve as an excellent testing ground for planning and learning methods, and their combination, which will allow us to move towards filling the gap between AI planning and learning." 1090,List-Decodable Covariance Estimation,"We give the first polynomial time algorithm for \emph{list-decodable covariance estimation}. For any $\alpha > 0$, our algorithm takes input a sample $Y \subseteq \mathbb{R}^d$ of size $n\geq d^{\mathsf{poly}(1/\alpha)}$ obtained by adversarially corrupting an $(1-\alpha)n$ points in an i.i.d. sample $X$ of size $n$ from the Gaussian distribution with unknown mean $\mu_*$ and covariance $\Sigma_*$. In $n^{\mathsf{poly}(1/\alpha)}$ time, it outputs a constant-size list of $k = k(\alpha)= (1/\alpha)^{\mathsf{poly}(1/\alpha)}$ candidate parameters that, with high probability, contains a $(\hat{\mu},\hat{\Sigma})$ such that the total variation distance $TV(\mathcal{N}(\mu_*,\Sigma_*),\mathcal{N}(\hat{\mu},\hat{\Sigma}))<1-O_{\alpha}(1)$. This is the statistically strongest notion of distance and implies multiplicative spectral and relative Frobenius distance approximation for parameters with dimension independent error. Our algorithm works more generally for $(1-\alpha)$-corruptions of any distribution $D$ that possesses low-degree sum-of-squares certificates of two natural analytic properties: 1) anti-concentration of one-dimensional marginals and 2) hypercontractivity of degree 2 polynomials. Prior to our work, the only known results for estimating covariance in the list-decodable setting were for the special cases of list-decodable linear regression and subspace recovery due to Karmarkar, Klivans, and Kothari (2019), Raghavendra and Yau (2019 and 2020) and Bakshi and Kothari (2020). These results need superpolynomial time for obtaining any subconstant error in the underlying dimension. Our result implies the first polynomial-time \emph{exact} algorithm for list-decodable linear regression and subspace recovery that allows, in particular, to obtain $2^{-\mathsf{poly}(d)}$ error in polynomial-time. Our result also implies an improved algorithm for clustering non-spherical mixtures." 1091,Information Geometry of Dropout Training,"Dropout is one of the most popular regularization techniques in neural network training. Because of its power and simplicity of idea, dropout has been analyzed extensively and many variants have been proposed. In this paper, several properties of dropout are discussed in a unified manner from the viewpoint of information geometry. We showed that dropout flattens the model manifold and that their regularization performance depends on the amount of the curvature. Then, we showed that dropout essentially corresponds to a regularization that depends on the Fisher information, and support this result from numerical experiments. Such a theoretical analysis of the technique from a different perspective is expected to greatly assist in the understanding of neural networks, which are still in their infancy." 1092,A Study on the Evaluation of Generative Models,"Implicit generative models, which do not return likelihood values, such as generative adversarial networks and diffusion models, have become prevalent in recent years. While it is true that these models have shown remarkable results, evaluating their performance is challenging. This issue is of vital importance to push research forward and identify meaningful gains from random noise. Currently, heuristic metrics such as the Inception score (IS) and Frechet Inception Distance (FID) are the most common evaluation metrics, but what they measure is not entirely clear. Additionally, there are questions regarding how meaningful their score actually is. In this work, we study the evaluation metrics of generative models by generating a high-quality synthetic dataset on which we can estimate classical metrics for comparison. Our study shows that while FID and IS do correlate to several f-divergences, their ranking of close models can vary considerably making them problematic when used for fain-grained comparison. We further used this experimental setting to study which evaluation metric best correlates with our probabilistic metrics. Lastly, we look into the base features used for metrics such as FID." 1093,Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications,"Automated model selection is often proposed to users to choose which machine learning model (or method) to apply to a given regression task. In this paper, we show that combining different regression models can yield better results than selecting a single ('best') regression model, and outline an efficient method that obtains optimally weighted convex linear combination from a heterogeneous set of regression models. More specifically, in this paper, a heuristic weight optimization, used in a preceding conference paper, is replaced by an exact optimization algorithm using convex quadratic programming. We prove convexity of the quadratic programming formulation for the straightforward formulation and for a formulation with weighted data points. The novel weight optimization is not only (more) exact but also more efficient. The methods we develop in this paper are implemented and made available via github-open source. They can be executed on commonly available hardware and offer a transparent and easy to interpret interface. The results indicate that the approach outperforms model selection methods on a range of data sets, including data sets with mixed variable type from drug discovery applications." 1094,FairGrad: Fairness Aware Gradient Descent,"We tackle the problem of group fairness in classification, where the objective is to learn models that do not unjustly discriminate against subgroups of the population. Most existing approaches are limited to simple binary tasks or involve difficult to implement training mechanisms. This reduces their practical applicability. In this paper, we propose FairGrad, a method to enforce fairness based on a reweighting scheme that iteratively learns group specific weights based on whether they are advantaged or not. FairGrad is easy to implement and can accommodate various standard fairness definitions. Furthermore, we show that it is comparable to standard baselines over various datasets including ones used in natural language processing and computer vision." 1095,AI-based software for lung nodule detection in chest X-rays -- Time for a second reader approach?,"Objectives: To compare artificial intelligence (AI) as a second reader in detecting lung nodules on chest X-rays (CXR) versus radiologists of two binational institutions, and to evaluate AI performance when using two different modes: automated versus assisted (additional remote radiologist review). Methods: The CXR public database (n = 247) of the Japanese Society of Radiological Technology with various types and sizes of lung nodules was analyzed. Eight radiologists evaluated the CXR images with regard to the presence of lung nodules and nodule conspicuity. After radiologist review, the AI software processed and flagged the CXR with the highest probability of missed nodules. The calculated accuracy metrics were the area under the curve (AUC), sensitivity, specificity, F1 score, false negative case number (FN), and the effect of different AI modes (automated/assisted) on the accuracy of nodule detection. Results: For radiologists, the average AUC value was 0.77 $\pm$ 0.07, while the average FN was 52.63 $\pm$ 17.53 (all studies) and 32 $\pm$ 11.59 (studies containing a nodule of malignant etiology = 32% rate of missed malignant nodules). Both AI modes -- automated and assisted -- produced an average increase in sensitivity (by 14% and 12%) and of F1-score (5% and 6%) and a decrease in specificity (by 10% and 3%, respectively). Conclusions: Both AI modes flagged the pulmonary nodules missed by radiologists in a significant number of cases. AI as a second reader has a high potential to improve diagnostic accuracy and radiology workflow. AI might detect certain pulmonary nodules earlier than radiologists, with a potentially significant impact on patient outcomes." 1096,Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection,"Deep learning techniques show success in detecting objects in medical images, but still suffer from false-positive predictions that may hinder accurate diagnosis. The estimated uncertainty of the neural network output has been used to flag incorrect predictions. We study the role played by features computed from neural network uncertainty estimates and shape-based features computed from binary predictions in reducing false positives in liver lesion detection by developing a classification-based post-processing step for different uncertainty estimation methods. We demonstrate an improvement in the lesion detection performance of the neural network (with respect to F1-score) for all uncertainty estimation methods on two datasets, comprising abdominal MR and CT images respectively. We show that features computed from neural network uncertainty estimates tend not to contribute much toward reducing false positives. Our results show that factors like class imbalance (true over false positive ratio) and shape-based features extracted from uncertainty maps play an important role in distinguishing false positive from true positive predictions" 1097,SpA-Former: Transformer image shadow detection and removal via spatial attention,"In this paper, we propose an end-to-end SpA-Former to recover a shadow-free image from a single shaded image. Unlike traditional methods that require two steps for shadow detection and then shadow removal, the SpA-Former unifies these steps into one, which is a one-stage network capable of directly learning the mapping function between shadows and no shadows, it does not require a separate shadow detection. Thus, SpA-former is adaptable to real image de-shadowing for shadows projected on different semantic regions. SpA-Former consists of transformer layer and a series of joint Fourier transform residual blocks and two-wheel joint spatial attention. The network in this paper is able to handle the task while achieving a very fast processing efficiency. Our code is relased on https://github.com/ zhangbaijin/Spatial-Transformer-shadow-removal" 1098,S2TNet: Spatio-Temporal Transformer Networks for Trajectory Prediction in Autonomous Driving,"To safely and rationally participate in dense and heterogeneous traffic, autonomous vehicles require to sufficiently analyze the motion patterns of surrounding traffic-agents and accurately predict their future trajectories. This is challenging because the trajectories of traffic-agents are not only influenced by the traffic-agents themselves but also by spatial interaction with each other. Previous methods usually rely on the sequential step-by-step processing of Long Short-Term Memory networks (LSTMs) and merely extract the interactions between spatial neighbors for single type traffic-agents. We propose the Spatio-Temporal Transformer Networks (S2TNet), which models the spatio-temporal interactions by spatio-temporal Transformer and deals with the temporel sequences by temporal Transformer. We input additional category, shape and heading information into our networks to handle the heterogeneity of traffic-agents. The proposed methods outperforms state-of-the-art methods on ApolloScape Trajectory dataset by more than 7\% on both the weighted sum of Average and Final Displacement Error. Our code is available at https://github.com/chenghuang66/s2tnet." 1099,How to Combine Variational Bayesian Networks in Federated Learning,"Federated Learning enables multiple data centers to train a central model collaboratively without exposing any confidential data. Even though deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications. Different from deterministic models, probabilistic models such as Bayesian neural networks are relatively well-calibrated and able to quantify uncertainty alongside their competitive prediction accuracy. Both of the approaches appear in the federated learning framework; however, the aggregation scheme of deterministic models cannot be directly applied to probabilistic models since weights correspond to distributions instead of point estimates. In this work, we study the effects of various aggregation schemes for variational Bayesian neural networks. With empirical results on three image classification datasets, we observe that the degree of spread for an aggregated distribution is a significant factor in the learning process. Hence, we present an investigation on the question of how to combine variational Bayesian networks in federated learning, while providing benchmarks for different aggregation settings." 1100,Optical Flow Regularization of Implicit Neural Representations for Video Frame Interpolation,"Recent works have shown the ability of Implicit Neural Representations (INR) to carry meaningful representations of signal derivatives. In this work, we leverage this property to perform Video Frame Interpolation (VFI) by explicitly constraining the derivatives of the INR to satisfy the optical flow constraint equation. We achieve state of the art VFI on limited motion ranges using only a target video and its optical flow, without learning the interpolation operator from additional training data. We further show that constraining the INR derivatives not only allows to better interpolate intermediate frames but also improves the ability of narrow networks to fit the observed frames, which suggests potential applications to video compression and INR optimization." 1101,KiloNeuS: Implicit Neural Representations with Real-Time Global Illumination,"The latest trends in inverse rendering techniques for reconstruction use neural networks to learn 3D representations as neural fields. NeRF-based techniques fit multi-layer perceptrons (MLPs) to a set of training images to estimate a radiance field which can then be rendered from any virtual camera by means of volume rendering algorithms. Major drawbacks of these representations are the lack of well-defined surfaces and non-interactive rendering times, as wide and deep MLPs must be queried millions of times per single frame. These limitations have recently been singularly overcome, but managing to accomplish this simultaneously opens up new use cases. We present KiloNeuS, a new neural object representation that can be rendered in path-traced scenes at interactive frame rates. KiloNeuS enables the simulation of realistic light interactions between neural and classic primitives in shared scenes, and it demonstrably performs in real-time with plenty of room for future optimizations and extensions." 1102,Guided Diffusion Model for Adversarial Purification from Random Noise,"In this paper, we propose a novel guided diffusion purification approach to provide a strong defense against adversarial attacks. Our model achieves 89.62% robust accuracy under PGD-L_inf attack (eps = 8/255) on the CIFAR-10 dataset. We first explore the essential correlations between unguided diffusion models and randomized smoothing, enabling us to apply the models to certified robustness. The empirical results show that our models outperform randomized smoothing by 5% when the certified L2 radius r is larger than 0.5." 1103,Decentralized Gossip-Based Stochastic Bilevel Optimization over Communication Networks,"Bilevel optimization have gained growing interests, with numerous applications found in meta learning, minimax games, reinforcement learning, and nested composition optimization. This paper studies the problem of distributed bilevel optimization over a network where agents can only communicate with neighbors, including examples from multi-task, multi-agent learning and federated learning. In this paper, we propose a gossip-based distributed bilevel learning algorithm that allows networked agents to solve both the inner and outer optimization problems in a single timescale and share information via network propagation. We show that our algorithm enjoys the $\mathcal{O}(\frac{1}{K \epsilon^2})$ per-agent sample complexity for general nonconvex bilevel optimization and $\mathcal{O}(\frac{1}{K \epsilon})$ for strongly convex objective, achieving a speedup that scales linearly with the network size. The sample complexities are optimal in both $\epsilon$ and $K$. We test our algorithm on the examples of hyperparameter tuning and decentralized reinforcement learning. Simulated experiments confirmed that our algorithm achieves the state-of-the-art training efficiency and test accuracy." 1104,Bregman Power k-Means for Clustering Exponential Family Data,"Recent progress in center-based clustering algorithms combats poor local minima by implicit annealing, using a family of generalized means. These methods are variations of Lloyd's celebrated $k$-means algorithm, and are most appropriate for spherical clusters such as those arising from Gaussian data. In this paper, we bridge these algorithmic advances to classical work on hard clustering under Bregman divergences, which enjoy a bijection to exponential family distributions and are thus well-suited for clustering objects arising from a breadth of data generating mechanisms. The elegant properties of Bregman divergences allow us to maintain closed form updates in a simple and transparent algorithm, and moreover lead to new theoretical arguments for establishing finite sample bounds that relax the bounded support assumption made in the existing state of the art. Additionally, we consider thorough empirical analyses on simulated experiments and a case study on rainfall data, finding that the proposed method outperforms existing peer methods in a variety of non-Gaussian data settings." 1105,Robust Universal Adversarial Perturbations,"Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs from a data distribution with high probability. Existing methods do not create UAPs robust to transformations, thereby limiting their applicability as a real-world attacks. In this work, we introduce a new concept and formulation of robust universal adversarial perturbations. Based on our formulation, we build a novel, iterative algorithm that leverages probabilistic robustness bounds for generating UAPs robust against transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring robustness under human-interpretable semantic transformations, such as rotation, contrast changes, etc, that are common in the real-world. Our results show that our generated UAPs are significantly more robust than those from baselines." 1106,Play It Cool: Dynamic Shifting Prevents Thermal Throttling,"Machine learning (ML) has entered the mobile era where an enormous number of ML models are deployed on edge devices. However, running common ML models on edge devices continuously may generate excessive heat from the computation, forcing the device to ""slow down"" to prevent overheating, a phenomenon called thermal throttling. This paper studies the impact of thermal throttling on mobile phones: when it occurs, the CPU clock frequency is reduced, and the model inference latency may increase dramatically. This unpleasant inconsistent behavior has a substantial negative effect on user experience, but it has been overlooked for a long time. To counter thermal throttling, we propose to utilize dynamic networks with shared weights and dynamically shift between large and small ML models seamlessly according to their thermal profile, i.e., shifting to a small model when the system is about to throttle. With the proposed dynamic shifting, the application runs consistently without experiencing CPU clock frequency degradation and latency increase. In addition, we also study the resulting accuracy when dynamic shifting is deployed and show that our approach provides a reasonable trade-off between model latency and model accuracy." 1107,DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation,"Recently, one critical issue looms large in the field of recommender systems -- there are no effective benchmarks for rigorous evaluation -- which consequently leads to unreproducible evaluation and unfair comparison. We, therefore, conduct studies from the perspectives of practical theory and experiments, aiming at benchmarking recommendation for rigorous evaluation. Regarding the theoretical study, a series of hyper-factors affecting recommendation performance throughout the whole evaluation chain are systematically summarized and analyzed via an exhaustive review on 141 papers published at eight top-tier conferences within 2017-2020. We then classify them into model-independent and model-dependent hyper-factors, and different modes of rigorous evaluation are defined and discussed in-depth accordingly. For the experimental study, we release DaisyRec 2.0 library by integrating these hyper-factors to perform rigorous evaluation, whereby a holistic empirical study is conducted to unveil the impacts of different hyper-factors on recommendation performance. Supported by the theoretical and experimental studies, we finally create benchmarks for rigorous evaluation by proposing standardized procedures and providing performance of ten state-of-the-arts across six evaluation metrics on six datasets as a reference for later study. Overall, our work sheds light on the issues in recommendation evaluation, provides potential solutions for rigorous evaluation, and lays foundation for further investigation." 1108,Quantization Robust Federated Learning for Efficient Inference on Heterogeneous Devices,"Federated Learning (FL) is a machine learning paradigm to distributively learn machine learning models from decentralized data that remains on-device. Despite the success of standard Federated optimization methods, such as Federated Averaging (FedAvg) in FL, the energy demands and hardware induced constraints for on-device learning have not been considered sufficiently in the literature. Specifically, an essential demand for on-device learning is to enable trained models to be quantized to various bit-widths based on the energy needs and heterogeneous hardware designs across the federation. In this work, we introduce multiple variants of federated averaging algorithm that train neural networks robust to quantization. Such networks can be quantized to various bit-widths with only limited reduction in full precision model accuracy. We perform extensive experiments on standard FL benchmarks to evaluate our proposed FedAvg variants for quantization robustness and provide a convergence analysis for our Quantization-Aware variants in FL. Our results demonstrate that integrating quantization robustness results in FL models that are significantly more robust to different bit-widths during quantized on-device inference." 1109,Learning Debiased Classifier with Biased Committee,"Neural networks are prone to be biased towards spurious correlations between classes and latent attributes exhibited in a major portion of training data, which ruins their generalization capability. This paper proposes a new method for training debiased classifiers with no spurious attribute label. The key idea of the method is to employ a committee of classifiers as an auxiliary module that identifies bias-conflicting data, i.e., data without spurious correlations, and assigns large weights to them when training the main classifier. The committee is learned as a bootstrapped ensemble so that a majority of its classifiers are biased as well as being diverse, and intentionally fail to predict classes of bias-conflicting data accordingly. The consensus within the committee on prediction difficulty thus provides a reliable cue for identifying and weighting bias-conflicting data. Moreover, the committee is also trained with knowledge transferred from the main classifier so that it gradually becomes debiased along with the main classifier and emphasizes more difficult data as training progresses. On five real-world datasets, our method outperforms existing methods using no spurious attribute label like ours and even surpasses those relying on bias labels occasionally." 1110,Learning Distribution Grid Topologies: A Tutorial,"Unveiling feeder topologies from data is of paramount importance to advance situational awareness and proper utilization of smart resources in power distribution grids. This tutorial summarizes, contrasts, and establishes useful links between recent works on topology identification and detection schemes that have been proposed for power distribution grids.% under different regimes of measurement type, observability, and sampling. The primary focus is to highlight methods that overcome the limited availability of measurement devices in distribution grids, while enhancing topology estimates using conservation laws of power-flow physics and structural properties of feeders. Grid data from phasor measurement units or smart meters can be collected either passively in the traditional way, or actively, upon actuating grid resources and measuring the feeder's voltage response. Analytical claims on feeder identifiability and detectability are reviewed under disparate meter placement scenarios. Such topology learning claims can be attained exactly or approximately so via algorithmic solutions with various levels of computational complexity, ranging from least-squares fits to convex optimization problems, and from polynomial-time searches over graphs to mixed-integer programs. This tutorial aspires to provide researchers and engineers with knowledge of the current state-of-the-art in tractable distribution grid learning and insights into future directions of work." 1111,Robust Bayesian Recourse,"Algorithmic recourse aims to recommend an informative feedback to overturn an unfavorable machine learning decision. We introduce in this paper the Bayesian recourse, a model-agnostic recourse that minimizes the posterior probability odds ratio. Further, we present its min-max robust counterpart with the goal of hedging against future changes in the machine learning model parameters. The robust counterpart explicitly takes into account possible perturbations of the data in a Gaussian mixture ambiguity set prescribed using the optimal transport (Wasserstein) distance. We show that the resulting worst-case objective function can be decomposed into solving a series of two-dimensional optimization subproblems, and the min-max recourse finding problem is thus amenable to a gradient descent algorithm. Contrary to existing methods for generating robust recourses, the robust Bayesian recourse does not require a linear approximation step. The numerical experiment demonstrates the effectiveness of our proposed robust Bayesian recourse facing model shifts. Our code is available at https://github.com/VinAIResearch/robust-bayesian-recourse." 1112,Few-shot Long-Tailed Bird Audio Recognition,"It is easier to hear birds than see them. However, they still play an essential role in nature and are excellent indicators of deteriorating environmental quality and pollution. Recent advances in Deep Neural Networks allow us to process audio data to detect and classify birds. This technology can assist researchers in monitoring bird populations and biodiversity. We propose a sound detection and classification pipeline to analyze complex soundscape recordings and identify birdcalls in the background. Our method learns from weak labels and few data and acoustically recognizes the bird species. Our solution achieved 18th place of 807 teams at the BirdCLEF 2022 Challenge hosted on Kaggle." 1113,Efficient Interdependent Systems Recovery Modeling with DeepONets,"Modeling the recovery of interdependent critical infrastructure is a key component of quantifying and optimizing societal resilience to disruptive events. However, simulating the recovery of large-scale interdependent systems under random disruptive events is computationally expensive. Therefore, we propose the application of Deep Operator Networks (DeepONets) in this paper to accelerate the recovery modeling of interdependent systems. DeepONets are ML architectures which identify mathematical operators from data. The form of governing equations DeepONets identify and the governing equation of interdependent systems recovery model are similar. Therefore, we hypothesize that DeepONets can efficiently model the interdependent systems recovery with little training data. We applied DeepONets to a simple case of four interdependent systems with sixteen states. DeepONets, overall, performed satisfactorily in predicting the recovery of these interdependent systems for out of training sample data when compared to reference results." 1114,Fighting Fire with Fire: Avoiding DNN Shortcuts through Priming,"Across applications spanning supervised classification and sequential control, deep learning has been reported to find ""shortcut"" solutions that fail catastrophically under minor changes in the data distribution. In this paper, we show empirically that DNNs can be coaxed to avoid poor shortcuts by providing an additional ""priming"" feature computed from key input features, usually a coarse output estimate. Priming relies on approximate domain knowledge of these task-relevant key input features, which is often easy to obtain in practical settings. For example, one might prioritize recent frames over past frames in a video input for visual imitation learning, or salient foreground over background pixels for image classification. On NICO image classification, MuJoCo continuous control, and CARLA autonomous driving, our priming strategy works significantly better than several popular state-of-the-art approaches for feature selection and data augmentation. We connect these empirical findings to recent theoretical results on DNN optimization, and argue theoretically that priming distracts the optimizer away from poor shortcuts by creating better, simpler shortcuts." 1115,FedBC: Calibrating Global and Local Models via Federated Learning Beyond Consensus,"In federated learning (FL), the objective of collaboratively learning a global model through aggregation of model updates across devices tends to oppose the goal of personalization via local information. In this work, we calibrate this tradeoff in a quantitative manner through a multi-criterion optimization-based framework, which we cast as a constrained program: the objective for a device is its local objective, which it seeks to minimize while satisfying nonlinear constraints that quantify the proximity between the local and the global model. By considering the Lagrangian relaxation of this problem, we develop an algorithm that allows each node to minimize its local component of Lagrangian through queries to a first-order gradient oracle. Then, the server executes Lagrange multiplier ascent steps followed by a Lagrange multiplier-weighted averaging step. We call this instantiation of the primal-dual method Federated Learning Beyond Consensus ($\texttt{FedBC}$). Theoretically, we establish that $\texttt{FedBC}$ converges to a first-order stationary point at rates that matches the state of the art, up to an additional error term that depends on the tolerance parameter that arises due to the proximity constraints. Overall, the analysis is a novel characterization of primal-dual methods applied to non-convex saddle point problems with nonlinear constraints. Finally, we demonstrate that $\texttt{FedBC}$ balances the global and local model test accuracy metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare), achieving competitive performance with the state of the art." 1116,Jointist: Joint Learning for Multi-instrument Transcription and Its Applications,"In this paper, we introduce Jointist, an instrument-aware multi-instrument framework that is capable of transcribing, recognizing, and separating multiple musical instruments from an audio clip. Jointist consists of the instrument recognition module that conditions the other modules: the transcription module that outputs instrument-specific piano rolls, and the source separation module that utilizes instrument information and transcription results. The instrument conditioning is designed for an explicit multi-instrument functionality while the connection between the transcription and source separation modules is for better transcription performance. Our challenging problem formulation makes the model highly useful in the real world given that modern popular music typically consists of multiple instruments. However, its novelty necessitates a new perspective on how to evaluate such a model. During the experiment, we assess the model from various aspects, providing a new evaluation perspective for multi-instrument transcription. We also argue that transcription models can be utilized as a preprocessing module for other music analysis tasks. In the experiment on several downstream tasks, the symbolic representation provided by our transcription model turned out to be helpful to spectrograms in solving downbeat detection, chord recognition, and key estimation." 1117,Automated Cancer Subtyping via Vector Quantization Mutual Information Maximization,"Cancer subtyping is crucial for understanding the nature of tumors and providing suitable therapy. However, existing labelling methods are medically controversial, and have driven the process of subtyping away from teaching signals. Moreover, cancer genetic expression profiles are high-dimensional, scarce, and have complicated dependence, thereby posing a serious challenge to existing subtyping models for outputting sensible clustering. In this study, we propose a novel clustering method for exploiting genetic expression profiles and distinguishing subtypes in an unsupervised manner. The proposed method adaptively learns categorical correspondence from latent representations of expression profiles to the subtypes output by the model. By maximizing the problem -- agnostic mutual information between input expression profiles and output subtypes, our method can automatically decide a suitable number of subtypes. Through experiments, we demonstrate that our proposed method can refine existing controversial labels, and, by further medical analysis, this refinement is proven to have a high correlation with cancer survival rates." 1118,Imitation Learning for Generalizable Self-driving Policy with Sim-to-real Transfer,"Imitation Learning uses the demonstrations of an expert to uncover the optimal policy and it is suitable for real-world robotics tasks as well. In this case, however, the training of the agent is carried out in a simulation environment due to safety, economic and time constraints. Later, the agent is applied in the real-life domain using sim-to-real methods. In this paper, we apply Imitation Learning methods that solve a robotics task in a simulated environment and use transfer learning to apply these solutions in the real-world environment. Our task is set in the Duckietown environment, where the robotic agent has to follow the right lane based on the input images of a single forward-facing camera. We present three Imitation Learning and two sim-to-real methods capable of achieving this task. A detailed comparison is provided on these techniques to highlight their advantages and disadvantages." 1119,"Multi-Resolution, Multi-Horizon Distributed Solar PV Power Forecasting with Forecast Combinations","Distributed, small-scale solar photovoltaic (PV) systems are being installed at a rapidly increasing rate. This can cause major impacts on distribution networks and energy markets. As a result, there is a significant need for improved forecasting of the power generation of these systems at different time resolutions and horizons. However, the performance of forecasting models depends on the resolution and horizon. Forecast combinations (ensembles), that combine the forecasts of multiple models into a single forecast may be robust in such cases. Therefore, in this paper, we provide comparisons and insights into the performance of five state-of-the-art forecast models and existing forecast combinations at multiple resolutions and horizons. We propose a forecast combination approach based on particle swarm optimization (PSO) that will enable a forecaster to produce accurate forecasts for the task at hand by weighting the forecasts produced by individual models. Furthermore, we compare the performance of the proposed combination approach with existing forecast combination approaches. A comprehensive evaluation is conducted using a real-world residential PV power data set measured at 25 houses located in three locations in the United States. The results across four different resolutions and four different horizons show that the PSO-based forecast combination approach outperforms the use of any individual forecast model and other forecast combination counterparts, with an average Mean Absolute Scaled Error reduction by 3.81% compared to the best performing individual model. Our approach enables a solar forecaster to produce accurate forecasts for their application regardless of the forecast resolution or horizon." 1120,Scaling Autoregressive Models for Content-Rich Text-to-Image Generation,"We present the Pathways Autoregressive Text-to-Image (Parti) model, which generates high-fidelity photorealistic images and supports content-rich synthesis involving complex compositions and world knowledge. Parti treats text-to-image generation as a sequence-to-sequence modeling problem, akin to machine translation, with sequences of image tokens as the target outputs rather than text tokens in another language. This strategy can naturally tap into the rich body of prior work on large language models, which have seen continued advances in capabilities and performance through scaling data and model sizes. Our approach is simple: First, Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens. Second, we achieve consistent quality improvements by scaling the encoder-decoder Transformer model up to 20B parameters, with a new state-of-the-art zero-shot FID score of 7.23 and finetuned FID score of 3.22 on MS-COCO. Our detailed analysis on Localized Narratives as well as PartiPrompts (P2), a new holistic benchmark of over 1600 English prompts, demonstrate the effectiveness of Parti across a wide variety of categories and difficulty aspects. We also explore and highlight limitations of our models in order to define and exemplify key areas of focus for further improvements. See https://parti.research.google/ for high-resolution images." 1121,Generative Pretraining for Black-Box Optimization,"Many problems in science and engineering involve optimizing an expensive black-box function over a high-dimensional space. For such black-box optimization (BBO) problems, we typically assume a small budget for online function evaluations, but also often have access to a fixed, offline dataset for pretraining. Prior approaches seek to utilize the offline data to approximate the function or its inverse but are not sufficiently accurate far from the data distribution. We propose Black-box Optimization Transformer (BOOMER), a generative framework for pretraining black-box optimizers using offline datasets. In BOOMER, we train an autoregressive model to imitate trajectory runs of implicit black-box function optimizers. Since these trajectories are unavailable by default, we develop a simple randomized heuristic to synthesize trajectories by sorting random points from offline data. We show theoretically that this heuristic induces trajectories that mimic transitions from diverse low-fidelity (exploration) to high-fidelity (exploitation) samples. Further, we introduce mechanisms to control the rate at which a trajectory transitions from exploration to exploitation, and use it to generalize outside the offline data at test-time. Empirically, we instantiate BOOMER using a casually masked Transformer and evaluate it on Design-Bench, where we rank the best on average, outperforming state-of-the-art baselines." 1122,Federated Latent Class Regression for Hierarchical Data,"Federated Learning (FL) allows a number of agents to participate in training a global machine learning model without disclosing locally stored data. Compared to traditional distributed learning, the heterogeneity (non-IID) of the agents slows down the convergence in FL. Furthermore, many datasets, being too noisy or too small, are easily overfitted by complex models, such as deep neural networks. Here, we consider the problem of using FL regression on noisy, hierarchical and tabular datasets in which user distributions are significantly different. Inspired by Latent Class Regression (LCR), we propose a novel probabilistic model, Hierarchical Latent Class Regression (HLCR), and its extension to Federated Learning, FEDHLCR. FEDHLCR consists of a mixture of linear regression models, allowing better accuracy than simple linear regression, while at the same time maintaining its analytical properties and avoiding overfitting. Our inference algorithm, being derived from Bayesian theory, provides strong convergence guarantees and good robustness to overfitting. Experimental results show that FEDHLCR offers fast convergence even in non-IID datasets." 1123,Efficient and effective training of language and graph neural network models,"Can we combine heterogenous graph structure with text to learn high-quality semantic and behavioural representations? Graph neural networks (GNN)s encode numerical node attributes and graph structure to achieve impressive performance in a variety of supervised learning tasks. Current GNN approaches are challenged by textual features, which typically need to be encoded to a numerical vector before provided to the GNN that may incur some information loss. In this paper, we put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks. The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model. Several system and design optimizations are proposed to enable scalable and efficient training. LM-GNN accommodates node and edge classification as well as link prediction tasks. We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach. LM-GNN provides competitive results in an Amazon query-purchase-product application." 1124,On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL,"We study reward-free reinforcement learning (RL) under general non-linear function approximation, and establish sample efficiency and hardness results under various standard structural assumptions. On the positive side, we propose the RFOLIVE (Reward-Free OLIVE) algorithm for sample-efficient reward-free exploration under minimal structural assumptions, which covers the previously studied settings of linear MDPs (Jin et al., 2020b), linear completeness (Zanette et al., 2020b) and low-rank MDPs with unknown representation (Modi et al., 2021). Our analyses indicate that the explorability or reachability assumptions, previously made for the latter two settings, are not necessary statistically for reward-free exploration. On the negative side, we provide a statistical hardness result for both reward-free and reward-aware exploration under linear completeness assumptions when the underlying features are unknown, showing an exponential separation between low-rank and linear completeness settings." 1125,"On the Limitations of Elo: Real-World Games, are Transitive, not Additive","Real-world competitive games, such as chess, go, or StarCraft II, rely on Elo models to measure the strength of their players. Since these games are not fully transitive, using Elo implicitly assumes they have a strong transitive component that can correctly be identified and extracted. In this study, we investigate the challenge of identifying the strength of the transitive component in games. First, we show that Elo models can fail to extract this transitive component, even in elementary transitive games. Then, based on this observation, we propose an extension of the Elo score: we end up with a disc ranking system that assigns each player two scores, which we refer to as skill and consistency. Finally, we propose an empirical validation on payoff matrices coming from real-world games played by bots and humans." 1126,"BiometricBlender: Ultra-high dimensional, multi-class synthetic data generator to imitate biometric feature space","The lack of freely available (real-life or synthetic) high or ultra-high dimensional, multi-class datasets may hamper the rapidly growing research on feature screening, especially in the field of biometrics, where the usage of such datasets is common. This paper reports a Python package called BiometricBlender, which is an ultra-high dimensional, multi-class synthetic data generator to benchmark a wide range of feature screening methods. During the data generation process, the overall usefulness and the intercorrelations of blended features can be controlled by the user, thus the synthetic feature space is able to imitate the key properties of a real biometric dataset." 1127,Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning,"Neural operators have gained significant attention recently due to their ability to approximate high-dimensional parametric maps between function spaces. At present, only parametric function approximation has been addressed in the neural operator literature. In this work we investigate incorporating parametric derivative information in neural operator training; this information can improve function approximations, additionally it can be used to improve the approximation of the derivative with respect to the parameter, which is often the key to scalable solution of high-dimensional outer-loop problems (e.g. Bayesian inverse problems). Parametric Jacobian information is formally intractable to incorporate due to its high-dimensionality, to address this concern we propose strategies based on reduced SVD, randomized sketching and the use of reduced basis surrogates. All of these strategies only require only $O(r)$ Jacobian actions to construct sample Jacobian data, and allow us to reduce the linear algebra and memory costs associated with the Jacobian training from the product of the input and output dimensions down to $O(r^2)$, where $r$ is the dimensionality associated with the dimension reduction technique. Numerical results for parametric PDE problems demonstrate that the addition of derivative information to the training problem can significantly improve the parametric map approximation, particularly given few data. When Jacobian actions are inexpensive compared to the parametric map, this information can be economically substituted for parametric map data. Additionally we show that Jacobian error approximations improve significantly with the introduction of Jacobian training data. This result opens the door to the use of derivative-informed neural operators (DINOs) in outer-loop algorithms where they can amortize the additional training data cost via repeated evaluations." 1128,Quantum-Enhanced Selection Operators for Evolutionary Algorithms,"Genetic algorithms have unique properties which are useful when applied to black box optimization. Using selection, crossover, and mutation operators, candidate solutions may be obtained without the need to calculate a gradient. In this work, we study results obtained from using quantum-enhanced operators within the selection mechanism of a genetic algorithm. Our approach frames the selection process as a minimization of a binary quadratic model with which we encode fitness and distance between members of a population, and we leverage a quantum annealing system to sample low energy solutions for the selection mechanism. We benchmark these quantum-enhanced algorithms against classical algorithms over various black-box objective functions, including the OneMax function, and functions from the IOHProfiler library for black-box optimization. We observe a performance gain in average number of generations to convergence for the quantum-enhanced elitist selection operator in comparison to classical on the OneMax function. We also find that the quantum-enhanced selection operator with non-elitist selection outperform benchmarks on functions with fitness perturbation from the IOHProfiler library. Additionally, we find that in the case of elitist selection, the quantum-enhanced operators outperform classical benchmarks on functions with varying degrees of dummy variables and neutrality." 1129,Imitate then Transcend: Multi-Agent Optimal Execution with Dual-Window Denoise PPO,"A novel framework for solving the optimal execution and placement problems using reinforcement learning (RL) with imitation was proposed. The RL agents trained from the proposed framework consistently outperformed the industry benchmark time-weighted average price (TWAP) strategy in execution cost and showed great generalization across out-of-sample trading dates and tickers. The impressive performance was achieved from three aspects. First, our RL network architecture called Dual-window Denoise PPO enabled efficient learning in a noisy market environment. Second, a reward scheme with imitation learning was designed, and a comprehensive set of market features was studied. Third, our flexible action formulation allowed the RL agent to tackle optimal execution and placement collectively resulting in better performance than solving individual problems separately. The RL agent's performance was evaluated in our multi-agent realistic historical limit order book simulator in which price impact was accurately assessed. In addition, ablation studies were also performed, confirming the superiority of our framework." 1130,Sharp Constants in Uniformity Testing via the Huber Statistic,"Uniformity testing is one of the most well-studied problems in property testing, with many known test statistics, including ones based on counting collisions, singletons, and the empirical TV distance. It is known that the optimal sample complexity to distinguish the uniform distribution on $m$ elements from any $\epsilon$-far distribution with $1-\delta$ probability is $n = \Theta\left(\frac{\sqrt{m \log (1/\delta)}}{\epsilon^2} + \frac{\log (1/\delta)}{\epsilon^2}\right)$, which is achieved by the empirical TV tester. Yet in simulation, these theoretical analyses are misleading: in many cases, they do not correctly rank order the performance of existing testers, even in an asymptotic regime of all parameters tending to $0$ or $\infty$. We explain this discrepancy by studying the \emph{constant factors} required by the algorithms. We show that the collisions tester achieves a sharp maximal constant in the number of standard deviations of separation between uniform and non-uniform inputs. We then introduce a new tester based on the Huber loss, and show that it not only matches this separation, but also has tails corresponding to a Gaussian with this separation. This leads to a sample complexity of $(1 + o(1))\frac{\sqrt{m \log (1/\delta)}}{\epsilon^2}$ in the regime where this term is dominant, unlike all other existing testers." 1131,Predicting Team Performance with Spatial Temporal Graph Convolutional Networks,"This paper presents a new approach for predicting team performance from the behavioral traces of a set of agents. This spatiotemporal forecasting problem is very relevant to sports analytics challenges such as coaching and opponent modeling. We demonstrate that our proposed model, Spatial Temporal Graph Convolutional Networks (ST-GCN), outperforms other classification techniques at predicting game score from a short segment of player movement and game features. Our proposed architecture uses a graph convolutional network to capture the spatial relationships between team members and Gated Recurrent Units to analyze dynamic motion information. An ablative evaluation was performed to demonstrate the contributions of different aspects of our architecture." 1132,Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management,"Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection. Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface. The heterogeneity typically requires high-fidelity physics-based models to make predictions on CO$_2$ fate. Furthermore, characterizing the heterogeneity accurately is fraught with parametric uncertainty. Accounting for both, heterogeneity and uncertainty, makes this a computationally-intensive problem challenging for current reservoir simulators. To tackle this, we use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization at critical reservoir locations. We use DPFEHM framework, which has trustworthy physics based on the standard two-point flux finite volume discretization and is also automatically differentiable like machine learning models. Our physics-informed machine learning framework uses convolutional neural networks to learn an appropriate extraction rate based on the permeability field. We also perform a hyperparameter search to improve the model's accuracy. Training and testing scenarios are executed to evaluate the feasibility of using physics-informed machine learning to manage reservoir pressures. We constructed and tested a sufficiently accurate simulator that is 400000 times faster than the underlying physics-based simulator, allowing for near real-time analysis and robust uncertainty quantification." 1133,Meta Reinforcement Learning with Finite Training Tasks -- a Density Estimation Approach,"In meta reinforcement learning (meta RL), an agent learns from a set of training tasks how to quickly solve a new task, drawn from the same task distribution. The optimal meta RL policy, a.k.a. the Bayes-optimal behavior, is well defined, and guarantees optimal reward in expectation, taken with respect to the task distribution. The question we explore in this work is how many training tasks are required to guarantee approximately optimal behavior with high probability. Recent work provided the first such PAC analysis for a model-free setting, where a history-dependent policy was learned from the training tasks. In this work, we propose a different approach: directly learn the task distribution, using density estimation techniques, and then train a policy on the learned task distribution. We show that our approach leads to bounds that depend on the dimension of the task distribution. In particular, in settings where the task distribution lies in a low-dimensional manifold, we extend our analysis to use dimensionality reduction techniques and account for such structure, obtaining significantly better bounds than previous work, which strictly depend on the number of states and actions. The key of our approach is the regularization implied by the kernel density estimation method. We further demonstrate that this regularization is useful in practice, when `plugged in' the state-of-the-art VariBAD meta RL algorithm." 1134,Beyond Uniform Lipschitz Condition in Differentially Private Optimization,"Most prior convergence results on differentially private stochastic gradient descent (DP-SGD) are derived under the simplistic assumption of uniform Lipschitzness, i.e., the per-sample gradients are uniformly bounded. This assumption is unrealistic in many problems, e.g., linear regression with Gaussian data. We relax uniform Lipschitzness by instead assuming that the per-sample gradients have \textit{sample-dependent} upper bounds, i.e., per-sample Lipschitz constants, which themselves may be unbounded. We derive new convergence results for DP-SGD on both convex and nonconvex functions when the per-sample Lipschitz constants have bounded moments. Furthermore, we provide principled guidance on choosing the clip norm in DP-SGD for convex settings satisfying our relaxed version of Lipschitzness, without making distributional assumptions on the Lipschitz constants. We verify the effectiveness of our recommendation via experiments on benchmarking datasets." 1135,Using cognitive psychology to understand GPT-3,"We study GPT-3, a recent large language model, using tools from cognitive psychology. More specifically, we assess GPT-3's decision-making, information search, deliberation, and causal reasoning abilities on a battery of canonical experiments from the literature. We find that much of GPT-3's behavior is impressive: it solves vignette-based tasks similarly or better than human subjects, is able to make decent decisions from descriptions, outperforms humans in a multi-armed bandit task, and shows signatures of model-based reinforcement learning. Yet we also find that small perturbations to vignette-based tasks can lead GPT-3 vastly astray, that it shows no signatures of directed exploration, and that it fails miserably in a causal reasoning task. These results enrich our understanding of current large language models and pave the way for future investigations using tools from cognitive psychology to study increasingly capable and opaque artificial agents." 1136,TraSE: Towards Tackling Authorial Style from a Cognitive Science Perspective,"Stylistic analysis of text is a key task in research areas ranging from authorship attribution to forensic analysis and personality profiling. The existing approaches for stylistic analysis are plagued by issues like topic influence, lack of discriminability for large number of authors and the requirement for large amounts of diverse data. In this paper, the source of these issues are identified along with the necessity for a cognitive perspective on authorial style in addressing them. A novel feature representation, called Trajectory-based Style Estimation (TraSE), is introduced to support this purpose. Authorship attribution experiments with over 27,000 authors and 1.4 million samples in a cross-domain scenario resulted in 90% attribution accuracy suggesting that the feature representation is immune to such negative influences and an excellent candidate for stylistic analysis. Finally, a qualitative analysis is performed on TraSE using physical human characteristics, like age, to validate its claim on capturing cognitive traits." 1137,Multi-Omic Data Integration and Feature Selection for Survival-based Patient Stratification via Supervised Concrete Autoencoders,"Cancer is a complex disease with significant social and economic impact. Advancements in high-throughput molecular assays and the reduced cost for performing high-quality multi-omics measurements have fuelled insights through machine learning . Previous studies have shown promise on using multiple omic layers to predict survival and stratify cancer patients. In this paper, we developed a Supervised Autoencoder (SAE) model for survival-based multi-omic integration which improves upon previous work, and report a Concrete Supervised Autoencoder model (CSAE), which uses feature selection to jointly reconstruct the input features as well as predict survival. Our experiments show that our models outperform or are on par with some of the most commonly used baselines, while either providing a better survival separation (SAE) or being more interpretable (CSAE). We also perform a feature selection stability analysis on our models and notice that there is a power-law relationship with features which are commonly associated with survival. The code for this project is available at: https://github.com/phcavelar/coxae" 1138,TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning,"We present Transformation Invariance and Covariance Contrast (TiCo) for self-supervised visual representation learning. Similar to other recent self-supervised learning methods, our method is based on maximizing the agreement among embeddings of different distorted versions of the same image, which pushes the encoder to produce transformation invariant representations. To avoid the trivial solution where the encoder generates constant vectors, we regularize the covariance matrix of the embeddings from different images by penalizing low rank solutions. By jointly minimizing the transformation invariance loss and covariance contrast loss, we get an encoder that is able to produce useful representations for downstream tasks. We analyze our method and show that it can be viewed as a variant of MoCo with an implicit memory bank of unlimited size at no extra memory cost. This makes our method perform better than alternative methods when using small batch sizes. TiCo can also be seen as a modification of Barlow Twins. By connecting the contrastive and redundancy-reduction methods together, TiCo gives us new insights into how joint embedding methods work." 1139,Performance Prediction Under Dataset Shift,"ML models deployed in production often have to face unknown domain changes, fundamentally different from their training settings. Performance prediction models carry out the crucial task of measuring the impact of these changes on model performance. We study the generalization capabilities of various performance prediction models to new domains by learning on generated synthetic perturbations. Empirical validation on a benchmark of ten tabular datasets shows that models based upon state-of-the-art shift detection metrics are not expressive enough to generalize to unseen domains, while Error Predictors bring a consistent improvement in performance prediction under shift. We additionally propose a natural and effortless uncertainty estimation of the predicted accuracy that ensures reliable use of performance predictors. Our implementation is available at https: //github.com/dataiku-research/performance_prediction_under_shift." 1140,Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting Epidemics,"Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The unavailability of specific drugs and ready-to-use vaccines to prevent most of these epidemics makes the situation worse. These force public health officials, health care providers, and policymakers to rely on early warning systems generated by reliable and accurate forecasts of epidemics. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics (e.g., dengue, malaria, hepatitis, influenza, and most recent, Covid-19) exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze a wide variety of epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it EWNet. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposed EWNet model. From a practical perspective, we compare our proposed EWNet framework with several statistical, machine learning, and deep learning models that have been previously used for epidemic forecasting." 1141,A consistent and flexible framework for deep matrix factorizations,"Deep matrix factorizations (deep MFs) are recent unsupervised data mining techniques inspired by constrained low-rank approximations. They aim to extract complex hierarchies of features within high-dimensional datasets. Most of the loss functions proposed in the literature to evaluate the quality of deep MF models and the underlying optimization frameworks are not consistent because different losses are used at different layers. In this paper, we introduce two meaningful loss functions for deep MF and present a generic framework to solve the corresponding optimization problems. We illustrate the effectiveness of this approach through the integration of various constraints and regularizations, such as sparsity, nonnegativity and minimum-volume. The models are successfully applied on both synthetic and real data, namely for hyperspectral unmixing and extraction of facial features." 1142,Multi-level Domain Adaptation for Lane Detection,"We focus on bridging domain discrepancy in lane detection among different scenarios to greatly reduce extra annotation and re-training costs for autonomous driving. Critical factors hinder the performance improvement of cross-domain lane detection that conventional methods only focus on pixel-wise loss while ignoring shape and position priors of lanes. To address the issue, we propose the Multi-level Domain Adaptation (MLDA) framework, a new perspective to handle cross-domain lane detection at three complementary semantic levels of pixel, instance and category. Specifically, at pixel level, we propose to apply cross-class confidence constraints in self-training to tackle the imbalanced confidence distribution of lane and background. At instance level, we go beyond pixels to treat segmented lanes as instances and facilitate discriminative features in target domain with triplet learning, which effectively rebuilds the semantic context of lanes and contributes to alleviating the feature confusion. At category level, we propose an adaptive inter-domain embedding module to utilize the position prior of lanes during adaptation. In two challenging datasets, ie TuSimple and CULane, our approach improves lane detection performance by a large margin with gains of 8.8% on accuracy and 7.4% on F1-score respectively, compared with state-of-the-art domain adaptation algorithms." 1143,Towards OOD Detection in Graph Classification from Uncertainty Estimation Perspective,"The problem of out-of-distribution detection for graph classification is far from being solved. The existing models tend to be overconfident about OOD examples or completely ignore the detection task. In this work, we consider this problem from the uncertainty estimation perspective and perform the comparison of several recently proposed methods. In our experiment, we find that there is no universal approach for OOD detection, and it is important to consider both graph representations and predictive categorical distribution." 1144,Learning Continuous Rotation Canonicalization with Radial Beam Sampling,"Nearly all state of the art vision models are sensitive to image rotations. Existing methods often compensate for missing inductive biases by using augmented training data to learn pseudo-invariances. Alongside the resource demanding data inflation process, predictions often poorly generalize. The inductive biases inherent to convolutional neural networks allow for translation equivariance through kernels acting parallely to the horizontal and vertical axes of the pixel grid. This inductive bias, however, does not allow for rotation equivariance. We propose a radial beam sampling strategy along with radial kernels operating on these beams to inherently incorporate center-rotation covariance. Together with an angle distance loss, we present a radial beam-based image canonicalization model, short BIC. Our model allows for maximal continuous angle regression and canonicalizes arbitrary center-rotated input images. As a pre-processing model, this enables rotation-invariant vision pipelines with model-agnostic rotation-sensitive downstream predictions. We show that our end-to-end trained angle regressor is able to predict continuous rotation angles on several vision datasets, i.e. FashionMNIST, CIFAR10, COIL100, and LFW." 1145,Differentially Private Maximal Information Coefficients,"The Maximal Information Coefficient (MIC) is a powerful statistic to identify dependencies between variables. However, it may be applied to sensitive data, and publishing it could leak private information. As a solution, we present algorithms to approximate MIC in a way that provides differential privacy. We show that the natural application of the classic Laplace mechanism yields insufficient accuracy. We therefore introduce the MICr statistic, which is a new MIC approximation that is more compatible with differential privacy. We prove MICr is a consistent estimator for MIC, and we provide two differentially private versions of it. We perform experiments on a variety of real and synthetic datasets. The results show that the private MICr statistics significantly outperform direct application of the Laplace mechanism. Moreover, experiments on real-world datasets show accuracy that is usable when the sample size is at least moderately large." 1146,Learning Neuro-Symbolic Skills for Bilevel Planning,"Decision-making is challenging in robotics environments with continuous object-centric states, continuous actions, long horizons, and sparse feedback. Hierarchical approaches, such as task and motion planning (TAMP), address these challenges by decomposing decision-making into two or more levels of abstraction. In a setting where demonstrations and symbolic predicates are given, prior work has shown how to learn symbolic operators and neural samplers for TAMP with manually designed parameterized policies. Our main contribution is a method for learning parameterized polices in combination with operators and samplers. These components are packaged into modular neuro-symbolic skills and sequenced together with search-then-sample TAMP to solve new tasks. In experiments in four robotics domains, we show that our approach -- bilevel planning with neuro-symbolic skills -- can solve a wide range of tasks with varying initial states, goals, and objects, outperforming six baselines and ablations. Video: https://youtu.be/PbFZP8rPuGg Code: https://tinyurl.com/skill-learning" 1147,ConTraNet: A single end-to-end hybrid network for EEG-based and EMG-based human machine interfaces,"Objective: Electroencephalography (EEG) and electromyography (EMG) are two non-invasive bio-signals, which are widely used in human machine interface (HMI) technologies (EEG-HMI and EMG-HMI paradigm) for the rehabilitation of physically disabled people. Successful decoding of EEG and EMG signals into respective control command is a pivotal step in the rehabilitation process. Recently, several Convolutional neural networks (CNNs) based architectures are proposed that directly map the raw time-series signal into decision space and the process of meaningful features extraction and classification are performed simultaneously. However, these networks are tailored to the learn the expected characteristics of the given bio-signal and are limited to single paradigm. In this work, we addressed the question that can we build a single architecture which is able to learn distinct features from different HMI paradigms and still successfully classify them. Approach: In this work, we introduce a single hybrid model called ConTraNet, which is based on CNN and Transformer architectures that is equally useful for EEG-HMI and EMG-HMI paradigms. ConTraNet uses CNN block to introduce inductive bias in the model and learn local dependencies, whereas the Transformer block uses the self-attention mechanism to learn the long-range dependencies in the signal, which are crucial for the classification of EEG and EMG signals. Main results: We evaluated and compared the ConTraNet with state-of-the-art methods on three publicly available datasets which belong to EEG-HMI and EMG-HMI paradigms. ConTraNet outperformed its counterparts in all the different category tasks (2-class, 3-class, 4-class, and 10-class decoding tasks). Significance: The results suggest that ConTraNet is robust to learn distinct features from different HMI paradigms and generalizes well as compared to the current state of the art algorithms." 1148,On the Maximum Hessian Eigenvalue and Generalization,"The mechanisms by which certain training interventions, such as increasing learning rates and applying batch normalization, improve the generalization of deep networks remains a mystery. Prior works have speculated that ""flatter"" solutions generalize better than ""sharper"" solutions to unseen data, motivating several metrics for measuring flatness (particularly $\lambda_{max}$, the largest eigenvalue of the Hessian of the loss); and algorithms, such as Sharpness-Aware Minimization (SAM) [1], that directly optimize for flatness. Other works question the link between $\lambda_{max}$ and generalization. In this paper, we present findings that call $\lambda_{max}$'s influence on generalization further into question. We show that: (1) while larger learning rates reduce $\lambda_{max}$ for all batch sizes, generalization benefits sometimes vanish at larger batch sizes; (2) by scaling batch size and learning rate simultaneously, we can change $\lambda_{max}$ without affecting generalization; (3) while SAM produces smaller $\lambda_{max}$ for all batch sizes, generalization benefits (also) vanish with larger batch sizes; (4) for dropout, excessively high dropout probabilities can degrade generalization, even as they promote smaller $\lambda_{max}$; and (5) while batch-normalization does not consistently produce smaller $\lambda_{max}$, it nevertheless confers generalization benefits. While our experiments affirm the generalization benefits of large learning rates and SAM for minibatch SGD, the GD-SGD discrepancy demonstrates limits to $\lambda_{max}$'s ability to explain generalization in neural networks." 1149,Sparse Kernel Gaussian Processes through Iterative Charted Refinement (ICR),"Gaussian Processes (GPs) are highly expressive, probabilistic models. A major limitation is their computational complexity. Naively, exact GP inference requires $\mathcal{O}(N^3)$ computations with $N$ denoting the number of modeled points. Current approaches to overcome this limitation either rely on sparse, structured or stochastic representations of data or kernel respectively and usually involve nested optimizations to evaluate a GP. We present a new, generative method named Iterative Charted Refinement (ICR) to model GPs on nearly arbitrarily spaced points in $\mathcal{O}(N)$ time for decaying kernels without nested optimizations. ICR represents long- as well as short-range correlations by combining views of the modeled locations at varying resolutions with a user-provided coordinate chart. In our experiment with points whose spacings vary over two orders of magnitude, ICR's accuracy is comparable to state-of-the-art GP methods. ICR outperforms existing methods in terms of computational speed by one order of magnitude on the CPU and GPU and has already been successfully applied to model a GP with $122$ billion parameters." 1150,Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning,"The combination of Monte Carlo methods and deep learning has recently led to efficient algorithms for solving partial differential equations (PDEs) in high dimensions. Related learning problems are often stated as variational formulations based on associated stochastic differential equations (SDEs), which allow the minimization of corresponding losses using gradient-based optimization methods. In respective numerical implementations it is therefore crucial to rely on adequate gradient estimators that exhibit low variance in order to reach convergence accurately and swiftly. In this article, we rigorously investigate corresponding numerical aspects that appear in the context of linear Kolmogorov PDEs. In particular, we systematically compare existing deep learning approaches and provide theoretical explanations for their performances. Subsequently, we suggest novel methods that can be shown to be more robust both theoretically and numerically, leading to substantial performance improvements." 1151,D-CIPHER: Discovery of Closed-form PDEs,"Closed-form differential equations, including partial differential equations and higher-order ordinary differential equations, are one of the most important tools used by scientists to model and better understand natural phenomena. Discovering these equations directly from data is challenging because it requires modeling relationships between various derivatives that are not observed in the data (\textit{equation-data mismatch}) and it involves searching across a huge space of possible equations. Current approaches make strong assumptions about the form of the equation and thus fail to discover many well-known systems. Moreover, many of them resolve the equation-data mismatch by estimating the derivatives, which makes them inadequate for noisy and infrequently sampled systems. To this end, we propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations. We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently. Finally, we demonstrate empirically that it can discover many well-known equations that are beyond the capabilities of current methods." 1152,Nimble GNN Embedding with Tensor-Train Decomposition,"This paper describes a new method for representing embedding tables of graph neural networks (GNNs) more compactly via tensor-train (TT) decomposition. We consider the scenario where (a) the graph data that lack node features, thereby requiring the learning of embeddings during training; and (b) we wish to exploit GPU platforms, where smaller tables are needed to reduce host-to-GPU communication even for large-memory GPUs. The use of TT enables a compact parameterization of the embedding, rendering it small enough to fit entirely on modern GPUs even for massive graphs. When combined with judicious schemes for initialization and hierarchical graph partitioning, this approach can reduce the size of node embedding vectors by 1,659 times to 81,362 times on large publicly available benchmark datasets, achieving comparable or better accuracy and significant speedups on multi-GPU systems. In some cases, our model without explicit node features on input can even match the accuracy of models that use node features." 1153,Gradient-Enhanced Physics-Informed Neural Networks for Power Systems Operational Support,"The application of deep learning methods to speed up the resolution of challenging power flow problems has recently shown very encouraging results. However, power system dynamics are not snap-shot, steady-state operations. These dynamics must be considered to ensure that the optimal solutions provided by these models adhere to practical dynamical constraints, avoiding frequency fluctuations and grid instabilities. Unfortunately, dynamic system models based on ordinary or partial differential equations are frequently unsuitable for direct application in control or state estimates due to their high computational costs. To address these challenges, this paper introduces a machine learning method to approximate the behavior of power systems dynamics in near real time. The proposed framework is based on gradient-enhanced physics-informed neural networks (gPINNs) and encodes the underlying physical laws governing power systems. A key characteristic of the proposed gPINN is its ability to train without the need of generating expensive training data. The paper illustrates the potential of the proposed approach in both forward and inverse problems in a single-machine infinite bus system for predicting rotor angles and frequency, and uncertain parameters such as inertia and damping to showcase its potential for a range of power systems applications." 1154,Solving Constrained Variational Inequalities via an Interior Point Method,"We develop an interior-point approach to solve constrained variational inequality (cVI) problems. Inspired by the efficacy of the alternating direction method of multipliers (ADMM) method in the single-objective context, we generalize ADMM to derive a first-order method for cVIs, that we refer to as ADMM-based interior point method for constrained VIs (ACVI). We provide convergence guarantees for ACVI in two general classes of problems: (i) when the operator is $\xi$-monotone, and (ii) when it is monotone, the constraints are active and the game is not purely rotational. When the operator is in addition L-Lipschitz for the latter case, we match known lower bounds on rates for the gap function of $\mathcal{O}(1/\sqrt{K})$ and $\mathcal{O}(1/K)$ for the last and average iterate, respectively. To the best of our knowledge, this is the first presentation of a first-order interior-point method for the general cVI problem that has a global convergence guarantee. Moreover, unlike previous work in this setting, ACVI provides a means to solve cVIs when the constraints are nontrivial. Empirical analyses demonstrate clear advantages of ACVI over common first-order methods. In particular, (i) cyclical behavior is notably reduced as our methods approach the solution from the analytic center, and (ii) unlike projection-based methods that oscillate when near a constraint, ACVI efficiently handles the constraints." 1155,Controllability of Coarsely Measured Networked Linear Dynamical Systems (Extended Version),"We consider the controllability of large-scale linear networked dynamical systems when complete knowledge of network structure is unavailable and knowledge is limited to coarse summaries. We provide conditions under which average controllability of the fine-scale system can be well approximated by average controllability of the (synthesized, reduced-order) coarse-scale system. To this end, we require knowledge of some inherent parametric structure of the fine-scale network that makes this type of approximation possible. Therefore, we assume that the underlying fine-scale network is generated by the stochastic block model (SBM) -- often studied in community detection. We then provide an algorithm that directly estimates the average controllability of the fine-scale system using a coarse summary of SBM. Our analysis indicates the necessity of underlying structure (e.g., in-built communities) to be able to quantify accurately the controllability from coarsely characterized networked dynamics. We also compare our method to that of the reduced-order method and highlight the regimes where both can outperform each other. Finally, we provide simulations to confirm our theoretical results for different scalings of network size and density, and the parameter that captures how much community-structure is retained in the coarse summary." 1156,Ensembling over Classifiers: a Bias-Variance Perspective,"Ensembles are a straightforward, remarkably effective method for improving the accuracy,calibration, and robustness of models on classification tasks; yet, the reasons that underlie their success remain an active area of research. We build upon the extension to the bias-variance decomposition by Pfau (2013) in order to gain crucial insights into the behavior of ensembles of classifiers. Introducing a dual reparameterization of the bias-variance tradeoff, we first derive generalized laws of total expectation and variance for nonsymmetric losses typical of classification tasks. Comparing conditional and bootstrap bias/variance estimates, we then show that conditional estimates necessarily incur an irreducible error. Next, we show that ensembling in dual space reduces the variance and leaves the bias unchanged, whereas standard ensembling can arbitrarily affect the bias. Empirically, standard ensembling reducesthe bias, leading us to hypothesize that ensembles of classifiers may perform well in part because of this unexpected reduction.We conclude by an empirical analysis of recent deep learning methods that ensemble over hyperparameters, revealing that these techniques indeed favor bias reduction. This suggests that, contrary to classical wisdom, targeting bias reduction may be a promising direction for classifier ensembles." 1157,sqSGD: Locally Private and Communication Efficient Federated Learning,"Federated learning (FL) is a technique that trains machine learning models from decentralized data sources. We study FL under local notions of privacy constraints, which provides strong protection against sensitive data disclosures via obfuscating the data before leaving the client. We identify two major concerns in designing practical privacy-preserving FL algorithms: communication efficiency and high-dimensional compatibility. We then develop a gradient-based learning algorithm called \emph{sqSGD} (selective quantized stochastic gradient descent) that addresses both concerns. The proposed algorithm is based on a novel privacy-preserving quantization scheme that uses a constant number of bits per dimension per client. Then we improve the base algorithm in three ways: first, we apply a gradient subsampling strategy that simultaneously offers better training performance and smaller communication costs under a fixed privacy budget. Secondly, we utilize randomized rotation as a preprocessing step to reduce quantization error. Thirdly, an adaptive gradient norm upper bound shrinkage strategy is adopted to improve accuracy and stabilize training. Finally, the practicality of the proposed framework is demonstrated on benchmark datasets. Experiment results show that sqSGD successfully learns large models like LeNet and ResNet with local privacy constraints. In addition, with fixed privacy and communication level, the performance of sqSGD significantly dominates that of various baseline algorithms." 1158,EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine,"There has been significant progress in developing reinforcement learning (RL) training systems. Past works such as IMPALA, Apex, Seed RL, Sample Factory, and others aim to improve the system's overall throughput. In this paper, we try to address a common bottleneck in the RL training system, i.e., parallel environment execution, which is often the slowest part of the whole system but receives little attention. With a curated design for paralleling RL environments, we have improved the RL environment simulation speed across different hardware setups, ranging from a laptop, and a modest workstation, to a high-end machine like NVIDIA DGX-A100. On a high-end machine, EnvPool achieves 1 million frames per second for the environment execution on Atari environments and 3 million frames per second on MuJoCo environments. When running on a laptop, the speed of EnvPool is 2.8 times of the Python subprocess. Moreover, great compatibility with existing RL training libraries has been demonstrated in the open-sourced community, including CleanRL, rl_games, DeepMind Acme, etc. Finally, EnvPool allows researchers to iterate their ideas at a much faster pace and has the great potential to become the de facto RL environment execution engine. Example runs show that it takes only 5 minutes to train Atari Pong and MuJoCo Ant, both on a laptop. EnvPool has already been open-sourced at https://github.com/sail-sg/envpool." 1159,Scaling up Kernels in 3D CNNs,"Recent advances in 2D CNNs and vision transformers (ViTs) reveal that large kernels are essential for enough receptive fields and high performance. Inspired by this literature, we examine the feasibility and challenges of 3D large-kernel designs. We demonstrate that applying large convolutional kernels in 3D CNNs has more difficulties in both performance and efficiency. Existing techniques that work well in 2D CNNs are ineffective in 3D networks, including the popular depth-wise convolutions. To overcome these obstacles, we present the spatial-wise group convolution and its large-kernel module (SW-LK block). It avoids the optimization and efficiency issues of naive 3D large kernels. Our large-kernel 3D CNN network, i.e., LargeKernel3D, yields non-trivial improvements on various 3D tasks, including semantic segmentation and object detection. Notably, it achieves 73.9% mIoU on the ScanNetv2 semantic segmentation and 72.8% NDS nuScenes object detection benchmarks, ranking 1st on the nuScenes LIDAR leaderboard. It is further boosted to 74.2% NDS with a simple multi-modal fusion. LargeKernel3D attains comparable or superior results than its CNN and transformer counterparts. For the first time, we show that large kernels are feasible and essential for 3D networks." 1160,Uncertainty Quantification for Competency Assessment of Autonomous Agents,"For safe and reliable deployment in the real world, autonomous agents must elicit appropriate levels of trust from human users. One method to build trust is to have agents assess and communicate their own competencies for performing given tasks. Competency depends on the uncertainties affecting the agent, making accurate uncertainty quantification vital for competency assessment. In this work, we show how ensembles of deep generative models can be used to quantify the agent's aleatoric and epistemic uncertainties when forecasting task outcomes as part of competency assessment." 1161,On the effectiveness of persistent homology,"Persistent homology (PH) is one of the most popular methods in Topological Data Analysis. While PH has been used in many different types of applications, the reasons behind its success remain elusive. In particular, it is not known for which classes of problems it is most effective, or to what extent it can detect geometric or topological features. The goal of this work is to identify some types of problems on which PH performs well or even better than other methods in data analysis. We consider three fundamental shape-analysis tasks: the detection of the number of holes, curvature and convexity from 2D and 3D point clouds sampled from shapes. Experiments demonstrate that PH is successful in these tasks, outperforming several baselines, including PointNet, an architecture inspired precisely by the properties of point clouds. In addition, we observe that PH remains effective for limited computational resources and limited training data, as well as out-of-distribution test data, including various data transformations and noise." 1162,(Certified!!) Adversarial Robustness for Free!,"In this paper we show how to achieve state-of-the-art certified adversarial robustness to 2-norm bounded perturbations by relying exclusively on off-the-shelf pretrained models. To do so, we instantiate the denoised smoothing approach of Salman et al. by combining a pretrained denoising diffusion probabilistic model and a standard high-accuracy classifier. This allows us to certify 71% accuracy on ImageNet under adversarial perturbations constrained to be within a 2-norm of 0.5, an improvement of 14 percentage points over the prior certified SoTA using any approach, or an improvement of 30 percentage points over denoised smoothing. We obtain these results using only pretrained diffusion models and image classifiers, without requiring any fine tuning or retraining of model parameters." 1163,Faster Diffusion Cardiac MRI with Deep Learning-based breath hold reduction,"Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) enables us to probe the microstructural arrangement of cardiomyocytes within the myocardium in vivo and non-invasively, which no other imaging modality allows. This innovative technology could revolutionise the ability to perform cardiac clinical diagnosis, risk stratification, prognosis and therapy follow-up. However, DT-CMR is currently inefficient with over six minutes needed to acquire a single 2D static image. Therefore, DT-CMR is currently confined to research but not used clinically. We propose to reduce the number of repetitions needed to produce DT-CMR datasets and subsequently de-noise them, decreasing the acquisition time by a linear factor while maintaining acceptable image quality. Our proposed approach, based on Generative Adversarial Networks, Vision Transformers, and Ensemble Learning, performs significantly and considerably better than previous proposed approaches, bringing single breath-hold DT-CMR closer to reality." 1164,Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery,"This paper revisits datasets and evaluation criteria for Symbolic Regression, a task of expressing given data using mathematical equations, specifically focused on its potential for scientific discovery. Focused on a set of formulas used in the existing datasets based on Feynman Lectures on Physics, we recreate 120 datasets to discuss the performance of symbolic regression for scientific discovery (SRSD). For each of the 120 SRSD datasets, we carefully review the properties of the formula and its variables to design reasonably realistic sampling range of values so that our new SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets. As an evaluation metric, we also propose to use normalized edit distances between a predicted equation and the ground-truth equation trees. While existing metrics are either binary or errors between the target values and an SR model's predicted values for a given input, normalized edit distances evaluate a sort of similarity between the ground-truth and predicted equation trees. We have conducted experiments on our new SRSD datasets using five state-of-the-art SR methods in SRBench and a simple baseline based on a recent Transformer architecture. The results show that we provide a more realistic performance evaluation and open up a new machine learning-based approach for scientific discovery. Our datasets and code repository are publicly available." 1165,EpiGRAF: Rethinking training of 3D GANs,"A very recent trend in generative modeling is building 3D-aware generators from 2D image collections. To induce the 3D bias, such models typically rely on volumetric rendering, which is expensive to employ at high resolutions. During the past months, there appeared more than 10 works that address this scaling issue by training a separate 2D decoder to upsample a low-resolution image (or a feature tensor) produced from a pure 3D generator. But this solution comes at a cost: not only does it break multi-view consistency (i.e. shape and texture change when the camera moves), but it also learns the geometry in a low fidelity. In this work, we show that it is possible to obtain a high-resolution 3D generator with SotA image quality by following a completely different route of simply training the model patch-wise. We revisit and improve this optimization scheme in two ways. First, we design a location- and scale-aware discriminator to work on patches of different proportions and spatial positions. Second, we modify the patch sampling strategy based on an annealed beta distribution to stabilize training and accelerate the convergence. The resulted model, named EpiGRAF, is an efficient, high-resolution, pure 3D generator, and we test it on four datasets (two introduced in this work) at $256^2$ and $512^2$ resolutions. It obtains state-of-the-art image quality, high-fidelity geometry and trains ${\approx} 2.5 \times$ faster than the upsampler-based counterparts. Project website: https://universome.github.io/epigraf." 1166,Lyapunov Density Models: Constraining Distribution Shift in Learning-Based Control,"Learned models and policies can generalize effectively when evaluated within the distribution of the training data, but can produce unpredictable and erroneous outputs on out-of-distribution inputs. In order to avoid distribution shift when deploying learning-based control algorithms, we seek a mechanism to constrain the agent to states and actions that resemble those that it was trained on. In control theory, Lyapunov stability and control-invariant sets allow us to make guarantees about controllers that stabilize the system around specific states, while in machine learning, density models allow us to estimate the training data distribution. Can we combine these two concepts, producing learning-based control algorithms that constrain the system to in-distribution states using only in-distribution actions? In this work, we propose to do this by combining concepts from Lyapunov stability and density estimation, introducing Lyapunov density models: a generalization of control Lyapunov functions and density models that provides guarantees on an agent's ability to stay in-distribution over its entire trajectory." 1167,Learning to Estimate and Refine Fluid Motion with Physical Dynamics,"Extracting information on fluid motion directly from images is challenging. Fluid flow represents a complex dynamic system governed by the Navier-Stokes equations. General optical flow methods are typically designed for rigid body motion, and thus struggle if applied to fluid motion estimation directly. Further, optical flow methods only focus on two consecutive frames without utilising historical temporal information, while the fluid motion (velocity field) can be considered a continuous trajectory constrained by time-dependent partial differential equations (PDEs). This discrepancy has the potential to induce physically inconsistent estimations. Here we propose an unsupervised learning based prediction-correction scheme for fluid flow estimation. An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector. The proposed approach outperforms optical flow methods and shows competitive results compared to existing supervised learning based methods on a benchmark dataset. Furthermore, the proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable. Finally, experiments demonstrate that the physical corrector can refine flow estimates by mimicking the operator splitting method commonly utilised in fluid dynamical simulation." 1168,Policy learning with asymmetric utilities,"Data-driven decision making plays an important role even in high stakes settings like medicine and public policy. Learning optimal policies from observed data requires a careful formulation of the utility function whose expected value is maximized across a population. Although researchers typically use utilities that depend on observed outcomes alone, in many settings the decision maker's utility function is more properly characterized by the joint set of potential outcomes under all actions. For example, the Hippocratic principle to ``do no harm'' implies that the cost of causing death to a patient who would otherwise survive without treatment is greater than the cost of forgoing life-saving treatment. We consider optimal policy learning with asymmetric utility functions of this form. We show that asymmetric utilities lead to an unidentifiable social welfare function, and so we first partially identify it. Drawing on statistical decision theory, we then derive minimax decision rules by minimizing the maximum regret relative to alternative policies. We show that one can learn minimax decision rules from observed data by solving intermediate classification problems. We also establish that the finite sample regret of this procedure is bounded by the mis-classification rate of these intermediate classifiers. We apply this conceptual framework and methodology to the decision about whether or not to use right heart catheterization for patients with possible pulmonary hypertension." 1169,Survival Kernets: Scalable and Interpretable Deep Kernel Survival Analysis with an Accuracy Guarantee,"Kernel survival analysis models estimate individual survival distributions with the help of a kernel function, which measures the similarity between any two data points. Such a kernel function can be learned using deep kernel survival models. In this paper, we present a new deep kernel survival model called a survival kernet, which scales to large datasets in a manner that is amenable to model interpretation and also theoretical analysis. Specifically, the training data are partitioned into clusters based on a recently developed training set compression scheme for classification and regression called kernel netting that we extend to the survival analysis setting. At test-time, each data point is represented as a weighted combination of these clusters, and each such cluster can be visualized. For a special case of survival kernets, we establish a finite-sample error bound on predicted survival distributions that is, up to a log factor, optimal. Whereas scalability at test time is achieved using the aforementioned kernel netting compression strategy, scalability during training is achieved by a warm-start procedure based on tree ensembles such as XGBoost and a heuristic approach to accelerating neural architecture search. On three standard survival analysis datasets of varying sizes (up to roughly 3 million data points), we show that survival kernets are highly competitive with the best of baselines tested in terms of concordance index. Our code is available at: https://github.com/georgehc/survival-kernets" 1170,The Privacy Onion Effect: Memorization is Relative,"Machine learning models trained on private datasets have been shown to leak their private data. While recent work has found that the average data point is rarely leaked, the outlier samples are frequently subject to memorization and, consequently, privacy leakage. We demonstrate and analyse an Onion Effect of memorization: removing the ""layer"" of outlier points that are most vulnerable to a privacy attack exposes a new layer of previously-safe points to the same attack. We perform several experiments to study this effect, and understand why it occurs. The existence of this effect has various consequences. For example, it suggests that proposals to defend against memorization without training with rigorous privacy guarantees are unlikely to be effective. Further, it suggests that privacy-enhancing technologies such as machine unlearning could actually harm the privacy of other users." 1171,"The Digital Twin Landscape at the Crossroads of Predictive Maintenance, Machine Learning and Physics Based Modeling","The concept of a digital twin has exploded in popularity over the past decade, yet confusion around its plurality of definitions, its novelty as a new technology, and its practical applicability still exists, all despite numerous reviews, surveys, and press releases. The history of the term digital twin is explored, as well as its initial context in the fields of product life cycle management, asset maintenance, and equipment fleet management, operations, and planning. A definition for a minimally viable framework to utilize a digital twin is also provided based on seven essential elements. A brief tour through DT applications and industries where DT methods are employed is also outlined. The application of a digital twin framework is highlighted in the field of predictive maintenance, and its extensions utilizing machine learning and physics based modeling. Employing the combination of machine learning and physics based modeling to form hybrid digital twin frameworks, may synergistically alleviate the shortcomings of each method when used in isolation. Key challenges of implementing digital twin models in practice are additionally discussed. As digital twin technology experiences rapid growth and as it matures, its great promise to substantially enhance tools and solutions for intelligent upkeep of complex equipment, are expected to materialize." 1172,Shifted Compression Framework: Generalizations and Improvements,"Communication is one of the key bottlenecks in the distributed training of large-scale machine learning models, and lossy compression of exchanged information, such as stochastic gradients or models, is one of the most effective instruments to alleviate this issue. Among the most studied compression techniques is the class of unbiased compression operators with variance bounded by a multiple of the square norm of the vector we wish to compress. By design, this variance may remain high, and only diminishes if the input vector approaches zero. However, unless the model being trained is overparameterized, there is no a-priori reason for the vectors we wish to compress to approach zero during the iterations of classical methods such as distributed compressed {\sf SGD}, which has adverse effects on the convergence speed. Due to this issue, several more elaborate and seemingly very different algorithms have been proposed recently, with the goal of circumventing this issue. These methods are based on the idea of compressing the {\em difference} between the vector we would normally wish to compress and some auxiliary vector which changes throughout the iterative process. In this work we take a step back, and develop a unified framework for studying such methods, conceptually, and theoretically. Our framework incorporates methods compressing both gradients and models, using unbiased and biased compressors, and sheds light on the construction of the auxiliary vectors. Furthermore, our general framework can lead to the improvement of several existing algorithms, and can produce new algorithms. Finally, we performed several numerical experiments which illustrate and support our theoretical findings." 1173,Winning the Lottery Ahead of Time: Efficient Early Network Pruning,"Pruning, the task of sparsifying deep neural networks, received increasing attention recently. Although state-of-the-art pruning methods extract highly sparse models, they neglect two main challenges: (1) the process of finding these sparse models is often very expensive; (2) unstructured pruning does not provide benefits in terms of GPU memory, training time, or carbon emissions. We propose Early Compression via Gradient Flow Preservation (EarlyCroP), which efficiently extracts state-of-the-art sparse models before or early in training addressing challenge (1), and can be applied in a structured manner addressing challenge (2). This enables us to train sparse networks on commodity GPUs whose dense versions would be too large, thereby saving costs and reducing hardware requirements. We empirically show that EarlyCroP outperforms a rich set of baselines for many tasks (incl. classification, regression) and domains (incl. computer vision, natural language processing, and reinforcment learning). EarlyCroP leads to accuracy comparable to dense training while outperforming pruning baselines." 1174,Robust Task Representations for Offline Meta-Reinforcement Learning via Contrastive Learning,"We study offline meta-reinforcement learning, a practical reinforcement learning paradigm that learns from offline data to adapt to new tasks. The distribution of offline data is determined jointly by the behavior policy and the task. Existing offline meta-reinforcement learning algorithms cannot distinguish these factors, making task representations unstable to the change of behavior policies. To address this problem, we propose a contrastive learning framework for task representations that are robust to the distribution mismatch of behavior policies in training and test. We design a bi-level encoder structure, use mutual information maximization to formalize task representation learning, derive a contrastive learning objective, and introduce several approaches to approximate the true distribution of negative pairs. Experiments on a variety of offline meta-reinforcement learning benchmarks demonstrate the advantages of our method over prior methods, especially on the generalization to out-of-distribution behavior policies. The code is available at https://github.com/PKU-AI-Edge/CORRO." 1175,Model Joins: Enabling Analytics Over Joins of Absent Big Tables,"This work is motivated by two key facts. First, it is highly desirable to be able to learn and perform knowledge discovery and analytics (LKD) tasks without the need to access raw-data tables. This may be due to organizations finding it increasingly frustrating and costly to manage and maintain ever-growing tables, or for privacy reasons. Hence, compact models can be developed from the raw data and used instead of the tables. Second, oftentimes, LKD tasks are to be performed on a (potentially very large) table which is itself the result of joining separate (potentially very large) relational tables. But how can one do this, when the individual to-be-joined tables are absent? Here, we pose the following fundamental questions: Q1: How can one ""join models"" of (absent/deleted) tables or ""join models with other tables"" in a way that enables LKD as if it were performed on the join of the actual raw tables? Q2: What are appropriate models to use per table? Q3: As the model join would be an approximation of the actual data join, how can one evaluate the quality of the model join result? This work puts forth a framework, Model Join, addressing these challenges. The framework integrates and joins the per-table models of the absent tables and generates a uniform and independent sample that is a high-quality approximation of a uniform and independent sample of the actual raw-data join. The approximation stems from the models, but not from the Model Join framework. The sample obtained by the Model Join can be used to perform LKD downstream tasks, such as approximate query processing, classification, clustering, regression, association rule mining, visualization, and so on. To our knowledge, this is the first work with this agenda and solutions. Detailed experiments with TPC-DS data and synthetic data showcase Model Join's usefulness." 1176,Plug and Play Counterfactual Text Generation for Model Robustness,"Generating counterfactual test-cases is an important backbone for testing NLP models and making them as robust and reliable as traditional software. In generating the test-cases, a desired property is the ability to control the test-case generation in a flexible manner to test for a large variety of failure cases and to explain and repair them in a targeted manner. In this direction, significant progress has been made in the prior works by manually writing rules for generating controlled counterfactuals. However, this approach requires heavy manual supervision and lacks the flexibility to easily introduce new controls. Motivated by the impressive flexibility of the plug-and-play approach of PPLM, we propose bringing the framework of plug-and-play to counterfactual test case generation task. We introduce CASPer, a plug-and-play counterfactual generation framework to generate test cases that satisfy goal attributes on demand. Our plug-and-play model can steer the test case generation process given any attribute model without requiring attribute-specific training of the model. In experiments, we show that CASPer effectively generates counterfactual text that follow the steering provided by an attribute model while also being fluent, diverse and preserving the original content. We also show that the generated counterfactuals from CASPer can be used for augmenting the training data and thereby fixing and making the test model more robust." 1177,A Single-Timescale Analysis For Stochastic Approximation With Multiple Coupled Sequences,"Stochastic approximation (SA) with multiple coupled sequences has found broad applications in machine learning such as bilevel learning and reinforcement learning (RL). In this paper, we study the finite-time convergence of nonlinear SA with multiple coupled sequences. Different from existing multi-timescale analysis, we seek for scenarios where a fine-grained analysis can provide the tight performance guarantee for multi-sequence single-timescale SA (STSA). At the heart of our analysis is the smoothness property of the fixed points in multi-sequence SA that holds in many applications. When all sequences have strongly monotone increments, we establish the iteration complexity of $\mathcal{O}(\epsilon^{-1})$ to achieve $\epsilon$-accuracy, which improves the existing $\mathcal{O}(\epsilon^{-1.5})$ complexity for two coupled sequences. When all but the main sequence have strongly monotone increments, we establish the iteration complexity of $\mathcal{O}(\epsilon^{-2})$. The merit of our results lies in that applying them to stochastic bilevel and compositional optimization problems, as well as RL problems leads to either relaxed assumptions or improvements over their existing performance guarantees." 1178,CoCoPIE XGen: A Full-Stack AI-Oriented Optimizing Framework,"There is a growing demand for shifting the delivery of AI capability from data centers on the cloud to edge or end devices, exemplified by the fast emerging real-time AI-based apps running on smartphones, AR/VR devices, autonomous vehicles, and various IoT devices. The shift has however been seriously hampered by the large growing gap between DNN computing demands and the computing power on edge or end devices. This article presents the design of XGen, an optimizing framework for DNN designed to bridge the gap. XGen takes cross-cutting co-design as its first-order consideration. Its full-stack AI-oriented optimizations consist of a number of innovative optimizations at every layer of the DNN software stack, all designed in a cooperative manner. The unique technology makes XGen able to optimize various DNNs, including those with an extreme depth (e.g., BERT, GPT, other transformers), and generate code that runs several times faster than those from existing DNN frameworks, while delivering the same level of accuracy." 1179,An Efficient Industrial Federated Learning Framework for AIoT: A Face Recognition Application,"Recently, the artificial intelligence of things (AIoT) has been gaining increasing attention, with an intriguing vision of providing highly intelligent services through the network connection of things, leading to an advanced AI-driven ecology. However, recent regulatory restrictions on data privacy preclude uploading sensitive local data to data centers and utilizing them in a centralized approach. Directly applying federated learning algorithms in this scenario could hardly meet the industrial requirements of both efficiency and accuracy. Therefore, we propose an efficient industrial federated learning framework for AIoT in terms of a face recognition application. Specifically, we propose to utilize the concept of transfer learning to speed up federated training on devices and further present a novel design of a private projector that helps protect shared gradients without incurring additional memory consumption or computational cost. Empirical studies on a private Asian face dataset show that our approach can achieve high recognition accuracy in only 20 communication rounds, demonstrating its effectiveness in prediction and its efficiency in training." 1180,WrapperFL: A Model Agnostic Plug-in for Industrial Federated Learning,"Federated learning, as a privacy-preserving collaborative machine learning paradigm, has been gaining more and more attention in the industry. With the huge rise in demand, there have been many federated learning platforms that allow federated participants to set up and build a federated model from scratch. However, exiting platforms are highly intrusive, complicated, and hard to integrate with built machine learning models. For many real-world businesses that already have mature serving models, existing federated learning platforms have high entry barriers and development costs. This paper presents a simple yet practical federated learning plug-in inspired by ensemble learning, dubbed WrapperFL, allowing participants to build/join a federated system with existing models at minimal costs. The WrapperFL works in a plug-and-play way by simply attaching to the input and output interfaces of an existing model, without the need of re-development, significantly reducing the overhead of manpower and resources. We verify our proposed method on diverse tasks under heterogeneous data distributions and heterogeneous models. The experimental results demonstrate that WrapperFL can be successfully applied to a wide range of applications under practical settings and improves the local model with federated learning at a low cost." 1181,Neural Moving Horizon Estimation for Robust Flight Control,"Estimating and reacting to external disturbances is crucial for robust flight control of quadrotors. Existing estimators typically require significant tuning for a specific flight scenario or training with extensive ground-truth disturbance data to achieve satisfactory performance. In this paper, we propose a neural moving horizon estimator (NeuroMHE) that can automatically tune the MHE parameters modeled by a neural network and adapt to different flight scenarios. We achieve this by deriving the analytical gradients of the MHE estimates with respect to the tuning parameters, which enable a seamless embedding of an MHE as a learnable layer into the neural network for highly effective learning. Most interestingly, we show that the gradients can be obtained efficiently from a Kalman filter in a recursive form. Moreover, we develop a model-based policy gradient algorithm to train NeuroMHE directly from the trajectory tracking error without the need for the ground-truth disturbance data. The effectiveness of NeuroMHE is verified extensively via both simulations and physical experiments on a quadrotor in various challenging flights. Notably, NeuroMHE outperforms the state-of-the-art estimator with force estimation error reductions of up to $49.4\%$ by using only a $2.5\%$ amount of the neural network parameters. The proposed method is general and can be applied to robust adaptive control for other robotic systems." 1182,Generative Modelling With Inverse Heat Dissipation,"While diffusion models have shown great success in image generation, their noise-inverting generative process does not explicitly consider the structure of images, such as their inherent multi-scale nature. Inspired by diffusion models and the desirability of coarse-to-fine modelling, we propose a new model that generates images through iteratively inverting the heat equation, a PDE that locally erases fine-scale information when run over the 2D plane of the image. In our novel methodology, the solution of the forward heat equation is interpreted as a variational approximation in a directed graphical model. We demonstrate promising image quality and point out emergent qualitative properties not seen in diffusion models, such as disentanglement of overall colour and shape in images and aspects of neural network interpretability. Spectral analysis on natural images positions our model as a type of dual to diffusion models and reveals implicit inductive biases in them." 1183,TabText: a Systematic Approach to Aggregate Knowledge Across Tabular Data Structures,"Processing and analyzing tabular data in a productive and efficient way is essential for building successful applications of machine learning in fields such as healthcare. However, the lack of a unified framework for representing and standardizing tabular information poses a significant challenge to researchers and professionals alike. In this work, we present TabText, a methodology that leverages the unstructured data format of language to encode tabular data from different table structures and time periods efficiently and accurately. We show using two healthcare datasets and four prediction tasks that features extracted via TabText outperform those extracted with traditional processing methods by 2-5%. Furthermore, we analyze the sensitivity of our framework against different choices for sentence representations of missing values, meta information and language descriptiveness, and provide insights into winning strategies that improve performance." 1184,An Energy and Carbon Footprint Analysis of Distributed and Federated Learning,"Classical and centralized Artificial Intelligence (AI) methods require moving data from producers (sensors, machines) to energy hungry data centers, raising environmental concerns due to computational and communication resource demands, while violating privacy. Emerging alternatives to mitigate such high energy costs propose to efficiently distribute, or federate, the learning tasks across devices, which are typically low-power. This paper proposes a novel framework for the analysis of energy and carbon footprints in distributed and federated learning (FL). The proposed framework quantifies both the energy footprints and the carbon equivalent emissions for vanilla FL methods and consensus-based fully decentralized approaches. We discuss optimal bounds and operational points that support green FL designs and underpin their sustainability assessment. Two case studies from emerging 5G industry verticals are analyzed: these quantify the environmental footprints of continual and reinforcement learning setups, where the training process is repeated periodically for continuous improvements. For all cases, sustainability of distributed learning relies on the fulfillment of specific requirements on communication efficiency and learner population size. Energy and test accuracy should be also traded off considering the model and the data footprints for the targeted industrial applications." 1185,Supervised learning of random quantum circuits via scalable neural networks,"Predicting the output of quantum circuits is a hard computational task that plays a pivotal role in the development of universal quantum computers. Here we investigate the supervised learning of output expectation values of random quantum circuits. Deep convolutional neural networks (CNNs) are trained to predict single-qubit and two-qubit expectation values using databases of classically simulated circuits. These circuits are represented via an appropriately designed one-hot encoding of the constituent gates. The prediction accuracy for previously unseen circuits is analyzed, also making comparisons with small-scale quantum computers available from the free IBM Quantum program. The CNNs often outperform the quantum devices, depending on the circuit depth, on the network depth, and on the training set size. Notably, our CNNs are designed to be scalable. This allows us exploiting transfer learning and performing extrapolations to circuits larger than those included in the training set. These CNNs also demonstrate remarkable resilience against noise, namely, they remain accurate even when trained on (simulated) expectation values averaged over very few measurements." 1186,Machine Learning Prescriptive Canvas for Optimizing Business Outcomes,"Data science has the potential to improve business in a variety of verticals. While the lion's share of data science projects uses a predictive approach, to drive improvements these predictions should become decisions. However, such a two-step approach is not only sub-optimal but might even degrade performance and fail the project. The alternative is to follow a prescriptive framing, where actions are ""first citizens"" so that the model produces a policy that prescribes an action to take, rather than predicting an outcome. In this paper, we explain why the prescriptive approach is important and provide a step-by-step methodology: the Prescriptive Canvas. The latter aims to improve framing and communication across the project stakeholders including project and data science managers towards a successful business impact." 1187,Marginal Tail-Adaptive Normalizing Flows,"Learning the tail behavior of a distribution is a notoriously difficult problem. By definition, the number of samples from the tail is small, and deep generative models, such as normalizing flows, tend to concentrate on learning the body of the distribution. In this paper, we focus on improving the ability of normalizing flows to correctly capture the tail behavior and, thus, form more accurate models. We prove that the marginal tailedness of an autoregressive flow can be controlled via the tailedness of the marginals of its base distribution. This theoretical insight leads us to a novel type of flows based on flexible base distributions and data-driven linear layers. An empirical analysis shows that the proposed method improves on the accuracy -- especially on the tails of the distribution -- and is able to generate heavy-tailed data. We demonstrate its application on a weather and climate example, in which capturing the tail behavior is essential." 1188,Dynamic Reserve Price Design for Lazada Sponsored Search,"In ecommerce platform, users will be less likely to use organic search if sponsored search shows them unexpected advertising items, which will be a hidden cost for the platform. In order to incorporate the hidden cost into auction mechanism which helps create positive growth for the platform, we turn to a reserve price design to decide whether we sell the traffic, as well as build healthy relationships between revenue and user experience. We propose a dynamic reserve price design framework to sell traffic more efficiently with minimal cost of user experience while keeping long term incentives to the advertisers to reveal their valuations truthfully. A distributed algorithm is also proposed to compute the reserve price with billion scale data in the production environment. Experiments with offline evaluations and online AB testing demonstrate that it is a simple and efficient method to be suitably used in industrial production. It has already been fully deployed in the production of Lazada sponsored search." 1189,Algorithmic Gaussianization through Sketching: Converting Data into Sub-gaussian Random Designs,"Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or sampling methods to produce smaller representations of large datasets: For certain tasks, these sketched representations have been observed to exhibit many robust performance characteristics that are known to occur when a data sample comes from a sub-gaussian random design, which is a powerful statistical model of data distributions. However, this phenomenon has only been studied for specific tasks and metrics, or by relying on computationally expensive methods. We address this by providing an algorithmic framework for gaussianizing data distributions via averaging, proving that it is possible to efficiently construct data sketches that are nearly indistinguishable (in terms of total variation distance) from sub-gaussian random designs. In particular, relying on a recently introduced sketching technique called Leverage Score Sparsified (LESS) embeddings, we show that one can construct an $n\times d$ sketch of an $N\times d$ matrix $A$, where $n\ll N$, that is nearly indistinguishable from a sub-gaussian design, in time $O(\text{nnz}(A)\log N + nd^2)$, where $\text{nnz}(A)$ is the number of non-zero entries in $A$. As a consequence, strong statistical guarantees and precise asymptotics available for the estimators produced from sub-gaussian designs (e.g., for least squares and Lasso regression, covariance estimation, low-rank approximation, etc.) can be straightforwardly adapted to our sketching framework. We illustrate this with a new approximation guarantee for sketched least squares, among other examples." 1190,muBoost: An Effective Method for Solving Indic Multilingual Text Classification Problem,"Text Classification is an integral part of many Natural Language Processing tasks such as sarcasm detection, sentiment analysis and many more such applications. Many e-commerce websites, social-media/entertainment platforms use such models to enhance user-experience to generate traffic and thus, revenue on their platforms. In this paper, we are presenting our solution to Multilingual Abusive Comment Identification Problem on Moj, an Indian video-sharing social networking service, powered by ShareChat. The problem dealt with detecting abusive comments, in 13 regional Indic languages such as Hindi, Telugu, Kannada etc., on the videos on Moj platform. Our solution utilizes the novel muBoost, an ensemble of CatBoost classifier models and Multilingual Representations for Indian Languages (MURIL) model, to produce SOTA performance on Indic text classification tasks. We were able to achieve a mean F1-score of 89.286 on the test data, an improvement over baseline MURIL model with a F1-score of 87.48." 1191,Interpretable Deep Causal Learning for Moderation Effects,"In this extended abstract paper, we address the problem of interpretability and targeted regularization in causal machine learning models. In particular, we focus on the problem of estimating individual causal/treatment effects under observed confounders, which can be controlled for and moderate the effect of the treatment on the outcome of interest. Black-box ML models adjusted for the causal setting perform generally well in this task, but they lack interpretable output identifying the main drivers of treatment heterogeneity and their functional relationship. We propose a novel deep counterfactual learning architecture for estimating individual treatment effects that can simultaneously: i) convey targeted regularization on, and produce quantify uncertainty around the quantity of interest (i.e., the Conditional Average Treatment Effect); ii) disentangle baseline prognostic and moderating effects of the covariates and output interpretable score functions describing their relationship with the outcome. Finally, we demonstrate the use of the method via a simple simulated experiment." 1192,R2-AD2: Detecting Anomalies by Analysing the Raw Gradient,"Neural networks follow a gradient-based learning scheme, adapting their mapping parameters by back-propagating the output loss. Samples unlike the ones seen during training cause a different gradient distribution. Based on this intuition, we design a novel semi-supervised anomaly detection method called R2-AD2. By analysing the temporal distribution of the gradient over multiple training steps, we reliably detect point anomalies in strict semi-supervised settings. Instead of domain dependent features, we input the raw gradient caused by the sample under test to an end-to-end recurrent neural network architecture. R2-AD2 works in a purely data-driven way, thus is readily applicable in a variety of important use cases of anomaly detection." 1193,Incorporating Voice Instructions in Model-Based Reinforcement Learning for Self-Driving Cars,"This paper presents a novel approach that supports natural language voice instructions to guide deep reinforcement learning (DRL) algorithms when training self-driving cars. DRL methods are popular approaches for autonomous vehicle (AV) agents. However, most existing methods are sample- and time-inefficient and lack a natural communication channel with the human expert. In this paper, how new human drivers learn from human coaches motivates us to study new ways of human-in-the-loop learning and a more natural and approachable training interface for the agents. We propose incorporating natural language voice instructions (NLI) in model-based deep reinforcement learning to train self-driving cars. We evaluate the proposed method together with a few state-of-the-art DRL methods in the CARLA simulator. The results show that NLI can help ease the training process and significantly boost the agents' learning speed." 1194,World of Bugs: A Platform for Automated Bug Detection in 3D Video Games,"We present World of Bugs (WOB), an open platform that aims to support Automated Bug Detection (ABD) research in video games. We discuss some open problems in ABD and how they relate to the platform's design, arguing that learning-based solutions are required if further progress is to be made. The platform's key feature is a growing collection of common video game bugs that may be used for training and evaluating ABD approaches." 1195,Riemannian data-dependent randomized smoothing for neural networks certification,"Certification of neural networks is an important and challenging problem that has been attracting the attention of the machine learning community since few years. In this paper, we focus on randomized smoothing (RS) which is considered as the state-of-the-art method to obtain certifiably robust neural networks. In particular, a new data-dependent RS technique called ANCER introduced recently can be used to certify ellipses with orthogonal axis near each input data of the neural network. In this work, we remark that ANCER is not invariant under rotation of input data and propose a new rotationally-invariant formulation of it which can certify ellipses without constraints on their axis. Our approach called Riemannian Data Dependant Randomized Smoothing (RDDRS) relies on information geometry techniques on the manifold of covariance matrices and can certify bigger regions than ANCER based on our experiments on the MNIST dataset." 1196,"Asymmetric Learned Image Compression with Multi-Scale Residual Block, Importance Map, and Post-Quantization Filtering","Recently, deep learning-based image compression has made signifcant progresses, and has achieved better ratedistortion (R-D) performance than the latest traditional method, H.266/VVC, in both subjective metric and the more challenging objective metric. However, a major problem is that many leading learned schemes cannot maintain a good trade-off between performance and complexity. In this paper, we propose an effcient and effective image coding framework, which achieves similar R-D performance with lower complexity than the state of the art. First, we develop an improved multi-scale residual block (MSRB) that can expand the receptive feld and is easier to obtain global information. It can further capture and reduce the spatial correlation of the latent representations. Second, a more advanced importance map network is introduced to adaptively allocate bits to different regions of the image. Third, we apply a 2D post-quantization flter (PQF) to reduce the quantization error, motivated by the Sample Adaptive Offset (SAO) flter in video coding. Moreover, We fnd that the complexity of encoder and decoder have different effects on image compression performance. Based on this observation, we design an asymmetric paradigm, in which the encoder employs three stages of MSRBs to improve the learning capacity, whereas the decoder only needs one stage of MSRB to yield satisfactory reconstruction, thereby reducing the decoding complexity without sacrifcing performance. Experimental results show that compared to the state-of-the-art method, the encoding and decoding time of the proposed method are about 17 times faster, and the R-D performance is only reduced by less than 1% on both Kodak and Tecnick datasets, which is still better than H.266/VVC(4:4:4) and other recent learning-based methods. Our source code is publicly available at https://github.com/fengyurenpingsheng." 1197,The Integration of Machine Learning into Automated Test Generation: A Systematic Literature Review,"Context: Machine learning (ML) may enable effective automated test generation. Objective: We characterize emerging research, examining testing practices, researcher goals, ML techniques applied, evaluation, and challenges. Methods: We perform a systematic literature review on a sample of 97 publications. Results: ML generates input for system, GUI, unit, performance, and combinatorial testing or improves the performance of existing generation methods. ML is also used to generate test verdicts, property-based, and expected output oracles. Supervised learning - often based on neural networks - and reinforcement learning - often based on Q-learning - are common, and some publications also employ unsupervised or semi-supervised learning. (Semi-/Un-)Supervised approaches are evaluated using both traditional testing metrics and ML-related metrics (e.g., accuracy), while reinforcement learning is often evaluated using testing metrics tied to the reward function. Conclusion: Work-to-date shows great promise, but there are open challenges regarding training data, retraining, scalability, evaluation complexity, ML algorithms employed - and how they are applied - benchmarks, and replicability. Our findings can serve as a roadmap and inspiration for researchers in this field." 1198,Supermodular f-divergences and bounds on lossy compression and generalization error with mutual f-information,"In this paper, we introduce super-modular $\mf$-divergences and provide three applications for them: (i) we introduce Sanov's upper bound on the tail probability of sum of independent random variables based on super-modular $\mf$-divergence and show that our generalized Sanov's bound strictly improves over ordinary one, (ii) we consider the lossy compression problem which studies the set of achievable rates for a given distortion and code length. We extend the rate-distortion function using mutual $\mf$-information and provide new and strictly better bounds on achievable rates in the finite blocklength regime using super-modular $\mf$-divergences, and (iii) we provide a connection between the generalization error of algorithms with bounded input/output mutual $\mf$-information and a generalized rate-distortion problem. This connection allows us to bound the generalization error of learning algorithms using lower bounds on the rate-distortion function. Our bound is based on a new lower bound on the rate-distortion function that (for some examples) strictly improves over previously best-known bounds. Moreover, super-modular $\mf$-divergences are utilized to reduce the dimension of the problem and obtain single-letter bounds." 1199,Personalized Subgraph Federated Learning,"In real-world scenarios, subgraphs of a larger global graph may be distributed across multiple devices or institutions, and only locally accessible due to privacy restrictions, although there may be links between them. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across private local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity among subgraphs, caused by subgraphs comprising different parts of a global graph. For example, a subgraph may belong to one of the communities within the larger global graph. A naive subgraph FL in such a case will collapse incompatible knowledge from local GNN models trained on heterogeneous graph distributions. To overcome such a limitation, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNN models rather than learning a single global GNN model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. A crucial challenge in personalized subgraph FL is that the server does not know which subgraph each client has. FED-PUB thus utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use them to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which ours largely outperforms relevant baselines." 1200,Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations,"Complex Deep Neural Networks such as Capsule Networks (CapsNets) exhibit high learning capabilities at the cost of compute-intensive operations. To enable their deployment on edge devices, we propose to leverage approximate computing for designing approximate variants of the complex operations like softmax and squash. In our experiments, we evaluate tradeoffs between area, power consumption, and critical path delay of the designs implemented with the ASIC design flow, and the accuracy of the quantized CapsNets, compared to the exact functions." 1201,A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates,"We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg." 1202,Analysis of Self-Supervised Learning and Dimensionality Reduction Methods in Clustering-Based Active Learning for Speech Emotion Recognition,"When domain experts are needed to perform data annotation for complex machine-learning tasks, reducing annotation effort is crucial in order to cut down time and expenses. For cases when there are no annotations available, one approach is to utilize the structure of the feature space for clustering-based active learning (AL) methods. However, these methods are heavily dependent on how the samples are organized in the feature space and what distance metric is used. Unsupervised methods such as contrastive predictive coding (CPC) can potentially be used to learn organized feature spaces, but these methods typically create high-dimensional features which might be challenging for estimating data density. In this paper, we combine CPC and multiple dimensionality reduction methods in search of functioning practices for clustering-based AL. Our experiments for simulating speech emotion recognition system deployment show that both the local and global topology of the feature space can be successfully used for AL, and that CPC can be used to improve clustering-based AL performance over traditional signal features. Additionally, we observe that compressing data dimensionality does not harm AL performance substantially, and that 2-D feature representations achieved similar AL performance as higher-dimensional representations when the number of annotations is not very low." 1203,Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling,"Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of the communication cost, and it can also compromise the privacy of each agent's local behavior policy. In this paper, we consider a federated reinforcement learning framework where multiple agents collaboratively learn a global model, without sharing their individual data and policies. Each agent maintains a local copy of the model and updates it using locally sampled data. Although having N agents enables the sampling of N times more data, it is not clear if it leads to proportional convergence speedup. We propose federated versions of on-policy TD, off-policy TD and Q-learning, and analyze their convergence. For all these algorithms, to the best of our knowledge, we are the first to consider Markovian noise and multiple local updates, and prove a linear convergence speedup with respect to the number of agents. To obtain these results, we show that federated TD and Q-learning are special cases of a general framework for federated stochastic approximation with Markovian noise, and we leverage this framework to provide a unified convergence analysis that applies to all the algorithms." 1204,Knowledge Graph Fusion for Language Model Fine-tuning,"Language Models such as BERT have grown in popularity due to their ability to be pre-trained and perform robustly on a wide range of Natural Language Processing tasks. Often seen as an evolution over traditional word embedding techniques, they can produce semantic representations of text, useful for tasks such as semantic similarity. However, state-of-the-art models often have high computational requirements and lack global context or domain knowledge which is required for complete language understanding. To address these limitations, we investigate the benefits of knowledge incorporation into the fine-tuning stages of BERT. An existing K-BERT model, which enriches sentences with triplets from a Knowledge Graph, is adapted for the English language and extended to inject contextually relevant information into sentences. As a side-effect, changes made to K-BERT for accommodating the English language also extend to other word-based languages. Experiments conducted indicate that injected knowledge introduces noise. We see statistically significant improvements for knowledge-driven tasks when this noise is minimised. We show evidence that, given the appropriate task, modest injection with relevant, high-quality knowledge is most performant." 1205,Predicting Parking Lot Availability by Graph-to-Sequence Model: A Case Study with SmartSantander,"Nowadays, so as to improve services and urban areas livability, multiple smart city initiatives are being carried out throughout the world. SmartSantander is a smart city project in Santander, Spain, which has relied on wireless sensor network technologies to deploy heterogeneous sensors within the city to measure multiple parameters, including outdoor parking information. In this paper, we study the prediction of parking lot availability using historical data from more than 300 outdoor parking sensors with SmartSantander. We design a graph-to-sequence model to capture the periodical fluctuation and geographical proximity of parking lots. For developing and evaluating our model, we use a 3-year dataset of parking lot availability in the city of Santander. Our model achieves a high accuracy compared with existing sequence-to-sequence models, which is accurate enough to provide a parking information service in the city. We apply our model to a smartphone application to be widely used by citizens and tourists." 1206,Certifiably Robust Policy Learning against Adversarial Communication in Multi-agent Systems,"Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions. However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored. Specifically, if communication messages are manipulated by malicious attackers, agents relying on untrustworthy communication may take unsafe actions that lead to catastrophic consequences. Therefore, it is crucial to ensure that agents will not be misled by corrupted communication, while still benefiting from benign communication. In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $C<\frac{N-1}{2}$ agents to a victim agent. For this strong threat model, we propose a certifiable defense by constructing a message-ensemble policy that aggregates multiple randomly ablated message sets. Theoretical analysis shows that this message-ensemble policy can utilize benign communication while being certifiably robust to adversarial communication, regardless of the attacking algorithm. Experiments in multiple environments verify that our defense significantly improves the robustness of trained policies against various types of attacks." 1207,Deep Reinforcement Learning for Turbulence Modeling in Large Eddy Simulations,"Over the last years, supervised learning (SL) has established itself as the state-of-the-art for data-driven turbulence modeling. In the SL paradigm, models are trained based on a dataset, which is typically computed a priori from a high-fidelity solution by applying the respective filter function, which separates the resolved and the unresolved flow scales. For implicitly filtered large eddy simulation (LES), this approach is infeasible, since here, the employed discretization itself acts as an implicit filter function. As a consequence, the exact filter form is generally not known and thus, the corresponding closure terms cannot be computed even if the full solution is available. The reinforcement learning (RL) paradigm can be used to avoid this inconsistency by training not on a previously obtained training dataset, but instead by interacting directly with the dynamical LES environment itself. This allows to incorporate the potentially complex implicit LES filter into the training process by design. In this work, we apply a reinforcement learning framework to find an optimal eddy-viscosity for implicitly filtered large eddy simulations of forced homogeneous isotropic turbulence. For this, we formulate the task of turbulence modeling as an RL task with a policy network based on convolutional neural networks that adapts the eddy-viscosity in LES dynamically in space and time based on the local flow state only. We demonstrate that the trained models can provide long-term stable simulations and that they outperform established analytical models in terms of accuracy. In addition, the models generalize well to other resolutions and discretizations. We thus demonstrate that RL can provide a framework for consistent, accurate and stable turbulence modeling especially for implicitly filtered LES." 1208,Open-Source Framework for Encrypted Internet and Malicious Traffic Classification,"Internet traffic classification plays a key role in network visibility, Quality of Services (QoS), intrusion detection, Quality of Experience (QoE) and traffic-trend analyses. In order to improve privacy, integrity, confidentiality, and protocol obfuscation, the current traffic is based on encryption protocols, e.g., SSL/TLS. With the increased use of Machine-Learning (ML) and Deep-Learning (DL) models in the literature, comparison between different models and methods has become cumbersome and difficult due to a lack of a standardized framework. In this paper, we propose an open-source framework, named OSF-EIMTC, which can provide the full pipeline of the learning process. From the well-known datasets to extracting new and well-known features, it provides implementations of well-known ML and DL models (from the traffic classification literature) as well as evaluations. Such a framework can facilitate research in traffic classification domains, so that it will be more repeatable, reproducible, easier to execute, and will allow a more accurate comparison of well-known and novel features and models. As part of our framework evaluation, we demonstrate a variety of cases where the framework can be of use, utilizing multiple datasets, models, and feature sets. We show analyses of publicly available datasets and invite the community to participate in our open challenges using the OSF-EIMTC." 1209,A Contrastive Approach to Online Change Point Detection,"We suggest a novel procedure for online change point detection. Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions. This leads to a flexible procedure suitable for both parametric and nonparametric scenarios. We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay. The efficiency of the algorithm is illustrated with numerical experiments on synthetic and real-world data sets." 1210,Propagation with Adaptive Mask then Training for Node Classification on Attributed Networks,"Node classification on attributed networks is a semi-supervised task that is crucial for network analysis. By decoupling two critical operations in Graph Convolutional Networks (GCNs), namely feature transformation and neighborhood aggregation, some recent works of decoupled GCNs could support the information to propagate deeper and achieve advanced performance. However, they follow the traditional structure-aware propagation strategy of GCNs, making it hard to capture the attribute correlation of nodes and sensitive to the structure noise described by edges whose two endpoints belong to different categories. To address these issues, we propose a new method called the itshape Propagation with Adaptive Mask then Training (PAMT). The key idea is to integrate the attribute similarity mask into the structure-aware propagation process. In this way, PAMT could preserve the attribute correlation of adjacent nodes during the propagation and effectively reduce the influence of structure noise. Moreover, we develop an iterative refinement mechanism to update the similarity mask during the training process for improving the training performance. Extensive experiments on four real-world datasets demonstrate the superior performance and robustness of PAMT." 1211,Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning,"Negative sampling (NS) loss plays an important role in learning knowledge graph embedding (KGE) to handle a huge number of entities. However, the performance of KGE degrades without hyperparameters such as the margin term and number of negative samples in NS loss being appropriately selected. Currently, empirical hyperparameter tuning addresses this problem at the cost of computational time. To solve this problem, we theoretically analyzed NS loss to assist hyperparameter tuning and understand the better use of the NS loss in KGE learning. Our theoretical analysis showed that scoring methods with restricted value ranges, such as TransE and RotatE, require appropriate adjustment of the margin term or the number of negative samples different from those without restricted value ranges, such as RESCAL, ComplEx, and DistMult. We also propose subsampling methods specialized for the NS loss in KGE studied from a theoretical aspect. Our empirical analysis on the FB15k-237, WN18RR, and YAGO3-10 datasets showed that the results of actually trained models agree with our theoretical findings." 1212,Insights into Pre-training via Simpler Synthetic Tasks,"Pre-training produces representations that are effective for a wide range of downstream tasks, but it is still unclear what properties of pre-training are necessary for effective gains. Notably, recent work shows that even pre-training on synthetic tasks can achieve significant gains in downstream tasks. In this work, we perform three experiments that iteratively simplify pre-training and show that the simplifications still retain much of its gains. First, building on prior work, we perform a systematic evaluation of three existing synthetic pre-training methods on six downstream tasks. We find the best synthetic pre-training method, LIME, attains an average of $67\%$ of the benefits of natural pre-training. Second, to our surprise, we find that pre-training on a simple and generic synthetic task defined by the Set function achieves $65\%$ of the benefits, almost matching LIME. Third, we find that $39\%$ of the benefits can be attained by using merely the parameter statistics of synthetic pre-training. We release the source code at https://github.com/felixzli/synthetic_pretraining." 1213,Few-Max: Few-Shot Domain Adaptation for Unsupervised Contrastive Representation Learning,"Contrastive self-supervised learning methods learn to map data points such as images into non-parametric representation space without requiring labels. While highly successful, current methods require a large amount of data in the training phase. In situations where the target training set is limited in size, generalization is known to be poor. Pretraining on a large source data set and fine-tuning on the target samples is prone to overfitting in the few-shot regime, where only a small number of target samples are available. Motivated by this, we propose a domain adaption method for self-supervised contrastive learning, termed Few-Max, to address the issue of adaptation to a target distribution under few-shot learning. To quantify the representation quality, we evaluate Few-Max on a range of source and target datasets, including ImageNet, VisDA, and fastMRI, on which Few-Max consistently outperforms other approaches." 1214,Transferable Graph Backdoor Attack,"Graph Neural Networks (GNNs) have achieved tremendous success in many graph mining tasks benefitting from the message passing strategy that fuses the local structure and node features for better graph representation learning. Despite the success of GNNs, and similar to other types of deep neural networks, GNNs are found to be vulnerable to unnoticeable perturbations on both graph structure and node features. Many adversarial attacks have been proposed to disclose the fragility of GNNs under different perturbation strategies to create adversarial examples. However, vulnerability of GNNs to successful backdoor attacks was only shown recently. In this paper, we disclose the TRAP attack, a Transferable GRAPh backdoor attack. The core attack principle is to poison the training dataset with perturbation-based triggers that can lead to an effective and transferable backdoor attack. The perturbation trigger for a graph is generated by performing the perturbation actions on the graph structure via a gradient based score matrix from a surrogate model. Compared with prior works, TRAP attack is different in several ways: i) it exploits a surrogate Graph Convolutional Network (GCN) model to generate perturbation triggers for a blackbox based backdoor attack; ii) it generates sample-specific perturbation triggers which do not have a fixed pattern; and iii) the attack transfers, for the first time in the context of GNNs, to different GNN models when trained with the forged poisoned training dataset. Through extensive evaluations on four real-world datasets, we demonstrate the effectiveness of the TRAP attack to build transferable backdoors in four different popular GNNs using four real-world datasets." 1215,Automatic Concept Extraction for Concept Bottleneck-based Video Classification,"Recent efforts in interpretable deep learning models have shown that concept-based explanation methods achieve competitive accuracy with standard end-to-end models and enable reasoning and intervention about extracted high-level visual concepts from images, e.g., identifying the wing color and beak length for bird-species classification. However, these concept bottleneck models rely on a necessary and sufficient set of predefined concepts-which is intractable for complex tasks such as video classification. For complex tasks, the labels and the relationship between visual elements span many frames, e.g., identifying a bird flying or catching prey-necessitating concepts with various levels of abstraction. To this end, we present CoDEx, an automatic Concept Discovery and Extraction module that rigorously composes a necessary and sufficient set of concept abstractions for concept-based video classification. CoDEx identifies a rich set of complex concept abstractions from natural language explanations of videos-obviating the need to predefine the amorphous set of concepts. To demonstrate our method's viability, we construct two new public datasets that combine existing complex video classification datasets with short, crowd-sourced natural language explanations for their labels. Our method elicits inherent complex concept abstractions in natural language to generalize concept-bottleneck methods to complex tasks." 1216,Safe and Psychologically Pleasant Traffic Signal Control with Reinforcement Learning using Action Masking,"Reinforcement learning (RL) for traffic signal control (TSC) has shown better performance in simulation for controlling the traffic flow of intersections than conventional approaches. However, due to several challenges, no RL-based TSC has been deployed in the field yet. One major challenge for real-world deployment is to ensure that all safety requirements are met at all times during operation. We present an approach to ensure safety in a real-world intersection by using an action space that is safe by design. The action space encompasses traffic phases, which represent the combination of non-conflicting signal colors of the intersection. Additionally, an action masking mechanism makes sure that only appropriate phase transitions are carried out. Another challenge for real-world deployment is to ensure a control behavior that avoids stress for road users. We demonstrate how to achieve this by incorporating domain knowledge through extending the action masking mechanism. We test and verify our approach in a realistic simulation scenario. By ensuring safety and psychologically pleasant control behavior, our approach drives development towards real-world deployment of RL for TSC." 1217,Finite Expression Method for Solving High-Dimensional Partial Differential Equations,"Designing efficient and accurate numerical solvers for high-dimensional partial differential equations (PDEs) remains a challenging and important topic in computational science and engineering, mainly due to the ``curse of dimensionality"" in designing numerical schemes that scale in dimension. This paper introduces a new methodology that seeks an approximate PDE solution in the space of functions with finitely many analytic expressions and, hence, this methodology is named the finite expression method (FEX). It is proved in approximation theory that FEX can avoid the curse of dimensionality. As a proof of concept, a deep reinforcement learning method is proposed to implement FEX for various high-dimensional PDEs in different dimensions, achieving high and even machine accuracy with a memory complexity polynomial in dimension and an amenable time complexity. An approximate solution with finite analytic expressions also provides interpretable insights into the ground truth PDE solution, which can further help to advance the understanding of physical systems and design postprocessing techniques for a refined solution." 1218,Automatic Controllable Product Copywriting for E-Commerce,"Automatic product description generation for e-commerce has witnessed significant advancement in the past decade. Product copywriting aims to attract users' interest and improve user experience by highlighting product characteristics with textual descriptions. As the services provided by e-commerce platforms become diverse, it is necessary to adapt the patterns of automatically-generated descriptions dynamically. In this paper, we report our experience in deploying an E-commerce Prefix-based Controllable Copywriting Generation (EPCCG) system into the JD.com e-commerce product recommendation platform. The development of the system contains two main components: 1) copywriting aspect extraction; 2) weakly supervised aspect labeling; 3) text generation with a prefix-based language model; 4) copywriting quality control. We conduct experiments to validate the effectiveness of the proposed EPCCG. In addition, we introduce the deployed architecture which cooperates with the EPCCG into the real-time JD.com e-commerce recommendation platform and the significant payoff since deployment." 1219,Model-Based Imitation Learning Using Entropy Regularization of Model and Policy,"Approaches based on generative adversarial networks for imitation learning are promising because they are sample efficient in terms of expert demonstrations. However, training a generator requires many interactions with the actual environment because model-free reinforcement learning is adopted to update a policy. To improve the sample efficiency using model-based reinforcement learning, we propose model-based Entropy-Regularized Imitation Learning (MB-ERIL) under the entropy-regularized Markov decision process to reduce the number of interactions with the actual environment. MB-ERIL uses two discriminators. A policy discriminator distinguishes the actions generated by a robot from expert ones, and a model discriminator distinguishes the counterfactual state transitions generated by the model from the actual ones. We derive the structured discriminators so that the learning of the policy and the model is efficient. Computer simulations and real robot experiments show that MB-ERIL achieves a competitive performance and significantly improves the sample efficiency compared to baseline methods." 1220,Reconstruct from Top View: A 3D Lane Detection Approach based on Geometry Structure Prior,"In this paper, we propose an advanced approach in targeting the problem of monocular 3D lane detection by leveraging geometry structure underneath the process of 2D to 3D lane reconstruction. Inspired by previous methods, we first analyze the geometry heuristic between the 3D lane and its 2D representation on the ground and propose to impose explicit supervision based on the structure prior, which makes it achievable to build inter-lane and intra-lane relationships to facilitate the reconstruction of 3D lanes from local to global. Second, to reduce the structure loss in 2D lane representation, we directly extract top view lane information from front view images, which tremendously eases the confusion of distant lane features in previous methods. Furthermore, we propose a novel task-specific data augmentation method by synthesizing new training data for both segmentation and reconstruction tasks in our pipeline, to counter the imbalanced data distribution of camera pose and ground slope to improve generalization on unseen data. Our work marks the first attempt to employ the geometry prior information into DNN-based 3D lane detection and makes it achievable for detecting lanes in an extra-long distance, doubling the original detection range. The proposed method can be smoothly adopted by other frameworks without extra costs. Experimental results show that our work outperforms state-of-the-art approaches by 3.8% F-Score on Apollo 3D synthetic dataset at real-time speed of 82 FPS without introducing extra parameters." 1221,DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials,"Recently, the development of machine learning (ML) potentials has made it possible to perform large-scale and long-time molecular simulations with the accuracy of quantum mechanical (QM) models. However, for high-level QM methods, such as density functional theory (DFT) at the meta-GGA level and/or with exact exchange, quantum Monte Carlo, etc., generating a sufficient amount of data for training a ML potential has remained computationally challenging due to their high cost. In this work, we demonstrate that this issue can be largely alleviated with Deep Kohn-Sham (DeePKS), a ML-based DFT model. DeePKS employs a computationally efficient neural network-based functional model to construct a correction term added upon a cheap DFT model. Upon training, DeePKS offers closely-matched energies and forces compared with high-level QM method, but the number of training data required is orders of magnitude less than that required for training a reliable ML potential. As such, DeePKS can serve as a bridge between expensive QM models and ML potentials: one can generate a decent amount of high-accuracy QM data to train a DeePKS model, and then use the DeePKS model to label a much larger amount of configurations to train a ML potential. This scheme for periodic systems is implemented in a DFT package ABACUS, which is open-source and ready for use in various applications." 1222,Renormalized Sparse Neural Network Pruning,"Large neural networks are heavily over-parameterized. This is done because it improves training to optimality. However once the network is trained, this means many parameters can be zeroed, or pruned, leaving an equivalent sparse neural network. We propose renormalizing sparse neural networks in order to improve accuracy. We prove that our method's error converges to 0 as network parameters cluster or concentrate. We prove that without renormalizing, the error does not converge to zero in general. We experiment with our method on real world datasets MNIST, Fashion MNIST, and CIFAR-10 and confirm a large improvement in accuracy with renormalization versus standard pruning." 1223,A Simple Approach for Visual Rearrangement: 3D Mapping and Semantic Search,"Physically rearranging objects is an important capability for embodied agents. Visual room rearrangement evaluates an agent's ability to rearrange objects in a room to a desired goal based solely on visual input. We propose a simple yet effective method for this problem: (1) search for and map which objects need to be rearranged, and (2) rearrange each object until the task is complete. Our approach consists of an off-the-shelf semantic segmentation model, voxel-based semantic map, and semantic search policy to efficiently find objects that need to be rearranged. On the AI2-THOR Rearrangement Challenge, our method improves on current state-of-the-art end-to-end reinforcement learning-based methods that learn visual rearrangement policies from 0.53% correct rearrangement to 16.56%, using only 2.7% as many samples from the environment." 1224,The Manifold Scattering Transform for High-Dimensional Point Cloud Data,"The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks." 1225,Finding Optimal Policy for Queueing Models: New Parameterization,"Queueing systems appear in many important real-life applications including communication networks, transportation and manufacturing systems. Reinforcement learning (RL) framework is a suitable model for the queueing control problem where the underlying dynamics are usually unknown and the agent receives little information from the environment to navigate. In this work, we investigate the optimization aspects of the queueing model as a RL environment and provide insight to learn the optimal policy efficiently. We propose a new parameterization of the policy by using the intrinsic properties of queueing network systems. Experiments show good performance of our methods with various load conditions from light to heavy traffic." 1226,Benchmarking Node Outlier Detection on Graphs,"Graph outlier detection is an emerging but crucial machine learning task with numerous applications. Despite the proliferation of algorithms developed in recent years, the lack of a standard and unified setting for performance evaluation limits their advancement and usage in real-world applications. To tap the gap, we present, (to our best knowledge) the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD, with the following highlights: (1) evaluating fourteen methods with backbone spanning from classical matrix factorization to the latest graph neural networks; (2) benchmarking the method performance with different types of injected outliers and organic outliers on real-world datasets; (3) comparing the efficiency and scalability of the algorithms by runtime and GPU memory usage on synthetic graphs at different scales. Based on the analyses of extensive experimental results, we discuss the pros and cons of current UNOD methods, and point out multiple crucial and promising future research directions." 1227,Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum,"Despite considerable advances in deep reinforcement learning, it has been shown to be highly vulnerable to adversarial perturbations to state observations. Recent efforts that have attempted to improve adversarial robustness of reinforcement learning can nevertheless tolerate only very small perturbations, and remain fragile as perturbation size increases. We propose Bootstrapped Opportunistic Adversarial Curriculum Learning (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning. Our framework combines two ideas: conservatively bootstrapping each curriculum phase with highest quality solutions obtained from multiple runs of the previous phase, and opportunistically skipping forward in the curriculum. In our experiments we show that the proposed BCL framework enables dramatic improvements in robustness of learned policies to adversarial perturbations. The greatest improvement is for Pong, where our framework yields robustness to perturbations of up to 25/255; in contrast, the best existing approach can only tolerate adversarial noise up to 5/255. Our code is available at: https://github.com/jlwu002/BCL." 1228,A Novel Three-Dimensional Navigation Method for the Visually Impaired,"According to the World Health Organization, visual impairment is estimated to affect approximately 2.2 billion people worldwide. The visually impaired must currently rely on navigational aids to replace their sense of sight, like a white cane or GPS (Global Positioning System) based navigation, both of which fail to work well indoors. The white cane cannot be used to determine a user's position within a room, while GPS can often lose connection indoors and does not provide orientation information, making both approaches unsuitable for indoor use. Therefore, this research seeks to develop a 3D-imaging solution that enables contactless navigation through a complex indoor environment. The device can pinpoint a user's position and orientation with 31% less error compared to previous approaches while requiring only 53.1% of the memory, and processing 125% faster. The device can also detect obstacles with 60.2% more accuracy than the previous state-of-the-art models while requiring only 41% of the memory and processing 260% faster. When testing with human participants, the device allows for a 94.5% reduction in collisions with obstacles in the environment and allows for a 48.3% increase in walking speed, showing that my device enables safer and more rapid navigation for the visually impaired. All in all, this research demonstrates a 3D-based navigation system for the visually impaired. The approach can be used by a wide variety of mobile low-power devices, like cell phones, ensuring this research remains accessible to all." 1229,Decentralized Distributed Learning with Privacy-Preserving Data Synthesis,"In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data. However, recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis. Federated learning (FL) aims at sidestepping this limitation by bringing AI-based solutions to data owners and only sharing local AI models, or parts thereof, that need then to be aggregated. However, most of the existing federated learning solutions are still at their infancy and show several shortcomings, from the lack of a reliable and effective aggregation scheme able to retain the knowledge learned locally to weak privacy preservation as real data may be reconstructed from model updates. Furthermore, the majority of these approaches, especially those dealing with medical data, relies on a centralized distributed learning strategy that poses robustness, scalability and trust issues. In this paper we present a decentralized distributed method that, exploiting concepts from experience replay and generative adversarial research, effectively integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy. The proposed approach is tested on two tasks - tuberculosis and melanoma classification - using multiple datasets in order to simulate realistic non-i.i.d. data scenarios. Results show that our approach achieves performance comparable to both standard (non-federated) learning and federated methods in their centralized (thus, more favourable) formulation." 1230,Identifiability of deep generative models under mixture priors without auxiliary information,"We prove identifiability of a broad class of deep latent variable models that (a) have universal approximation capabilities and (b) are the decoders of variational autoencoders that are commonly used in practice. Unlike existing work, our analysis does not require weak supervision, auxiliary information, or conditioning in the latent space. Recently, there has been a surge of works studying identifiability of such models. In these works, the main assumption is that along with the data, an auxiliary variable $u$ (also known as side information) is observed as well. At the same time, several works have empirically observed that this doesn't seem to be necessary in practice. In this work, we explain this behavior by showing that for a broad class of generative (i.e. unsupervised) models with universal approximation capabilities, the side information $u$ is not necessary: We prove identifiability of the entire generative model where we do not observe $u$ and only observe the data $x$. The models we consider are tightly connected with autoencoder architectures used in practice that leverage mixture priors in the latent space and ReLU/leaky-ReLU activations in the encoder. Our main result is an identifiability hierarchy that significantly generalizes previous work and exposes how different assumptions lead to different ""strengths"" of identifiability. For example, our weakest result establishes (unsupervised) identifiability up to an affine transformation, which already improves existing work. It's well known that these models have universal approximation capabilities and moreover, they have been extensively used in practice to learn representations of data." 1231,"Achieving Utility, Fairness, and Compactness via Tunable Information Bottleneck Measures","Designing machine learning algorithms that are accurate yet fair, not discriminating based on any sensitive attribute, is of paramount importance for society to accept AI for critical applications. In this article, we propose a novel fair representation learning method termed the R\'enyi Fair Information Bottleneck Method (RFIB) which incorporates constraints for utility, fairness, and compactness of representation, and apply it to image classification. A key attribute of our approach is that we consider - in contrast to most prior work - both demographic parity and equalized odds as fairness constraints, allowing for a more nuanced satisfaction of both criteria. Leveraging a variational approach, we show that our objectives yield a loss function involving classical Information Bottleneck (IB) measures and establish an upper bound in terms of the R\'enyi divergence of order $\alpha$ on the mutual information IB term measuring compactness between the input and its encoded embedding. Experimenting on three different image datasets (EyePACS, CelebA, and FairFace), we study the influence of the $\alpha$ parameter as well as two other tunable IB parameters on achieving utility/fairness trade-off goals, and show that the $\alpha$ parameter gives an additional degree of freedom that can be used to control the compactness of the representation. We evaluate the performance of our method using various utility, fairness, and compound utility/fairness metrics, showing that RFIB outperforms current state-of-the-art approaches." 1232,Deep Learning Models on CPUs: A Methodology for Efficient Training,"GPUs have been favored for training deep learning models due to their highly parallelized architecture. As a result, most studies on training optimization focus on GPUs. There is often a trade-off, however, between cost and efficiency when deciding on how to choose the proper hardware for training. In particular, CPU servers can be beneficial if training on CPUs was more efficient, as they incur fewer hardware update costs and better utilizing existing infrastructure. This paper makes several contributions to research on training deep learning models using CPUs. First, it presents a method for optimizing the training of deep learning models on Intel CPUs and a toolkit called ProfileDNN, which we developed to improve performance profiling. Second, we describe a generic training optimization method that guides our workflow and explores several case studies where we identified performance issues and then optimized the Intel Extension for PyTorch, resulting in an overall 2x training performance increase for the RetinaNet-ResNext50 model. Third, we show how to leverage the visualization capabilities of ProfileDNN, which enabled us to pinpoint bottlenecks and create a custom focal loss kernel that was two times faster than the official reference PyTorch implementation." 1233,QuAFL: Federated Averaging Can Be Both Asynchronous and Communication-Efficient,"Federated Learning (FL) is an emerging paradigm to enable the large-scale distributed training of machine learning models, while still providing privacy guarantees. In this work, we jointly address two of the main practical challenges when scaling federated optimization to large node counts: the need for tight synchronization between the central authority and individual computing nodes, and the large communication cost of transmissions between the central server and clients. Specifically, we present a new variant of the classic federated averaging (FedAvg) algorithm, which supports both asynchronous communication and communication compression. We provide a new analysis technique showing that, in spite of these system relaxations, our algorithm essentially matches the best known bounds for FedAvg, under reasonable parameter settings. On the experimental side, we show that our algorithm ensures fast practical convergence for standard federated tasks." 1234,DNA: Proximal Policy Optimization with a Dual Network Architecture,"This paper explores the problem of simultaneously learning a value function and policy in deep actor-critic reinforcement learning models. We find that the common practice of learning these functions jointly is sub-optimal, due to an order-of-magnitude difference in noise levels between these two tasks. Instead, we show that learning these tasks independently, but with a constrained distillation phase, significantly improves performance. Furthermore, we find that the policy gradient noise levels can be decreased by using a lower \textit{variance} return estimate. Whereas, the value learning noise level decreases with a lower \textit{bias} estimate. Together these insights inform an extension to Proximal Policy Optimization we call \textit{Dual Network Architecture} (DNA), which significantly outperforms its predecessor. DNA also exceeds the performance of the popular Rainbow DQN algorithm on four of the five environments tested, even under more difficult stochastic control settings." 1235,Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality,"We revisit the problem of stochastic online learning with feedback graphs, with the goal of devising algorithms that are optimal, up to constants, both asymptotically and in finite time. We show that, surprisingly, the notion of optimal finite-time regret is not a uniquely defined property in this context and that, in general, it is decoupled from the asymptotic rate. We discuss alternative choices and propose a notion of finite-time optimality that we argue is \emph{meaningful}. For that notion, we give an algorithm that admits quasi-optimal regret both in finite-time and asymptotically." 1236,flow-based clustering and spectral clustering: a comparison,"We propose and study a novel graph clustering method for data with an intrinsic network structure. Similar to spectral clustering, we exploit an intrinsic network structure of data to construct Euclidean feature vectors. These feature vectors can then be fed into basic clustering methods such as k-means or Gaussian mixture model (GMM) based soft clustering. What sets our approach apart from spectral clustering is that we do not use the eigenvectors of a graph Laplacian to construct the feature vectors. Instead, we use the solutions of total variation minimization problems to construct feature vectors that reflect connectivity between data points. Our motivation is that the solutions of total variation minimization are piece-wise constant around a given set of seed nodes. These seed nodes can be obtained from domain knowledge or by simple heuristics that are based on the network structure of data. Our results indicate that our clustering methods can cope with certain graph structures that are challenging for spectral clustering methods." 1237,Deep Partial Least Squares for Empirical Asset Pricing,"We use deep partial least squares (DPLS) to estimate an asset pricing model for individual stock returns that exploits conditioning information in a flexible and dynamic way while attributing excess returns to a small set of statistical risk factors. The novel contribution is to resolve the non-linear factor structure, thus advancing the current paradigm of deep learning in empirical asset pricing which uses linear stochastic discount factors under an assumption of Gaussian asset returns and factors. This non-linear factor structure is extracted by using projected least squares to jointly project firm characteristics and asset returns on to a subspace of latent factors and using deep learning to learn the non-linear map from the factor loadings to the asset returns. The result of capturing this non-linear risk factor structure is to characterize anomalies in asset returns by both linear risk factor exposure and interaction effects. Thus the well known ability of deep learning to capture outliers, shed lights on the role of convexity and higher order terms in the latent factor structure on the factor risk premia. On the empirical side, we implement our DPLS factor models and exhibit superior performance to LASSO and plain vanilla deep learning models. Furthermore, our network training times are significantly reduced due to the more parsimonious architecture of DPLS. Specifically, using 3290 assets in the Russell 1000 index over a period of December 1989 to January 2018, we assess our DPLS factor model and generate information ratios that are approximately 1.2x greater than deep learning. DPLS explains variation and pricing errors and identifies the most prominent latent factors and firm characteristics." 1238,Measuring the Effect of Training Data on Deep Learning Predictions via Randomized Experiments,"We develop a new, principled algorithm for estimating the contribution of training data points to the behavior of a deep learning model, such as a specific prediction it makes. Our algorithm estimates the AME, a quantity that measures the expected (average) marginal effect of adding a data point to a subset of the training data, sampled from a given distribution. When subsets are sampled from the uniform distribution, the AME reduces to the well-known Shapley value. Our approach is inspired by causal inference and randomized experiments: we sample different subsets of the training data to train multiple submodels, and evaluate each submodel's behavior. We then use a LASSO regression to jointly estimate the AME of each data point, based on the subset compositions. Under sparsity assumptions ($k \ll N$ datapoints have large AME), our estimator requires only $O(k\log N)$ randomized submodel trainings, improving upon the best prior Shapley value estimators." 1239,Limitations of the NTK for Understanding Generalization in Deep Learning,"The ``Neural Tangent Kernel'' (NTK) (Jacot et al 2018), and its empirical variants have been proposed as a proxy to capture certain behaviors of real neural networks. In this work, we study NTKs through the lens of scaling laws, and demonstrate that they fall short of explaining important aspects of neural network generalization. In particular, we demonstrate realistic settings where finite-width neural networks have significantly better data scaling exponents as compared to their corresponding empirical and infinite NTKs at initialization. This reveals a more fundamental difference between the real networks and NTKs, beyond just a few percentage points of test accuracy. Further, we show that even if the empirical NTK is allowed to be pre-trained on a constant number of samples, the kernel scaling does not catch up to the neural network scaling. Finally, we show that the empirical NTK continues to evolve throughout most of the training, in contrast with prior work which suggests that it stabilizes after a few epochs of training. Altogether, our work establishes concrete limitations of the NTK approach in understanding generalization of real networks on natural datasets." 1240,When Does Re-initialization Work?,"Re-initializing a neural network during training has been observed to improve generalization in recent works. Yet it is neither widely adopted in deep learning practice nor is it often used in state-of-the-art training protocols. This raises the question of when re-initialization works, and whether it should be used together with regularization techniques such as data augmentation, weight decay and learning rate schedules. In this work, we conduct an extensive empirical comparison of standard training with a selection of re-initialization methods to answer this question, training over 15,000 models on a variety of image classification benchmarks. We first establish that such methods are consistently beneficial for generalization in the absence of any other regularization. However, when deployed alongside other carefully tuned regularization techniques, re-initialization methods offer little to no added benefit for generalization, although optimal generalization performance becomes less sensitive to the choice of learning rate and weight decay hyperparameters. To investigate the impact of re-initialization methods on noisy data, we also consider learning under label noise. Surprisingly, in this case, re-initialization significantly improves upon standard training, even in the presence of other carefully tuned regularization techniques." 1241,Open Set Classification of Untranscribed Handwritten Documents,"Huge amounts of digital page images of important manuscripts are preserved in archives worldwide. The amounts are so large that it is generally unfeasible for archivists to adequately tag most of the documents with the required metadata so as to low proper organization of the archives and effective exploration by scholars and the general public. The class or ``typology'' of a document is perhaps the most important tag to be included in the metadata. The technical problem is one of automatic classification of documents, each consisting of a set of untranscribed handwritten text images, by the textual contents of the images. The approach considered is based on ``probabilistic indexing'', a relatively novel technology which allows to effectively represent the intrinsic word-level uncertainty exhibited by handwritten text images. We assess the performance of this approach on a large collection of complex notarial manuscripts from the Spanish Archivo Host\'orico Provincial de C\'adiz, with promising results." 1242,Hyperparameter Importance of Quantum Neural Networks Across Small Datasets,"As restricted quantum computers are slowly becoming a reality, the search for meaningful first applications intensifies. In this domain, one of the more investigated approaches is the use of a special type of quantum circuit - a so-called quantum neural network -- to serve as a basis for a machine learning model. Roughly speaking, as the name suggests, a quantum neural network can play a similar role to a neural network. However, specifically for applications in machine learning contexts, very little is known about suitable circuit architectures, or model hyperparameters one should use to achieve good learning performance. In this work, we apply the functional ANOVA framework to quantum neural networks to analyze which of the hyperparameters were most influential for their predictive performance. We analyze one of the most typically used quantum neural network architectures. We then apply this to $7$ open-source datasets from the OpenML-CC18 classification benchmark whose number of features is small enough to fit on quantum hardware with less than $20$ qubits. Three main levels of importance were detected from the ranking of hyperparameters obtained with functional ANOVA. Our experiment both confirmed expected patterns and revealed new insights. For instance, setting well the learning rate is deemed the most critical hyperparameter in terms of marginal contribution on all datasets, whereas the particular choice of entangling gates used is considered the least important except on one dataset. This work introduces new methodologies to study quantum machine learning models and provides new insights toward quantum model selection." 1243,Model Optimization in Imbalanced Regression,"Imbalanced domain learning aims to produce accurate models in predicting instances that, though underrepresented, are of utmost importance for the domain. Research in this field has been mainly focused on classification tasks. Comparatively, the number of studies carried out in the context of regression tasks is negligible. One of the main reasons for this is the lack of loss functions capable of focusing on minimizing the errors of extreme (rare) values. Recently, an evaluation metric was introduced: Squared Error Relevance Area (SERA). This metric posits a bigger emphasis on the errors committed at extreme values while also accounting for the performance in the overall target variable domain, thus preventing severe bias. However, its effectiveness as an optimization metric is unknown. In this paper, our goal is to study the impacts of using SERA as an optimization criterion in imbalanced regression tasks. Using gradient boosting algorithms as proof of concept, we perform an experimental study with 36 data sets of different domains and sizes. Results show that models that used SERA as an objective function are practically better than the models produced by their respective standard boosting algorithms at the prediction of extreme values. This confirms that SERA can be embedded as a loss function into optimization-based learning algorithms for imbalanced regression scenarios." 1244,Measuring Class-Imbalance Sensitivity of Deterministic Performance Evaluation Metrics,"The class-imbalance issue is intrinsic to many real-world machine learning tasks, particularly to the rare-event classification problems. Although the impact and treatment of imbalanced data is widely known, the magnitude of a metric's sensitivity to class imbalance has attracted little attention. As a result, often the sensitive metrics are dismissed while their sensitivity may only be marginal. In this paper, we introduce an intuitive evaluation framework that quantifies metrics' sensitivity to the class imbalance. Moreover, we reveal an interesting fact that there is a logarithmic behavior in metrics' sensitivity meaning that the higher imbalance ratios are associated with the lower sensitivity of metrics. Our framework builds an intuitive understanding of the class-imbalance impact on metrics. We believe this can help avoid many common mistakes, specially the less-emphasized and incorrect assumption that all metrics' quantities are comparable under different class-imbalance ratios." 1245,Mitigating Data Heterogeneity in Federated Learning with Data Augmentation,"Federated Learning (FL) is a prominent framework that enables training a centralized model while securing user privacy by fusing local, decentralized models. In this setting, one major obstacle is data heterogeneity, i.e., each client having non-identically and independently distributed (non-IID) data. This is analogous to the context of Domain Generalization (DG), where each client can be treated as a different domain. However, while many approaches in DG tackle data heterogeneity from the algorithmic perspective, recent evidence suggests that data augmentation can induce equal or greater performance. Motivated by this connection, we present federated versions of popular DG algorithms, and show that by applying appropriate data augmentation, we can mitigate data heterogeneity in the federated setting, and obtain higher accuracy on unseen clients. Equipped with data augmentation, we can achieve state-of-the-art performance using even the most basic Federated Averaging algorithm, with much sparser communication." 1246,Thompson Sampling Efficiently Learns to Control Diffusion Processes,"Diffusion processes that evolve according to linear stochastic differential equations are an important family of continuous-time dynamic decision-making models. Optimal policies are well-studied for them, under full certainty about the drift matrices. However, little is known about data-driven control of diffusion processes with uncertain drift matrices as conventional discrete-time analysis techniques are not applicable. In addition, while the task can be viewed as a reinforcement learning problem involving exploration and exploitation trade-off, ensuring system stability is a fundamental component of designing optimal policies. We establish that the popular Thompson sampling algorithm learns optimal actions fast, incurring only a square-root of time regret, and also stabilizes the system in a short time period. To the best of our knowledge, this is the first such result for Thompson sampling in a diffusion process control problem. We validate our theoretical results through empirical simulations with real parameter matrices from two settings of airplane and blood glucose control. Moreover, we observe that Thompson sampling significantly improves (worst-case) regret, compared to the state-of-the-art algorithms, suggesting Thompson sampling explores in a more guarded fashion. Our theoretical analysis involves characterization of a certain optimality manifold that ties the local geometry of the drift parameters to the optimal control of the diffusion process. We expect this technique to be of broader interest." 1247,Noise Estimation in Gaussian Process Regression,"We develop a computational procedure to estimate the covariance hyperparameters for semiparametric Gaussian process regression models with additive noise. Namely, the presented method can be used to efficiently estimate the variance of the correlated error, and the variance of the noise based on maximizing a marginal likelihood function. Our method involves suitably reducing the dimensionality of the hyperparameter space to simplify the estimation procedure to a univariate root-finding problem. Moreover, we derive bounds and asymptotes of the marginal likelihood function and its derivatives, which are useful to narrowing the initial range of the hyperparameter search. Using numerical examples, we demonstrate the computational advantages and robustness of the presented approach compared to traditional parameter optimization." 1248,Critical Investigation of Failure Modes in Physics-informed Neural Networks,"Several recent works in scientific machine learning have revived interest in the application of neural networks to partial differential equations (PDEs). A popular approach is to aggregate the residual form of the governing PDE and its boundary conditions as soft penalties into a composite objective/loss function for training neural networks, which is commonly referred to as physics-informed neural networks (PINNs). In the present study, we visualize the loss landscapes and distributions of learned parameters and explain the ways this particular formulation of the objective function may hinder or even prevent convergence when dealing with challenging target solutions. We construct a purely data-driven loss function composed of both the boundary loss and the domain loss. Using this data-driven loss function and, separately, a physics-informed loss function, we then train two neural network models with the same architecture. We show that incomparable scales between boundary and domain loss terms are the culprit behind the poor performance. Additionally, we assess the performance of both approaches on two elliptic problems with increasingly complex target solutions. Based on our analysis of their loss landscapes and learned parameter distributions, we observe that a physics-informed neural network with a composite objective function formulation produces highly non-convex loss surfaces that are difficult to optimize and are more prone to the problem of vanishing gradients." 1249,Global Context Vision Transformers,"We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization. Our method leverages global context self-attention modules, joint with local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, without the need for expensive operations such as computing attention masks or shifting local windows. In addition, we address the issue of lack of the inductive bias in ViTs via proposing to use a modified fused inverted residual blocks in our architecture. Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, the base, small and tiny variants of GC ViT with $28$M, $51$M and $90$M parameters achieve $\textbf{83.2\%}$, $\textbf{83.9\%}$ and $\textbf{84.4\%}$ Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer by a large margin. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation using MS COCO and ADE20K datasets outperform prior work consistently, sometimes by large margins. Code available at https://github.com/NVlabs/GCViT." 1250,Quantum machine learning channel discrimination,"In the problem of quantum channel discrimination, one distinguishes between a given number of quantum channels, which is done by sending an input state through a channel and measuring the output state. This work studies applications of variational quantum circuits and machine learning techniques for discriminating such channels. In particular, we explore (i) the practical implementation of embedding this task into the framework of variational quantum computing, (ii) training a quantum classifier based on variational quantum circuits, and (iii) applying the quantum kernel estimation technique. For testing these three channel discrimination approaches, we considered a pair of entanglement-breaking channels and the depolarizing channel with two different depolarization factors. For the approach (i), we address solving the quantum channel discrimination problem using widely discussed parallel and sequential strategies. We show the advantage of the latter in terms of better convergence with less quantum resources. Quantum channel discrimination with a variational quantum classifier (ii) allows one to operate even with random and mixed input states and simple variational circuits. The kernel-based classification approach (iii) is also found effective as it allows one to discriminate depolarizing channels associated not with just fixed values of the depolarization factor, but with ranges of it. Additionally, we discovered that a simple modification of one of the commonly used kernels significantly increases the efficiency of this approach. Finally, our numerical findings reveal that the performance of variational methods of channel discrimination depends on the trace of the product of the output states. These findings demonstrate that quantum machine learning can be used to discriminate channels, such as those representing physical noise processes." 1251,Inference-Based Quantum Sensing,"In a standard Quantum Sensing (QS) task one aims at estimating an unknown parameter $\theta$, encoded into an $n$-qubit probe state, via measurements of the system. The success of this task hinges on the ability to correlate changes in the parameter to changes in the system response $\mathcal{R}(\theta)$ (i.e., changes in the measurement outcomes). For simple cases the form of $\mathcal{R}(\theta)$ is known, but the same cannot be said for realistic scenarios, as no general closed-form expression exists. In this work we present an inference-based scheme for QS. We show that, for a general class of unitary families of encoding, $\mathcal{R}(\theta)$ can be fully characterized by only measuring the system response at $2n+1$ parameters. In turn, this allows us to infer the value of an unknown parameter given the measured response, as well as to determine the sensitivity of the sensing scheme, which characterizes its overall performance. We show that inference error is, with high probability, smaller than $\delta$, if one measures the system response with a number of shots that scales only as $\Omega(\log^3(n)/\delta^2)$. Furthermore, the framework presented can be broadly applied as it remains valid for arbitrary probe states and measurement schemes, and, even holds in the presence of quantum noise. We also discuss how to extend our results beyond unitary families. Finally, to showcase our method we implement it for a QS task on real quantum hardware, and in numerical simulations." 1252,A Langevin-like Sampler for Discrete Distributions,"We propose discrete Langevin proposal (DLP), a simple and scalable gradient-based proposal for sampling complex high-dimensional discrete distributions. In contrast to Gibbs sampling-based methods, DLP is able to update all coordinates in parallel in a single step and the magnitude of changes is controlled by a stepsize. This allows a cheap and efficient exploration in the space of high-dimensional and strongly correlated variables. We prove the efficiency of DLP by showing that the asymptotic bias of its stationary distribution is zero for log-quadratic distributions, and is small for distributions that are close to being log-quadratic. With DLP, we develop several variants of sampling algorithms, including unadjusted, Metropolis-adjusted, stochastic and preconditioned versions. DLP outperforms many popular alternatives on a wide variety of tasks, including Ising models, restricted Boltzmann machines, deep energy-based models, binary neural networks and language generation." 1253,Low-Precision Stochastic Gradient Langevin Dynamics,"While low-precision optimization has been widely used to accelerate deep learning, low-precision sampling remains largely unexplored. As a consequence, sampling is simply infeasible in many large-scale scenarios, despite providing remarkable benefits to generalization and uncertainty estimation for neural networks. In this paper, we provide the first study of low-precision Stochastic Gradient Langevin Dynamics (SGLD), showing that its costs can be significantly reduced without sacrificing performance, due to its intrinsic ability to handle system noise. We prove that the convergence of low-precision SGLD with full-precision gradient accumulators is less affected by the quantization error than its SGD counterpart in the strongly convex setting. To further enable low-precision gradient accumulators, we develop a new quantization function for SGLD that preserves the variance in each update step. We demonstrate that low-precision SGLD achieves comparable performance to full-precision SGLD with only 8 bits on a variety of deep learning tasks." 1254,Only Tails Matter: Average-Case Universality and Robustness in the Convex Regime,"The recently developed average-case analysis of optimization methods allows a more fine-grained and representative convergence analysis than usual worst-case results. In exchange, this analysis requires a more precise hypothesis over the data generating process, namely assuming knowledge of the expected spectral distribution (ESD) of the random matrix associated with the problem. This work shows that the concentration of eigenvalues near the edges of the ESD determines a problem's asymptotic average complexity. This a priori information on this concentration is a more grounded assumption than complete knowledge of the ESD. This approximate concentration is effectively a middle ground between the coarseness of the worst-case scenario convergence and the restrictive previous average-case analysis. We also introduce the Generalized Chebyshev method, asymptotically optimal under a hypothesis on this concentration and globally optimal when the ESD follows a Beta distribution. We compare its performance to classical optimization algorithms, such as gradient descent or Nesterov's scheme, and we show that, in the average-case context, Nesterov's method is universally nearly optimal asymptotically." 1255,Multiple Fairness and Cardinality constraints for Students-Topics Grouping Problem,"Group work is a prevalent activity in educational settings, where students are often divided into topic-specific groups based on their preferences. The grouping should reflect the students' aspirations as much as possible. Usually, the resulting groups should also be balanced in terms of protected attributes like gender or race since studies indicate that students might learn better in a diverse group. Moreover, balancing the group cardinalities is also an essential requirement for fair workload distribution across the groups. In this paper, we introduce the multi-fair capacitated (MFC) grouping problem that fairly partitions students into non-overlapping groups while ensuring balanced group cardinalities (with a lower bound and an upper bound), and maximizing the diversity of members in terms of protected attributes. We propose two approaches: a heuristic method and a knapsack-based method to obtain the MFC grouping. The experiments on a real dataset and a semi-synthetic dataset show that our proposed methods can satisfy students' preferences well and deliver balanced and diverse groups regarding cardinality and the protected attribute, respectively." 1256,Latent Variable Modelling Using Variational Autoencoders: A survey,"A probability distribution allows practitioners to uncover hidden structure in the data and build models to solve supervised learning problems using limited data. The focus of this report is on Variational autoencoders, a method to learn the probability distribution of large complex datasets. The report provides a theoretical understanding of variational autoencoders and consolidates the current research in the field. The report is divided into multiple chapters, the first chapter introduces the problem, describes variational autoencoders and identifies key research directions in the field. Chapters 2, 3, 4 and 5 dive into the details of each of the key research areas. Chapter 6 concludes the report and suggests directions for future work. A reader who has a basic idea of machine learning but wants to learn about general themes in machine learning research can benefit from the report. The report explains central ideas on learning probability distributions, what people did to make this tractable and goes into details around how deep learning is currently applied. The report also serves a gentle introduction for someone looking to contribute to this sub-field." 1257,On the Impossibility of Learning to Cooperate with Adaptive Partner Strategies in Repeated Games,"Learning to cooperate with other agents is challenging when those agents also possess the ability to adapt to our own behavior. Practical and theoretical approaches to learning in cooperative settings typically assume that other agents' behaviors are stationary, or else make very specific assumptions about other agents' learning processes. The goal of this work is to understand whether we can reliably learn to cooperate with other agents without such restrictive assumptions, which are unlikely to hold in real-world applications. Our main contribution is a set of impossibility results, which show that no learning algorithm can reliably learn to cooperate with all possible adaptive partners in a repeated matrix game, even if that partner is guaranteed to cooperate with some stationary strategy. Motivated by these results, we then discuss potential alternative assumptions which capture the idea that an adaptive partner will only adapt rationally to our behavior." 1258,Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world,"We introduce \textit{Nocturne}, a new 2D driving simulator for investigating multi-agent coordination under partial observability. The focus of Nocturne is to enable research into inference and theory of mind in real-world multi-agent settings without the computational overhead of computer vision and feature extraction from images. Agents in this simulator only observe an obstructed view of the scene, mimicking human visual sensing constraints. Unlike existing benchmarks that are bottlenecked by rendering human-like observations directly using a camera input, Nocturne uses efficient intersection methods to compute a vectorized set of visible features in a C++ back-end, allowing the simulator to run at $2000+$ steps-per-second. Using open-source trajectory and map data, we construct a simulator to load and replay arbitrary trajectories and scenes from real-world driving data. Using this environment, we benchmark reinforcement-learning and imitation-learning agents and demonstrate that the agents are quite far from human-level coordination ability and deviate significantly from the expert trajectories." 1259,SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression,"To enable large-scale machine learning in bandwidth-hungry environments such as wireless networks, significant progress has been made recently in designing communication-efficient federated learning algorithms with the aid of communication compression. On the other end, privacy-preserving, especially at the client level, is another important desideratum that has not been addressed simultaneously in the presence of advanced communication compression techniques yet. In this paper, we propose a unified framework that enhances the communication efficiency of private federated learning with communication compression. Exploiting both general compression operators and local differential privacy, we first examine a simple algorithm that applies compression directly to differentially-private stochastic gradient descent, and identify its limitations. We then propose a unified framework SoteriaFL for private federated learning, which accommodates a general family of local gradient estimators including popular stochastic variance-reduced gradient methods and the state-of-the-art shifted compression scheme. We provide a comprehensive characterization of its performance trade-offs in terms of privacy, utility, and communication complexity, where SoteraFL is shown to achieve better communication complexity without sacrificing privacy nor utility than other private federated learning algorithms without communication compression." 1260,Deep Learning-Based Defect Classification and Detection in SEM Images,"This proposes a novel ensemble deep learning-based model to accurately classify, detect and localize different defect categories for aggressive pitches and thin resists (High NA applications).In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone and present the comparison between the accuracies of these models and their performance analysis on SEM images with different types of defect patterns such as bridge, break and line collapses. Finally, we propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects. As CDSEM images inherently contain a significant level of noise, detailed feature information is often shadowed by noise. For certain resist profiles, the challenge is also to differentiate between a microbridge, footing, break, and zones of probable breaks. Therefore, we have applied an unsupervised machine learning model to denoise the SEM images to remove the False-Positive defects and optimize the effect of stochastic noise on structured pixels for better metrology and enhanced defect inspection. We repeated the defect inspection step with the same trained model and performed a comparative analysis for ""robustness"" and ""accuracy"" metric with conventional approach for both noisy/denoised image pair. The proposed ensemble method demonstrates improvement of the average precision metric (mAP) of the most difficult defect classes. In this work we have developed a novel robust supervised deep learning training scheme to accurately classify as well as localize different defect types in SEM images with high degree of accuracy. Our proposed approach demonstrates its effectiveness both quantitatively and qualitatively." 1261,Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities,"It is an important problem in trustworthy machine learning to recognize out-of-distribution (OOD) inputs which are inputs unrelated to the in-distribution task. Many out-of-distribution detection methods have been suggested in recent years. The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods. We focus on the sub-class of methods that use surrogate OOD data during training in order to learn an OOD detection score that generalizes to new unseen out-distributions at test time. We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem. When trained in a shared fashion with a standard classifier, this binary discriminator reaches an OOD detection performance similar to that of Outlier Exposure. Moreover, we show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function in the case where training and test out-distribution are the same, which again is similar to the one used when training an Energy-Based OOD detector or when adding a background class. In practice, when trained in exactly the same way, all these methods perform similarly." 1262,Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax Audit Models,"This study examines issues of algorithmic fairness in the context of systems that inform tax audit selection by the United States Internal Revenue Service (IRS). While the field of algorithmic fairness has developed primarily around notions of treating like individuals alike, we instead explore the concept of vertical equity -- appropriately accounting for relevant differences across individuals -- which is a central component of fairness in many public policy settings. Applied to the design of the U.S. individual income tax system, vertical equity relates to the fair allocation of tax and enforcement burdens across taxpayers of different income levels. Through a unique collaboration with the Treasury Department and IRS, we use access to anonymized individual taxpayer microdata, risk-selected audits, and random audits from 2010-14 to study vertical equity in tax administration. In particular, we assess how the use of modern machine learning methods for selecting audits may affect vertical equity. First, we show how the use of more flexible machine learning (classification) methods -- as opposed to simpler models -- shifts audit burdens from high to middle-income taxpayers. Second, we show that while existing algorithmic fairness techniques can mitigate some disparities across income, they can incur a steep cost to performance. Third, we show that the choice of whether to treat risk of underreporting as a classification or regression problem is highly consequential. Moving from classification to regression models to predict underreporting shifts audit burden substantially toward high income individuals, while increasing revenue. Last, we explore the role of differential audit cost in shaping the audit distribution. We show that a narrow focus on return-on-investment can undermine vertical equity. Our results have implications for the design of algorithmic tools across the public sector." 1263,COVYT: Introducing the Coronavirus YouTube and TikTok speech dataset featuring the same speakers with and without infection,"More than two years after its outbreak, the COVID-19 pandemic continues to plague medical systems around the world, putting a strain on scarce resources, and claiming human lives. From the very beginning, various AI-based COVID-19 detection and monitoring tools have been pursued in an attempt to stem the tide of infections through timely diagnosis. In particular, computer audition has been suggested as a non-invasive, cost-efficient, and eco-friendly alternative for detecting COVID-19 infections through vocal sounds. However, like all AI methods, also computer audition is heavily dependent on the quantity and quality of available data, and large-scale COVID-19 sound datasets are difficult to acquire -- amongst other reasons -- due to the sensitive nature of such data. To that end, we introduce the COVYT dataset -- a novel COVID-19 dataset collected from public sources containing more than 8 hours of speech from 65 speakers. As compared to other existing COVID-19 sound datasets, the unique feature of the COVYT dataset is that it comprises both COVID-19 positive and negative samples from all 65 speakers. We analyse the acoustic manifestation of COVID-19 on the basis of these perfectly speaker characteristic balanced `in-the-wild' data using interpretable audio descriptors, and investigate several classification scenarios that shed light into proper partitioning strategies for a fair speech-based COVID-19 detection." 1264,Regression of high dimensional angular momentum states of light,"The Orbital Angular Momentum (OAM) of light is an infinite-dimensional degree of freedom of light with several applications in both classical and quantum optics. However, to fully take advantage of the potential of OAM states, reliable detection platforms to characterize generated states in experimental conditions are needed. Here, we present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce. To obviate issues arising from intrinsic symmetry of Laguerre-Gauss modes, we employ a pair of intensity profiles per state projecting it only on two distinct bases, showing how this allows to uniquely recover input states from the collected data. Our approach is based on a combined application of dimensionality reduction via principal component analysis, and linear regression, and thus has a low computational cost during both training and testing stages. We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics. The high performances and versatility of the demonstrated approach make it an ideal tool to characterize high dimensional states in quantum information protocols." 1265,A Neural Network Based Method with Transfer Learning for Genetic Data Analysis,"Transfer learning has emerged as a powerful technique in many application problems, such as computer vision and natural language processing. However, this technique is largely ignored in application to genetic data analysis. In this paper, we combine transfer learning technique with a neural network based method(expectile neural networks). With transfer learning, instead of starting the learning process from scratch, we start from one task that have been learned when solving a different task. We leverage previous learnings and avoid starting from scratch to improve the model performance by passing information gained in different but related task. To demonstrate the performance, we run two real data sets. By using transfer learning algorithm, the performance of expectile neural networks is improved compared to expectile neural network without using transfer learning technique." 1266,Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review,"Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging." 1267,Understanding Robust Learning through the Lens of Representation Similarities,"Representation learning, i.e. the generation of representations useful for downstream applications, is a task of fundamental importance that underlies much of the success of deep neural networks (DNNs). Recently, robustness to adversarial examples has emerged as a desirable property for DNNs, spurring the development of robust training methods that account for adversarial examples. In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training. This is critical to diagnosing numerous salient pitfalls in robust networks, such as, degradation of performance on benign inputs, poor generalization of robustness, and increase in over-fitting. We utilize a powerful set of tools known as representation similarity metrics, across three vision datasets, to obtain layer-wise comparisons between robust and non-robust DNNs with different architectures, training procedures and adversarial constraints. Our experiments highlight hitherto unseen properties of robust representations that we posit underlie the behavioral differences of robust networks. We discover a lack of specialization in robust networks' representations along with a disappearance of `block structure'. We also find overfitting during robust training largely impacts deeper layers. These, along with other findings, suggest ways forward for the design and training of better robust networks." 1268,Additive Gaussian Processes Revisited,"Gaussian Process (GP) models are a class of flexible non-parametric models that have rich representational power. By using a Gaussian process with additive structure, complex responses can be modelled whilst retaining interpretability. Previous work showed that additive Gaussian process models require high-dimensional interaction terms. We propose the orthogonal additive kernel (OAK), which imposes an orthogonality constraint on the additive functions, enabling an identifiable, low-dimensional representation of the functional relationship. We connect the OAK kernel to functional ANOVA decomposition, and show improved convergence rates for sparse computation methods. With only a small number of additive low-dimensional terms, we demonstrate the OAK model achieves similar or better predictive performance compared to black-box models, while retaining interpretability." 1269,Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification,"Recent years have seen a growth in user-centric applications that require effective knowledge transfer across tasks in the low-data regime. An example is personalization, where a pretrained system is adapted by learning on small amounts of labeled data belonging to a specific user. This setting requires high accuracy under low computational complexity, therefore the Pareto frontier of accuracy vs.~adaptation cost plays a crucial role. In this paper we push this Pareto frontier in the few-shot image classification setting with two key contributions: (i) a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance with a single forward pass of the user data (context), and (ii) a hybrid training protocol based on Coordinate-Descent called UpperCaSE that exploits meta-trained CaSE blocks and fine-tuning routines for efficient adaptation. UpperCaSE achieves a new state-of-the-art accuracy relative to meta-learners on the 26 datasets of VTAB+MD and on a challenging real-world personalization benchmark (ORBIT), narrowing the gap with leading fine-tuning methods with the benefit of orders of magnitude lower adaptation cost." 1270,Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation,"Understanding the implicit bias of training algorithms is of crucial importance in order to explain the success of overparametrised neural networks. In this paper, we study the role of the label noise in the training dynamics of a quadratically parametrised model through its continuous time version. We explicitly characterise the solution chosen by the stochastic flow and prove that it implicitly solves a Lasso program. To fully complete our analysis, we provide nonasymptotic convergence guarantees for the dynamics as well as conditions for support recovery. We also give experimental results which support our theoretical claims. Our findings highlight the fact that structured noise can induce better generalisation and help explain the greater performances of stochastic dynamics as observed in practice." 1271,Business Document Information Extraction: Towards Practical Benchmarks,"Information extraction from semi-structured documents is crucial for frictionless business-to-business (B2B) communication. While machine learning problems related to Document Information Extraction (IE) have been studied for decades, many common problem definitions and benchmarks do not reflect domain-specific aspects and practical needs for automating B2B document communication. We review the landscape of Document IE problems, datasets and benchmarks. We highlight the practical aspects missing in the common definitions and define the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) problems. There is a lack of relevant datasets and benchmarks for Document IE on semi-structured business documents as their content is typically legally protected or sensitive. We discuss potential sources of available documents including synthetic data." 1272,The Right Tool for the Job: Open-Source Auditing Tools in Machine Learning,"In recent years, discussions about fairness in machine learning, AI ethics and algorithm audits have increased. Many entities have developed framework guidance to establish a baseline rubric for fairness and accountability. However, in spite of increased discussions and multiple frameworks, algorithm and data auditing still remain difficult to execute in practice. Many open-source auditing tools are available, but users aren't always aware of the tools, what they are useful for, or how to access them. Model auditing and evaluation are not frequently emphasized skills in machine learning. There are also legal reasons for the proactive adoption of these tools that extend beyond the desire for greater fairness in machine learning. There are positive social issues of public perception and goodwill that matter in our highly connected global society. Greater awareness of these tools and the reasons for actively utilizing them may be helpful to the entire continuum of programmers, data scientists, engineers, researchers, users and consumers of AI and machine learning products. It is important for everyone to better understand the input and output differentials, how they are occurring, and what can be done to promote FATE (fairness, accountability, transparency, and ethics) in machine- and deep learning. The ability to freely access open-source auditing tools removes barriers to fairness assessment at the most basic levels of machine learning. This paper aims to reinforce the urgent need to actually use these tools and provides motivations for doing so. The exemplary tools highlighted herein are open-source with software or code-base repositories available that can be used immediately by anyone worldwide." 1273,CS$^2$: A Controllable and Simultaneous Synthesizer of Images and Annotations with Minimal Human Intervention,"The destitution of image data and corresponding expert annotations limit the training capacities of AI diagnostic models and potentially inhibit their performance. To address such a problem of data and label scarcity, generative models have been developed to augment the training datasets. Previously proposed generative models usually require manually adjusted annotations (e.g., segmentation masks) or need pre-labeling. However, studies have found that these pre-labeling based methods can induce hallucinating artifacts, which might mislead the downstream clinical tasks, while manual adjustment could be onerous and subjective. To avoid manual adjustment and pre-labeling, we propose a novel controllable and simultaneous synthesizer (dubbed CS$^2$) in this study to generate both realistic images and corresponding annotations at the same time. Our CS$^2$ model is trained and validated using high resolution CT (HRCT) data collected from COVID-19 patients to realize an efficient infections segmentation with minimal human intervention. Our contributions include 1) a conditional image synthesis network that receives both style information from reference CT images and structural information from unsupervised segmentation masks, and 2) a corresponding segmentation mask synthesis network to automatically segment these synthesized images simultaneously. Our experimental studies on HRCT scans collected from COVID-19 patients demonstrate that our CS$^2$ model can lead to realistic synthesized datasets and promising segmentation results of COVID infections compared to the state-of-the-art nnUNet trained and fine-tuned in a fully supervised manner." 1274,A Distributional Approach for Soft Clustering Comparison and Evaluation,"The development of external evaluation criteria for soft clustering (SC) has received limited attention: existing methods do not provide a general approach to extend comparison measures to SC, and are unable to account for the uncertainty represented in the results of SC algorithms. In this article, we propose a general method to address these limitations, grounding on a novel interpretation of SC as distributions over hard clusterings, which we call \emph{distributional measures}. We provide an in-depth study of complexity- and metric-theoretic properties of the proposed approach, and we describe approximation techniques that can make the calculations tractable. Finally, we illustrate our approach through a simple but illustrative experiment." 1275,Exceedance Probability Forecasting via Regression for Significant Wave Height Forecasting,"Significant wave height forecasting is a key problem in ocean data analytics. Predicting the significant wave height is crucial for estimating the energy production from waves. Moreover, the timely prediction of large waves is important to ensure the safety of maritime operations, e.g. passage of vessels. We frame the task of predicting extreme values of significant wave height as an exceedance probability forecasting problem. Accordingly, we aim at estimating the probability that the significant wave height will exceed a predefined threshold. This task is usually solved using a probabilistic binary classification model. Instead, we propose a novel approach based on a forecasting model. The method leverages the forecasts for the upcoming observations to estimate the exceedance probability according to the cumulative distribution function. We carried out experiments using data from a buoy placed in the coast of Halifax, Canada. The results suggest that the proposed methodology is better than state-of-the-art approaches for exceedance probability forecasting." 1276,SMT-DTA: Improving Drug-Target Affinity Prediction with Semi-supervised Multi-task Training,"Drug-Target Affinity (DTA) prediction is an essential task for drug discovery and pharmaceutical research. Accurate predictions of DTA can greatly benefit the design of new drug. As wet experiments are costly and time consuming, the supervised data for DTA prediction is extremely limited. This seriously hinders the application of deep learning based methods, which require a large scale of supervised data. To address this challenge and improve the DTA prediction accuracy, we propose a framework with several simple yet effective strategies in this work: (1) a multi-task training strategy, which takes the DTA prediction and the masked language modeling (MLM) task on the paired drug-target dataset; (2) a semi-supervised training method to empower the drug and target representation learning by leveraging large-scale unpaired molecules and proteins in training, which differs from previous pre-training and fine-tuning methods that only utilize molecules or proteins in pre-training; and (3) a cross-attention module to enhance the interaction between drug and target representation. Extensive experiments are conducted on three real-world benchmark datasets: BindingDB, DAVIS and KIBA. The results show that our framework significantly outperforms existing methods and achieves state-of-the-art performances, e.g., $0.712$ RMSE on BindingDB IC$_{50}$ measurement with more than $5\%$ improvement than previous best work. In addition, case studies on specific drug-target binding activities, drug feature visualizations, and real-world applications demonstrate the great potential of our work. The code and data are released at https://github.com/QizhiPei/SMT-DTA" 1277,Convex space learning improves deep-generative oversampling for tabular imbalanced classification on smaller datasets,"Data is commonly stored in tabular format. Several fields of research (e.g., biomedical, fault/fraud detection), are prone to small imbalanced tabular data. Supervised Machine Learning on such data is often difficult due to class imbalance, adding further to the challenge. Synthetic data generation i.e. oversampling is a common remedy used to improve classifier performance. State-of-the-art linear interpolation approaches, such as LoRAS and ProWRAS can be used to generate synthetic samples from the convex space of the minority class to improve classifier performance in such cases. Generative Adversarial Networks (GANs) are common deep learning approaches for synthetic sample generation. Although GANs are widely used for synthetic image generation, their scope on tabular data in the context of imbalanced classification is not adequately explored. In this article, we show that existing deep generative models perform poorly compared to linear interpolation approaches generating synthetic samples from the convex space of the minority class, for imbalanced classification problems on tabular datasets of small size. We propose a deep generative model, ConvGeN combining the idea of convex space learning and deep generative models. ConVGeN learns the coefficients for the convex combinations of the minority class samples, such that the synthetic data is distinct enough from the majority class. We demonstrate that our proposed model ConvGeN improves imbalanced classification on such small datasets, as compared to existing deep generative models while being at par with the existing linear interpolation approaches. Moreover, we discuss how our model can be used for synthetic tabular data generation in general, even outside the scope of data imbalance, and thus, improves the overall applicability of convex space learning." 1278,Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search,"In this paper, we propose a Shapley value based method to evaluate operation contribution (Shapley-NAS) for neural architecture search. Differentiable architecture search (DARTS) acquires the optimal architectures by optimizing the architecture parameters with gradient descent, which significantly reduces the search cost. However, the magnitude of architecture parameters updated by gradient descent fails to reveal the actual operation importance to the task performance and therefore harms the effectiveness of obtained architectures. By contrast, we propose to evaluate the direct influence of operations on validation accuracy. To deal with the complex relationships between supernet components, we leverage Shapley value to quantify their marginal contributions by considering all possible combinations. Specifically, we iteratively optimize the supernet weights and update the architecture parameters by evaluating operation contributions via Shapley value, so that the optimal architectures are derived by selecting the operations that contribute significantly to the tasks. Since the exact computation of Shapley value is NP-hard, the Monte-Carlo sampling based algorithm with early truncation is employed for efficient approximation, and the momentum update mechanism is adopted to alleviate fluctuation of the sampling process. Extensive experiments on various datasets and various search spaces show that our Shapley-NAS outperforms the state-of-the-art methods by a considerable margin with light search cost. The code is available at https://github.com/Euphoria16/Shapley-NAS.git" 1279,Actively Learning Deep Neural Networks with Uncertainty Sampling Based on Sum-Product Networks,"Active learning is popular approach for reducing the amount of data in training deep neural network model. Its success hinges on the choice of an effective acquisition function, which ranks not yet labeled data points according to their expected informativeness. In uncertainty sampling, the uncertainty that the current model has about a point's class label is the main criterion for this type of ranking. This paper proposes a new approach to uncertainty sampling in training a Convolutional Neural Network (CNN). The main idea is to use feature representation extracted extracted by the CNN as data for training a Sum-Product Network (SPN). Since SPNs are typically used for estimating the distribution of a dataset, they are well suited to the task of estimating class probabilities that can be used directly by standard acquisition functions such as max entropy and variational ratio. Moreover, we enhance these acquisition functions by weights calculated with the help of the SPN model; these weights make the acquisition function more sensitive to the diversity of conceivable class labels for data points. The effectiveness of our method is demonstrated in an experimental study on the MNIST, Fashion-MNIST and CIFAR-10 datasets, where we compare it to the state-of-the-art methods MC Dropout and Bayesian Batch." 1280,Actively learning to learn causal relationships,"How do people actively learn to learn? That is, how and when do people choose actions that facilitate long-term learning and choosing future actions that are more informative? We explore these questions in the domain of active causal learning. We propose a hierarchical Bayesian model that goes beyond past models by predicting that people pursue information not only about the causal relationship at hand but also about causal overhypotheses$\unicode{x2014}$abstract beliefs about causal relationships that span multiple situations and constrain how we learn the specifics in each situation. In two active ""blicket detector"" experiments with 14 between-subjects manipulations, our model was supported by both qualitative trends in participant behavior and an individual-differences-based model comparison. Our results suggest when there are abstract similarities across active causal learning problems, people readily learn and transfer overhypotheses about these similarities. Moreover, people exploit these overhypotheses to facilitate long-term active learning." 1281,Quantitative CT texture-based method to predict diagnosis and prognosis of fibrosing interstitial lung disease patterns,"Purpose: To utilize high-resolution quantitative CT (QCT) imaging features for prediction of diagnosis and prognosis in fibrosing interstitial lung diseases (ILD). Approach: 40 ILD patients (20 usual interstitial pneumonia (UIP), 20 non-UIP pattern ILD) were classified by expert consensus of 2 radiologists and followed for 7 years. Clinical variables were recorded. Following segmentation of the lung field, a total of 26 texture features were extracted using a lattice-based approach (TM model). The TM model was compared with previously histogram-based model (HM) for their abilities to classify UIP vs non-UIP. For prognostic assessment, survival analysis was performed comparing the expert diagnostic labels versus TM metrics. Results: In the classification analysis, the TM model outperformed the HM method with AUC of 0.70. While survival curves of UIP vs non-UIP expert labels in Cox regression analysis were not statistically different, TM QCT features allowed statistically significant partition of the cohort. Conclusions: TM model outperformed HM model in distinguishing UIP from non-UIP patterns. Most importantly, TM allows for partitioning of the cohort into distinct survival groups, whereas expert UIP vs non-UIP labeling does not. QCT TM models may improve diagnosis of ILD and offer more accurate prognostication, better guiding patient management." 1282,Towards Perspective-Based Specification of Machine Learning-Enabled Systems,"Machine learning (ML) teams often work on a project just to realize the performance of the model is not good enough. Indeed, the success of ML-enabled systems involves aligning data with business problems, translating them into ML tasks, experimenting with algorithms, evaluating models, capturing data from users, among others. Literature has shown that ML-enabled systems are rarely built based on precise specifications for such concerns, leading ML teams to become misaligned due to incorrect assumptions, which may affect the quality of such systems and overall project success. In order to help addressing this issue, this paper describes our work towards a perspective-based approach for specifying ML-enabled systems. The approach involves analyzing a set of 45 ML concerns grouped into five perspectives: objectives, user experience, infrastructure, model, and data. The main contribution of this paper is to provide two new artifacts that can be used to help specifying ML-enabled systems: (i) the perspective-based ML task and concern diagram and (ii) the perspective-based ML specification template." 1283,Time Gated Convolutional Neural Networks for Crop Classification,"This paper presented a state-of-the-art framework, Time Gated Convolutional Neural Network (TGCNN) that takes advantage of temporal information and gating mechanisms for the crop classification problem. Besides, several vegetation indices were constructed to expand dimensions of input data to take advantage of spectral information. Both spatial (channel-wise) and temporal (step-wise) correlation are considered in TGCNN. Specifically, our preliminary analysis indicates that step-wise information is of greater importance in this data set. Lastly, the gating mechanism helps capture high-order relationship. Our TGCNN solution achieves $0.973$ F1 score, $0.977$ AUC ROC and $0.948$ IoU, respectively. In addition, it outperforms three other benchmarks in different local tasks (Kenya, Brazil and Togo). Overall, our experiments demonstrate that TGCNN is advantageous in this earth observation time series classification task." 1284,Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold,"The prototypical NLP experiment trains a standard architecture on labeled English data and optimizes for accuracy, without accounting for other dimensions such as fairness, interpretability, or computational efficiency. We show through a manual classification of recent NLP research papers that this is indeed the case and refer to it as the square one experimental setup. We observe that NLP research often goes beyond the square one setup, e.g, focusing not only on accuracy, but also on fairness or interpretability, but typically only along a single dimension. Most work targeting multilinguality, for example, considers only accuracy; most work on fairness or interpretability considers only English; and so on. We show this through manual classification of recent NLP research papers and ACL Test-of-Time award recipients. Such one-dimensionality of most research means we are only exploring a fraction of the NLP research search space. We provide historical and recent examples of how the square one bias has led researchers to draw false conclusions or make unwise choices, point to promising yet unexplored directions on the research manifold, and make practical recommendations to enable more multi-dimensional research. We open-source the results of our annotations to enable further analysis at https://github.com/google-research/url-nlp" 1285,A Comparative Study on Application of Class-Imbalance Learning for Severity Prediction of Adverse Events Following Immunization,"In collaboration with the Liaoning CDC, China, we propose a prediction system to predict the subsequent hospitalization of children with adverse reactions based on data on adverse events following immunization. We extracted multiple features from the data, and selected ""hospitalization or not"" as the target for classification. Since the data are imbalanced, we used various class-imbalance learning methods for training and improved the RUSBoost algorithm. Experimental results show that the improved RUSBoost has the highest Area Under the ROC Curve on the target among these algorithms. Additionally, we compared these class-imbalance learning methods with some common machine learning algorithms. We combined the improved RUSBoost with dynamic web resource development techniques to build an evaluation system with information entry and vaccination response prediction capabilities for relevant medical practitioners." 1286,Guided Safe Shooting: model based reinforcement learning with safety constraints,"In the last decade, reinforcement learning successfully solved complex control tasks and decision-making problems, like the Go board game. Yet, there are few success stories when it comes to deploying those algorithms to real-world scenarios. One of the reasons is the lack of guarantees when dealing with and avoiding unsafe states, a fundamental requirement in critical control engineering systems. In this paper, we introduce Guided Safe Shooting (GuSS), a model-based RL approach that can learn to control systems with minimal violations of the safety constraints. The model is learned on the data collected during the operation of the system in an iterated batch fashion, and is then used to plan for the best action to perform at each time step. We propose three different safe planners, one based on a simple random shooting strategy and two based on MAP-Elites, a more advanced divergent-search algorithm. Experiments show that these planners help the learning agent avoid unsafe situations while maximally exploring the state space, a necessary aspect when learning an accurate model of the system. Furthermore, compared to model-free approaches, learning a model allows GuSS reducing the number of interactions with the real-system while still reaching high rewards, a fundamental requirement when handling engineering systems." 1287,Metareview-informed Explainable Cytokine Storm Detection during CAR-T cell Therapy,"Cytokine release syndrome (CRS), also known as cytokine storm, is one of the most consequential adverse effects of chimeric antigen receptor therapies that have shown promising results in cancer treatment. When emerging, CRS could be identified by the analysis of specific cytokine and chemokine profiles that tend to exhibit similarities across patients. In this paper, we exploit these similarities using machine learning algorithms and set out to pioneer a meta--review informed method for the identification of CRS based on specific cytokine peak concentrations and evidence from previous clinical studies. We argue that such methods could support clinicians in analyzing suspect cytokine profiles by matching them against CRS knowledge from past clinical studies, with the ultimate aim of swift CRS diagnosis. During evaluation with real--world CRS clinical data, we emphasize the potential of our proposed method of producing interpretable results, in addition to being effective in identifying the onset of cytokine storm." 1288,Cross-Modal Transformer GAN: A Brain Structure-Function Deep Fusing Framework for Alzheimer's Disease,"Cross-modal fusion of different types of neuroimaging data has shown great promise for predicting the progression of Alzheimer's Disease(AD). However, most existing methods applied in neuroimaging can not efficiently fuse the functional and structural information from multi-modal neuroimages. In this work, a novel cross-modal transformer generative adversarial network(CT-GAN) is proposed to fuse functional information contained in resting-state functional magnetic resonance imaging (rs-fMRI) and structural information contained in Diffusion Tensor Imaging (DTI). The developed bi-attention mechanism can match functional information to structural information efficiently and maximize the capability of extracting complementary information from rs-fMRI and DTI. By capturing the deep complementary information between structural features and functional features, the proposed CT-GAN can detect the AD-related brain connectivity, which could be used as a bio-marker of AD. Experimental results show that the proposed model can not only improve classification performance but also detect the AD-related brain connectivity effectively." 1289,"A Note on the Convergence of Mirrored Stein Variational Gradient Descent under $(L_0,L_1)-$Smoothness Condition","In this note, we establish a descent lemma for the population limit Mirrored Stein Variational Gradient Method~(MSVGD). This descent lemma does not rely on the path information of MSVGD but rather on a simple assumption for the mirrored distribution $\nabla\Psi_{\#}\pi\propto\exp(-V)$. Our analysis demonstrates that MSVGD can be applied to a broader class of constrained sampling problems with non-smooth $V$. We also investigate the complexity of the population limit MSVGD in terms of dimension $d$." 1290,"Great Expectations: Unsupervised Inference of Suspense, Surprise and Salience in Storytelling","Stories interest us not because they are a sequence of mundane and predictable events but because they have drama and tension. Crucial to creating dramatic and exciting stories are surprise and suspense. The thesis trains a series of deep learning models via only reading stories, a self-supervised (or unsupervised) system. Narrative theory methods (rules and procedures) are applied to the knowledge built into deep learning models to directly infer salience, surprise, and salience in stories. Extensions add memory and external knowledge from story plots and from Wikipedia to infer salience on novels such as Great Expectations and plays such as Macbeth. Other work adapts the models as a planning system for generating original stories. The thesis finds that applying the narrative theory to deep learning models can align with the typical reader. In follow-up work, the insights could help improve computer models for tasks such as automatic story writing and assistance for writing, summarising or editing stories. Moreover, the approach of applying narrative theory to the inherent qualities built in a system that learns itself (self-supervised) from reading from books, watching videos, and listening to audio is much cheaper and more adaptable to other domains and tasks. Progress is swift in improving self-supervised systems. As such, the thesis's relevance is that applying domain expertise with these systems may be a more productive approach for applying machine learning in many areas of interest." 1291,The Role of Machine Learning in Cybersecurity,"Machine Learning (ML) represents a pivotal technology for current and future information systems, and many domains already leverage the capabilities of ML. However, deployment of ML in cybersecurity is still at an early stage, revealing a significant discrepancy between research and practice. Such discrepancy has its root cause in the current state-of-the-art, which does not allow to identify the role of ML in cybersecurity. The full potential of ML will never be unleashed unless its pros and cons are understood by a broad audience. This paper is the first attempt to provide a holistic understanding of the role of ML in the entire cybersecurity domain -- to any potential reader with an interest in this topic. We highlight the advantages of ML with respect to human-driven detection methods, as well as the additional tasks that can be addressed by ML in cybersecurity. Moreover, we elucidate various intrinsic problems affecting real ML deployments in cybersecurity. Finally, we present how various stakeholders can contribute to future developments of ML in cybersecurity, which is essential for further progress in this field. Our contributions are complemented with two real case studies describing industrial applications of ML as defense against cyber-threats." 1292,Technical Report: Combining knowledge from Transfer Learning during training and Wide Resnets,"In this report, we combine the idea of Wide ResNets and transfer learning to optimize the architecture of deep neural networks. The first improvement of the architecture is the use of all layers as information source for the last layer. This idea comes from transfer learning, which uses networks pre-trained on other data and extracts different levels of the network as input for the new task. The second improvement is the use of deeper layers instead of deeper sequences of blocks. This idea comes from Wide ResNets. Using both optimizations, both high data augmentation and standard data augmentation can produce better results for different models. Link: https://github.com/wolfgangfuhl/PublicationStuff/tree/master/TechnicalReport1/Supp" 1293,GiDR-DUN; Gradient Dimensionality Reduction -- Differences and Unification,"TSNE and UMAP are two of the most popular dimensionality reduction algorithms due to their speed and interpretable low-dimensional embeddings. However, while attempts have been made to improve on TSNE's computational complexity, no existing method can obtain TSNE embeddings at the speed of UMAP. In this work, we show that this is indeed possible by combining the two approaches into a single method. We theoretically and experimentally evaluate the full space of parameters in the TSNE and UMAP algorithms and observe that a single parameter, the normalization, is responsible for switching between them. This, in turn, implies that a majority of the algorithmic differences can be toggled without affecting the embeddings. We discuss the implications this has on several theoretic claims underpinning the UMAP framework, as well as how to reconcile them with existing TSNE interpretations. Based on our analysis, we propose a new dimensionality reduction algorithm, GDR, that combines previously incompatible techniques from TSNE and UMAP and can replicate the results of either algorithm by changing the normalization. As a further advantage, GDR performs the optimization faster than available UMAP methods and thus an order of magnitude faster than available TSNE methods. Our implementation is plug-and-play with the traditional UMAP and TSNE libraries and can be found at github.com/Andrew-Draganov/GiDR-DUN." 1294,Remote Sensing Image Classification using Transfer Learning and Attention Based Deep Neural Network,"The task of remote sensing image scene classification (RSISC), which aims at classifying remote sensing images into groups of semantic categories based on their contents, has taken the important role in a wide range of applications such as urban planning, natural hazards detection, environment monitoring,vegetation mapping, or geospatial object detection. During the past years, research community focusing on RSISC task has shown significant effort to publish diverse datasets as well as propose different approaches to deal with the RSISC challenges. Recently, almost proposed RSISC systems base on deep learning models which prove powerful and outperform traditional approaches using image processing and machine learning. In this paper, we also leverage the power of deep learning technology, evaluate a variety of deep neural network architectures, indicate main factors affecting the performance of a RSISC system. Given the comprehensive analysis, we propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme. The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7% which shows competitive to the state-of-the-art systems and potential for real-life applications." 1295,GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks,"As one of the most popular machine learning models today, graph neural networks (GNNs) have attracted intense interest recently, and so does their explainability. Users are increasingly interested in a better understanding of GNN models and their outcomes. Unfortunately, today's evaluation frameworks for GNN explainability often rely on synthetic datasets, leading to conclusions of limited scope due to a lack of complexity in the problem instances. As GNN models are deployed to more mission-critical applications, we are in dire need for a common evaluation protocol of explainability methods of GNNs. In this paper, we propose, to our best knowledge, the first systematic evaluation framework for GNN explainability, considering explainability on three different ""user needs:"" explanation focus, mask nature, and mask transformation. We propose a unique metric that combines the fidelity measures and classify explanations based on their quality of being sufficient or necessary. We scope ourselves to node classification tasks and compare the most representative techniques in the field of input-level explainability for GNNs. For the widely used synthetic benchmarks, surprisingly shallow techniques such as personalized PageRank have the best performance for a minimum computation time. But when the graph structure is more complex and nodes have meaningful features, gradient-based methods, in particular Saliency, are the best according to our evaluation criteria. However, none dominates the others on all evaluation dimensions and there is always a trade-off. We further apply our evaluation protocol in a case study on eBay graphs to reflect the production environment." 1296,Deep reinforced active learning for multi-class image classification,"High accuracy medical image classification can be limited by the costs of acquiring more data as well as the time and expertise needed to label existing images. In this paper, we apply active learning to medical image classification, a method which aims to maximise model performance on a minimal subset from a larger pool of data. We present a new active learning framework, based on deep reinforcement learning, to learn an active learning query strategy to label images based on predictions from a convolutional neural network. Our framework modifies the deep-Q network formulation, allowing us to pick data based additionally on geometric arguments in the latent space of the classifier, allowing for high accuracy multi-class classification in a batch-based active learning setting, enabling the agent to label datapoints that are both diverse and about which it is most uncertain. We apply our framework to two medical imaging datasets and compare with standard query strategies as well as the most recent reinforcement learning based active learning approach for image classification." 1297,EAGER: Asking and Answering Questions for Automatic Reward Shaping in Language-guided RL,"Reinforcement learning (RL) in long horizon and sparse reward tasks is notoriously difficult and requires a lot of training steps. A standard solution to speed up the process is to leverage additional reward signals, shaping it to better guide the learning process. In the context of language-conditioned RL, the abstraction and generalisation properties of the language input provide opportunities for more efficient ways of shaping the reward. In this paper, we leverage this idea and propose an automated reward shaping method where the agent extracts auxiliary objectives from the general language goal. These auxiliary objectives use a question generation (QG) and question answering (QA) system: they consist of questions leading the agent to try to reconstruct partial information about the global goal using its own trajectory. When it succeeds, it receives an intrinsic reward proportional to its confidence in its answer. This incentivizes the agent to generate trajectories which unambiguously explain various aspects of the general language goal. Our experimental study shows that this approach, which does not require engineer intervention to design the auxiliary objectives, improves sample efficiency by effectively directing exploration." 1298,Benchmarking Constraint Inference in Inverse Reinforcement Learning,"When deploying Reinforcement Learning (RL) agents into a physical system, we must ensure that these agents are well aware of the underlying constraints. In many real-world problems, however, the constraints followed by expert agents (e.g., humans) are often hard to specify mathematically and unknown to the RL agents. To tackle these issues, Constraint Inverse Reinforcement Learning (CIRL) considers the formalism of Constrained Markov Decision Processes (CMDPs) and estimates constraints from expert demonstrations by learning a constraint function. As an emerging research topic, CIRL does not have common benchmarks, and previous works tested their algorithms with hand-crafted environments (e.g., grid worlds). In this paper, we construct a CIRL benchmark in the context of two major application domains: robot control and autonomous driving. We design relevant constraints for each environment and empirically study the ability of different algorithms to recover those constraints based on expert trajectories that respect those constraints. To handle stochastic dynamics, we propose a variational approach that infers constraint distributions, and we demonstrate its performance by comparing it with other CIRL baselines on our benchmark. The benchmark, including the information for reproducing the performance of CIRL algorithms, is publicly available at https://github.com/Guiliang/CIRL-benchmarks-public" 1299,What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation,"To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs." 1300,Neural Activation Patterns (NAPs): Visual Explainability of Learned Concepts,"A key to deciphering the inner workings of neural networks is understanding what a model has learned. Promising methods for discovering learned features are based on analyzing activation values, whereby current techniques focus on analyzing high activation values to reveal interesting features on a neuron level. However, analyzing high activation values limits layer-level concept discovery. We present a method that instead takes into account the entire activation distribution. By extracting similar activation profiles within the high-dimensional activation space of a neural network layer, we find groups of inputs that are treated similarly. These input groups represent neural activation patterns (NAPs) and can be used to visualize and interpret learned layer concepts. We release a framework with which NAPs can be extracted from pre-trained models and provide a visual introspection tool that can be used to analyze NAPs. We tested our method with a variety of networks and show how it complements existing methods for analyzing neural network activation values." 1301,Performance Prediction in Major League Baseball by Long Short-Term Memory Networks,"Player performance prediction is a serious problem in every sport since it brings valuable future information for managers to make important decisions. In baseball industries, there already existed variable prediction systems and many types of researches that attempt to provide accurate predictions and help domain users. However, it is a lack of studies about the predicting method or systems based on deep learning. Deep learning models had proven to be the greatest solutions in different fields nowadays, so we believe they could be tried and applied to the prediction problem in baseball. Hence, the predicting abilities of deep learning models are set to be our research problem in this paper. As a beginning, we select numbers of home runs as the target because it is one of the most critical indexes to understand the power and the talent of baseball hitters. Moreover, we use the sequential model Long Short-Term Memory as our main method to solve the home run prediction problem in Major League Baseball. We compare models' ability with several machine learning models and a widely used baseball projection system, sZymborski Projection System. Our results show that Long Short-Term Memory has better performance than others and has the ability to make more exact predictions. We conclude that Long Short-Term Memory is a feasible way for performance prediction problems in baseball and could bring valuable information to fit users' needs." 1302,A Machine Learning Data Fusion Model for Soil Moisture Retrieval,"We develop a deep learning based convolutional-regression model that estimates the volumetric soil moisture content in the top ~5 cm of soil. Input predictors include Sentinel-1 (active radar), Sentinel-2 (optical imagery), and SMAP (passive radar) as well as geophysical variables from SoilGrids and modelled soil moisture fields from GLDAS. The model was trained and evaluated on data from ~1300 in-situ sensors globally over the period 2015 - 2021 and obtained an average per-sensor correlation of 0.727 and ubRMSE of 0.054, and can be used to produce a soil moisture map at a nominal 320m resolution. These results are benchmarked against 13 other soil moisture works at different locations, and an ablation study was used to identify important predictors." 1303,Beyond IID: data-driven decision-making in heterogeneous environments,"In this work, we study data-driven decision-making and depart from the classical identically and independently distributed (i.i.d.) assumption. We present a new framework in which historical samples are generated from unknown and different distributions, which we dub heterogeneous environments. These distributions are assumed to lie in a heterogeneity ball with known radius and centered around the (also) unknown future (out-of-sample) distribution on which the performance of a decision will be evaluated. We quantify the asymptotic worst-case regret that is achievable by central data-driven policies such as Sample Average Approximation, but also by rate-optimal ones, as a function of the radius of the heterogeneity ball. Our work shows that the type of achievable performance varies considerably across different combinations of problem classes and notions of heterogeneity. We demonstrate the versatility of our framework by comparing achievable guarantees for the heterogeneous version of widely studied data-driven problems such as pricing, ski-rental, and newsvendor. En route, we establish a new connection between data-driven decision-making and distributionally robust optimization." 1304,Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability,"Machine learning algorithms enable advanced decision making in contemporary intelligent systems. Research indicates that there is a tradeoff between their model performance and explainability. Machine learning models with higher performance are often based on more complex algorithms and therefore lack explainability and vice versa. However, there is little to no empirical evidence of this tradeoff from an end user perspective. We aim to provide empirical evidence by conducting two user experiments. Using two distinct datasets, we first measure the tradeoff for five common classes of machine learning algorithms. Second, we address the problem of end user perceptions of explainable artificial intelligence augmentations aimed at increasing the understanding of the decision logic of high-performing complex models. Our results diverge from the widespread assumption of a tradeoff curve and indicate that the tradeoff between model performance and explainability is much less gradual in the end user's perception. This is a stark contrast to assumed inherent model interpretability. Further, we found the tradeoff to be situational for example due to data complexity. Results of our second experiment show that while explainable artificial intelligence augmentations can be used to increase explainability, the type of explanation plays an essential role in end user perception." 1305,Diversified Adversarial Attacks based on Conjugate Gradient Method,"Deep learning models are vulnerable to adversarial examples, and adversarial attacks used to generate such examples have attracted considerable research interest. Although existing methods based on the steepest descent have achieved high attack success rates, ill-conditioned problems occasionally reduce their performance. To address this limitation, we utilize the conjugate gradient (CG) method, which is effective for this type of problem, and propose a novel attack algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG) attack. The results of large-scale evaluation experiments conducted on the latest robust models show that, for most models, ACG was able to find more adversarial examples with fewer iterations than the existing SOTA algorithm Auto-PGD (APGD). We investigated the difference in search performance between ACG and APGD in terms of diversification and intensification, and define a measure called Diversity Index (DI) to quantify the degree of diversity. From the analysis of the diversity using this index, we show that the more diverse search of the proposed method remarkably improves its attack success rate." 1306,Sampling Efficient Deep Reinforcement Learning through Preference-Guided Stochastic Exploration,"Massive practical works addressed by Deep Q-network (DQN) algorithm have indicated that stochastic policy, despite its simplicity, is the most frequently used exploration approach. However, most existing stochastic exploration approaches either explore new actions heuristically regardless of Q-values or inevitably introduce bias into the learning process to couple the sampling with Q-values. In this paper, we propose a novel preference-guided $\epsilon$-greedy exploration algorithm that can efficiently learn the action distribution in line with the landscape of Q-values for DQN without introducing additional bias. Specifically, we design a dual architecture consisting of two branches, one of which is a copy of DQN, namely the Q-branch. The other branch, which we call the preference branch, learns the action preference that the DQN implicit follows. We theoretically prove that the policy improvement theorem holds for the preference-guided $\epsilon$-greedy policy and experimentally show that the inferred action preference distribution aligns with the landscape of corresponding Q-values. Consequently, preference-guided $\epsilon$-greedy exploration motivates the DQN agent to take diverse actions, i.e., actions with larger Q-values can be sampled more frequently whereas actions with smaller Q-values still have a chance to be explored, thus encouraging the exploration. We assess the proposed method with four well-known DQN variants in nine different environments. Extensive results confirm the superiority of our proposed method in terms of performance and convergence speed. Index Terms- Preference-guided exploration, stochastic policy, data efficiency, deep reinforcement learning, deep Q-learning." 1307,Autoencoder-based Attribute Noise Handling Method for Medical Data,"Medical datasets are particularly subject to attribute noise, that is, missing and erroneous values. Attribute noise is known to be largely detrimental to learning performances. To maximize future learning performances it is primordial to deal with attribute noise before any inference. We propose a simple autoencoder-based preprocessing method that can correct mixed-type tabular data corrupted by attribute noise. No other method currently exists to handle attribute noise in tabular data. We experimentally demonstrate that our method outperforms both state-of-the-art imputation methods and noise correction methods on several real-world medical datasets." 1308,Generating Diverse Indoor Furniture Arrangements,"We present a method for generating arrangements of indoor furniture from human-designed furniture layout data. Our method creates arrangements that target specified diversity, such as the total price of all furniture in the room and the number of pieces placed. To generate realistic furniture arrangement, we train a generative adversarial network (GAN) on human-designed layouts. To target specific diversity in the arrangements, we optimize the latent space of the GAN via a quality diversity algorithm to generate a diverse arrangement collection. Experiments show our approach discovers a set of arrangements that are similar to human-designed layouts but varies in price and number of furniture pieces." 1309,MASER: Multi-Agent Reinforcement Learning with Subgoals Generated from Experience Replay Buffer,"In this paper, we consider cooperative multi-agent reinforcement learning (MARL) with sparse reward. To tackle this problem, we propose a novel method named MASER: MARL with subgoals generated from experience replay buffer. Under the widely-used assumption of centralized training with decentralized execution and consistent Q-value decomposition for MARL, MASER automatically generates proper subgoals for multiple agents from the experience replay buffer by considering both individual Q-value and total Q-value. Then, MASER designs individual intrinsic reward for each agent based on actionable representation relevant to Q-learning so that the agents reach their subgoals while maximizing the joint action value. Numerical results show that MASER significantly outperforms StarCraft II micromanagement benchmark compared to other state-of-the-art MARL algorithms." 1310,Analyzing Büchi Automata with Graph Neural Networks,"B\""uchi Automata on infinite words present many interesting problems and are used frequently in program verification and model checking. A lot of these problems on B\""uchi automata are computationally hard, raising the question if a learning-based data-driven analysis might be more efficient than using traditional algorithms. Since B\""uchi automata can be represented by graphs, graph neural networks are a natural choice for such a learning-based analysis. In this paper, we demonstrate how graph neural networks can be used to reliably predict basic properties of B\""uchi automata when trained on automatically generated random automata datasets." 1311,Revisiting lp-constrained Softmax Loss: A Comprehensive Study,"Normalization is a vital process for any machine learning task as it controls the properties of data and affects model performance at large. The impact of particular forms of normalization, however, has so far been investigated in limited domain-specific classification tasks and not in a general fashion. Motivated by the lack of such a comprehensive study, in this paper we investigate the performance of lp-constrained softmax loss classifiers across different norm orders, magnitudes, and data dimensions in both proof-of-concept classification problems and real-world popular image classification tasks. Experimental results suggest collectively that lp-constrained softmax loss classifiers not only can achieve more accurate classification results but, at the same time, appear to be less prone to overfitting. The core findings hold across the three popular deep learning architectures tested and eight datasets examined, and suggest that lp normalization is a recommended data representation practice for image classification in terms of performance and convergence, and against overfitting." 1312,S2RL: Do We Really Need to Perceive All States in Deep Multi-Agent Reinforcement Learning?,"Collaborative multi-agent reinforcement learning (MARL) has been widely used in many practical applications, where each agent makes a decision based on its own observation. Most mainstream methods treat each local observation as an entirety when modeling the decentralized local utility functions. However, they ignore the fact that local observation information can be further divided into several entities, and only part of the entities is helpful to model inference. Moreover, the importance of different entities may change over time. To improve the performance of decentralized policies, the attention mechanism is used to capture features of local information. Nevertheless, existing attention models rely on dense fully connected graphs and cannot better perceive important states. To this end, we propose a sparse state based MARL (S2RL) framework, which utilizes a sparse attention mechanism to discard irrelevant information in local observations. The local utility functions are estimated through the self-attention and sparse attention mechanisms separately, then are combined into a standard joint value function and auxiliary joint value function in the central critic. We design the S2RL framework as a plug-and-play module, making it general enough to be applied to various methods. Extensive experiments on StarCraft II show that S2RL can significantly improve the performance of many state-of-the-art methods." 1313,Interpretable machine learning optimization (InterOpt) for operational parameters: a case study of highly-efficient shale gas development,"An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning, and is demonstrated via optimization of shale gas development. InterOpt consists of three parts: a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space (i.e., virtual environment); the Sharpley value method in interpretable machine learning is applied to analyzing the impact of geological and operational parameters in each well (i.e., single well feature impact analysis); and ensemble randomized maximum likelihood (EnRML) is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost. In the experiment, InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions, and finally achieved an average cost reduction of 9.7% for a case study with 104 wells." 1314,A Comprehensive Survey on Video Saliency Detection with Auditory Information: the Audio-visual Consistency Perceptual is the Key!,"Video saliency detection (VSD) aims at fast locating the most attractive objects/things/patterns in a given video clip. Existing VSD-related works have mainly relied on the visual system but paid less attention to the audio aspect, while, actually, our audio system is the most vital complementary part to our visual system. Also, audio-visual saliency detection (AVSD), one of the most representative research topics for mimicking human perceptual mechanisms, is currently in its infancy, and none of the existing survey papers have touched on it, especially from the perspective of saliency detection. Thus, the ultimate goal of this paper is to provide an extensive review to bridge the gap between audio-visual fusion and saliency detection. In addition, as another highlight of this review, we have provided a deep insight into key factors which could directly determine the performances of AVSD deep models, and we claim that the audio-visual consistency degree (AVC) -- a long-overlooked issue, can directly influence the effectiveness of using audio to benefit its visual counterpart when performing saliency detection. Moreover, in order to make the AVC issue more practical and valuable for future followers, we have newly equipped almost all existing publicly available AVSD datasets with additional frame-wise AVC labels. Based on these upgraded datasets, we have conducted extensive quantitative evaluations to ground our claim on the importance of AVC in the AVSD task. In a word, both our ideas and new sets serve as a convenient platform with preliminaries and guidelines, all of which are very potential to facilitate future works in promoting state-of-the-art (SOTA) performance further." 1315,Constrained Reinforcement Learning for Robotics via Scenario-Based Programming,"Deep reinforcement learning (DRL) has achieved groundbreaking successes in a wide variety of robotic applications. A natural consequence is the adoption of this paradigm for safety-critical tasks, where human safety and expensive hardware can be involved. In this context, it is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior. This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop. Our technique exploits the scenario-based programming paradigm, which is designed to allow specifying such knowledge in a simple and intuitive way. We validated our method on the popular robotic mapless navigation problem, in simulation, and on the actual platform. Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent." 1316,FedSSO: A Federated Server-Side Second-Order Optimization Algorithm,"In this work, we propose FedSSO, a server-side second-order optimization method for federated learning (FL). In contrast to previous works in this direction, we employ a server-side approximation for the Quasi-Newton method without requiring any training data from the clients. In this way, we not only shift the computation burden from clients to server, but also eliminate the additional communication for second-order updates between clients and server entirely. We provide theoretical guarantee for convergence of our novel method, and empirically demonstrate our fast convergence and communication savings in both convex and non-convex settings." 1317,C-SENN: Contrastive Self-Explaining Neural Network,"In this study, we use a self-explaining neural network (SENN), which learns unsupervised concepts, to acquire concepts that are easy for people to understand automatically. In concept learning, the hidden layer retains verbalizable features relevant to the output, which is crucial when adapting to real-world environments where explanations are required. However, it is known that the interpretability of concepts output by SENN is reduced in general settings, such as autonomous driving scenarios. Thus, this study combines contrastive learning with concept learning to improve the readability of concepts and the accuracy of tasks. We call this model Contrastive Self-Explaining Neural Network (C-SENN)." 1318,Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations,"Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air. Due to the importance of Navier-Stokes equations, the development on efficient numerical schemes is important for both science and engineer. Recently, with the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations, which can accelerate the simulation or inferring process in a mesh-free and differentiable way. In this paper, we point out that the capability of existing deep Navier-Stokes informed methods is limited to handle non-smooth or fractional equations, which are two critical situations in reality. To this end, we propose the \emph{Deep Random Vortex Method} (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation. Specifically, the random vortex dynamics motivates a Monte Carlo based loss function for training the neural network, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVM not only can efficiently solve Navier-Stokes equations involving rough path, non-differentiable initial conditions and fractional operators, but also inherits the mesh-free and differentiable benefits of the deep-learning-based solver. We conduct experiments on the Cauchy problem, parametric solver learning, and the inverse problem of both 2-d and 3-d incompressible Navier-Stokes equations. The proposed method achieves accurate results for simulation and inference of Navier-Stokes equations. Especially for the cases that include singular initial conditions, DRVM significantly outperforms existing PINN method." 1319,Shuffle Gaussian Mechanism for Differential Privacy,"We study Gaussian mechanism in the shuffle model of differential privacy (DP). Particularly, we characterize the mechanism's R\'enyi differential privacy (RDP), showing that it is of the form: $$ \epsilon(\lambda) \leq \frac{1}{\lambda-1}\log\left(\frac{e^{-\lambda/2\sigma^2}}{n^\lambda}\sum_{\substack{k_1+\dotsc+k_n=\lambda;\\k_1,\dotsc,k_n\geq 0}}\binom{\lambda}{k_1,\dotsc,k_n}e^{\sum_{i=1}^nk_i^2/2\sigma^2}\right) $$ We further prove that the RDP is strictly upper-bounded by the Gaussian RDP without shuffling. The shuffle Gaussian RDP is advantageous in composing multiple DP mechanisms, where we demonstrate its improvement over the state-of-the-art approximate DP composition theorems in privacy guarantees of the shuffle model. Moreover, we extend our study to the subsampled shuffle mechanism and the recently proposed shuffled check-in mechanism, which are protocols geared towards distributed/federated learning. Finally, an empirical study of these mechanisms is given to demonstrate the efficacy of employing shuffle Gaussian mechanism under the distributed learning framework to guarantee rigorous user privacy." 1320,Two-Dimensional Weisfeiler-Lehman Graph Neural Networks for Link Prediction,"Link prediction is one important application of graph neural networks (GNNs). Most existing GNNs for link prediction are based on one-dimensional Weisfeiler-Lehman (1-WL) test. 1-WL-GNNs first compute node representations by iteratively passing neighboring node features to the center, and then obtain link representations by aggregating the pairwise node representations. As pointed out by previous works, this two-step procedure results in low discriminating power, as 1-WL-GNNs by nature learn node-level representations instead of link-level. In this paper, we study a completely different approach which can directly obtain node pair (link) representations based on \textit{two-dimensional Weisfeiler-Lehman (2-WL) tests}. 2-WL tests directly use links (2-tuples) as message passing units instead of nodes, and thus can directly obtain link representations. We theoretically analyze the expressive power of 2-WL tests to discriminate non-isomorphic links, and prove their superior link discriminating power than 1-WL. Based on different 2-WL variants, we propose a series of novel 2-WL-GNN models for link prediction. Experiments on a wide range of real-world datasets demonstrate their competitive performance to state-of-the-art baselines and superiority over plain 1-WL-GNNs." 1321,A Novel Long-term Iterative Mining Scheme for Video Salient Object Detection,"The existing state-of-the-art (SOTA) video salient object detection (VSOD) models have widely followed short-term methodology, which dynamically determines the balance between spatial and temporal saliency fusion by solely considering the current consecutive limited frames. However, the short-term methodology has one critical limitation, which conflicts with the real mechanism of our visual system -- a typical long-term methodology. As a result, failure cases keep showing up in the results of the current SOTA models, and the short-term methodology becomes the major technical bottleneck. To solve this problem, this paper proposes a novel VSOD approach, which performs VSOD in a complete long-term way. Our approach converts the sequential VSOD, a sequential task, to a data mining problem, i.e., decomposing the input video sequence to object proposals in advance and then mining salient object proposals as much as possible in an easy-to-hard way. Since all object proposals are simultaneously available, the proposed approach is a complete long-term approach, which can alleviate some difficulties rooted in conventional short-term approaches. In addition, we devised an online updating scheme that can grasp the most representative and trustworthy pattern profile of the salient objects, outputting framewise saliency maps with rich details and smoothing both spatially and temporally. The proposed approach outperforms almost all SOTA models on five widely used benchmark datasets." 1322,DASH: Distributed Adaptive Sequencing Heuristic for Submodular Maximization,"The development of parallelizable algorithms for monotone, submodular maximization subject to cardinality constraint (SMCC) has resulted in two separate research directions: centralized algorithms with low adaptive complexity, which require random access to the entire dataset; and distributed MapReduce (MR) model algorithms, that use a small number of MR rounds of computation. Currently, no MR model algorithm is known to use sublinear number of adaptive rounds which limits their practical performance. We study the SMCC problem in a distributed setting and present three separate MR model algorithms that introduce sublinear adaptivity in a distributed setup. Our primary algorithm, DASH achieves an approximation of $\frac{1}{2}(1-1/e-\varepsilon)$ using one MR round, while its multi-round variant METADASH enables MR model algorithms to be run on large cardinality constraints that were previously not possible. The two additional algorithms, T-DASH and G-DASH provide an improved ratio of ($\frac{3}{8}-\varepsilon$) and ($1-1/e-\varepsilon$) respectively using one and $(1/\varepsilon)$ MR rounds . All our proposed algorithms have sublinear adaptive complexity and we provide extensive empirical evidence to establish: DASH is orders of magnitude faster than the state-of-the-art distributed algorithms while producing nearly identical solution values; and validate the versatility of DASH in obtaining feasible solutions on both centralized and distributed data." 1323,An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models,"End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning." 1324,Good Time to Ask: A Learning Framework for Asking for Help in Embodied Visual Navigation,"In reality, it is often more efficient to ask for help than to search the entire space to find an object with an unknown location. We present a learning framework that enables an agent to actively ask for help in such embodied visual navigation tasks, where the feedback informs the agent of where the goal is in its view. To emulate the real-world scenario that a teacher may not always be present, we propose a training curriculum where feedback is not always available. We formulate an uncertainty measure of where the goal is and use empirical results to show that through this approach, the agent learns to ask for help effectively while remaining robust when feedback is not available." 1325,"Eliminating The Impossible, Whatever Remains Must Be True","The rise of AI methods to make predictions and decisions has led to a pressing need for more explainable artificial intelligence (XAI) methods. One common approach for XAI is to produce a post-hoc explanation, explaining why a black box ML model made a certain prediction. Formal approaches to post-hoc explanations provide succinct reasons for why a prediction was made, as well as why not another prediction was made. But these approaches assume that features are independent and uniformly distributed. While this means that ""why"" explanations are correct, they may be longer than required. It also means the ""why not"" explanations may be suspect as the counterexamples they rely on may not be meaningful. In this paper, we show how one can apply background knowledge to give more succinct ""why"" formal explanations, that are presumably easier to interpret by humans, and give more accurate ""why not"" explanations. Furthermore, we also show how to use existing rule induction techniques to efficiently extract background information from a dataset, and also how to report which background information was used to make an explanation, allowing a human to examine it if they doubt the correctness of the explanation." 1326,Policy Optimization with Linear Temporal Logic Constraints,"We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low sample regimes." 1327,Meta-learning for Out-of-Distribution Detection via Density Estimation in Latent Space,"Many neural network-based out-of-distribution (OoD) detection methods have been proposed. However, they require many training data for each target task. We propose a simple yet effective meta-learning method to detect OoD with small in-distribution data in a target task. With the proposed method, the OoD detection is performed by density estimation in a latent space. A neural network shared among all tasks is used to flexibly map instances in the original space to the latent space. The neural network is meta-learned such that the expected OoD detection performance is improved by using various tasks that are different from the target tasks. This meta-learning procedure enables us to obtain appropriate representations in the latent space for OoD detection. For density estimation, we use a Gaussian mixture model (GMM) with full covariance for each class. We can adapt the GMM parameters to in-distribution data in each task in a closed form by maximizing the likelihood. Since the closed form solution is differentiable, we can meta-learn the neural network efficiently with a stochastic gradient descent method by incorporating the solution into the meta-learning objective function. In experiments using six datasets, we demonstrate that the proposed method achieves better performance than existing meta-learning and OoD detection methods." 1328,Robust One Round Federated Learning with Predictive Space Bayesian Inference,"Making predictions robust is an important challenge. A separate challenge in federated learning (FL) is to reduce the number of communication rounds, particularly since doing so reduces performance in heterogeneous data settings. To tackle both issues, we take a Bayesian perspective on the problem of learning a global model. We show how the global predictive posterior can be approximated using client predictive posteriors. This is unlike other works which aggregate the local model space posteriors into the global model space posterior, and are susceptible to high approximation errors due to the posterior's high dimensional multimodal nature. In contrast, our method performs the aggregation on the predictive posteriors, which are typically easier to approximate owing to the low-dimensionality of the output space. We present an algorithm based on this idea, which performs MCMC sampling at each client to obtain an estimate of the local posterior, and then aggregates these in one round to obtain a global ensemble model. Through empirical evaluation on several classification and regression tasks, we show that despite using one round of communication, the method is competitive with other FL techniques, and outperforms them on heterogeneous settings. The code is publicly available at https://github.com/hasanmohsin/FedPredSpace_1Round." 1329,Multiple Testing Framework for Out-of-Distribution Detection,"We study the problem of Out-of-Distribution (OOD) detection, that is, detecting whether a learning algorithm's output can be trusted at inference time. While a number of tests for OOD detection have been proposed in prior work, a formal framework for studying this problem is lacking. We propose a definition for the notion of OOD that includes both the input distribution and the learning algorithm, which provides insights for the construction of powerful tests for OOD detection. We propose a multiple hypothesis testing inspired procedure to systematically combine any number of different statistics from the learning algorithm using conformal p-values. We further provide strong guarantees on the probability of incorrectly classifying an in-distribution sample as OOD. In our experiments, we find that threshold-based tests proposed in prior work perform well in specific settings, but not uniformly well across different types of OOD instances. In contrast, our proposed method that combines multiple statistics performs uniformly well across different datasets and neural networks." 1330,$C^*$-algebra Net: A New Approach Generalizing Neural Network Parameters to $C^*$-algebra,"We propose a new framework that generalizes the parameters of neural network models to $C^*$-algebra-valued ones. $C^*$-algebra is a generalization of the space of complex numbers. A typical example is the space of continuous functions on a compact space. This generalization enables us to combine multiple models continuously and use tools for functions such as regression and integration. Consequently, we can learn features of data efficiently and adapt the models to problems continuously. We apply our framework to practical problems such as density estimation and few-shot learning and show that our framework enables us to learn features of data even with a limited number of samples. Our new framework highlights the potential possibility of applying the theory of $C^*$-algebra to general neural network models." 1331,The Fallacy of AI Functionality,"Deployed AI systems often do not work. They can be constructed haphazardly, deployed indiscriminately, and promoted deceptively. However, despite this reality, scholars, the press, and policymakers pay too little attention to functionality. This leads to technical and policy solutions focused on ""ethical"" or value-aligned deployments, often skipping over the prior question of whether a given system functions, or provides any benefits at all. To describe the harms of various types of functionality failures, we analyze a set of case studies to create a taxonomy of known AI functionality issues. We then point to policy and organizational responses that are often overlooked and become more readily available once functionality is drawn into focus. We argue that functionality is a meaningful AI policy challenge, operating as a necessary first step towards protecting affected communities from algorithmic harm." 1332,Resource-Efficient Separation Transformer,"Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally-demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer and RNN-based architectures in terms of memory and inference-time, making it more suitable for processing long mixtures." 1333,Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors,"With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data. However, there are still two challenges that are not addressed: (1) there is no prior SS-OD work on anchor-free detectors, and (2) prior works are ineffective when pseudo-labeling bounding box regression. In this paper, we present Unbiased Teacher v2, which shows the generalization of SS-OD method to anchor-free detectors and also introduces Listen2Student mechanism for the unsupervised regression loss. Specifically, we first present a study examining the effectiveness of existing SS-OD methods on anchor-free detectors and find that they achieve much lower performance improvements under the semi-supervised setting. We also observe that box selection with centerness and the localization-based labeling used in anchor-free detectors cannot work well under the semi-supervised setting. On the other hand, our Listen2Student mechanism explicitly prevents misleading pseudo-labels in the training of bounding box regression; we specifically develop a novel pseudo-labeling selection mechanism based on the Teacher and Student's relative uncertainties. This idea contributes to favorable improvement in the regression branch in the semi-supervised setting. Our method, which works for both anchor-free and anchor-based methods, consistently performs favorably against the state-of-the-art methods in VOC, COCO-standard, and COCO-additional." 1334,Learning Multi-Task Transferable Rewards via Variational Inverse Reinforcement Learning,"Many robotic tasks are composed of a lot of temporally correlated sub-tasks in a highly complex environment. It is important to discover situational intentions and proper actions by deliberating on temporal abstractions to solve problems effectively. To understand the intention separated from changing task dynamics, we extend an empowerment-based regularization technique to situations with multiple tasks based on the framework of a generative adversarial network. Under the multitask environments with unknown dynamics, we focus on learning a reward and policy from the unlabeled expert examples. In this study, we define situational empowerment as the maximum of mutual information representing how an action conditioned on both a certain state and sub-task affects the future. Our proposed method derives the variational lower bound of the situational mutual information to optimize it. We simultaneously learn the transferable multi-task reward function and policy by adding an induced term to the objective function. By doing so, the multi-task reward function helps to learn a robust policy for environmental change. We validate the advantages of our approach on multi-task learning and multi-task transfer learning. We demonstrate our proposed method has the robustness of both randomness and changing task dynamics. Finally, we prove that our method has significantly better performance and data efficiency than existing imitation learning methods on various benchmarks." 1335,Integrated Weak Learning,"We introduce Integrated Weak Learning, a principled framework that integrates weak supervision into the training process of machine learning models. Our approach jointly trains the end-model and a label model that aggregates multiple sources of weak supervision. We introduce a label model that can learn to aggregate weak supervision sources differently for different datapoints and takes into consideration the performance of the end-model during training. We show that our approach outperforms existing weak learning techniques across a set of 6 benchmark classification datasets. When both a small amount of labeled data and weak supervision are present the increase in performance is both consistent and large, reliably getting a 2-5 point test F1 score gain over non-integrated methods." 1336,The Power of Regularization in Solving Extensive-Form Games,"In this paper, we investigate the power of regularization, a common technique in reinforcement learning and optimization, in solving extensive-form games (EFGs). We propose a series of new algorithms based on regularizing the payoff functions of the game, and establish a set of convergence results that strictly improve over the existing ones, with either weaker assumptions or stronger convergence guarantees. In particular, we first show that dilated optimistic mirror descent (DOMD), an efficient variant of OMD for solving EFGs, with adaptive regularization can achieve a fast $\tilde O(1/T)$ last-iterate convergence in terms of duality gap without the uniqueness assumption of the Nash equilibrium (NE). Moreover, regularized dilated optimistic multiplicative weights update (Reg-DOMWU), an instance of Reg-DOMD, further enjoys the $\tilde O(1/T)$ last-iterate convergence rate of the distance to the set of NE. This addresses an open question on whether iterate convergence can be obtained for OMWU algorithms without the uniqueness assumption in both the EFG and normal-form game literature. Second, we show that regularized counterfactual regret minimization (Reg-CFR), with a variant of optimistic mirror descent algorithm as regret-minimizer, can achieve $O(1/T^{1/4})$ best-iterate, and $O(1/T^{3/4})$ average-iterate convergence rate for finding NE in EFGs. Finally, we show that Reg-CFR can achieve asymptotic last-iterate convergence, and optimal $O(1/T)$ average-iterate convergence rate, for finding the NE of perturbed EFGs, which is useful for finding approximate extensive-form perfect equilibria (EFPE). To the best of our knowledge, they constitute the first last-iterate convergence results for CFR-type algorithms, while matching the SOTA average-iterate convergence rate in finding NE for non-perturbed EFGs. We also provide numerical results to corroborate the advantages of our algorithms." 1337,On the Limitations of Stochastic Pre-processing Defenses,"Defending against adversarial examples remains an open problem. A common belief is that randomness at inference increases the cost of finding adversarial inputs. An example of such a defense is to apply a random transformation to inputs prior to feeding them to the model. In this paper, we empirically and theoretically investigate such stochastic pre-processing defenses and demonstrate that they are flawed. First, we show that most stochastic defenses are weaker than previously thought; they lack sufficient randomness to withstand even standard attacks like projected gradient descent. This casts doubt on a long-held assumption that stochastic defenses invalidate attacks designed to evade deterministic defenses and force attackers to integrate the Expectation over Transformation (EOT) concept. Second, we show that stochastic defenses confront a trade-off between adversarial robustness and model invariance; they become less effective as the defended model acquires more invariance to their randomization. Future work will need to decouple these two effects. Our code is available in the supplementary material." 1338,Artificial intelligence system based on multi-value classification of fully connected neural network for construction management,"This study is devoted to solving the problem to determine the professional adaptive capabilities of construction management staff using artificial intelligence systems.It is proposed Fully Connected Feed-Forward Neural Network architecture and performed empirical modeling to create a Data Set. Model of artificial intelligence system allows evaluating the processes in an Fully Connected Feed-Forward Neural Network during the execution of multi-value classification of professional areas. A method has been developed for the training process of a machine learning model, which reflects the internal connections between the components of an artificial intelligence system that allow it to learn from training data. To train the neural network, a data set of 35 input parameters and 29 output parameters was used; the amount of data in the set is 936 data lines. Neural network training occurred in the proportion of 10% and 90%, respectively. Results of this study research can be used to further improve the knowledge and skills necessary for successful professional realization." 1339,An Analysis of the Admissibility of the Objective Functions Applied in Evolutionary Multi-objective Clustering,"A variety of clustering criteria has been applied as an objective function in Evolutionary Multi-Objective Clustering approaches (EMOCs). However, most EMOCs do not provide detailed analysis regarding the choice and usage of the objective functions. Aiming to support a better choice and definition of the objectives in the EMOCs, this paper proposes an analysis of the admissibility of the clustering criteria in evolutionary optimization by examining the search direction and its potential in finding optimal results. As a result, we demonstrate how the admissibility of the objective functions can influence the optimization. Furthermore, we provide insights regarding the combinations and usage of the clustering criteria in the EMOCs." 1340,Traffic-Twitter Transformer: A Nature Language Processing-joined Framework For Network-wide Traffic Forecasting,"With accurate and timely traffic forecasting, the impacted traffic conditions can be predicted in advance to guide agencies and residents to respond to changes in traffic patterns appropriately. However, existing works on traffic forecasting mainly relied on historical traffic patterns confining to short-term prediction, under 1 hour, for instance. To better manage future roadway capacity and accommodate social and human impacts, it is crucial to propose a flexible and comprehensive framework to predict physical-aware long-term traffic conditions for public users and transportation agencies. In this paper, the gap of robust long-term traffic forecasting was bridged by taking social media features into consideration. A correlation study and a linear regression model were first implemented to evaluate the significance of the correlation between two time-series data, traffic intensity and Twitter data intensity. Two time-series data were then fed into our proposed social-aware framework, Traffic-Twitter Transformer, which integrated Nature Language representations into time-series records for long-term traffic prediction. Experimental results in the Great Seattle Area showed that our proposed model outperformed baseline models in all evaluation matrices. This NLP-joined social-aware framework can become a valuable implement of network-wide traffic prediction and management for traffic agencies." 1341,Predicting Human Performance in Vertical Hierarchical Menu Selection in Immersive AR Using Hand-gesture and Head-gaze,"There are currently limited guidelines on designing user interfaces (UI) for immersive augmented reality (AR) applications. Designers must reflect on their experience designing UI for desktop and mobile applications and conjecture how a UI will influence AR users' performance. In this work, we introduce a predictive model for determining users' performance for a target UI without the subsequent involvement of participants in user studies. The model is trained on participants' responses to objective performance measures such as consumed endurance (CE) and pointing time (PT) using hierarchical drop-down menus. Large variability in the depth and context of the menus is ensured by randomly and dynamically creating the hierarchical drop-down menus and associated user tasks from words contained in the lexical database WordNet. Subjective performance bias is reduced by incorporating the users' non-verbal standard performance WAIS-IV during the model training. The semantic information of the menu is encoded using the Universal Sentence Encoder. We present the results of a user study that demonstrates that the proposed predictive model achieves high accuracy in predicting the CE on hierarchical menus of users with various cognitive abilities. To the best of our knowledge, this is the first work on predicting CE in designing UI for immersive AR applications." 1342,StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis,"Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN." 1343,Geometric Matrix Completion via Sylvester Multi-Graph Neural Network,"Despite the success of the Sylvester equation empowered methods on various graph mining applications, such as semi-supervised label learning and network alignment, there also exists several limitations. The Sylvester equation's inability of modeling non-linear relations and the inflexibility of tuning towards different tasks restrict its performance. In this paper, we propose an end-to-end neural framework, SYMGNN, which consists of a multi-network neural aggregation module and a prior multi-network association incorporation learning module. The proposed framework inherits the key ideas of the Sylvester equation, and meanwhile generalizes it to overcome aforementioned limitations. Empirical evaluations on real-world datasets show that the instantiations of SYMGNN overall outperform the baselines in geometric matrix completion task, and its low-rank instantiation could further reduce the memory consumption by 16.98\% on average." 1344,A Universal Adversarial Policy for Text Classifiers,"Discovering the existence of universal adversarial perturbations had large theoretical and practical impacts on the field of adversarial learning. In the text domain, most universal studies focused on adversarial prefixes which are added to all texts. However, unlike the vision domain, adding the same perturbation to different inputs results in noticeably unnatural inputs. Therefore, we introduce a new universal adversarial setup - a universal adversarial policy, which has many advantages of other universal attacks but also results in valid texts - thus making it relevant in practice. We achieve this by learning a single search policy over a predefined set of semantics preserving text alterations, on many texts. This formulation is universal in that the policy is successful in finding adversarial examples on new texts efficiently. Our approach uses text perturbations which were extensively shown to produce natural attacks in the non-universal setup (specific synonym replacements). We suggest a strong baseline approach for this formulation which uses reinforcement learning. It's ability to generalise (from as few as 500 training texts) shows that universal adversarial patterns exist in the text domain as well." 1345,All you need is feedback: Communication with block attention feedback codes,"Deep learning based channel code designs have recently gained interest as an alternative to conventional coding algorithms, particularly for channels for which existing codes do not provide effective solutions. Communication over a feedback channel is one such problem, for which promising results have recently been obtained by employing various deep learning architectures. In this paper, we introduce a novel learning-aided code design for feedback channels, called generalized block attention feedback (GBAF) codes, which i) employs a modular architecture that can be implemented using different neural network architectures; ii) provides order-of-magnitude improvements in the probability of error compared to existing designs; and iii) can transmit at desired code rates." 1346,Bounding Evidence and Estimating Log-Likelihood in VAE,"Many crucial problems in deep learning and statistics are caused by a variational gap, i.e., a difference between evidence and evidence lower bound (ELBO). As a consequence, in the classical VAE model, we obtain only the lower bound on the log-likelihood since ELBO is used as a cost function, and therefore we cannot compare log-likelihood between models. In this paper, we present a general and effective upper bound of the variational gap, which allows us to efficiently estimate the true evidence. We provide an extensive theoretical study of the proposed approach. Moreover, we show that by applying our estimation, we can easily obtain lower and upper bounds for the log-likelihood of VAE models." 1347,Data Augmentation vs. Equivariant Networks: A Theory of Generalization on Dynamics Forecasting,"Exploiting symmetry in dynamical systems is a powerful way to improve the generalization of deep learning. The model learns to be invariant to transformation and hence is more robust to distribution shift. Data augmentation and equivariant networks are two major approaches to injecting symmetry into learning. However, their exact role in improving generalization is not well understood. In this work, we derive the generalization bounds for data augmentation and equivariant networks, characterizing their effect on learning in a unified framework. Unlike most prior theories for the i.i.d. setting, we focus on non-stationary dynamics forecasting with complex temporal dependencies." 1348,SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking Neural Networks,"Spiking neural networks are efficient computation models for low-power environments. Spike-based BP algorithms and ANN-to-SNN (ANN2SNN) conversions are successful techniques for SNN training. Nevertheless, the spike-base BP training is slow and requires large memory costs. Though ANN2NN provides a low-cost way to train SNNs, it requires many inference steps to mimic the well-trained ANN for good performance. In this paper, we propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way. The SNN2ANN consists of 2 components: a) a weight sharing architecture between ANN and SNN and b) spiking mapping units. Firstly, the architecture trains the weight-sharing parameters on the ANN branch, resulting in fast training and low memory costs for SNN. Secondly, the spiking mapping units ensure that the activation values of the ANN are the spiking features. As a result, the classification error of the SNN can be optimized by training the ANN branch. Besides, we design an adaptive threshold adjustment (ATA) algorithm to address the noisy spike problem. Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets (CIFAR10, CIFAR100, and Tiny-ImageNet). Moreover, the SNN2ANN can achieve comparable accuracy under 0.625x time steps, 0.377x training time, 0.27x GPU memory costs, and 0.33x spike activities of the Spike-based BP model." 1349,Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities,"Variational inequalities are an important tool, which includes minimization, saddles, games, fixed-point problems. Modern large-scale and computationally expensive practical applications make distributed methods for solving these problems popular. Meanwhile, most distributed systems have a basic problem - a communication bottleneck. There are various techniques to deal with it. In particular, in this paper we consider a combination of two popular approaches: compression and data similarity. We show that this synergy can be more effective than each of the approaches separately in solving distributed smooth strongly monotonic variational inequalities. Experiments confirm the theoretical conclusions." 1350,Prevent Car Accidents by Using AI,"Transportation facilities are becoming more developed as society develops, and people's travel demand is increasing, but so are the traffic safety issues that arise as a result. And car accidents are a major issue all over the world. The cost of traffic fatalities and driver injuries has a significant impact on society. The use of machine learning techniques in the field of traffic accidents is becoming increasingly popular. Machine learning classifiers are used instead of traditional data mining techniques to produce better results and accuracy. As a result, this project conducts research on existing work related to accident prediction using machine learning. We will use crash data and weather data to train machine learning models to predict crash severity and reduce crashes." 1351,A generalized regionalization framework for geographical modelling and its application in spatial regression,"In presence of spatial heterogeneity, models applied to geographic data face a trade-off between producing general results and capturing local variations. Modelling at a regional scale may allow the identification of solutions that optimize both accuracy and generality. However, most current regionalization algorithms assume homogeneity in the attributes to delineate regions without considering the processes that generate the attributes. In this paper, we propose a generalized regionalization framework based on a two-item objective function which favors solutions with the highest overall accuracy while minimizing the number of regions. We introduce three regionalization algorithms, which extend previous methods that account for spatially constrained clustering. The effectiveness of the proposed framework is examined in regression experiments on both simulated and real data. The results show that a spatially implicit algorithm extended with an automatic post-processing procedure outperforms spatially explicit approaches. Our suggested framework contributes to better capturing the processes associated with spatial heterogeneity with potential applications in a wide range of geographical models." 1352,ADBench: Anomaly Detection Benchmark,"Given a long list of anomaly detection algorithms developed in the last few decades, how do they perform with regard to (i) varying levels of supervision, (ii) different types of anomalies, and (iii) noisy and corrupted data? In this work, we answer these key questions by conducting (to our best knowledge) the most comprehensive anomaly detection benchmark with 30 algorithms on 55 benchmark datasets, named ADBench. Our extensive experiments (93,654 in total) identify meaningful insights into the role of supervision and anomaly types, and unlock future directions for researchers in algorithm selection and design. With ADBench, researchers can easily conduct comprehensive and fair evaluations for newly proposed methods on the datasets (including our contributed ones from natural language and computer vision domains) against the existing baselines. To foster accessibility and reproducibility, we fully open-source ADBench and the corresponding results." 1353,Efficient End-to-End AutoML via Scalable Search Space Decomposition,"End-to-end AutoML has attracted intensive interests from both academia and industry which automatically searches for ML pipelines in a space induced by feature engineering, algorithm/model selection, and hyper-parameter tuning. Existing AutoML systems, however, suffer from scalability issues when applying to application domains with large, high-dimensional search spaces. We present VolcanoML, a scalable and extensible framework that facilitates systematic exploration of large AutoML search spaces. VolcanoML introduces and implements basic building blocks that decompose a large search space into smaller ones, and allows users to utilize these building blocks to compose an execution plan for the AutoML problem at hand. VolcanoML further supports a Volcano-style execution model -- akin to the one supported by modern database systems -- to execute the plan constructed. Our evaluation demonstrates that, not only does VolcanoML raise the level of expressiveness for search space decomposition in AutoML, it also leads to actual findings of decomposition strategies that are significantly more efficient than the ones employed by state-of-the-art AutoML systems such as auto-sklearn. This paper is the extended version of the initial VolcanoML paper appeared in VLDB 2021." 1354,Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation,"Myopic exploration policies such as epsilon-greedy, softmax, or Gaussian noise fail to explore efficiently in some reinforcement learning tasks and yet, they perform well in many others. In fact, in practice, they are often selected as the top choices, due to their simplicity. But, for what tasks do such policies succeed? Can we give theoretical guarantees for their favorable performance? These crucial questions have been scarcely investigated, despite the prominent practical importance of these policies. This paper presents a theoretical analysis of such policies and provides the first regret and sample-complexity bounds for reinforcement learning with myopic exploration. Our results apply to value-function-based algorithms in episodic MDPs with bounded Bellman Eluder dimension. We propose a new complexity measure called myopic exploration gap, denoted by alpha, that captures a structural property of the MDP, the exploration policy and the given value function class. We show that the sample-complexity of myopic exploration scales quadratically with the inverse of this quantity, 1 / alpha^2. We further demonstrate through concrete examples that myopic exploration gap is indeed favorable in several tasks where myopic exploration succeeds, due to the corresponding dynamics and reward structure." 1355,Agricultural Plantation Classification using Transfer Learning Approach based on CNN,"Hyper-spectral images are images captured from a satellite that gives spatial and spectral information of specific region.A Hyper-spectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. It makes them well suited for the classification of objects in a snap. In the past years, the efficiency of hyper-spectral image recognition has increased significantly with deep learning. The Convolution Neural Network(CNN) and Multi-Layer Perceptron(MLP) has demonstrated to be an excellent process of classifying images. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyper-spectral images. To decrease the training time and reduce the dependence on large labeled data-set, we propose using the method of transfer learning.The features learned by CNN and MLP models are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to over-fitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large data-sets, without much affecting the accuracy." 1356,LordNet: Learning to Solve Parametric Partial Differential Equations without Simulated Data,"Neural operators, as a powerful approximation to the non-linear operators between infinite-dimensional function spaces, have proved to be promising in accelerating the solution of partial differential equations (PDE). However, it requires a large amount of simulated data which can be costly to collect, resulting in a chicken-egg dilemma and limiting its usage in solving PDEs. To jump out of the dilemma, we propose a general data-free paradigm where the neural network directly learns physics from the mean squared residual (MSR) loss constructed by the discretized PDE. We investigate the physical information in the MSR loss and identify the challenge that the neural network must have the capacity to model the long range entanglements in the spatial domain of the PDE, whose patterns vary in different PDEs. Therefore, we propose the low-rank decomposition network (LordNet) which is tunable and also efficient to model various entanglements. Specifically, LordNet learns a low-rank approximation to the global entanglements with simple fully connected layers, which extracts the dominant pattern with reduced computational cost. The experiments on solving Poisson's equation and Navier-Stokes equation demonstrate that the physical constraints by the MSR loss can lead to better accuracy and generalization ability of the neural network. In addition, LordNet outperforms other modern neural network architectures in both PDEs with the fewest parameters and the fastest inference speed. For Navier-Stokes equation, the learned operator is over 50 times faster than the finite difference solution with the same computational resources." 1357,Terrain Classification using Transfer Learning on Hyperspectral Images: A Comparative study,"A Hyperspectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. The convolutional neural network (CNN) and the Multi-Layer Perceptron (MLP) have been proven to be an effective method of image classification. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyperspectral images. To decrease the training time and reduce the dependence on large labeled dataset, we propose using the method of transfer learning. The hyperspectral dataset is preprocessed to a lower dimension using PCA, then deep learning models are applied to it for the purpose of classification. The features learned by this model are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to overfitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large datasets, without much affecting the accuracy." 1358,Towards Adversarial Attack on Vision-Language Pre-training Models,"While vision-language pre-training model (VLP) has shown revolutionary improvements on various vision-language (V+L) tasks, the studies regarding its adversarial robustness remain largely unexplored. This paper studied the adversarial attack on popular VLP models and V+L tasks. First, we analyzed the performance of adversarial attacks under different settings. By examining the influence of different perturbed objects and attack targets, we concluded some key observations as guidance on both designing strong multimodal adversarial attack and constructing robust VLP models. Second, we proposed a novel multimodal attack method on the VLP models called Collaborative Multimodal Adversarial Attack (Co-Attack), which collectively carries out the attacks on the image modality and the text modality. Experimental results demonstrated that the proposed method achieves improved attack performances on different V+L downstream tasks and VLP models. The analysis observations and novel attack method hopefully provide new understanding into the adversarial robustness of VLP models, so as to contribute their safe and reliable deployment in more real-world scenarios." 1359,Label and Distribution-discriminative Dual Representation Learning for Out-of-Distribution Detection,"To classify in-distribution samples, deep neural networks learn label-discriminative representations, which, however, are not necessarily distribution-discriminative according to the information bottleneck. Therefore, trained networks could assign unexpected high-confidence predictions to out-of-distribution samples drawn from distributions differing from that of in-distribution samples. Specifically, networks extract the strongly label-related information from in-distribution samples to learn the label-discriminative representations but discard the weakly label-related information. Accordingly, networks treat out-of-distribution samples with minimum label-sensitive information as in-distribution samples. According to the different informativeness properties of in- and out-of-distribution samples, a Dual Representation Learning (DRL) method learns distribution-discriminative representations that are weakly related to the labeling of in-distribution samples and combines label- and distribution-discriminative representations to detect out-of-distribution samples. For a label-discriminative representation, DRL constructs the complementary distribution-discriminative representation by an implicit constraint, i.e., integrating diverse intermediate representations where an intermediate representation less similar to the label-discriminative representation owns a higher weight. Experiments show that DRL outperforms the state-of-the-art methods for out-of-distribution detection." 1360,Scalable Neural Data Server: A Data Recommender for Transfer Learning,"Absence of large-scale labeled data in the practitioner's target domain can be a bottleneck to applying machine learning algorithms in practice. Transfer learning is a popular strategy for leveraging additional data to improve the downstream performance, but finding the most relevant data to transfer from can be challenging. Neural Data Server (NDS), a search engine that recommends relevant data for a given downstream task, has been previously proposed to address this problem. NDS uses a mixture of experts trained on data sources to estimate similarity between each source and the downstream task. Thus, the computational cost to each user grows with the number of sources. To address these issues, we propose Scalable Neural Data Server (SNDS), a large-scale search engine that can theoretically index thousands of datasets to serve relevant ML data to end users. SNDS trains the mixture of experts on intermediary datasets during initialization, and represents both data sources and downstream tasks by their proximity to the intermediary datasets. As such, computational cost incurred by SNDS users remains fixed as new datasets are added to the server. We validate SNDS on a plethora of real world tasks and find that data recommended by SNDS improves downstream task performance over baselines. We also demonstrate the scalability of SNDS by showing its ability to select relevant data for transfer outside of the natural image setting." 1361,Out-of-distribution Detection by Cross-class Vicinity Distribution of In-distribution Data,"Deep neural networks only learn to map in-distribution inputs to their corresponding ground truth labels in the training phase without differentiating out-of-distribution samples from in-distribution ones. This results from the assumption that all samples are independent and identically distributed without distributional distinction. Therefore, a pretrained network learned from the in-distribution samples treats out-of-distribution samples as in-distribution and makes high-confidence predictions on them in the test phase. To address this issue, we draw out-of-distribution samples from the vicinity distribution of training in-distribution samples for learning to reject the prediction on out-of-distribution inputs. A \textit{Cross-class Vicinity Distribution} is introduced by assuming that an out-of-distribution sample generated by mixing multiple in-distribution samples does not share the same classes of its constituents. We thus improve the discriminability of a pretrained network by finetuning it with out-of-distribution samples drawn from the cross-class vicinity distribution, where each out-of-distribution input corresponds to a complementary label. Experiments on various in-/out-of-distribution datasets show that the proposed method significantly outperforms existing methods in improving the capacity of discriminating between in- and out-of-distribution samples." 1362,Faster Sampling from Log-Concave Distributions over Polytopes via a Soft-Threshold Dikin Walk,"We consider the problem of sampling from a $d$-dimensional log-concave distribution $\pi(\theta) \propto e^{-f(\theta)}$ constrained to a polytope $K$ defined by $m$ inequalities. Our main result is a ""soft-threshold'' variant of the Dikin walk Markov chain that requires at most $O((md + d L^2 R^2) \times md^{\omega-1}) \log(\frac{w}{\delta}))$ arithmetic operations to sample from $\pi$ within error $\delta>0$ in the total variation distance from a $w$-warm start, where $L$ is the Lipschitz-constant of $f$, $K$ is contained in a ball of radius $R$ and contains a ball of smaller radius $r$, and $\omega$ is the matrix-multiplication constant. When a warm start is not available, it implies an improvement of $\tilde{O}(d^{3.5-\omega})$ arithmetic operations on the previous best bound for sampling from $\pi$ within total variation error $\delta$, which was obtained with the hit-and-run algorithm, in the setting where $K$ is a polytope given by $m=O(d)$ inequalities and $LR = O(\sqrt{d})$. When a warm start is available, our algorithm improves by a factor of $d^2$ arithmetic operations on the best previous bound in this setting, which was obtained for a different version of the Dikin walk algorithm. Plugging our Dikin walk Markov chain into the post-processing algorithm of Mangoubi and Vishnoi (2021), we achieve further improvements in the dependence of the running time for the problem of generating samples from $\pi$ with infinity distance bounds in the special case when $K$ is a polytope." 1363,Supervision Adaptation Balances In-Distribution Generalization and Out-of-Distribution Detection,"When there is a discrepancy between in-distribution (ID) samples and out-of-distribution (OOD) samples, deep neural networks trained on ID samples suffer from high-confidence prediction on OOD samples. This is primarily caused by unavailable OOD samples to constrain the networks in the training process. To improve the OOD sensitivity of deep networks, several state-of-the-art methods introduce samples from other real-world datasets as OOD samples to the training process and assign manually-determined labels to these OOD samples. However, they sacrifice the classification accuracy because the unreliable labeling of OOD samples would disrupt ID classification. To balance ID generalization and OOD detection, a major challenge to tackle is to make OOD samples compatible with ID ones, which is addressed by our proposed \textit{supervision adaptation} method in this paper to define adaptive supervision information for OOD samples. First, by measuring the dependency between ID samples and their labels through mutual information, we reveal the form of the supervision information in terms of the negative probabilities of all classes. Second, after exploring the data correlations between ID and OOD samples by solving multiple binary regression problems, we estimate the supervision information to make ID classes more separable. We perform experiments on four advanced network architectures with two ID datasets and eleven OOD datasets to demonstrate the balancing effect of our supervision adaptation method in achieving both the ID classification ability and the OOD detection capacity." 1364,0/1 Deep Neural Networks via Block Coordinate Descent,"The step function is one of the simplest and most natural activation functions for deep neural networks (DNNs). As it counts 1 for positive variables and 0 for others, its intrinsic characteristics (e.g., discontinuity and no viable information of subgradients) impede its development for several decades. Even if there is an impressive body of work on designing DNNs with continuous activation functions that can be deemed as surrogates of the step function, it is still in the possession of some advantageous properties, such as complete robustness to outliers and being capable of attaining the best learning-theoretic guarantee of predictive accuracy. Hence, in this paper, we aim to train DNNs with the step function used as an activation function (dubbed as 0/1 DNNs). We first reformulate 0/1 DNNs as an unconstrained optimization problem and then solve it by a block coordinate descend (BCD) method. Moreover, we acquire closed-form solutions for sub-problems of BCD as well as its convergence properties. Furthermore, we also integrate $\ell_{2,0}$-regularization into 0/1 DNN to accelerate the training process and compress the network scale. As a result, the proposed algorithm has a high performance on classifying MNIST and Fashion-MNIST datasets." 1365,Gray Learning from Non-IID Data with Out-of-distribution Samples,"The quality of the training data annotated by experts cannot be guaranteed, even more so for non-IID data consisting of both in- and out-of-distribution samples (i.e., in-distribution and out-of-distribution samples hold different distributions). Experts may mistakenly annotate out-of-distribution samples the same as in-distribution samples, incurring untrustworthy ground-truth labels. Learning such non-IID data mixing in- and out-of-distribution samples with untrustworthy labels significantly challenges both shallow and deep learning, with no relevant work reported. It would be possible to identify trustworthy complementary labels of a sample indicating which classes it does not belong to, because both in- and out-of-distribution samples do not belong to the classes except those corresponding to the ground-truth label. With this insight, we propose a novel \textit{gray learning} approach to robustly learn from non-IID data with both in- and out-of-distribution samples. Due to the uncertain distributions of training samples, we reject the complementary labels for low-confidence inputs while mapping high-confidence inputs to the ground-truth labels in training. Building on the statistical learning theory, we derive the generalization error which shows that gray learning achieves a tight bound on the non-IID data. Extensive experiments show that our method provides significant improvement over alternative methods from robust statistics." 1366,Frank-Wolfe-based Algorithms for Approximating Tyler's M-estimator,"Tyler's M-estimator is a well known procedure for robust and heavy-tailed covariance estimation. Tyler himself suggested an iterative fixed-point algorithm for computing his estimator however, it requires super-linear (in the size of the data) runtime per iteration, which may be prohibitive in large scale. In this work we propose, to the best of our knowledge, the first Frank-Wolfe-based algorithms for computing Tyler's estimator. One variant uses standard Frank-Wolfe steps, the second also considers \textit{away-steps} (AFW), and the third is a \textit{geodesic} version of AFW (GAFW). AFW provably requires, up to a log factor, only linear time per iteration, while GAFW runs in linear time (up to a log factor) in a large $n$ (number of data-points) regime. All three variants are shown to provably converge to the optimal solution with sublinear rate, under standard assumptions, despite the fact that the underlying optimization problem is not convex nor smooth. Under an additional fairly mild assumption, that holds with probability 1 when the (normalized) data-points are i.i.d. samples from a continuous distribution supported on the entire unit sphere, AFW and GAFW are proved to converge with linear rates. Importantly, all three variants are parameter-free and use adaptive step-sizes." 1367,Productive Reproducible Workflows for DNNs: A Case Study for Industrial Defect Detection,"As Deep Neural Networks (DNNs) have become an increasingly ubiquitous workload, the range of libraries and tooling available to aid in their development and deployment has grown significantly. Scalable, production quality tools are freely available under permissive licenses, and are accessible enough to enable even small teams to be very productive. However within the research community, awareness and usage of said tools is not necessarily widespread, and researchers may be missing out on potential productivity gains from exploiting the latest tools and workflows. This paper presents a case study where we discuss our recent experience producing an end-to-end artificial intelligence application for industrial defect detection. We detail the high level deep learning libraries, containerized workflows, continuous integration/deployment pipelines, and open source code templates we leveraged to produce a competitive result, matching the performance of other ranked solutions to our three target datasets. We highlight the value that exploiting such systems can bring, even for research, and detail our solution and present our best results in terms of accuracy and inference time on a server class GPU, as well as inference times on a server class CPU, and a Raspberry Pi 4." 1368,A Unified Understanding of Deep NLP Models for Text Classification,"The rapid development of deep natural language processing (NLP) models for text classification has led to an urgent need for a unified understanding of these models proposed individually. Existing methods cannot meet the need for understanding different models in one framework due to the lack of a unified measure for explaining both low-level (e.g., words) and high-level (e.g., phrases) features. We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification. The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample. We model the intra- and inter-word information at each layer measuring the importance of a word to the final prediction as well as the relationships between words, such as the formation of phrases. A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples. Two case studies on classification tasks and comparison between models demonstrate that DeepNLPVis can help users effectively identify potential problems caused by samples and model architectures and then make informed improvements." 1369,Quantifying Uncertainty In Traffic State Estimation Using Generative Adversarial Networks,"This paper aims to quantify uncertainty in traffic state estimation (TSE) using the generative adversarial network based physics-informed deep learning (PIDL). The uncertainty of the focus arises from fundamental diagrams, in other words, the mapping from traffic density to velocity. To quantify uncertainty for the TSE problem is to characterize the robustness of predicted traffic states. Since its inception, generative adversarial networks (GAN) have become a popular probabilistic machine learning framework. In this paper, we will inform the GAN based predictions using stochastic traffic flow models and develop a GAN based PIDL framework for TSE, named ``PhysGAN-TSE"". By conducting experiments on a real-world dataset, the Next Generation SIMulation (NGSIM) dataset, this method is shown to be more robust for uncertainty quantification than the pure GAN model or pure traffic flow models. Two physics models, the Lighthill-Whitham-Richards (LWR) and the Aw-Rascle-Zhang (ARZ) models, are compared as the physics components for the PhysGAN, and results show that the ARZ-based PhysGAN achieves a better performance than the LWR-based one." 1370,Nested bandits,"In many online decision processes, the optimizing agent is called to choose between large numbers of alternatives with many inherent similarities; in turn, these similarities imply closely correlated losses that may confound standard discrete choice models and bandit algorithms. We study this question in the context of nested bandits, a class of adversarial multi-armed bandit problems where the learner seeks to minimize their regret in the presence of a large number of distinct alternatives with a hierarchy of embedded (non-combinatorial) similarities. In this setting, optimal algorithms based on the exponential weights blueprint (like Hedge, EXP3, and their variants) may incur significant regret because they tend to spend excessive amounts of time exploring irrelevant alternatives with similar, suboptimal costs. To account for this, we propose a nested exponential weights (NEW) algorithm that performs a layered exploration of the learner's set of alternatives based on a nested, step-by-step selection method. In so doing, we obtain a series of tight bounds for the learner's regret showing that online learning problems with a high degree of similarity between alternatives can be resolved efficiently, without a red bus / blue bus paradox occurring." 1371,Fairness-aware Model-agnostic Positive and Unlabeled Learning,"With the increasing application of machine learning in high-stake decision-making problems, potential algorithmic bias towards people from certain social groups poses negative impacts on individuals and our society at large. In the real-world scenario, many such problems involve positive and unlabeled data such as medical diagnosis, criminal risk assessment and recommender systems. For instance, in medical diagnosis, only the diagnosed diseases will be recorded (positive) while others will not (unlabeled). Despite the large amount of existing work on fairness-aware machine learning in the (semi-)supervised and unsupervised settings, the fairness issue is largely under-explored in the aforementioned Positive and Unlabeled Learning (PUL) context, where it is usually more severe. In this paper, to alleviate this tension, we propose a fairness-aware PUL method named FairPUL. In particular, for binary classification over individuals from two populations, we aim to achieve similar true positive rates and false positive rates in both populations as our fairness metric. Based on the analysis of the optimal fair classifier for PUL, we design a model-agnostic post-processing framework, leveraging both the positive examples and unlabeled ones. Our framework is proven to be statistically consistent in terms of both the classification error and the fairness metric. Experiments on the synthetic and real-world data sets demonstrate that our framework outperforms state-of-the-art in both PUL and fair classification." 1372,Finding Diverse and Predictable Subgraphs for Graph Domain Generalization,"This paper focuses on out-of-distribution generalization on graphs where performance drops due to the unseen distribution shift. Previous graph domain generalization works always resort to learning an invariant predictor among different source domains. However, they assume sufficient source domains are available during training, posing huge challenges for realistic applications. By contrast, we propose a new graph domain generalization framework, dubbed as DPS, by constructing multiple populations from the source domains. Specifically, DPS aims to discover multiple \textbf{D}iverse and \textbf{P}redictable \textbf{S}ubgraphs with a set of generators, namely, subgraphs are different from each other but all the them share the same semantics with the input graph. These generated source domains are exploited to learn an \textit{equi-predictive} graph neural network (GNN) across domains, which is expected to generalize well to unseen target domains. Generally, DPS is model-agnostic that can be incorporated with various GNN backbones. Extensive experiments on both node-level and graph-level benchmarks shows that the proposed DPS achieves impressive performance for various graph domain generalization tasks." 1373,Bayesian Optimization under Stochastic Delayed Feedback,"Bayesian optimization (BO) is a widely-used sequential method for zeroth-order optimization of complex and expensive-to-compute black-box functions. The existing BO methods assume that the function evaluation (feedback) is available to the learner immediately or after a fixed delay. Such assumptions may not be practical in many real-life problems like online recommendations, clinical trials, and hyperparameter tuning where feedback is available after a random delay. To benefit from the experimental parallelization in these problems, the learner needs to start new function evaluations without waiting for delayed feedback. In this paper, we consider the BO under stochastic delayed feedback problem. We propose algorithms with sub-linear regret guarantees that efficiently address the dilemma of selecting new function queries while waiting for randomly delayed feedback. Building on our results, we also make novel contributions to batch BO and contextual Gaussian process bandits. Experiments on synthetic and real-life datasets verify the performance of our algorithms." 1374,An Embedded Feature Selection Framework for Control,"Reducing sensor requirements while keeping optimal control performance is crucial to many industrial control applications to achieve robust, low-cost, and computation-efficient controllers. However, existing feature selection solutions for the typical machine learning domain can hardly be applied in the domain of control with changing dynamics. In this paper, a novel framework, namely the Dual-world embedded Attentive Feature Selection (D-AFS), can efficiently select the most relevant sensors for the system under dynamic control. Rather than the one world used in most Deep Reinforcement Learning (DRL) algorithms, D-AFS has both the real world and its virtual peer with twisted features. By analyzing the DRL's response in two worlds, D-AFS can quantitatively identify respective features' importance towards control. A well-known active flow control problem, cylinder drag reduction, is used for evaluation. Results show that D-AFS successfully finds an optimized five-probes layout with 18.7\% drag reduction than the state-of-the-art solution with 151 probes and 49.2\% reduction than five-probes layout by human experts. We also apply this solution to four OpenAI classical control cases. In all cases, D-AFS achieves the same or better sensor configurations than originally provided solutions. Results highlight, we argued, a new way to achieve efficient and optimal sensor designs for experimental or industrial systems. Our source codes are made publicly available at https://github.com/G-AILab/DAFSFluid." 1375,Generational Differences in Automobility: Comparing America's Millennials and Gen Xers Using Gradient Boosting Decision Trees,"Whether the Millennials are less auto-centric than the previous generations has been widely discussed in the literature. Most existing studies use regression models and assume that all factors are linear-additive in contributing to the young adults' driving behaviors. This study relaxes this assumption by applying a non-parametric statistical learning method, namely the gradient boosting decision trees (GBDT). Using U.S. nationwide travel surveys for 2001 and 2017, this study examines the non-linear dose-response effects of lifecycle, socio-demographic and residential factors on daily driving distances of Millennial and Gen-X young adults. Holding all other factors constant, Millennial young adults had shorter predicted daily driving distances than their Gen-X counterparts. Besides, residential and economic factors explain around 50% of young adults' daily driving distances, while the collective contributions for life course events and demographics are about 33%. This study also identifies the density ranges for formulating effective land use policies aiming at reducing automobile travel demand." 1376,LogGENE: A smooth alternative to check loss for Deep Healthcare Inference Tasks,"High-throughput Genomics is ushering a new era in personalized health care, and targeted drug design and delivery. Mining these large datasets, and obtaining calibrated predictions is of immediate relevance and utility. In our work, we develop methods for Gene Expression Inference based on Deep neural networks. However, unlike typical Deep learning methods, our inferential technique, while achieving state-of-the-art performance in terms of accuracy, can also provide explanations, and report uncertainty estimates. We adopt the Quantile Regression framework to predict full conditional quantiles for a given set of house keeping gene expressions. Conditional quantiles, in addition to being useful in providing rich interpretations of the predictions, are also robust to measurement noise. However, check loss, used in quantile regression to drive the estimation process is not differentiable. We propose log-cosh as a smooth-alternative to the check loss. We apply our methods on GEO microarray dataset. We also extend the method to binary classification setting. Furthermore, we investigate other consequences of the smoothness of the loss in faster convergence." 1377,A Survey on Model-based Reinforcement Learning,"Reinforcement learning (RL) solves sequential decision-making problems via a trial-and-error process interacting with the environment. While RL achieves outstanding success in playing complex video games that allow huge trial-and-error, making errors is always undesired in the real world. To improve the sample efficiency and thus reduce the errors, model-based reinforcement learning (MBRL) is believed to be a promising direction, which builds environment models in which the trial-and-errors can take place without real costs. In this survey, we take a review of MBRL with a focus on the recent progress in deep RL. For non-tabular environments, there is always a generalization error between the learned environment model and the real environment. As such, it is of great importance to analyze the discrepancy between policy training in the environment model and that in the real environment, which in turn guides the algorithm design for better model learning, model usage, and policy training. Besides, we also discuss the recent advances of model-based techniques in other forms of RL, including offline RL, goal-conditioned RL, multi-agent RL, and meta-RL. Moreover, we discuss the applicability and advantages of MBRL in real-world tasks. Finally, we end this survey by discussing the promising prospects for the future development of MBRL. We think that MBRL has great potential and advantages in real-world applications that were overlooked, and we hope this survey could attract more research on MBRL." 1378,Adversarially trained neural representations may already be as robust as corresponding biological neural representations,"Visual systems of primates are the gold standard of robust perception. There is thus a general belief that mimicking the neural representations that underlie those systems will yield artificial visual systems that are adversarially robust. In this work, we develop a method for performing adversarial visual attacks directly on primate brain activity. We then leverage this method to demonstrate that the above-mentioned belief might not be well founded. Specifically, we report that the biological neurons that make up visual systems of primates exhibit susceptibility to adversarial perturbations that is comparable in magnitude to existing (robustly trained) artificial neural networks." 1379,Characterizing and Mitigating the Difficulty in Training Physics-informed Artificial Neural Networks under Pointwise Constraints,"Neural networks can be used to learn the solution of partial differential equations (PDEs) on arbitrary domains without requiring a computational mesh. Common approaches integrate differential operators in training neural networks using a structured loss function. The most common training algorithm for neural networks is backpropagation which relies on the gradient of the loss function with respect to the parameters of the network. In this work, we characterize the difficulty of training neural networks on physics by investigating the impact of differential operators in corrupting the back propagated gradients. Particularly, we show that perturbations present in the output of a neural network model during early stages of training lead to higher levels of noise in a structured loss function that is composed of high-order differential operators. These perturbations consequently corrupt the back-propagated gradients and impede convergence. We mitigate this issue by introducing auxiliary flux parameters to obtain a system of first-order differential equations. We formulate a non-linear unconstrained optimization problem using the augmented Lagrangian method that properly constrains the boundary conditions and adaptively focus on regions of higher gradients that are difficult to learn. We apply our approach to learn the solution of various benchmark PDE problems and demonstrate orders of magnitude improvement over existing approaches." 1380,TrafficFlowGAN: Physics-informed Flow based Generative Adversarial Network for Uncertainty Quantification,"This paper proposes the TrafficFlowGAN, a physics-informed flow based generative adversarial network (GAN), for uncertainty quantification (UQ) of dynamical systems. TrafficFlowGAN adopts a normalizing flow model as the generator to explicitly estimate the data likelihood. This flow model is trained to maximize the data likelihood and to generate synthetic data that can fool a convolutional discriminator. We further regularize this training process using prior physics information, so-called physics-informed deep learning (PIDL). To the best of our knowledge, we are the first to propose an integration of flow, GAN and PIDL for the UQ problems. We take the traffic state estimation (TSE), which aims to estimate the traffic variables (e.g. traffic density and velocity) using partially observed data, as an example to demonstrate the performance of our proposed model. We conduct numerical experiments where the proposed model is applied to learn the solutions of stochastic differential equations. The results demonstrate the robustness and accuracy of the proposed model, together with the ability to learn a machine learning surrogate model. We also test it on a real-world dataset, the Next Generation SIMulation (NGSIM), to show that the proposed TrafficFlowGAN can outperform the baselines, including the pure flow model, the physics-informed flow model, and the flow based GAN model." 1381,FRAPPE: $\underline{\text{F}}$ast $\underline{\text{Ra}}$nk $\underline{\text{App}}$roximation with $\underline{\text{E}}$xplainable Features for Tensors,"Tensor decompositions have proven to be effective in analyzing the structure of multidimensional data. However, most of these methods require a key parameter: the number of desired components. In the case of the CANDECOMP/PARAFAC decomposition (CPD), this value is known as the canonical rank and greatly affects the quality of the results. Existing methods use heuristics or Bayesian methods to estimate this value by repeatedly calculating the CPD, making them extremely computationally expensive. In this work, we propose FRAPPE and Self-FRAPPE: a cheaply supervised and a self-supervised method to estimate the canonical rank of a tensor without ever having to compute the CPD. We call FRAPPE cheaply supervised because it uses a fully synthetic training set without requiring real-world examples. We evaluate these methods on synthetic tensors, real tensors of known rank, and the weight tensor of a convolutional neural network. We show that FRAPPE and Self-FRAPPE offer large improvements in both effectiveness and speed, with a respective $15\%$ and $10\%$ improvement in MAPE and an $4000\times$ and $13\times$ improvement in evaluation speed over the best-performing baseline." 1382,Knowledge Learning with Crowdsourcing: A Brief Review and Systematic Perspective,"Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them full of challenges. With the emergence of crowdsourcing, versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process. During the past thirteen years, researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds. This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data, models, and learning processes. In addition to reviewing existing important work, the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work, which will light up the way for new researchers and encourage them to pursue new contributions." 1383,Robust Imitation Learning against Variations in Environment Dynamics,"In this paper, we propose a robust imitation learning (IL) framework that improves the robustness of IL when environment dynamics are perturbed. The existing IL framework trained in a single environment can catastrophically fail with perturbations in environment dynamics because it does not capture the situation that underlying environment dynamics can be changed. Our framework effectively deals with environments with varying dynamics by imitating multiple experts in sampled environment dynamics to enhance the robustness in general variations in environment dynamics. In order to robustly imitate the multiple sample experts, we minimize the risk with respect to the Jensen-Shannon divergence between the agent's policy and each of the sample experts. Numerical results show that our algorithm significantly improves robustness against dynamics perturbations compared to conventional IL baselines." 1384,"Laziness, Barren Plateau, and Noise in Machine Learning","We define \emph{laziness} to describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness and \emph{barren plateau} in quantum machine learning created by quantum physicists in \cite{mcclean2018barren} for the flatness of the loss function landscape during gradient descent. We address a novel theoretical understanding of those two phenomena in light of the theory of neural tangent kernels. For noiseless quantum circuits, without the measurement noise, the loss function landscape is complicated in the overparametrized regime with a large number of trainable variational angles. Instead, around a random starting point in optimization, there are large numbers of local minima that are good enough and could minimize the mean square loss function, where we still have quantum laziness, but we do not have barren plateaus. However, the complicated landscape is not visible within a limited number of iterations, and low precision in quantum control and quantum sensing. Moreover, we look at the effect of noises during optimization by assuming intuitive noise models, and show that variational quantum algorithms are noise-resilient in the overparametrization regime. Our work precisely reformulates the quantum barren plateau statement towards a precision statement and justifies the statement in certain noise models, injects new hope toward near-term variational quantum algorithms, and provides theoretical connections toward classical machine learning. Our paper provides conceptual perspectives about quantum barren plateaus, together with discussions about the gradient descent dynamics in \cite{together}." 1385,Primal Estimated Subgradient Solver for SVM for Imbalanced Classification,"We aim to demonstrate in experiments that our cost sensitive PEGASOS SVM balances achieve good performance on imbalanced data sets with a Majority to Minority Ratio ranging from 8.6 to one through 130 to one. We evaluate the performance by examining the learning curves. We will also examine the effect of varying the hyperparameters via validation curves. We compare our PEGASOS Cost-Sensitive SVM's results on three of the datasets Ding analyzed using his LINEAR SVM DECIDL method. We will use Python rather than MATLAB as python has dictionaries for storing mixed data types during multi-parameter cross-validation." 1386,Adversarial Scrutiny of Evidentiary Statistical Software,"The U.S. criminal legal system increasingly relies on software output to convict and incarcerate people. In a large number of cases each year, the government makes these consequential decisions based on evidence from statistical software -- such as probabilistic genotyping, environmental audio detection, and toolmark analysis tools -- that defense counsel cannot fully cross-examine or scrutinize. This undermines the commitments of the adversarial criminal legal system, which relies on the defense's ability to probe and test the prosecution's case to safeguard individual rights. Responding to this need to adversarially scrutinize output from such software, we propose robust adversarial testing as an audit framework to examine the validity of evidentiary statistical software. We define and operationalize this notion of robust adversarial testing for defense use by drawing on a large body of recent work in robust machine learning and algorithmic fairness. We demonstrate how this framework both standardizes the process for scrutinizing such tools and empowers defense lawyers to examine their validity for instances most relevant to the case at hand. We further discuss existing structural and institutional challenges within the U.S. criminal legal system that may create barriers for implementing this and other such audit frameworks and close with a discussion on policy changes that could help address these concerns." 1387,Enforcing Continuous Physical Symmetries in Deep Learning Network for Solving Partial Differential Equations,"As a typical {application} of deep learning, physics-informed neural network (PINN) {has been} successfully used to find numerical solutions of partial differential equations (PDEs), but how to improve the limited accuracy is still a great challenge for PINN. In this work, we introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN, for improving the accuracy of PINN. We test the effectiveness of SPINN via two groups of ten independent numerical experiments for the heat equation, Korteweg-de Vries (KdV) equation and potential Burgers {equations} respectively, which shows that SPINN performs better than PINN with fewer training points and simpler architecture of neural network. Furthermore, we discuss the computational overhead of SPINN in terms of the relative computational cost to PINN and show that the training time of SPINN has no obvious increases, even less than PINN for some cases." 1388,AutoGML: Fast Automatic Model Selection for Graph Machine Learning,"Given a graph learning task, such as link prediction, on a new graph dataset, how can we automatically select the best method as well as its hyperparameters (collectively called a model)? Model selection for graph learning has been largely ad hoc. A typical approach has been to apply popular methods to new datasets, but this is often suboptimal. On the other hand, systematically comparing models on the new graph quickly becomes too costly, or even impractical. In this work, we develop the first meta-learning approach for automatic graph machine learning, called AutoGML, which capitalizes on the prior performances of a large body of existing methods on benchmark graph datasets, and carries over this prior experience to automatically select an effective model to use for the new graph, without any model training or evaluations. To capture the similarity across graphs from different domains, we introduce specialized meta-graph features that quantify the structural characteristics of a graph. Then we design a meta-graph that represents the relations among models and graphs, and develop a graph meta-learner operating on the meta-graph, which estimates the relevance of each model to different graphs. Through extensive experiments, we show that using AutoGML to select a method for the new graph significantly outperforms consistently applying popular methods as well as several existing meta-learners, while being extremely fast at test time." 1389,Scalable Classifier-Agnostic Channel Selection for MTSC,"Accuracy is a key focus of current work in time series classification. However, speed and data reduction in many applications is equally important, especially when the data scale and storage requirements increase rapidly. Current MTSC algorithms need hundreds of compute hours to complete training and prediction. This is due to the nature of multivariate time series data, which grows with the number of time series, their length and the number of channels. In many applications, not all the channels are useful for the classification task; hence we require methods that can efficiently select useful channels and thus save computational resources. We propose and evaluate two methods for channel selection. Our techniques work by representing each class by a prototype time series and performing channel selection based on the prototype distance between classes. The main hypothesis is that useful channels enable better separation between classes; hence, channels with the higher distance between class prototypes are more useful. On the UEA Multivariate Time Series Classification (MTSC) benchmark, we show that these techniques achieve significant data reduction and classifier speedup for similar levels of classification accuracy. Channel selection is applied as a pre-processing step before training state-of-the-art MTSC algorithms and saves about 70\% of computation time and data storage, with preserved accuracy. Furthermore, our methods enable even efficient classifiers, such as ROCKET, to achieve better accuracy than using no channel selection or forward channel selection. To further study the impact of our techniques, we present experiments on classifying synthetic multivariate time series datasets with more than 100 channels, as well as a real-world case study on a dataset with 50 channels. Our channel selection methods lead to significant data reduction with preserved or improved accuracy." 1390,DECK: Model Hardening for Defending Pervasive Backdoors,"Pervasive backdoors are triggered by dynamic and pervasive input perturbations. They can be intentionally injected by attackers or naturally exist in normally trained models. They have a different nature from the traditional static and localized backdoors that can be triggered by perturbing a small input area with some fixed pattern, e.g., a patch with solid color. Existing defense techniques are highly effective for traditional backdoors. However, they may not work well for pervasive backdoors, especially regarding backdoor removal and model hardening. In this paper, we propose a novel model hardening technique against pervasive backdoors, including both natural and injected backdoors. We develop a general pervasive attack based on an encoder-decoder architecture enhanced with a special transformation layer. The attack can model a wide range of existing pervasive backdoor attacks and quantify them by class distances. As such, using the samples derived from our attack in adversarial training can harden a model against these backdoor vulnerabilities. Our evaluation on 9 datasets with 15 model structures shows that our technique can enlarge class distances by 59.65% on average with less than 1% accuracy degradation and no robustness loss, outperforming five hardening techniques such as adversarial training, universal adversarial training, MOTH, etc. It can reduce the attack success rate of six pervasive backdoor attacks from 99.06% to 1.94%, surpassing seven state-of-the-art backdoor removal techniques." 1391,Pisces: Efficient Federated Learning via Guided Asynchronous Training,"Federated learning (FL) is typically performed in a synchronous parallel manner, where the involvement of a slow client delays a training iteration. Current FL systems employ a participant selection strategy to select fast clients with quality data in each iteration. However, this is not always possible in practice, and the selection strategy often has to navigate an unpleasant trade-off between the speed and the data quality of clients. In this paper, we present Pisces, an asynchronous FL system with intelligent participant selection and model aggregation for accelerated training. To avoid incurring excessive resource cost and stale training computation, Pisces uses a novel scoring mechanism to identify suitable clients to participate in a training iteration. It also adapts the pace of model aggregation to dynamically bound the progress gap between the selected clients and the server, with a provable convergence guarantee in a smooth non-convex setting. We have implemented Pisces in an open-source FL platform called Plato, and evaluated its performance in large-scale experiments with popular vision and language models. Pisces outperforms the state-of-the-art synchronous and asynchronous schemes, accelerating the time-to-accuracy by up to 2.0x and 1.9x, respectively." 1392,Motley: Benchmarking Heterogeneity and Personalization in Federated Learning,"Personalized federated learning considers learning models unique to each client in a heterogeneous network. The resulting client-specific models have been purported to improve metrics such as accuracy, fairness, and robustness in federated networks. However, despite a plethora of work in this area, it remains unclear: (1) which personalization techniques are most effective in various settings, and (2) how important personalization truly is for realistic federated applications. To better answer these questions, we propose Motley, a benchmark for personalized federated learning. Motley consists of a suite of cross-device and cross-silo federated datasets from varied problem domains, as well as thorough evaluation metrics for better understanding the possible impacts of personalization. We establish baselines on the benchmark by comparing a number of representative personalized federated learning methods. These initial results highlight strengths and weaknesses of existing approaches, and raise several open questions for the community. Motley aims to provide a reproducible means with which to advance developments in personalized and heterogeneity-aware federated learning, as well as the related areas of transfer learning, meta-learning, and multi-task learning." 1393,Machine Learning in Sports: A Case Study on Using Explainable Models for Predicting Outcomes of Volleyball Matches,"Machine Learning has become an integral part of engineering design and decision making in several domains, including sports. Deep Neural Networks (DNNs) have been the state-of-the-art methods for predicting outcomes of professional sports events. However, apart from getting highly accurate predictions on these sports events outcomes, it is necessary to answer questions such as ""Why did the model predict that Team A would win Match X against Team B?"" DNNs are inherently black-box in nature. Therefore, it is required to provide high-quality interpretable, and understandable explanations for a model's prediction in sports. This paper explores a two-phased Explainable Artificial Intelligence(XAI) approach to predict outcomes of matches in the Brazilian volleyball League (SuperLiga). In the first phase, we directly use the interpretable rule-based ML models that provide a global understanding of the model's behaviors based on Boolean Rule Column Generation (BRCG; extracts simple AND-OR classification rules) and Logistic Regression (LogReg; allows to estimate the feature importance scores). In the second phase, we construct non-linear models such as Support Vector Machine (SVM) and Deep Neural Network (DNN) to obtain predictive performance on the volleyball matches' outcomes. We construct the ""post-hoc"" explanations for each data instance using ProtoDash, a method that finds prototypes in the training dataset that are most similar to the test instance, and SHAP, a method that estimates the contribution of each feature on the model's prediction. We evaluate the SHAP explanations using the faithfulness metric. Our results demonstrate the effectiveness of the explanations for the model's predictions." 1394,Optimal Dynamic Regret in LQR Control,"We consider the problem of nonstochastic control with a sequence of quadratic losses, i.e., LQR control. We provide an efficient online algorithm that achieves an optimal dynamic (policy) regret of $\tilde{O}(\text{max}\{n^{1/3} \mathcal{TV}(M_{1:n})^{2/3}, 1\})$, where $\mathcal{TV}(M_{1:n})$ is the total variation of any oracle sequence of Disturbance Action policies parameterized by $M_1,...,M_n$ -- chosen in hindsight to cater to unknown nonstationarity. The rate improves the best known rate of $\tilde{O}(\sqrt{n (\mathcal{TV}(M_{1:n})+1)} )$ for general convex losses and we prove that it is information-theoretically optimal for LQR. Main technical components include the reduction of LQR to online linear regression with delayed feedback due to Foster and Simchowitz (2020), as well as a new proper learning algorithm with an optimal $\tilde{O}(n^{1/3})$ dynamic regret on a family of ``minibatched'' quadratic losses, which could be of independent interest." 1395,Multistream Gaze Estimation with Anatomical Eye Region Isolation by Synthetic to Real Transfer Learning,"We propose a novel neural pipeline, MSGazeNet, that learns gaze representations by taking advantage of the eye anatomy information through a multistream framework. Our proposed solution comprises two components, first a network for isolating anatomical eye regions, and a second network for multistream gaze estimation. The eye region isolation is performed with a U-Net style network which we train using a synthetic dataset that contains eye region masks for the visible eyeball and the iris region. The synthetic dataset used in this stage is a new dataset consisting of 60,000 eye images, which we create using an eye-gaze simulator, UnityEyes. Successive to training, the eye region isolation network is then transferred to the real domain for generating masks for the real-world eye images. In order to successfully make the transfer, we exploit domain randomization in the training process, which allows for the synthetic images to benefit from a larger variance with the help of augmentations that resemble artifacts. The generated eye region masks along with the raw eye images are then used together as a multistream input to our gaze estimation network. We evaluate our framework on three benchmark gaze estimation datasets, MPIIGaze, Eyediap, and UTMultiview, where we set a new state-of-the-art on Eyediap and UTMultiview datasets by obtaining a performance gain of 7.57% and 1.85% respectively, while achieving competitive performance on MPIIGaze. We also study the robustness of our method with respect to the noise in the data and demonstrate that our model is less sensitive to noisy data. Lastly, we perform a variety of experiments including ablation studies to evaluate the contribution of different components and design choices in our solution." 1396,Mutation-Driven Follow the Regularized Leader for Last-Iterate Convergence in Zero-Sum Games,"In this study, we consider a variant of the Follow the Regularized Leader (FTRL) dynamics in two-player zero-sum games. FTRL is guaranteed to converge to a Nash equilibrium when time-averaging the strategies, while a lot of variants suffer from the issue of limit cycling behavior, i.e., lack the last-iterate convergence guarantee. To this end, we propose mutant FTRL (M-FTRL), an algorithm that introduces mutation for the perturbation of action probabilities. We then investigate the continuous-time dynamics of M-FTRL and provide the strong convergence guarantees toward stationary points that approximate Nash equilibria under full-information feedback. Furthermore, our simulation demonstrates that M-FTRL can enjoy faster convergence rates than FTRL and optimistic FTRL under full-information feedback and surprisingly exhibits clear convergence under bandit feedback." 1397,Reduced Robust Random Cut Forest for Out-Of-Distribution detection in machine learning models,"Most machine learning-based regressors extract information from data collected via past observations of limited length to make predictions in the future. Consequently, when input to these trained models is data with significantly different statistical properties from data used for training, there is no guarantee of accurate prediction. Consequently, using these models on out-of-distribution input data may result in a completely different predicted outcome from the desired one, which is not only erroneous but can also be hazardous in some cases. Successful deployment of these machine learning models in any system requires a detection system, which should be able to distinguish between out-of-distribution and in-distribution data (i.e. similar to training data). In this paper, we introduce a novel approach for this detection process using a Reduced Robust Random Cut Forest (RRRCF) data structure, which can be used on both small and large data sets. Similar to the Robust Random Cut Forest (RRCF), RRRCF is a structured, but a reduced representation of the training data sub-space in form of cut trees. Empirical results of this method on both low and high-dimensional data showed that inference about data being in/out of training distribution can be made efficiently and the model is easy to train with no difficult hyper-parameter tuning. The paper discusses two different use-cases for testing and validating results." 1398,"GaLeNet: Multimodal Learning for Disaster Prediction, Management and Relief","After a natural disaster, such as a hurricane, millions are left in need of emergency assistance. To allocate resources optimally, human planners need to accurately analyze data that can flow in large volumes from several sources. This motivates the development of multimodal machine learning frameworks that can integrate multiple data sources and leverage them efficiently. To date, the research community has mainly focused on unimodal reasoning to provide granular assessments of the damage. Moreover, previous studies mostly rely on post-disaster images, which may take several days to become available. In this work, we propose a multimodal framework (GaLeNet) for assessing the severity of damage by complementing pre-disaster images with weather data and the trajectory of the hurricane. Through extensive experiments on data from two hurricanes, we demonstrate (i) the merits of multimodal approaches compared to unimodal methods, and (ii) the effectiveness of GaLeNet at fusing various modalities. Furthermore, we show that GaLeNet can leverage pre-disaster images in the absence of post-disaster images, preventing substantial delays in decision making." 1399,An Empirical Study of Quantum Dynamics as a Ground State Problem with Neural Quantum States,"Neural quantum states are variational wave functions parameterised by artificial neural networks, a mathematical model studied for decades in the machine learning community. In the context of many-body physics, methods such as variational Monte Carlo with neural quantum states as variational wave functions are successful in approximating, with great accuracy, the ground-state of a quantum Hamiltonian. However, all the difficulties of proposing neural network architectures, along with exploring their expressivity and trainability, permeate their application as neural quantum states. In this paper, we consider the Feynman-Kitaev Hamiltonian for the transverse field Ising model, whose ground state encodes the time evolution of a spin chain at discrete time steps. We show how this ground state problem specifically challenges the neural quantum state trainability as the time steps increase because the true ground state becomes more entangled, and the probability distribution starts to spread across the Hilbert space. Our results indicate that the considered neural quantum states are capable of accurately approximating the true ground state of the system, i.e., they are expressive enough. However, extensive hyper-parameter tuning experiments point towards the empirical fact that it is poor trainability--in the variational Monte Carlo setup--that prevents a faithful approximation of the true ground state." 1400,On the Role of Generalization in Transferability of Adversarial Examples,"Black-box adversarial attacks designing adversarial examples for unseen neural networks (NNs) have received great attention over the past years. While several successful black-box attack schemes have been proposed in the literature, the underlying factors driving the transferability of black-box adversarial examples still lack a thorough understanding. In this paper, we aim to demonstrate the role of the generalization properties of the substitute classifier used for generating adversarial examples in the transferability of the attack scheme to unobserved NN classifiers. To do this, we apply the max-min adversarial example game framework and show the importance of the generalization properties of the substitute NN in the success of the black-box attack scheme in application to different NN classifiers. We prove theoretical generalization bounds on the difference between the attack transferability rates on training and test samples. Our bounds suggest that a substitute NN with better generalization behavior could result in more transferable adversarial examples. In addition, we show that standard operator norm-based regularization methods could improve the transferability of the designed adversarial examples. We support our theoretical results by performing several numerical experiments showing the role of the substitute network's generalization in generating transferable adversarial examples. Our empirical results indicate the power of Lipschitz regularization methods in improving the transferability of adversarial examples." 1401,Model-Agnostic Few-Shot Open-Set Recognition,"We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have few labeled samples, while simultaneously detecting instances that do not belong to any known class. Departing from existing literature, we focus on developing model-agnostic inference methods that can be plugged into any existing model, regardless of its architecture or its training procedure. Through evaluating the embedding's quality of a variety of models, we quantify the intrinsic difficulty of model-agnostic FSOSR. Furthermore, a fair empirical evaluation suggests that the naive combination of a kNN detector and a prototypical classifier ranks before specialized or complex methods in the inductive setting of FSOSR. These observations motivated us to resort to transduction, as a popular and practical relaxation of standard few-shot learning problems. We introduce an Open Set Transductive Information Maximization method OSTIM, which hallucinates an outlier prototype while maximizing the mutual information between extracted features and assignments. Through extensive experiments spanning 5 datasets, we show that OSTIM surpasses both inductive and existing transductive methods in detecting open-set instances while competing with the strongest transductive methods in classifying closed-set instances. We further show that OSTIM's model agnosticity allows it to successfully leverage the strong expressive abilities of the latest architectures and training strategies without any hyperparameter modification, a promising sign that architectural advances to come will continue to positively impact OSTIM's performances." 1402,"Bioinspired random projections for robust, sparse classification","Inspired by the use of random projections in biological sensing systems, we present a new algorithm for processing data in classification problems. This is based on observations of the human brain and the fruit fly's olfactory system and involves randomly projecting data into a space of greatly increased dimension before applying a cap operation to truncate the smaller entries. This leads to an algorithm that achieves a sparse representation with minimal loss in classification accuracy and is also more robust in the sense that classification accuracy is improved when noise is added to the data. This is demonstrated with numerical experiments, which supplement theoretical results demonstrating that the resulting signal transform is continuous and invertible, in an appropriate sense." 1403,An Invertible Graph Diffusion Neural Network for Source Localization,"Localizing the source of graph diffusion phenomena, such as misinformation propagation, is an important yet extremely challenging task. Existing source localization models typically are heavily dependent on the hand-crafted rules. Unfortunately, a large portion of the graph diffusion process for many applications is still unknown to human beings so it is important to have expressive models for learning such underlying rules automatically. This paper aims to establish a generic framework of invertible graph diffusion models for source localization on graphs, namely Invertible Validity-aware Graph Diffusion (IVGD), to handle major challenges including 1) Difficulty to leverage knowledge in graph diffusion models for modeling their inverse processes in an end-to-end fashion, 2) Difficulty to ensure the validity of the inferred sources, and 3) Efficiency and scalability in source inference. Specifically, first, to inversely infer sources of graph diffusion, we propose a graph residual scenario to make existing graph diffusion models invertible with theoretical guarantees; second, we develop a novel error compensation mechanism that learns to offset the errors of the inferred sources. Finally, to ensure the validity of the inferred sources, a new set of validity-aware layers have been devised to project inferred sources to feasible regions by flexibly encoding constraints with unrolled optimization techniques. A linearization technique is proposed to strengthen the efficiency of our proposed layers. The convergence of the proposed IVGD is proven theoretically. Extensive experiments on nine real-world datasets demonstrate that our proposed IVGD outperforms state-of-the-art comparison methods significantly. We have released our code at https://github.com/xianggebenben/IVGD." 1404,Multi-Modality Image Inpainting using Generative Adversarial Networks,"Deep learning techniques, especially Generative Adversarial Networks (GANs) have significantly improved image inpainting and image-to-image translation tasks over the past few years. To the best of our knowledge, the problem of combining the image inpainting task with the multi-modality image-to-image translation remains intact. In this paper, we propose a model to address this problem. The model will be evaluated on combined night-to-day image translation and inpainting, along with promising qualitative and quantitative results." 1405,EST: Evaluating Scientific Thinking in Artificial Agents,"Theoretical ideas and empirical research have shown us a seemingly surprising result: children, even very young toddlers, demonstrate learning and thinking in a strikingly similar manner to scientific reasoning in formal research. Encountering a novel phenomenon, children make hypotheses against data, conduct causal inference from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. Rounds of such processes continue until the underlying mechanism is found. Towards building machines that can learn and think like people, one natural question for us to ask is: whether the intelligence we achieve today manages to perform such a scientific thinking process, and if any, at what level. In this work, we devise the EST environment for evaluating the scientific thinking ability in artificial agents. Motivated by the stream of research on causal discovery, we build our interactive EST environment based on Blicket detection. Specifically, in each episode of EST, an agent is presented with novel observations and asked to figure out all objects' Blicketness. At each time step, the agent proposes new experiments to validate its hypothesis and updates its current belief. By evaluating Reinforcement Learning (RL) agents on both a symbolic and visual version of this task, we notice clear failure of today's learning methods in reaching a level of intelligence comparable to humans. Such inefficacy of learning in scientific thinking calls for future research in building humanlike intelligence." 1406,AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems,"Compared with chest X-ray (CXR) imaging, which is a single image projected from the front of the patient, chest digital tomosynthesis (CDTS) imaging can be more advantageous for lung lesion detection because it acquires multiple images projected from multiple angles of the patient. Various clinical comparative analysis and verification studies have been reported to demonstrate this, but there were no artificial intelligence (AI)-based comparative analysis studies. Existing AI-based computer-aided detection (CAD) systems for lung lesion diagnosis have been developed mainly based on CXR images; however, CAD-based on CDTS, which uses multi-angle images of patients in various directions, has not been proposed and verified for its usefulness compared to CXR-based counterparts. This study develops/tests a CDTS-based AI CAD system to detect lung lesions to demonstrate performance improvements compared to CXR-based AI CAD. We used multiple projection images as input for the CDTS-based AI model and a single-projection image as input for the CXR-based AI model to fairly compare and evaluate the performance between models. The proposed CDTS-based AI CAD system yielded sensitivities of 0.782 and 0.785 and accuracies of 0.895 and 0.837 for the performance of detecting tuberculosis and pneumonia, respectively, against normal subjects. These results show higher performance than sensitivities of 0.728 and 0.698 and accuracies of 0.874 and 0.826 for detecting tuberculosis and pneumonia through the CXR-based AI CAD, which only uses a single projection image in the frontal direction. We found that CDTS-based AI CAD improved the sensitivity of tuberculosis and pneumonia by 5.4% and 8.7% respectively, compared to CXR-based AI CAD without loss of accuracy. Therefore, we comparatively prove that CDTS-based AI CAD technology can improve performance more than CXR, enhancing the clinical applicability of CDTS." 1407,3D unsupervised anomaly detection and localization through virtual multi-view projection and reconstruction: Clinical validation on low-dose chest computed tomography,"Computer-aided diagnosis for low-dose computed tomography (CT) based on deep learning has recently attracted attention as a first-line automatic testing tool because of its high accuracy and low radiation exposure. However, existing methods rely on supervised learning, imposing an additional burden to doctors for collecting disease data or annotating spatial labels for network training, consequently hindering their implementation. We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction for unsupervised anomaly detection. Presumably, this is the first method that only requires data from healthy patients for training to identify three-dimensional (3D) regions containing any anomalies. The method has three key components. Unlike existing computer-aided diagnosis tools that use conventional CT slices as the network input, our method 1) improves the recognition of 3D lung structures by virtually projecting an extracted 3D lung region to obtain two-dimensional (2D) images from diverse views to serve as network inputs, 2) accommodates the input diversity gain for accurate anomaly detection, and 3) achieves 3D anomaly/disease localization through a novel 3D map restoration method using multiple 2D anomaly maps. The proposed method based on unsupervised learning improves the patient-level anomaly detection by 10% (area under the curve, 0.959) compared with a gold standard based on supervised learning (area under the curve, 0.848), and it localizes the anomaly region with 93% accuracy, demonstrating its high performance." 1408,EEML: Ensemble Embedded Meta-learning,"To accelerate learning process with few samples, meta-learning resorts to prior knowledge from previous tasks. However, the inconsistent task distribution and heterogeneity is hard to be handled through a global sharing model initialization. In this paper, based on gradient-based meta-learning, we propose an ensemble embedded meta-learning algorithm (EEML) that explicitly utilizes multi-model-ensemble to organize prior knowledge into diverse specific experts. We rely on a task embedding cluster mechanism to deliver diverse tasks to matching experts in training process and instruct how experts collaborate in test phase. As a result, the multi experts can focus on their own area of expertise and cooperate in upcoming task to solve the task heterogeneity. The experimental results show that the proposed method outperforms recent state-of-the-arts easily in few-shot learning problem, which validates the importance of differentiation and cooperation." 1409,Efficient Aggregated Kernel Tests using Incomplete $U$-statistics,"We propose a series of computationally efficient, nonparametric tests for the two-sample, independence and goodness-of-fit problems, using the Maximum Mean Discrepancy (MMD), Hilbert Schmidt Independence Criterion (HSIC), and Kernel Stein Discrepancy (KSD), respectively. Our test statistics are incomplete $U$-statistics, with a computational cost that interpolates between linear time in the number of samples, and quadratic time, as associated with classical $U$-statistic tests. The three proposed tests aggregate over several kernel bandwidths to detect departures from the null on various scales: we call the resulting tests MMDAggInc, HSICAggInc and KSDAggInc. For the test thresholds, we derive a quantile bound for wild bootstrapped incomplete $U$- statistics, which is of independent interest. We derive uniform separation rates for MMDAggInc and HSICAggInc, and quantify exactly the trade-off between computational efficiency and the attainable rates: this result is novel for tests based on incomplete $U$-statistics, to our knowledge. We further show that in the quadratic-time case, the wild bootstrap incurs no penalty to test power over more widespread permutation-based approaches, since both attain the same minimax optimal rates (which in turn match the rates that use oracle quantiles). We support our claims with numerical experiments on the trade-off between computational efficiency and test power. In the three testing frameworks, we observe that our proposed linear-time aggregated tests obtain higher power than current state-of-the-art linear-time kernel tests." 1410,Multi-Modality Image Super-Resolution using Generative Adversarial Networks,"Over the past few years deep learning-based techniques such as Generative Adversarial Networks (GANs) have significantly improved solutions to image super-resolution and image-to-image translation problems. In this paper, we propose a solution to the joint problem of image super-resolution and multi-modality image-to-image translation. The problem can be stated as the recovery of a high-resolution image in a modality, given a low-resolution observation of the same image in an alternative modality. Our paper offers two models to address this problem and will be evaluated on the recovery of high-resolution day images given low-resolution night images of the same scene. Promising qualitative and quantitative results will be presented for each model." 1411,Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach,"We propose a kernel-based nonparametric estimator for the causal effect when the cause is corrupted by error. We do so by generalizing estimation in the instrumental variable setting. Despite significant work on regression with measurement error, additionally handling unobserved confounding in the continuous setting is non-trivial: we have seen little prior work. As a by-product of our investigation, we clarify a connection between mean embeddings and characteristic functions, and how learning one simultaneously allows one to learn the other. This opens the way for kernel method research to leverage existing results in characteristic function estimation. Finally, we empirically show that our proposed method, MEKIV, improves over baselines and is robust under changes in the strength of measurement error and to the type of error distributions." 1412,PHN: Parallel heterogeneous network with soft gating for CTR prediction,"The Click-though Rate (CTR) prediction task is a basic task in recommendation system. Most of the previous researches of CTR models built based on Wide \& deep structure and gradually evolved into parallel structures with different modules. However, the simple accumulation of parallel structures can lead to higher structural complexity and longer training time. Based on the Sigmoid activation function of output layer, the linear addition activation value of parallel structures in the training process is easy to make the samples fall into the weak gradient interval, resulting in the phenomenon of weak gradient, and reducing the effectiveness of training. To this end, this paper proposes a Parallel Heterogeneous Network (PHN) model, which constructs a network with parallel structure through three different interaction analysis methods, and uses Soft Selection Gating (SSG) to feature heterogeneous data with different structure. Finally, residual link with trainable parameters are used in the network to mitigate the influence of weak gradient phenomenon. Furthermore, we demonstrate the effectiveness of PHN in a large number of comparative experiments, and visualize the performance of the model in training process and structure." 1413,Coin Flipping Neural Networks,"We show that neural networks with access to randomness can outperform deterministic networks by using amplification. We call such networks Coin-Flipping Neural Networks, or CFNNs. We show that a CFNN can approximate the indicator of a $d$-dimensional ball to arbitrary accuracy with only 2 layers and $\mathcal{O}(1)$ neurons, where a 2-layer deterministic network was shown to require $\Omega(e^d)$ neurons, an exponential improvement (arXiv:1610.09887). We prove a highly non-trivial result, that for almost any classification problem, there exists a trivially simple network that solves it given a sufficiently powerful generator for the network's weights. Combining these results we conjecture that for most classification problems, there is a CFNN which solves them with higher accuracy or fewer neurons than any deterministic network. Finally, we verify our proofs experimentally using novel CFNN architectures on CIFAR10 and CIFAR100, reaching an improvement of 9.25\% from the baseline." 1414,NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search,"Graph neural architecture search (GraphNAS) has recently aroused considerable attention in both academia and industry. However, two key challenges seriously hinder the further research of GraphNAS. First, since there is no consensus for the experimental setting, the empirical results in different research papers are often not comparable and even not reproducible, leading to unfair comparisons. Secondly, GraphNAS often needs extensive computations, which makes it highly inefficient and inaccessible to researchers without access to large-scale computation. To solve these challenges, we propose NAS-Bench-Graph, a tailored benchmark that supports unified, reproducible, and efficient evaluations for GraphNAS. Specifically, we construct a unified, expressive yet compact search space, covering 26,206 unique graph neural network (GNN) architectures and propose a principled evaluation protocol. To avoid unnecessary repetitive training, we have trained and evaluated all of these architectures on nine representative graph datasets, recording detailed metrics including train, validation, and test performance in each epoch, the latency, the number of parameters, etc. Based on our proposed benchmark, the performance of GNN architectures can be directly obtained by a look-up table without any further computation, which enables fair, fully reproducible, and efficient comparisons. To demonstrate its usage, we make in-depth analyses of our proposed NAS-Bench-Graph, revealing several interesting findings for GraphNAS. We also showcase how the benchmark can be easily compatible with GraphNAS open libraries such as AutoGL and NNI. To the best of our knowledge, our work is the first benchmark for graph neural architecture search." 1415,Thompson Sampling for (Combinatorial) Pure Exploration,"Existing methods of combinatorial pure exploration mainly focus on the UCB approach. To make the algorithm efficient, they usually use the sum of upper confidence bounds within arm set $S$ to represent the upper confidence bound of $S$, which can be much larger than the tight upper confidence bound of $S$ and leads to a much higher complexity than necessary, since the empirical means of different arms in $S$ are independent. To deal with this challenge, we explore the idea of Thompson Sampling (TS) that uses independent random samples instead of the upper confidence bounds, and design the first TS-based algorithm TS-Explore for (combinatorial) pure exploration. In TS-Explore, the sum of independent random samples within arm set $S$ will not exceed the tight upper confidence bound of $S$ with high probability. Hence it solves the above challenge, and achieves a lower complexity upper bound than existing efficient UCB-based algorithms in general combinatorial pure exploration. As for pure exploration of classic multi-armed bandit, we show that TS-Explore achieves an asymptotically optimal complexity upper bound." 1416,Piecewise Linear Neural Networks and Deep Learning,"As a powerful modelling method, PieceWise Linear Neural Networks (PWLNNs) have proven successful in various fields, most recently in deep learning. To apply PWLNN methods, both the representation and the learning have long been studied. In 1977, the canonical representation pioneered the works of shallow PWLNNs learned by incremental designs, but the applications to large-scale data were prohibited. In 2010, the Rectified Linear Unit (ReLU) advocated the prevalence of PWLNNs in deep learning. Ever since, PWLNNs have been successfully applied to extensive tasks and achieved advantageous performances. In this Primer, we systematically introduce the methodology of PWLNNs by grouping the works into shallow and deep networks. Firstly, different PWLNN representation models are constructed with elaborated examples. With PWLNNs, the evolution of learning algorithms for data is presented and fundamental theoretical analysis follows up for in-depth understandings. Then, representative applications are introduced together with discussions and outlooks." 1417,Beyond Real-world Benchmark Datasets: An Empirical Study of Node Classification with GNNs,"Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research." 1418,Certified Graph Unlearning,"Graph-structured data is ubiquitous in practice and often processed using graph neural networks (GNNs). With the adoption of recent laws ensuring the ``right to be forgotten'', the problem of graph data removal has become of significant importance. To address the problem, we introduce the first known framework for \emph{certified graph unlearning} of GNNs. In contrast to standard machine unlearning, new analytical and heuristic unlearning challenges arise when dealing with complex graph data. First, three different types of unlearning requests need to be considered, including node feature, edge and node unlearning. Second, to establish provable performance guarantees, one needs to address challenges associated with feature mixing during propagation. The underlying analysis is illustrated on the example of simple graph convolutions (SGC) and their generalized PageRank (GPR) extensions, thereby laying the theoretical foundation for certified unlearning of GNNs. Our empirical studies on six benchmark datasets demonstrate excellent performance-complexity trade-offs when compared to complete retraining methods and approaches that do not leverage graph information. For example, when unlearning $20\%$ of the nodes on the Cora dataset, our approach suffers only a $0.1\%$ loss in test accuracy while offering a $4$-fold speed-up compared to complete retraining. Our scheme also outperforms unlearning methods that do not leverage graph information with a $12\%$ increase in test accuracy for a comparable time complexity." 1419,Provable Generalization of Overparameterized Meta-learning Trained with SGD,"Despite the superior empirical success of deep meta-learning, theoretical understanding of overparameterized meta-learning is still limited. This paper studies the generalization of a widely used meta-learning approach, Model-Agnostic Meta-Learning (MAML), which aims to find a good initialization for fast adaptation to new tasks. Under a mixed linear regression model, we analyze the generalization properties of MAML trained with SGD in the overparameterized regime. We provide both upper and lower bounds for the excess risk of MAML, which captures how SGD dynamics affect these generalization bounds. With such sharp characterizations, we further explore how various learning parameters impact the generalization capability of overparameterized MAML, including explicitly identifying typical data and task distributions that can achieve diminishing generalization error with overparameterization, and characterizing the impact of adaptation learning rate on both excess risk and the early stopping time. Our theoretical findings are further validated by experiments." 1420,Replacing Labeled Real-image Datasets with Auto-generated Contours,"In the present work, we show that the performance of formula-driven supervised learning (FDSL) can match or even exceed that of ImageNet-21k without the use of real images, human-, and self-supervision during the pre-training of Vision Transformers (ViTs). For example, ViT-Base pre-trained on ImageNet-21k shows 81.8% top-1 accuracy when fine-tuned on ImageNet-1k and FDSL shows 82.7% top-1 accuracy when pre-trained under the same conditions (number of images, hyperparameters, and number of epochs). Images generated by formulas avoid the privacy/copyright issues, labeling cost and errors, and biases that real images suffer from, and thus have tremendous potential for pre-training general models. To understand the performance of the synthetic images, we tested two hypotheses, namely (i) object contours are what matter in FDSL datasets and (ii) increased number of parameters to create labels affects performance improvement in FDSL pre-training. To test the former hypothesis, we constructed a dataset that consisted of simple object contour combinations. We found that this dataset can match the performance of fractals. For the latter hypothesis, we found that increasing the difficulty of the pre-training task generally leads to better fine-tuning accuracy." 1421,Tackling Spoofing-Aware Speaker Verification with Multi-Model Fusion,"Recent years have witnessed the extraordinary development of automatic speaker verification (ASV). However, previous works show that state-of-the-art ASV models are seriously vulnerable to voice spoofing attacks, and the recently proposed high-performance spoofing countermeasure (CM) models only focus solely on the standalone anti-spoofing tasks, and ignore the subsequent speaker verification process. How to integrate the CM and ASV together remains an open question. A spoofing aware speaker verification (SASV) challenge has recently taken place with the argument that better performance can be delivered when both CM and ASV subsystems are optimized jointly. Under the challenge's scenario, the integrated systems proposed by the participants are required to reject both impostor speakers and spoofing attacks from target speakers, which intuitively and effectively matches the expectation of a reliable, spoofing-robust ASV system. This work focuses on fusion-based SASV solutions and proposes a multi-model fusion framework to leverage the power of multiple state-of-the-art ASV and CM models. The proposed framework vastly improves the SASV-EER from 8.75% to 1.17\%, which is 86% relative improvement compared to the best baseline system in the SASV challenge." 1422,Deep Inverse Reinforcement Learning for Route Choice Modeling,"Route choice modeling, i.e., the process of estimating the likely path that individuals follow during their journeys, is a fundamental task in transportation planning and demand forecasting. Classical methods generally adopt the discrete choice model (DCM) framework with linear utility functions and high-level route characteristics. While several recent studies have started to explore the applicability of deep learning for travel choice modeling, they are all path-based with relatively simple model architectures and cannot take advantage of detailed link-level features. Existing link-based models, while theoretically promising, are generally not as scalable or flexible enough to account for the destination characteristics. To address these issues, this study proposes a general deep inverse reinforcement learning (IRL) framework for link-based route choice modeling, which is capable of incorporating high-dimensional features and capturing complex relationships. Specifically, we adapt an adversarial IRL model to the route choice problem for efficient estimation of destination-dependent reward and policy functions. Experiment results based on taxi GPS data from Shanghai, China validate the improved performance of the proposed model over conventional DCMs and other imitation learning baselines, even for destinations unseen in the training data. We also demonstrate the model interpretability using explainable AI techniques. The proposed methodology provides a new direction for future development of route choice models. It is general and should be adaptable to other route choice problems across different modes and networks." 1423,Nonparametric Multi-shape Modeling with Uncertainty Quantification,"The modeling and uncertainty quantification of closed curves is an important problem in the field of shape analysis, and can have significant ramifications for subsequent statistical tasks. Many of these tasks involve collections of closed curves, which often exhibit structural similarities at multiple levels. Modeling multiple closed curves in a way that efficiently incorporates such between-curve dependence remains a challenging problem. In this work, we propose and investigate a multiple-output (a.k.a. multi-output), multi-dimensional Gaussian process modeling framework. We illustrate the proposed methodological advances, and demonstrate the utility of meaningful uncertainty quantification, on several curve and shape-related tasks. This model-based approach not only addresses the problem of inference on closed curves (and their shapes) with kernel constructions, but also opens doors to nonparametric modeling of multi-level dependence for functional objects in general." 1424,Pursuit of a Discriminative Representation for Multiple Subspaces via Sequential Games,"We consider the problem of learning discriminative representations for data in a high-dimensional space with distribution supported on or around multiple low-dimensional linear subspaces. That is, we wish to compute a linear injective map of the data such that the features lie on multiple orthogonal subspaces. Instead of treating this learning problem using multiple PCAs, we cast it as a sequential game using the closed-loop transcription (CTRL) framework recently proposed for learning discriminative and generative representations for general low-dimensional submanifolds. We prove that the equilibrium solutions to the game indeed give correct representations. Our approach unifies classical methods of learning subspaces with modern deep learning practice, by showing that subspace learning problems may be provably solved using the modern toolkit of representation learning. In addition, our work provides the first theoretical justification for the CTRL framework, in the important case of linear subspaces. We support our theoretical findings with compelling empirical evidence. We also generalize the sequential game formulation to more general representation learning problems. Our code, including methods for easy reproduction of experimental results, is publically available on GitHub." 1425,NISPA: Neuro-Inspired Stability-Plasticity Adaptation for Continual Learning in Sparse Networks,"The goal of continual learning (CL) is to learn different tasks over time. The main desiderata associated with CL are to maintain performance on older tasks, leverage the latter to improve learning of future tasks, and to introduce minimal overhead in the training process (for instance, to not require a growing model or retraining). We propose the Neuro-Inspired Stability-Plasticity Adaptation (NISPA) architecture that addresses these desiderata through a sparse neural network with fixed density. NISPA forms stable paths to preserve learned knowledge from older tasks. Also, NISPA uses connection rewiring to create new plastic paths that reuse existing knowledge on novel tasks. Our extensive evaluation on EMNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets shows that NISPA significantly outperforms representative state-of-the-art continual learning baselines, and it uses up to ten times fewer learnable parameters compared to baselines. We also make the case that sparsity is an essential ingredient for continual learning. The NISPA code is available at https://github.com/BurakGurbuz97/NISPA." 1426,Bear the Query in Mind: Visual Grounding with Query-conditioned Convolution,"Visual grounding is a task that aims to locate a target object according to a natural language expression. As a multi-modal task, feature interaction between textual and visual inputs is vital. However, previous solutions mainly handle each modality independently before fusing them together, which does not take full advantage of relevant textual information while extracting visual features. To better leverage the textual-visual relationship in visual grounding, we propose a Query-conditioned Convolution Module (QCM) that extracts query-aware visual features by incorporating query information into the generation of convolutional kernels. With our proposed QCM, the downstream fusion module receives visual features that are more discriminative and focused on the desired object described in the expression, leading to more accurate predictions. Extensive experiments on three popular visual grounding datasets demonstrate that our method achieves state-of-the-art performance. In addition, the query-aware visual features are informative enough to achieve comparable performance to the latest methods when directly used for prediction without further multi-modal fusion." 1427,Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting,"Multivariate Time Series (MTS) forecasting plays a vital role in a wide range of applications. Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have become increasingly popular MTS forecasting methods. STGNNs jointly model the spatial and temporal patterns of MTS through graph neural networks and sequential models, significantly improving the prediction accuracy. But limited by model complexity, most STGNNs only consider short-term historical MTS data, such as data over the past one hour. However, the patterns of time series and the dependencies between them (i.e., the temporal and spatial patterns) need to be analyzed based on long-term historical MTS data. To address this issue, we propose a novel framework, in which STGNN is Enhanced by a scalable time series Pre-training model (STEP). Specifically, we design a pre-training model to efficiently learn temporal patterns from very long-term history time series (e.g., the past two weeks) and generate segment-level representations. These representations provide contextual information for short-term time series input to STGNNs and facilitate modeling dependencies between time series. Experiments on three public real-world datasets demonstrate that our framework is capable of significantly enhancing downstream STGNNs, and our pre-training model aptly captures temporal patterns." 1428,Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting,"We all depend on mobility, and vehicular transportation affects the daily lives of most of us. Thus, the ability to forecast the state of traffic in a road network is an important functionality and a challenging task. Traffic data is often obtained from sensors deployed in a road network. Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data, by modeling traffic data as a diffusion process. However, intuitively, traffic data encompasses two different kinds of hidden time series signals, namely the diffusion signals and inherent signals. Unfortunately, nearly all previous works coarsely consider traffic signals entirely as the outcome of the diffusion, while neglecting the inherent signals, which impacts model performance negatively. To improve modeling performance, we propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner, which encompasses a unique estimation gate and a residual decomposition mechanism. The separated signals can be handled subsequently by the diffusion and inherent modules separately. Further, we propose an instantiation of DSTF, Decoupled Dynamic Spatial-Temporal Graph Neural Network (D2STGNN), that captures spatial-temporal correlations and also features a dynamic graph learning module that targets the learning of the dynamic characteristics of traffic networks. Extensive experiments with four real-world traffic datasets demonstrate that the framework is capable of advancing the state-of-the-art." 1429,Fast and Provable Tensor Robust Principal Component Analysis via Scaled Gradient Descent,"An increasing number of data science and machine learning problems rely on computation with tensors, which better capture the multi-way relationships and interactions of data than matrices. When tapping into this critical advantage, a key challenge is to develop computationally efficient and provably correct algorithms for extracting useful information from tensor data that are simultaneously robust to corruptions and ill-conditioning. This paper tackles tensor robust principal component analysis (RPCA), which aims to recover a low-rank tensor from its observations contaminated by sparse corruptions, under the Tucker decomposition. To minimize the computation and memory footprints, we propose to directly recover the low-dimensional tensor factors -- starting from a tailored spectral initialization -- via scaled gradient descent (ScaledGD), coupled with an iteration-varying thresholding operation to adaptively remove the impact of corruptions. Theoretically, we establish that the proposed algorithm converges linearly to the true low-rank tensor at a constant rate that is independent with its condition number, as long as the level of corruptions is not too large. Empirically, we demonstrate that the proposed algorithm achieves better and more scalable performance than state-of-the-art matrix and tensor RPCA algorithms through synthetic experiments and real-world applications." 1430,Tree-Guided Rare Feature Selection and Logic Aggregation with Electronic Health Records Data,"Statistical learning with a large number of rare binary features is commonly encountered in analyzing electronic health records (EHR) data, especially in the modeling of disease onset with prior medical diagnoses and procedures. Dealing with the resulting highly sparse and large-scale binary feature matrix is notoriously challenging as conventional methods may suffer from a lack of power in testing and inconsistency in model fitting while machine learning methods may suffer from the inability of producing interpretable results or clinically-meaningful risk factors. To improve EHR-based modeling and utilize the natural hierarchical structure of disease classification, we propose a tree-guided feature selection and logic aggregation approach for large-scale regression with rare binary features, in which dimension reduction is achieved through not only a sparsity pursuit but also an aggregation promoter with the logic operator of ``or''. We convert the combinatorial problem into a convex linearly-constrained regularized estimation, which enables scalable computation with theoretical guarantees. In a suicide risk study with EHR data, our approach is able to select and aggregate prior mental health diagnoses as guided by the diagnosis hierarchy of the International Classification of Diseases. By balancing the rarity and specificity of the EHR diagnosis records, our strategy improves both prediction and model interpretation. We identify important higher-level categories and subcategories of mental health conditions and simultaneously determine the level of specificity needed for each of them in predicting suicide risk." 1431,Score-Guided Intermediate Layer Optimization: Fast Langevin Mixing for Inverse Problems,"We prove fast mixing and characterize the stationary distribution of the Langevin Algorithm for inverting random weighted DNN generators. This result extends the work of Hand and Voroninski from efficient inversion to efficient posterior sampling. In practice, to allow for increased expressivity, we propose to do posterior sampling in the latent space of a pre-trained generative model. To achieve that, we train a score-based model in the latent space of a StyleGAN-2 and we use it to solve inverse problems. Our framework, Score-Guided Intermediate Layer Optimization (SGILO), extends prior work by replacing the sparsity regularization with a generative prior in the intermediate layer. Experimentally, we obtain significant improvements over the previous state-of-the-art, especially in the low measurement regime." 1432,The Consistency of Adversarial Training for Binary Classification,"Robustness to adversarial perturbations is of paramount concern in modern machine learning. One of the state-of-the-art methods for training robust classifiers is adversarial training, which involves minimizing a supremum-based surrogate risk. The statistical consistency of surrogate risks is well understood in the context of standard machine learning, but not in the adversarial setting. In this paper, we characterize which supremum-based surrogates are consistent for distributions absolutely continuous with respect to Lebesgue measure in binary classification. Furthermore, we obtain quantitative bounds relating adversarial surrogate risks to the adversarial classification risk. Lastly, we discuss implications for the $\cH$-consistency of adversarial training." 1433,Existence and Minimax Theorems for Adversarial Surrogate Risks in Binary Classification,"Adversarial training is one of the most popular methods for training methods robust to adversarial attacks, however, it is not well-understood from a theoretical perspective. We prove and existence, regularity, and minimax theorems for adversarial surrogate risks. Our results explain some empirical observations on adversarial robustness from prior work and suggest new directions in algorithm development. Furthermore, our results extend previously known existence and minimax theorems for the adversarial classification risk to surrogate risks." 1434,Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation,"We consider a federated representation learning framework, where with the assistance of a central server, a group of $N$ distributed clients train collaboratively over their private data, for the representations (or embeddings) of a set of entities (e.g., users in a social network). Under this framework, for the key step of aggregating local embeddings trained at the clients in a private manner, we develop a secure embedding aggregation protocol named SecEA, which provides information-theoretical privacy guarantees for the set of entities and the corresponding embeddings at each client $simultaneously$, against a curious server and up to $T < N/2$ colluding clients. As the first step of SecEA, the federated learning system performs a private entity union, for each client to learn all the entities in the system without knowing which entities belong to which clients. In each aggregation round, the local embeddings are secretly shared among the clients using Lagrange interpolation, and then each client constructs coded queries to retrieve the aggregated embeddings for the intended entities. We perform comprehensive experiments on various representation learning tasks to evaluate the utility and efficiency of SecEA, and empirically demonstrate that compared with embedding aggregation protocols without (or with weaker) privacy guarantees, SecEA incurs negligible performance loss (within 5%); and the additional computation latency of SecEA diminishes for training deeper models on larger datasets." 1435,Fair Generalized Linear Models with a Convex Penalty,"Despite recent advances in algorithmic fairness, methodologies for achieving fairness with generalized linear models (GLMs) have yet to be explored in general, despite GLMs being widely used in practice. In this paper we introduce two fairness criteria for GLMs based on equalizing expected outcomes or log-likelihoods. We prove that for GLMs both criteria can be achieved via a convex penalty term based solely on the linear components of the GLM, thus permitting efficient optimization. We also derive theoretical properties for the resulting fair GLM estimator. To empirically demonstrate the efficacy of the proposed fair GLM, we compare it with other well-known fair prediction methods on an extensive set of benchmark datasets for binary classification and regression. In addition, we demonstrate that the fair GLM can generate fair predictions for a range of response variables, other than binary and continuous outcomes." 1436,Comment on Transferability and Input Transformation with Additive Noise,"Adversarial attacks have verified the existence of the vulnerability of neural networks. By adding small perturbations to a benign example, adversarial attacks successfully generate adversarial examples that lead misclassification of deep learning models. More importantly, an adversarial example generated from a specific model can also deceive other models without modification. We call this phenomenon ``transferability"". Here, we analyze the relationship between transferability and input transformation with additive noise by mathematically proving that the modified optimization can produce more transferable adversarial examples." 1437,Weakly Supervised Classification of Vital Sign Alerts as Real or Artifact,"A significant proportion of clinical physiologic monitoring alarms are false. This often leads to alarm fatigue in clinical personnel, inevitably compromising patient safety. To combat this issue, researchers have attempted to build Machine Learning (ML) models capable of accurately adjudicating Vital Sign (VS) alerts raised at the bedside of hemodynamically monitored patients as real or artifact. Previous studies have utilized supervised ML techniques that require substantial amounts of hand-labeled data. However, manually harvesting such data can be costly, time-consuming, and mundane, and is a key factor limiting the widespread adoption of ML in healthcare (HC). Instead, we explore the use of multiple, individually imperfect heuristics to automatically assign probabilistic labels to unlabeled training data using weak supervision. Our weakly supervised models perform competitively with traditional supervised techniques and require less involvement from domain experts, demonstrating their use as efficient and practical alternatives to supervised learning in HC applications of ML." 1438,Adversarial Robustness is at Odds with Lazy Training,"Recent works show that random neural networks are vulnerable against adversarial attacks [Daniely and Schacham, 2020] and that such attacks can be easily found using a single step of gradient descent [Bubeck et al., 2021]. In this work, we take it one step further and show that a single gradient step can find adversarial examples for networks trained in the so-called lazy regime. This regime is interesting because even though the neural network weights remain close to the initialization, there exist networks with small generalization error, which can be found efficiently using first-order methods. Our work challenges the model of the lazy regime, the dominant regime in which neural networks are provably efficiently learnable. We show that the networks trained in this regime, even though they enjoy good theoretical computational guarantees, remain vulnerable to adversarial examples. To the best of our knowledge, this is the first work to prove that such well-generalizable neural networks are still vulnerable to adversarial attacks." 1439,Analysis & Computational Complexity Reduction of Monocular and Stereo Depth Estimation Techniques,"Accurate depth estimation with lowest compute and energy cost is a crucial requirement for unmanned and battery operated autonomous systems. Robotic applications require real time depth estimation for navigation and decision making under rapidly changing 3D surroundings. A high accuracy algorithm may provide the best depth estimation but may consume tremendous compute and energy resources. A general trade-off is to choose less accurate methods for initial depth estimate and a more accurate yet compute intensive method when needed. Previous work has shown this trade-off can be improved by developing a state-of-the-art method (AnyNet) to improve stereo depth estimation. We studied both the monocular and stereo vision depth estimation methods and investigated methods to reduce computational complexity of these methods. This was our baseline. Consequently, our experiments show reduction of monocular depth estimation model size by ~75% reduces accuracy by less than 2% (SSIM metric). Our experiments with the novel stereo vision method (AnyNet) show that accuracy of depth estimation does not degrade more than 3% (three pixel error metric) in spite of reduction in model size by ~20%. We have shown that smaller models can indeed perform competitively." 1440,Demystifying the Base and Novel Performances for Few-shot Class-incremental Learning,"Few-shot class-incremental learning (FSCIL) has addressed challenging real-world scenarios where unseen novel classes continually arrive with few samples. In these scenarios, it is required to develop a model that recognizes the novel classes without forgetting prior knowledge. In other words, FSCIL aims to maintain the base performance and improve the novel performance simultaneously. However, there is little study to investigate the two performances separately. In this paper, we first decompose the entire model into four types of parameters and demonstrate that the tendency of the two performances varies greatly with the updated parameters when the novel classes appear. Based on the analysis, we propose a simple method for FSCIL, coined as NoNPC, which uses normalized prototype classifiers without further training for incremental novel classes. It is shown that our straightforward method has comparable performance with the sophisticated state-of-the-art algorithms." 1441,Rotated Digit Recognition by Variational Autoencoders with Fixed Output Distributions,"This paper demonstrates that a simple modification of the variational autoencoder (VAE) formalism enables the method to identify and classify rotated and distorted digits. In particular, the conventional objective (cost) function employed during the training process of a VAE both quantifies the agreement between the input and output data records and ensures that the latent space representation of the input data record is statistically generated with an appropriate mean and standard deviation. After training, simulated data realizations are generated by decoding appropriate latent space points. Since, however, standard VAE:s trained on randomly rotated MNIST digits cannot reliably distinguish between different digit classes since the rotated input data is effectively compared to a similarly rotated output data record. In contrast, an alternative implementation in which the objective function compares the output associated with each rotated digit to a corresponding fixed unreferenced reference digit is shown here to discriminate accurately among the rotated digits in latent space even when the dimension of the latent space is 2 or 3." 1442,CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks,"Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating ""catastrophic forgetting"", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting." 1443,NASTAR: Noise Adaptive Speech Enhancement with Target-Conditional Resampling,"For deep learning-based speech enhancement (SE) systems, the training-test acoustic mismatch can cause notable performance degradation. To address the mismatch issue, numerous noise adaptation strategies have been derived. In this paper, we propose a novel method, called noise adaptive speech enhancement with target-conditional resampling (NASTAR), which reduces mismatches with only one sample (one-shot) of noisy speech in the target environment. NASTAR uses a feedback mechanism to simulate adaptive training data via a noise extractor and a retrieval model. The noise extractor estimates the target noise from the noisy speech, called pseudo-noise. The noise retrieval model retrieves relevant noise samples from a pool of noise signals according to the noisy speech, called relevant-cohort. The pseudo-noise and the relevant-cohort set are jointly sampled and mixed with the source speech corpus to prepare simulated training data for noise adaptation. Experimental results show that NASTAR can effectively use one noisy speech sample to adapt an SE model to a target condition. Moreover, both the noise extractor and the noise retrieval model contribute to model adaptation. To our best knowledge, NASTAR is the first work to perform one-shot noise adaptation through noise extraction and retrieval." 1444,"ScePT: Scene-consistent, Policy-based Trajectory Predictions for Planning","Trajectory prediction is a critical functionality of autonomous systems that share environments with uncontrolled agents, one prominent example being self-driving vehicles. Currently, most prediction methods do not enforce scene consistency, i.e., there are a substantial amount of self-collisions between predicted trajectories of different agents in the scene. Moreover, many approaches generate individual trajectory predictions per agent instead of joint trajectory predictions of the whole scene, which makes downstream planning difficult. In this work, we present ScePT, a policy planning-based trajectory prediction model that generates accurate, scene-consistent trajectory predictions suitable for autonomous system motion planning. It explicitly enforces scene consistency and learns an agent interaction policy that can be used for conditional prediction. Experiments on multiple real-world pedestrians and autonomous vehicle datasets show that ScePT} matches current state-of-the-art prediction accuracy with significantly improved scene consistency. We also demonstrate ScePT's ability to work with a downstream contingency planner." 1445,Learning the parameters of a differential equation from its trajectory via the adjoint equation,"The paper contributes to strengthening the relation between machine learning and the theory of differential equations. In this context, the inverse problem of fitting the parameters, and the initial condition of a differential equation to some measurements constitutes a key issue. The paper explores an abstraction that can be used to construct a family of loss functions with the aim of fitting the solution of an initial value problem to a set of discrete or continuous measurements. It is shown, that an extension of the adjoint equation can be used to derive the gradient of the loss function as a continuous analogue of backpropagation in machine learning. Numerical evidence is presented that under reasonably controlled circumstances the gradients obtained this way can be used in a gradient descent to fit the solution of an initial value problem to a set of continuous noisy measurements, and a set of discrete noisy measurements that are recorded at uncertain times." 1446,Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis,"Each year, expert-level performance is attained in increasingly-complex multiagent domains, notable examples including Go, Poker, and StarCraft II. This rapid progression is accompanied by a commensurate need to better understand how such agents attain this performance, to enable their safe deployment, identify limitations, and reveal potential means of improving them. In this paper we take a step back from performance-focused multiagent learning, and instead turn our attention towards agent behavior analysis. We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains, using variational inference to learn a hierarchy of behaviors at the joint and local agent levels. Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data. We illustrate the effectiveness of our method for enabling the coupled understanding of behaviors at the joint and local agent level, detection of behavior changepoints throughout training, discovery of core behavioral concepts (e.g., those that facilitate higher returns), and demonstrate the approach's scalability to a high-dimensional multiagent MuJoCo control domain." 1447,Riemannian CUR Decompositions for Robust Principal Component Analysis,"Robust Principal Component Analysis (PCA) has received massive attention in recent years. It aims to recover a low-rank matrix and a sparse matrix from their sum. This paper proposes a novel nonconvex Robust PCA algorithm, coined Riemannian CUR (RieCUR), which utilizes the ideas of Riemannian optimization and robust CUR decompositions. This algorithm has the same computational complexity as Iterated Robust CUR, which is currently state-of-the-art, but is more robust to outliers. RieCUR is also able to tolerate a significant amount of outliers, and is comparable to Accelerated Alternating Projections, which has high outlier tolerance but worse computational complexity than the proposed method. Thus, the proposed algorithm achieves state-of-the-art performance on Robust PCA both in terms of computational complexity and outlier tolerance." 1448,Accelerating Machine Learning Training Time for Limit Order Book Prediction,"Financial firms are interested in simulation to discover whether a given algorithm involving financial machine learning will operate profitably. While many versions of this type of algorithm have been published recently by researchers, the focus herein is on a particular machine learning training project due to the explainable nature and the availability of high frequency market data. For this task, hardware acceleration is expected to speed up the time required for the financial machine learning researcher to obtain the results. As the majority of the time can be spent in classifier training, there is interest in faster training steps. A published Limit Order Book algorithm for predicting stock market direction is our subject, and the machine learning training process can be time-intensive especially when considering the iterative nature of model development. To remedy this, we deploy Graphical Processing Units (GPUs) produced by NVIDIA available in the data center where the computer architecture is geared to parallel high-speed arithmetic operations. In the studied configuration, this leads to significantly faster training time allowing more efficient and extensive model development." 1449,Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach,"Large scale detectors consisting of a liquid scintillator (LS) target surrounded by an array of photo-multiplier tubes (PMT) are widely used in modern neutrino experiments: Borexino, KamLAND, Daya Bay, Double Chooz, RENO, and upcoming JUNO with its satellite detector TAO. Such apparatuses are able to measure neutrino energy, which can be derived from the amount of light and its spatial and temporal distribution over PMT-channels. However, achieving a fine energy resolution in large scale detectors is challenging. In this work, we present machine learning methods for energy reconstruction in JUNO, the most advanced detector of its type. We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO $-$ neutrinos originated from nuclear reactor cores and detected via an inverse beta-decay channel. We consider Boosted Decision Trees and Fully Connected Deep Neural Network trained on aggregated features, calculated using information collected by PMTs. We describe the details of our feature engineering procedure and show that machine learning models can provide energy resolution $\sigma = 3\%$ at 1 MeV using subsets of engineered features. The dataset for model training and testing is generated by the Monte Carlo method with the official JUNO software. Consideration of calibration sources for evaluation of the reconstruction algorithms performance on real data is also presented." 1450,Validation of Vector Data using Oblique Images,"Oblique images are aerial photographs taken at oblique angles to the earth's surface. Projections of vector and other geospatial data in these images depend on camera parameters, positions of the geospatial entities, surface terrain, occlusions, and visibility. This paper presents a robust and scalable algorithm to detect inconsistencies in vector data using oblique images. The algorithm uses image descriptors to encode the local appearance of a geospatial entity in images. These image descriptors combine color, pixel-intensity gradients, texture, and steerable filter responses. A Support Vector Machine classifier is trained to detect image descriptors that are not consistent with underlying vector data, digital elevation maps, building models, and camera parameters. In this paper, we train the classifier on visible road segments and non-road data. Thereafter, the trained classifier detects inconsistencies in vectors, which include both occluded and misaligned road segments. The consistent road segments validate our vector, DEM, and 3-D model data for those areas while inconsistent segments point out errors. We further show that a search for descriptors that are consistent with visible road segments in the neighborhood of a misaligned road yields the desired road alignment that is consistent with pixels in the image." 1451,AnyMorph: Learning Transferable Polices By Inferring Agent Morphology,"The prototypical approach to reinforcement learning involves training policies tailored to a particular agent from scratch for every new morphology. Recent work aims to eliminate the re-training of policies by investigating whether a morphology-agnostic policy, trained on a diverse set of agents with similar task objectives, can be transferred to new agents with unseen morphologies without re-training. This is a challenging problem that required previous approaches to use hand-designed descriptions of the new agent's morphology. Instead of hand-designing this description, we propose a data-driven method that learns a representation of morphology directly from the reinforcement learning objective. Ours is the first reinforcement learning algorithm that can train a policy to generalize to new agent morphologies without requiring a description of the agent's morphology in advance. We evaluate our approach on the standard benchmark for agent-agnostic control, and improve over the current state of the art in zero-shot generalization to new agents. Importantly, our method attains good performance without an explicit description of morphology." 1452,Stop Overcomplicating Selective Classification: Use Max-Logit,"We tackle the problem of Selective Classification where the goal is to achieve the best performance on the desired coverages of the dataset. Recent state-of-the-art selective methods come with architectural changes either via introducing a separate selection head or an extra abstention logit. In this paper, we present surprising results for Selective Classification by confirming that the superior performance of state-of-the-art methods is owed to training a more generalizable classifier; however, their selection mechanism is suboptimal. We argue that the selection mechanism should be rooted in the objective function instead of a separately calculated score. Accordingly, in this paper, we motivate an alternative selection strategy that is based on the cross entropy loss for the classification settings, namely, max of the logits. Our proposed selection strategy achieves better results by a significant margin, consistently, across all coverages and all datasets, without any additional computation. Finally, inspired by our superior selection mechanism, we propose to further regularize the objective function with entropy-minimization. Our proposed max-logit selection with the modified loss function achieves new state-of-the-art results for Selective Classification." 1453,Binary Early-Exit Network for Adaptive Inference on Low-Resource Devices,"Deep neural networks have significantly improved performance on a range of tasks with the increasing demand for computational resources, leaving deployment on low-resource devices (with limited memory and battery power) infeasible. Binary neural networks (BNNs) tackle the issue to an extent with extreme compression and speed-up gains compared to real-valued models. We propose a simple but effective method to accelerate inference through unifying BNNs with an early-exiting strategy. Our approach allows simple instances to exit early based on a decision threshold and utilizes output layers added to different intermediate layers to avoid executing the entire binary model. We extensively evaluate our method on three audio classification tasks and across four BNNs architectures. Our method demonstrates favorable quality-efficiency trade-offs while being controllable with an entropy-based threshold specified by the system user. It also results in better speed-ups (latency less than 6ms) with a single model based on existing BNN architectures without retraining for different efficiency levels. It also provides a straightforward way to estimate sample difficulty and better understanding of uncertainty around certain classes within the dataset." 1454,Landscape Learning for Neural Network Inversion,"Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction." 1455,Designing MacPherson Suspension Architectures using Bayesian Optimization,"Engineering design is traditionally performed by hand: an expert makes design proposals based on past experience, and these proposals are then tested for compliance with certain target specifications. Testing for compliance is performed first by computer simulation using what is called a discipline model. Such a model can be implemented by a finite element analysis, multibody systems approach, etc. Designs passing this simulation are then considered for physical prototyping. The overall process may take months, and is a significant cost in practice. We have developed a Bayesian optimization system for partially automating this process by directly optimizing compliance with the target specification with respect to the design parameters. The proposed method is a general framework for computing a generalized inverse of a high-dimensional non-linear function that does not require e.g. gradient information, which is often unavailable from discipline models. We furthermore develop a two-tier convergence criterion based on (i) convergence to a solution optimally satisfying all specified design criteria, or (ii) convergence to a minimum-norm solution. We demonstrate the proposed approach on a vehicle chassis design problem motivated by an industry setting using a state-of-the-art commercial discipline model. We show that the proposed approach is general, scalable, and efficient, and that the novel convergence criteria can be implemented straightforwardly based on existing concepts and subroutines in popular Bayesian optimization software packages." 1456,Conditional Permutation Invariant Flows,"We present a novel, conditional generative probabilistic model of set-valued data with a tractable log density. This model is a continuous normalizing flow governed by permutation equivariant dynamics. These dynamics are driven by a learnable per-set-element term and pairwise interactions, both parametrized by deep neural networks. We illustrate the utility of this model via applications including (1) complex traffic scene generation conditioned on visually specified map information, and (2) object bounding box generation conditioned directly on images. We train our model by maximizing the expected likelihood of labeled conditional data under our flow, with the aid of a penalty that ensures the dynamics are smooth and hence efficiently solvable. Our method significantly outperforms non-permutation invariant baselines in terms of log likelihood and domain-specific metrics (offroad, collision, and combined infractions), yielding realistic samples that are difficult to distinguish from real data." 1457,Path-Gradient Estimators for Continuous Normalizing Flows,"Recent work has established a path-gradient estimator for simple variational Gaussian distributions and has argued that the path-gradient is particularly beneficial in the regime in which the variational distribution approaches the exact target distribution. In many applications, this regime can however not be reached by a simple Gaussian variational distribution. In this work, we overcome this crucial limitation by proposing a path-gradient estimator for the considerably more expressive variational family of continuous normalizing flows. We outline an efficient algorithm to calculate this estimator and establish its superior performance empirically." 1458,Diffusion models as plug-and-play priors,"We consider the problem of inferring high-dimensional data $\mathbf{x}$ in a model that consists of a prior $p(\mathbf{x})$ and an auxiliary constraint $c(\mathbf{x},\mathbf{y})$. In this paper, the prior is an independently trained denoising diffusion generative model. The auxiliary constraint is expected to have a differentiable form, but can come from diverse sources. The possibility of such inference turns diffusion models into plug-and-play modules, thereby allowing a range of potential applications in adapting models to new domains and tasks, such as conditional generation or image segmentation. The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise at each step. Considering many noised versions of $\mathbf{x}$ in evaluation of its fitness is a novel search mechanism that may lead to new algorithms for solving combinatorial optimization problems." 1459,LIMO: Latent Inceptionism for Targeted Molecule Generation,"Generation of drug-like molecules with high binding affinity to target proteins remains a difficult and resource-intensive task in drug discovery. Existing approaches primarily employ reinforcement learning, Markov sampling, or deep generative models guided by Gaussian processes, which can be prohibitively slow when generating molecules with high binding affinity calculated by computationally-expensive physics-based methods. We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique. LIMO employs a variational autoencoder-generated latent space and property prediction by two neural networks in sequence to enable faster gradient-based reverse-optimization of molecular properties. Comprehensive experiments show that LIMO performs competitively on benchmark tasks and markedly outperforms state-of-the-art techniques on the novel task of generating drug-like compounds with high binding affinity, reaching nanomolar range against two protein targets. We corroborate these docking-based results with more accurate molecular dynamics-based calculations of absolute binding free energy and show that one of our generated drug-like compounds has a predicted $K_D$ (a measure of binding affinity) of $6 \cdot 10^{-14}$ M against the human estrogen receptor, well beyond the affinities of typical early-stage drug candidates and most FDA-approved drugs to their respective targets. Code is available at https://github.com/Rose-STL-Lab/LIMO." 1460,Towards Efficient Active Learning of PDFA,"We propose a new active learning algorithm for PDFA based on three main aspects: a congruence over states which takes into account next-symbol probability distributions, a quantization that copes with differences in distributions, and an efficient tree-based data structure. Experiments showed significant performance gains with respect to reference implementations." 1461,Cluster Generation via Deep Energy-Based Model,"We present a new approach for the generation of stable structures of nanoclusters using deep learning methods. Our method consists in constructing an artificial potential energy surface, with local minima corresponding to the most stable structures and which is much smoother than ""real"" potential in the intermediate regions of the configuration space. To build the surface, graph convolutional networks are used. The method can extrapolates the potential surface to cases of structures with larger number of atoms than was used in training. Thus, having a sufficient number of low-energy structures in the training set, the method allows to generate new candidates for the ground-state structures, including ones with larger number of atoms. We applied the approach to silica clusters $(SiO_2)_n$ and for the first time found the stable structures with n=28...51. The method is universal and does not depend on the atomic composition and number of atoms." 1462,A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting,"Probabilistic forecasting is receiving growing attention nowadays in a variety of applied fields, including hydrology. Several machine learning concepts and methods are notably relevant to formalizing and optimizing probabilistic forecasting implementations by addressing the relevant challenges. Nonetheless, practically-oriented reviews focusing on such concepts and methods are currently missing from the probabilistic hydrological forecasting literature. This absence holds despite the pronounced intensification in the research efforts for benefitting from machine learning in this same literature, and despite the substantial relevant progress that has recently emerged, especially in the field of probabilistic hydrological post-processing, which traditionally provides the hydrologists with probabilistic hydrological forecasting implementations. Herein, we aim to fill this specific gap. In our review, we emphasize key ideas and information that can lead to effective popularizations of the studied concepts and methods, as such an emphasis can support successful future implementations and further scientific developments in the field. In the same forward-looking direction, we identify open research questions and propose ideas to be explored in the future." 1463,Robust Group Synchronization via Quadratic Programming,"We propose a novel quadratic programming formulation for estimating the corruption levels in group synchronization, and use these estimates to solve this problem. Our objective function exploits the cycle consistency of the group and we thus refer to our method as detection and estimation of structural consistency (DESC). This general framework can be extended to other algebraic and geometric structures. Our formulation has the following advantages: it can tolerate corruption as high as the information-theoretic bound, it does not require a good initialization for the estimates of group elements, it has a simple interpretation, and under some mild conditions the global minimum of our objective function exactly recovers the corruption levels. We demonstrate the competitive accuracy of our approach on both synthetic and real data experiments of rotation averaging." 1464,StaDRe and StaDRo: Reliability and Robustness Estimation of ML-based Forecasting using Statistical Distance Measures,"Reliability estimation of Machine Learning (ML) models is becoming a crucial subject. This is particularly the case when such \mbox{models} are deployed in safety-critical applications, as the decisions based on model predictions can result in hazardous situations. In this regard, recent research has proposed methods to achieve safe, \mbox{dependable}, and reliable ML systems. One such method consists of detecting and analyzing distributional shift, and then measuring how such systems respond to these shifts. This was proposed in earlier work in SafeML. This work focuses on the use of SafeML for time series data, and on reliability and robustness estimation of ML-forecasting methods using statistical distance measures. To this end, distance measures based on the Empirical Cumulative Distribution Function (ECDF) proposed in SafeML are explored to measure Statistical-Distance Dissimilarity (SDD) across time series. We then propose SDD-based Reliability Estimate (StaDRe) and SDD-based Robustness (StaDRo) measures. With the help of a clustering technique, the similarity between the statistical properties of data seen during training and the forecasts is identified. The proposed method is capable of providing a link between dataset SDD and Key Performance Indicators (KPIs) of the ML models." 1465,Multi-scale Super-resolution Magnetic Resonance Spectroscopic Imaging with Adjustable Sharpness,"Magnetic Resonance Spectroscopic Imaging (MRSI) is a valuable tool for studying metabolic activities in the human body, but the current applications are limited to low spatial resolutions. The existing deep learning-based MRSI super-resolution methods require training a separate network for each upscaling factor, which is time-consuming and memory inefficient. We tackle this multi-scale super-resolution problem using a Filter Scaling strategy that modulates the convolution filters based on the upscaling factor, such that a single network can be used for various upscaling factors. Observing that each metabolite has distinct spatial characteristics, we also modulate the network based on the specific metabolite. Furthermore, our network is conditioned on the weight of adversarial loss so that the perceptual sharpness of the super-resolved metabolic maps can be adjusted within a single network. We incorporate these network conditionings using a novel Multi-Conditional Module. The experiments were carried out on a 1H-MRSI dataset from 15 high-grade glioma patients. Results indicate that the proposed network achieves the best performance among several multi-scale super-resolution methods and can provide super-resolved metabolic maps with adjustable sharpness." 1466,"ck-means, a novel unsupervised learning method that combines fuzzy and crispy clustering methods to extract intersecting data","Clustering data is a popular feature in the field of unsupervised machine learning. Most algorithms aim to find the best method to extract consistent clusters of data, but very few of them intend to cluster data that share the same intersections between two features or more. This paper proposes a method to do so. The main idea of this novel method is to generate fuzzy clusters of data using a Fuzzy C-Means (FCM) algorithm. The second part involves applying a filter that selects a range of minimum and maximum membership values, emphasizing the border data. A {\mu} parameter defines the amplitude of this range. It finally applies a k-means algorithm using the membership values generated by the FCM. Naturally, the data having similar membership values will regroup in a new crispy cluster. The algorithm is also able to find the optimal number of clusters for the FCM and the k-means algorithm, according to the consistency of the clusters given by the Silhouette Index (SI). The result is a list of data and clusters that regroup data sharing the same intersection, intersecting two features or more. ck-means allows extracting the very similar data that does not naturally fall in the same cluster but at the intersection of two clusters or more. The algorithm also always finds itself the optimal number of clusters." 1467,Explainable Global Error Weighted on Feature Importance: The xGEWFI metric to evaluate the error of data imputation and data augmentation,"Evaluating the performance of an algorithm is crucial. Evaluating the performance of data imputation and data augmentation can be similar since both generated data can be compared with an original distribution. Although, the typical evaluation metrics have the same flaw: They calculate the feature's error and the global error on the generated data without weighting the error with the feature importance. The result can be good if all of the feature's importance is similar. However, in most cases, the importance of the features is imbalanced, and it can induce an important bias on the features and global errors. This paper proposes a novel metric named ""Explainable Global Error Weighted on Feature Importance""(xGEWFI). This new metric is tested in a whole preprocessing method that 1. detects the outliers and replaces them with a null value. 2. imputes the data missing, and 3. augments the data. At the end of the process, the xGEWFI error is calculated. The distribution error between the original and generated data is calculated using a Kolmogorov-Smirnov test (KS test) for each feature. Those results are multiplied by the importance of the respective features, calculated using a Random Forest (RF) algorithm. The metric result is expressed in an explainable format, aiming for an ethical AI." 1468,DPDR: A novel machine learning method for the Decision Process for Dimensionality Reduction,"This paper discusses the critical decision process of extracting or selecting the features in a supervised learning context. It is often confusing to find a suitable method to reduce dimensionality. There are pros and cons to deciding between a feature selection and feature extraction according to the data's nature and the user's preferences. Indeed, the user may want to emphasize the results toward integrity or interpretability and a specific data resolution. This paper proposes a new method to choose the best dimensionality reduction method in a supervised learning context. It also helps to drop or reconstruct the features until a target resolution is reached. This target resolution can be user-defined, or it can be automatically defined by the method. The method applies a regression or a classification, evaluates the results, and gives a diagnosis about the best dimensionality reduction process in this specific supervised learning context. The main algorithms used are the Random Forest algorithms (RF), the Principal Component Analysis (PCA) algorithm, and the multilayer perceptron (MLP) neural network algorithm. Six use cases are presented, and every one is based on some well-known technique to generate synthetic data. This research discusses each choice that can be made in the process, aiming to clarify the issues about the entire decision process of selecting or extracting the features." 1469,Shallow and Deep Nonparametric Convolutions for Gaussian Processes,"A key challenge in the practical application of Gaussian processes (GPs) is selecting a proper covariance function. The moving average, or process convolutions, construction of GPs allows some additional flexibility, but still requires choosing a proper smoothing kernel, which is non-trivial. Previous approaches have built covariance functions by using GP priors over the smoothing kernel, and by extension the covariance, as a way to bypass the need to specify it in advance. However, such models have been limited in several ways: they are restricted to single dimensional inputs, e.g. time; they only allow modelling of single outputs and they do not scale to large datasets since inference is not straightforward. In this paper, we introduce a nonparametric process convolution formulation for GPs that alleviates these weaknesses by using a functional sampling approach based on Matheron's rule to perform fast sampling using interdomain inducing variables. Furthermore, we propose a composition of these nonparametric convolutions that serves as an alternative to classic deep GP models, and allows the covariance functions of the intermediate layers to be inferred from the data. We test the performance of our model on benchmarks for single output GPs, multiple output GPs and deep GPs and find that in many cases our approach can provide improvements over standard GP models." 1470,Random Forest of Epidemiological Models for Influenza Forecasting,"Forecasting the hospitalizations caused by the Influenza virus is vital for public health planning so that hospitals can be better prepared for an influx of patients. Many forecasting methods have been used in real-time during the Influenza seasons and submitted to the CDC for public communication. The forecasting models range from mechanistic models, and auto-regression models to machine learning models. We hypothesize that we can improve forecasting by using multiple mechanistic models to produce potential trajectories and use machine learning to learn how to combine those trajectories into an improved forecast. We propose a Tree Ensemble model design that utilizes the individual predictors of our baseline model SIkJalpha to improve its performance. Each predictor is generated by changing a set of hyper-parameters. We compare our prospective forecasts deployed for the FluSight challenge (2022) to all the other submitted approaches. Our approach is fully automated and does not require any manual tuning. We demonstrate that our Random Forest-based approach is able to improve upon the forecasts of the individual predictors in terms of mean absolute error, coverage, and weighted interval score. Our method outperforms all other models in terms of the mean absolute error and the weighted interval score based on the mean across all weekly submissions in the current season (2022). Explainability of the Random Forest (through analysis of the trees) enables us to gain insights into how it improves upon the individual predictors." 1471,Actionable Guidance for High-Consequence AI Risk Management: Towards Standards Addressing AI Catastrophic Risks,"Artificial intelligence (AI) systems can provide many beneficial capabilities but also risks of adverse events. Some AI systems could present risks of events with very high or catastrophic consequences at societal scale. The US National Institute of Standards and Technology (NIST) is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management for AI developers and others. For addressing risks of events with catastrophic consequences, NIST indicated a need to translate from high level principles to actionable risk management guidance. In this document, we provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences, intended as a risk management practices resource for NIST for AI RMF version 1.0 (scheduled for release in early 2023), or for AI RMF users, or for other AI risk management guidance and standards as appropriate. We also provide our methodology for our recommendations. We provide actionable-guidance recommendations for AI RMF 1.0 on: identifying risks from potential unintended uses and misuses of AI systems; including catastrophic-risk factors within the scope of risk assessments and impact assessments; identifying and mitigating human rights harms; and reporting information on AI risk factors including catastrophic-risk factors. In addition, we provide recommendations on additional issues for a roadmap for later versions of the AI RMF or supplementary publications. These include: providing an AI RMF Profile with supplementary guidance for cutting-edge increasingly multi-purpose or general-purpose AI. We aim for this work to be a concrete risk-management practices contribution, and to stimulate constructive dialogue on how to address catastrophic risks and associated issues in AI standards." 1472,Transformer Neural Networks Attending to Both Sequence and Structure for Protein Prediction Tasks,"The increasing number of protein sequences decoded from genomes is opening up new avenues of research on linking protein sequence to function with transformer neural networks. Recent research has shown that the number of known protein sequences supports learning useful, task-agnostic sequence representations via transformers. In this paper, we posit that learning joint sequence-structure representations yields better representations for function-related prediction tasks. We propose a transformer neural network that attends to both sequence and tertiary structure. We show that such joint representations are more powerful than sequence-based representations only, and they yield better performance on superfamily membership across various metrics." 1473,Design of Multi-model Linear Inferential Sensors with SVM-based Switching Logic,"We study the problem of data-based design of multi-model linear inferential (soft) sensors. The multi-model linear inferential sensors promise increased prediction accuracy yet simplicity of the model structure and training. The standard approach to the multi-model inferential sensor design consists in three separate steps: 1) data labeling (establishing training subsets for individual models), 2) data classification (creating a switching logic for the models), and 3) training of individual models. There are two main issues with this concept: a) as steps 2) & 3) are separate, discontinuities can occur when switching between the models; b) as steps 1) & 3) are separate, data labelling disregards the quality of the resulting model. Our contribution aims at both the mentioned problems, where, for the problem a), we introduce a novel SVM-based model training coupled with switching logic identification and, for the problem b), we propose a direct optimization of data labelling. We illustrate the proposed methodology and its benefits on an example from the chemical engineering domain." 1474,Intra-Instance VICReg: Bag of Self-Supervised Image Patch Embedding,"Recently, self-supervised learning (SSL) has achieved tremendous empirical advancements in learning image representation. However, our understanding and knowledge of the representation are still limited. This work shows that the success of the SOTA siamese-network-based SSL approaches is primarily based on learning a representation of image patches. Particularly, we show that when we learn a representation only for fixed-scale image patches and aggregate different patch representations linearly for an image (instance), it can achieve on par or even better results than the baseline methods on several benchmarks. Further, we show that the patch representation aggregation can also improve various SOTA baseline methods by a large margin. We also establish a formal connection between the SSL objective and the image patches co-occurrence statistics modeling, which supplements the prevailing invariance perspective. By visualizing the nearest neighbors of different image patches in the embedding space and projection space, we show that while the projection has more invariance, the embedding space tends to preserve more equivariance and locality. Finally, we propose a hypothesis for the future direction based on the discovery of this work." 1475,The Impact of Variable Ordering on Bayesian Network Structure Learning,"Causal Bayesian Networks provide an important tool for reasoning under uncertainty with potential application to many complex causal systems. Structure learning algorithms that can tell us something about the causal structure of these systems are becoming increasingly important. In the literature, the validity of these algorithms is often tested for sensitivity over varying sample sizes, hyper-parameters, and occasionally objective functions. In this paper, we show that the order in which the variables are read from data can have much greater impact on the accuracy of the algorithm than these factors. Because the variable ordering is arbitrary, any significant effect it has on learnt graph accuracy is concerning, and this raises questions about the validity of the results produced by algorithms that are sensitive to, but have not been assessed against, different variable orderings." 1476,Photoelectric Factor Prediction Using Automated Learning and Uncertainty Quantification,"The photoelectric factor (PEF) is an important well logging tool to distinguish between different types of reservoir rocks because PEF measurement is sensitive to elements with high atomic number. Furthermore, the ratio of rock minerals could be determined by combining PEF log with other well logs. However, PEF log could be missing in some cases such as in old well logs and wells drilled with barite-based mud. Therefore, developing models for estimating missing PEF log is essential in those circumstances. In this work, we developed various machine learning models to predict PEF values using the following well logs as inputs: bulk density (RHOB), neutron porosity (NPHI), gamma ray (GR), compressional and shear velocity. The predictions of PEF values using adaptive-network-fuzzy inference system (ANFIS) and artificial neural network (ANN) models have errors of about 16% and 14% average absolute percentage error (AAPE) in the testing dataset, respectively. Thus, a different approach was proposed that is based on the concept of automated machine learning. It works by automatically searching for the optimal model type and optimizes its hyperparameters for the dataset under investigation. This approach selected a Gaussian process regression (GPR) model for accurate estimation of PEF values. The developed GPR model decreases the AAPE of the predicted PEF values in the testing dataset to about 10% AAPE. This error could be further decreased to about 2% by modeling the potential noise in the measurements using the GPR model." 1477,Score-based Generative Models for Calorimeter Shower Simulation,"Score-based generative models are a new class of generative algorithms that have been shown to produce realistic images even in high dimensional spaces, currently surpassing other state-of-the-art models for different benchmark categories and applications. In this work we introduce CaloScore, a score-based generative model for collider physics applied to calorimeter shower generation. Three different diffusion models are investigated using the Fast Calorimeter Simulation Challenge 2022 dataset. CaloScore is the first application of a score-based generative model in collider physics and is able to produce high-fidelity calorimeter images for all datasets, providing an alternative paradigm for calorimeter shower simulation." 1478,Learning a Single Neuron with Adversarial Label Noise via Gradient Descent,"We study the fundamental problem of learning a single neuron, i.e., a function of the form $\mathbf{x}\mapsto\sigma(\mathbf{w}\cdot\mathbf{x})$ for monotone activations $\sigma:\mathbb{R}\mapsto\mathbb{R}$, with respect to the $L_2^2$-loss in the presence of adversarial label noise. Specifically, we are given labeled examples from a distribution $D$ on $(\mathbf{x}, y)\in\mathbb{R}^d \times \mathbb{R}$ such that there exists $\mathbf{w}^\ast\in\mathbb{R}^d$ achieving $F(\mathbf{w}^\ast)=\epsilon$, where $F(\mathbf{w})=\mathbf{E}_{(\mathbf{x},y)\sim D}[(\sigma(\mathbf{w}\cdot \mathbf{x})-y)^2]$. The goal of the learner is to output a hypothesis vector $\mathbf{w}$ such that $F(\mathbb{w})=C\, \epsilon$ with high probability, where $C>1$ is a universal constant. As our main contribution, we give efficient constant-factor approximate learners for a broad class of distributions (including log-concave distributions) and activation functions. Concretely, for the class of isotropic log-concave distributions, we obtain the following important corollaries: For the logistic activation, we obtain the first polynomial-time constant factor approximation (even under the Gaussian distribution). Our algorithm has sample complexity $\widetilde{O}(d/\epsilon)$, which is tight within polylogarithmic factors. For the ReLU activation, we give an efficient algorithm with sample complexity $\tilde{O}(d\, \polylog(1/\epsilon))$. Prior to our work, the best known constant-factor approximate learner had sample complexity $\tilde{\Omega}(d/\epsilon)$. In both of these settings, our algorithms are simple, performing gradient-descent on the (regularized) $L_2^2$-loss. The correctness of our algorithms relies on novel structural results that we establish, showing that (essentially all) stationary points of the underlying non-convex loss are approximately optimal." 1479,The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis,"Computational catalysis and machine learning communities have made considerable progress in developing machine learning models for catalyst discovery and design. Yet, a general machine learning potential that spans the chemical space of catalysis is still out of reach. A significant hurdle is obtaining access to training data across a wide range of materials. One important class of materials where data is lacking are oxides, which inhibits models from studying the Oxygen Evolution Reaction and oxide electrocatalysis more generally. To address this we developed the Open Catalyst 2022(OC22) dataset, consisting of 62,521 Density Functional Theory (DFT) relaxations (~9,884,504 single point calculations) across a range of oxide materials, coverages, and adsorbates (*H, *O, *N, *C, *OOH, *OH, *OH2, *O2, *CO). We define generalized tasks to predict the total system energy that are applicable across catalysis, develop baseline performance of several graph neural networks (SchNet, DimeNet++, ForceNet, SpinConv, PaiNN, GemNet-dT, GemNet-OC), and provide pre-defined dataset splits to establish clear benchmarks for future efforts. For all tasks, we study whether combining datasets leads to better results, even if they contain different materials or adsorbates. Specifically, we jointly train models on Open Catalyst 2020 (OC20) Dataset and OC22, or fine-tune pretrained OC20 models on OC22. In the most general task, GemNet-OC sees a ~32% improvement in energy predictions through fine-tuning and a ~9% improvement in force predictions via joint training. Surprisingly, joint training on both the OC20 and much smaller OC22 datasets also improves total energy predictions on OC20 by ~19%. The dataset and baseline models are open sourced, and a public leaderboard will follow to encourage continued community developments on the total energy tasks and data." 1480,SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning,"The cross section is one of the most important physical quantities in high-energy physics and the most time consuming to compute. While machine learning has proven to be highly successful in numerical calculations in high-energy physics, analytical calculations using machine learning are still in their infancy. In this work, we use a sequence-to-sequence transformer model to compute a key element of the cross section calculation, namely, the squared amplitude of an interaction. We show that a transformer model is able to predict correctly 89.0% and 99.4% of squared amplitudes of QCD and QED processes, respectively. We discuss the performance of the current model, its limitations and possible future directions for this work." 1481,Approximate Equivariance SO(3) Needlet Convolution,"This paper develops a rotation-invariant needlet convolution for rotation group SO(3) to distill multiscale information of spherical signals. The spherical needlet transform is generalized from $\mathbb{S}^2$ onto the SO(3) group, which decomposes a spherical signal to approximate and detailed spectral coefficients by a set of tight framelet operators. The spherical signal during the decomposition and reconstruction achieves rotation invariance. Based on needlet transforms, we form a Needlet approximate Equivariance Spherical CNN (NES) with multiple SO(3) needlet convolutional layers. The network establishes a powerful tool to extract geometric-invariant features of spherical signals. The model allows sufficient network scalability with multi-resolution representation. A robust signal embedding is learned with wavelet shrinkage activation function, which filters out redundant high-pass representation while maintaining approximate rotation invariance. The NES achieves state-of-the-art performance for quantum chemistry regression and Cosmic Microwave Background (CMB) delensing reconstruction, which shows great potential for solving scientific challenges with high-resolution and multi-scale spherical signal representation." 1482,Adapting the Linearised Laplace Model Evidence for Modern Deep Learning,"The linearised Laplace method for estimating model uncertainty has received renewed attention in the Bayesian deep learning community. The method provides reliable error bars and admits a closed-form expression for the model evidence, allowing for scalable selection of model hyperparameters. In this work, we examine the assumptions behind this method, particularly in conjunction with model selection. We show that these interact poorly with some now-standard tools of deep learning--stochastic approximation methods and normalisation layers--and make recommendations for how to better adapt this classic method to the modern setting. We provide theoretical support for our recommendations and validate them empirically on MLPs, classic CNNs, residual networks with and without normalisation layers, generative autoencoders and transformers." 1483,Popular decision tree algorithms are provably noise tolerant,"Using the framework of boosting, we prove that all impurity-based decision tree learning algorithms, including the classic ID3, C4.5, and CART, are highly noise tolerant. Our guarantees hold under the strongest noise model of nasty noise, and we provide near-matching upper and lower bounds on the allowable noise rate. We further show that these algorithms, which are simple and have long been central to everyday machine learning, enjoy provable guarantees in the noisy setting that are unmatched by existing algorithms in the theoretical literature on decision tree learning. Taken together, our results add to an ongoing line of research that seeks to place the empirical success of these practical decision tree algorithms on firm theoretical footing." 1484,Scaling multi-species occupancy models to large citizen science datasets,"Citizen science datasets can be very large and promise to improve species distribution modelling, but detection is imperfect, risking bias when fitting models. In particular, observers may not detect species that are actually present. Occupancy models can estimate and correct for this observation process, and multi-species occupancy models exploit similarities in the observation process, which can improve estimates for rare species. However, the computational methods currently used to fit these models do not scale to large datasets. We develop approximate Bayesian inference methods and use graphics processing units (GPUs) to scale multi-species occupancy models to very large citizen science data. We fit multi-species occupancy models to one month of data from the eBird project consisting of 186,811 checklist records comprising 430 bird species. We evaluate the predictions on a spatially separated test set of 59,338 records, comparing two different inference methods -- Markov chain Monte Carlo (MCMC) and variational inference (VI) -- to occupancy models fitted to each species separately using maximum likelihood. We fitted models to the entire dataset using VI, and up to 32,000 records with MCMC. VI fitted to the entire dataset performed best, outperforming single-species models on both AUC (90.4% compared to 88.7%) and on log likelihood (-0.080 compared to -0.085). We also evaluate how well range maps predicted by the model agree with expert maps. We find that modelling the detection process greatly improves agreement and that the resulting maps agree as closely with expert maps as ones estimated using high quality survey data. Our results demonstrate that multi-species occupancy models are a compelling approach to model large citizen science datasets, and that, once the observation process is taken into account, they can model species distributions accurately." 1485,"Representational Multiplicity Should Be Exposed, Not Eliminated","It is prevalent and well-observed, but poorly understood, that two machine learning models with similar performance during training can have very different real-world performance characteristics. This implies elusive differences in the internals of the models, manifesting as representational multiplicity (RM). We introduce a conceptual and experimental setup for analyzing RM and show that certain training methods systematically result in greater RM than others, measured by activation similarity via singular vector canonical correlation analysis (SVCCA). We further correlate it with predictive multiplicity measured by the variance in i.i.d. and out-of-distribution test set predictions, in four common image data sets. We call for systematic measurement and maximal exposure, not elimination, of RM in models. Qualitative tools such as our confabulator analysis can facilitate understanding and communication of RM effects to stakeholders." 1486,RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval,"Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on image retrieval tasks validate the robustness of our RetrievalGuard method." 1487,Lossy Compression with Gaussian Diffusion,"We describe a novel lossy compression approach called DiffC which is based on unconditional diffusion generative models. Unlike modern compression schemes which rely on transform coding and quantization to restrict the transmitted information, DiffC relies on the efficient communication of pixels corrupted by Gaussian noise. We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform, outperforming the state-of-the-art generative compression method HiFiC on ImageNet 64x64. DiffC only uses a single model to encode and denoise corrupted pixels at arbitrary bitrates. The approach further provides support for progressive coding, that is, decoding from partial bit streams. We perform a rate-distortion analysis to gain a deeper understanding of its performance, providing analytical results for multivariate Gaussian data as well as initial results for general distributions. Furthermore, we show that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at high bitrates." 1488,Fast Population-Based Reinforcement Learning on a Single Machine,"Training populations of agents has demonstrated great promise in Reinforcement Learning for stabilizing training, improving exploration and asymptotic performance, and generating a diverse set of solutions. However, population-based training is often not considered by practitioners as it is perceived to be either prohibitively slow (when implemented sequentially), or computationally expensive (if agents are trained in parallel on independent accelerators). In this work, we compare implementations and revisit previous studies to show that the judicious use of compilation and vectorization allows population-based training to be performed on a single machine with one accelerator with minimal overhead compared to training a single agent. We also show that, when provided with a few accelerators, our protocols extend to large population sizes for applications such as hyperparameter tuning. We hope that this work and the public release of our code will encourage practitioners to use population-based learning more frequently for their research and applications." 1489,Incorporating intratumoral heterogeneity into weakly-supervised deep learning models via variance pooling,"Supervised learning tasks such as cancer survival prediction from gigapixel whole slide images (WSIs) are a critical challenge in computational pathology that requires modeling complex features of the tumor microenvironment. These learning tasks are often solved with deep multi-instance learning (MIL) models that do not explicitly capture intratumoral heterogeneity. We develop a novel variance pooling architecture that enables a MIL model to incorporate intratumoral heterogeneity into its predictions. Two interpretability tools based on representative patches are illustrated to probe the biological signals captured by these models. An empirical study with 4,479 gigapixel WSIs from the Cancer Genome Atlas shows that adding variance pooling onto MIL frameworks improves survival prediction performance for five cancer types." 1490,CtrlFormer: Learning Transferable State Representation for Visual Control via Transformer,"Transformer has achieved great successes in learning vision and language representation, which is general across various downstream tasks. In visual control, learning transferable state representation that can transfer between different control tasks is important to reduce the training sample size. However, porting Transformer to sample-efficient visual control remains a challenging and unsolved problem. To this end, we propose a novel Control Transformer (CtrlFormer), possessing many appealing benefits that prior arts do not have. Firstly, CtrlFormer jointly learns self-attention mechanisms between visual tokens and policy tokens among different control tasks, where multitask representation can be learned and transferred without catastrophic forgetting. Secondly, we carefully design a contrastive reinforcement learning paradigm to train CtrlFormer, enabling it to achieve high sample efficiency, which is important in control problems. For example, in the DMControl benchmark, unlike recent advanced methods that failed by producing a zero score in the ""Cartpole"" task after transfer learning with 100k samples, CtrlFormer can achieve a state-of-the-art score with only 100k samples while maintaining the performance of previous tasks. The code and models are released in our project homepage." 1491,Improving Generalization of Metric Learning via Listwise Self-distillation,"Most deep metric learning (DML) methods employ a strategy that forces all positive samples to be close in the embedding space while keeping them away from negative ones. However, such a strategy ignores the internal relationships of positive (negative) samples and often leads to overfitting, especially in the presence of hard samples and mislabeled samples. In this work, we propose a simple yet effective regularization, namely Listwise Self-Distillation (LSD), which progressively distills a model's own knowledge to adaptively assign a more appropriate distance target to each sample pair in a batch. LSD encourages smoother embeddings and information mining within positive (negative) samples as a way to mitigate overfitting and thus improve generalization. Our LSD can be directly integrated into general DML frameworks. Extensive experiments show that LSD consistently boosts the performance of various metric learning methods on multiple datasets." 1492,"Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM","Many problems in machine learning can be formulated as optimizing a convex functional over a space of measures. This paper studies the convergence of the mirror descent algorithm in this infinite-dimensional setting. Defining Bregman divergences through directional derivatives, we derive the convergence of the scheme for relatively smooth and strongly convex pairs of functionals. Applying our result to joint distributions and the Kullback--Leibler (KL) divergence, we show that Sinkhorn's primal iterations for entropic optimal transport in the continuous setting correspond to a mirror descent, and we obtain a new proof of its (sub)linear convergence. We also show that Expectation Maximization (EM) can always formally be written as a mirror descent, and, when optimizing on the latent distribution while fixing the mixtures, we derive sublinear rates of convergence." 1493,How robust are pre-trained models to distribution shift?,"The vulnerability of machine learning models to spurious correlations has mostly been discussed in the context of supervised learning (SL). However, there is a lack of insight on how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE). In this work, we shed light on this by evaluating the performance of these models on both real world and synthetic distribution shift datasets. Following observations that the linear head itself can be susceptible to spurious correlations, we develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation. With this new methodology, we show that SSL models are consistently more robust to distribution shifts and thus better at OOD generalisation than AE and SL models." 1494,Fast Lossless Neural Compression with Integer-Only Discrete Flows,"By applying entropy codecs with learned data distributions, neural compressors have significantly outperformed traditional codecs in terms of compression ratio. However, the high inference latency of neural networks hinders the deployment of neural compressors in practical applications. In this work, we propose Integer-only Discrete Flows (IODF), an efficient neural compressor with integer-only arithmetic. Our work is built upon integer discrete flows, which consists of invertible transformations between discrete random variables. We propose efficient invertible transformations with integer-only arithmetic based on 8-bit quantization. Our invertible transformation is equipped with learnable binary gates to remove redundant filters during inference. We deploy IODF with TensorRT on GPUs, achieving 10x inference speedup compared to the fastest existing neural compressors, while retaining the high compression rates on ImageNet32 and ImageNet64." 1495,Plotly-Resampler: Effective Visual Analytics for Large Time Series,"Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment." 1496,Generalized Frank-Wolfe Algorithm for Bilevel Optimization,"In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are not satisfactory as they are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a generalization of the Frank-Wolfe (FW) method to solve the considered problem. The main idea of our method is to locally approximate the solution set of the lower-level problem via a cutting plane, and then run a FW-type update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires ${\mathcal{O}}(\max\{1/\epsilon_f,1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires ${\mathcal{O}}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$ iterations to find an $(\epsilon_f,\epsilon_g)$-optimal solution. We further prove stronger convergence guarantees under the H\""olderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered bilevel problem. We also present numerical experiments to showcase the superior performance of our method compared with state-of-the-art methods." 1497,A Survey on Computational Intelligence-based Transfer Learning,"The goal of transfer learning (TL) is providing a framework for exploiting acquired knowledge from source to target data. Transfer learning approaches compared to traditional machine learning approaches are capable of modeling better data patterns from the current domain. However, vanilla TL needs performance improvements by using computational intelligence-based TL. This paper studies computational intelligence-based transfer learning techniques and categorizes them into neural network-based, evolutionary algorithm-based, swarm intelligence-based and fuzzy logic-based transfer learning." 1498,Avoid Overfitting User Specific Information in Federated Keyword Spotting,"Keyword spotting (KWS) aims to discriminate a specific wake-up word from other signals precisely and efficiently for different users. Recent works utilize various deep networks to train KWS models with all users' speech data centralized without considering data privacy. Federated KWS (FedKWS) could serve as a solution without directly sharing users' data. However, the small amount of data, different user habits, and various accents could lead to fatal problems, e.g., overfitting or weight divergence. Hence, we propose several strategies to encourage the model not to overfit user-specific information in FedKWS. Specifically, we first propose an adversarial learning strategy, which updates the downloaded global model against an overfitted local model and explicitly encourages the global model to capture user-invariant information. Furthermore, we propose an adaptive local training strategy, letting clients with more training data and more uniform class distributions undertake more local update steps. Equivalently, this strategy could weaken the negative impacts of those users whose data is less qualified. Our proposed FedKWS-UI could explicitly and implicitly learn user-invariant information in FedKWS. Abundant experimental results on federated Google Speech Commands verify the effectiveness of FedKWS-UI." 1499,MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge,"Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite and knowledge bases (https://minedojo.org) to promote research towards the goal of generally capable embodied agents." 1500,Channel-wise Mixed-precision Assignment for DNN Inference on Constrained Edge Nodes,"Quantization is widely employed in both cloud and edge systems to reduce the memory occupation, latency, and energy consumption of deep neural networks. In particular, mixed-precision quantization, i.e., the use of different bit-widths for different portions of the network, has been shown to provide excellent efficiency gains with limited accuracy drops, especially with optimized bit-width assignments determined by automated Neural Architecture Search (NAS) tools. State-of-the-art mixed-precision works layer-wise, i.e., it uses different bit-widths for the weights and activations tensors of each network layer. In this work, we widen the search space, proposing a novel NAS that selects the bit-width of each weight tensor channel independently. This gives the tool the additional flexibility of assigning a higher precision only to the weights associated with the most informative features. Testing on the MLPerf Tiny benchmark suite, we obtain a rich collection of Pareto-optimal models in the accuracy vs model size and accuracy vs energy spaces. When deployed on the MPIC RISC-V edge processor, our networks reduce the memory and energy for inference by up to 63% and 27% respectively compared to a layer-wise approach, for the same accuracy." 1501,SMPL: Simulated Industrial Manufacturing and Process Control Learning Environments,"Traditional biological and pharmaceutical manufacturing plants are controlled by human workers or pre-defined thresholds. Modernized factories have advanced process control algorithms such as model predictive control (MPC). However, there is little exploration of applying deep reinforcement learning to control manufacturing plants. One of the reasons is the lack of high fidelity simulations and standard APIs for benchmarking. To bridge this gap, we develop an easy-to-use library that includes five high-fidelity simulation environments: BeerFMTEnv, ReactorEnv, AtropineEnv, PenSimEnv and mAbEnv, which cover a wide range of manufacturing processes. We build these environments on published dynamics models. Furthermore, we benchmark online and offline, model-based and model-free reinforcement learning algorithms for comparisons of follow-up research." 1502,AutoML Two-Sample Test,"Two-sample tests are important in statistics and machine learning, both as tools for scientific discovery as well as to detect distribution shifts. This led to the development of many sophisticated test procedures going beyond the standard supervised learning frameworks, whose usage can require specialized knowledge about two-sample testing. We use a simple test that takes the mean discrepancy of a witness function as the test statistic and prove that minimizing a squared loss leads to a witness with optimal testing power. This allows us to leverage recent advancements in AutoML. Without any user input about the problems at hand, and using the same method for all our experiments, our AutoML two-sample test achieves competitive performance on a diverse distribution shift benchmark as well as on challenging two-sample testing problems. We provide an implementation of the AutoML two-sample test in the Python package autotst." 1503,Random projections and Kernelised Leave One Cluster Out Cross-Validation: Universal baselines and evaluation tools for supervised machine learning for materials properties,"With machine learning being a popular topic in current computational materials science literature, creating representations for compounds has become common place. These representations are rarely compared, as evaluating their performance - and the performance of the algorithms that they are used with - is non-trivial. With many materials datasets containing bias and skew caused by the research process, leave one cluster out cross validation (LOCO-CV) has been introduced as a way of measuring the performance of an algorithm in predicting previously unseen groups of materials. This raises the question of the impact, and control, of the range of cluster sizes on the LOCO-CV measurement outcomes. We present a thorough comparison between composition-based representations, and investigate how kernel approximation functions can be used to better separate data to enhance LOCO-CV applications. We find that domain knowledge does not improve machine learning performance in most tasks tested, with band gap prediction being the notable exception. We also find that the radial basis function improves the linear separability of chemical datasets in all 10 datasets tested and provide a framework for the application of this function in the LOCO-CV process to improve the outcome of LOCO-CV measurements regardless of machine learning algorithm, choice of metric, and choice of compound representation. We recommend kernelised LOCO-CV as a training paradigm for those looking to measure the extrapolatory power of an algorithm on materials data." 1504,Decentralized adaptive clustering of deep nets is beneficial for client collaboration,"We study the problem of training personalized deep learning models in a decentralized peer-to-peer setting, focusing on the setting where data distributions differ between the clients and where different clients have different local learning tasks. We study both covariate and label shift, and our contribution is an algorithm which for each client finds beneficial collaborations based on a similarity estimate for the local task. Our method does not rely on hyperparameters which are hard to estimate, such as the number of client clusters, but rather continuously adapts to the network topology using soft cluster assignment based on a novel adaptive gossip algorithm. We test the proposed method in various settings where data is not independent and identically distributed among the clients. The experimental evaluation shows that the proposed method performs better than previous state-of-the-art algorithms for this problem setting, and handles situations well where previous methods fail." 1505,Prediction of Solar Radiation Based on Spatial and Temporal Embeddings for Solar Generation Forecast,"A novel method for real-time solar generation forecast using weather data, while exploiting both spatial and temporal structural dependencies is proposed. The network observed over time is projected to a lower-dimensional representation where a variety of weather measurements are used to train a structured regression model while weather forecast is used at the inference stage. Experiments were conducted at 288 locations in the San Antonio, TX area on obtained from the National Solar Radiation Database. The model predicts solar irradiance with a good accuracy (R2 0.91 for the summer, 0.85 for the winter, and 0.89 for the global model). The best accuracy was obtained by the Random Forest Regressor. Multiple experiments were conducted to characterize influence of missing data and different time horizons providing evidence that the new algorithm is robust for data missing not only completely at random but also when the mechanism is spatial, and temporal." 1506,FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning,"Newton-type methods are popular in federated learning due to their fast convergence. Still, they suffer from two main issues, namely: low communication efficiency and low privacy due to the requirement of sending Hessian information from clients to parameter server (PS). In this work, we introduced a novel framework called FedNew in which there is no need to transmit Hessian information from clients to PS, hence resolving the bottleneck to improve communication efficiency. In addition, FedNew hides the gradient information and results in a privacy-preserving approach compared to the existing state-of-the-art. The core novel idea in FedNew is to introduce a two level framework, and alternate between updating the inverse Hessian-gradient product using only one alternating direction method of multipliers (ADMM) step and then performing the global model update using Newton's method. Though only one ADMM pass is used to approximate the inverse Hessian-gradient product at each iteration, we develop a novel theoretical approach to show the converging behavior of FedNew for convex problems. Additionally, a significant reduction in communication overhead is achieved by utilizing stochastic quantization. Numerical results using real datasets show the superiority of FedNew compared to existing methods in terms of communication costs." 1507,Multimodal Attention-based Deep Learning for Alzheimer's Disease Diagnosis,"Alzheimer's Disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses, making effective and clinically actionable decision support difficult. The objective of this study was to develop a novel multimodal deep learning framework to aid medical professionals in AD diagnosis. We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data. MADDi is novel in that we use cross-modal attention, which captures interactions between modalities - a method not previously explored in this domain. We perform multi-class classification, a challenging task considering the strong similarities between MCI and AD. We compare with previous state-of-the-art models, evaluate the importance of attention, and examine the contribution of each modality to the model's performance. MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out test set. When examining the contribution of different attention schemes, we found that the combination of cross-modal attention with self-attention performed the best, and no attention layers in the model performed the worst, with a 7.9% difference in F1-Scores. Our experiments underlined the importance of structured clinical data to help machine learning models contextualize and interpret the remaining modalities. Extensive ablation studies showed that any multimodal mixture of input features without access to structured clinical information suffered marked performance losses. This study demonstrates the merit of combining multiple input modalities via cross-modal attention to deliver highly accurate AD diagnostic decision support." 1508,Holistic Transformer: A Joint Neural Network for Trajectory Prediction and Decision-Making of Autonomous Vehicles,"Trajectory prediction and behavioral decision-making are two important tasks for autonomous vehicles that require good understanding of the environmental context; behavioral decisions are better made by referring to the outputs of trajectory predictions. However, most current solutions perform these two tasks separately. Therefore, a joint neural network that combines multiple cues is proposed and named as the holistic transformer to predict trajectories and make behavioral decisions simultaneously. To better explore the intrinsic relationships between cues, the network uses existing knowledge and adopts three kinds of attention mechanisms: the sparse multi-head type for reducing noise impact, feature selection sparse type for optimally using partial prior knowledge, and multi-head with sigmoid activation type for optimally using posteriori knowledge. Compared with other trajectory prediction models, the proposed model has better comprehensive performance and good interpretability. Perceptual noise robustness experiments demonstrate that the proposed model has good noise robustness. Thus, simultaneous trajectory prediction and behavioral decision-making combining multiple cues can reduce computational costs and enhance semantic relationships between scenes and agents." 1509,Truly Unordered Probabilistic Rule Sets for Multi-class Classification,"Rule set learning has long been studied and has recently been frequently revisited due to the need for interpretable models. Still, existing methods have several shortcomings: 1) most recent methods require a binary feature matrix as input, learning rules directly from numeric variables is understudied; 2) existing methods impose orders among rules, either explicitly or implicitly, which harms interpretability; and 3) currently no method exists for learning probabilistic rule sets for multi-class target variables (there is only a method for probabilistic rule lists). We propose TURS, for Truly Unordered Rule Sets, which addresses these shortcomings. We first formalise the problem of learning truly unordered rule sets. To resolve conflicts caused by overlapping rules, i.e., instances covered by multiple rules, we propose a novel approach that exploits the probabilistic properties of our rule sets. We next develop a two-phase heuristic algorithm that learns rule sets by carefully growing rules. An important innovation is that we use a surrogate score to take the global potential of the rule set into account when learning a local rule. Finally, we empirically demonstrate that, compared to non-probabilistic and (explicitly or implicitly) ordered state-of-the-art methods, our method learns rule sets that not only have better interpretability (i.e., they are smaller and truly unordered), but also better predictive performance." 1510,Open-Sampling: Exploring Out-of-Distribution data for Re-balancing Long-tailed datasets,"Deep neural networks usually perform poorly when the training dataset suffers from extreme class imbalance. Recent studies found that directly training with out-of-distribution data (i.e., open-set samples) in a semi-supervised manner would harm the generalization performance. In this work, we theoretically show that out-of-distribution data can still be leveraged to augment the minority classes from a Bayesian perspective. Based on this motivation, we propose a novel method called Open-sampling, which utilizes open-set noisy labels to re-balance the class priors of the training dataset. For each open-set instance, the label is sampled from our pre-defined distribution that is complementary to the distribution of original class priors. We empirically show that Open-sampling not only re-balances the class priors but also encourages the neural network to learn separable representations. Extensive experiments demonstrate that our proposed method significantly outperforms existing data re-balancing methods and can boost the performance of existing state-of-the-art methods." 1511,The State of Sparse Training in Deep Reinforcement Learning,"The use of sparse neural networks has seen rapid growth in recent years, particularly in computer vision. Their appeal stems largely from the reduced number of parameters required to train and store, as well as in an increase in learning efficiency. Somewhat surprisingly, there have been very few efforts exploring their use in Deep Reinforcement Learning (DRL). In this work we perform a systematic investigation into applying a number of existing sparse training techniques on a variety of DRL agents and environments. Our results corroborate the findings from sparse training in the computer vision domain - sparse networks perform better than dense networks for the same parameter count - in the DRL domain. We provide detailed analyses on how the various components in DRL are affected by the use of sparse networks and conclude by suggesting promising avenues for improving the effectiveness of sparse training methods, as well as for advancing their use in DRL." 1512,Fast Simulation of Particulate Suspensions Enabled by Graph Neural Network,"Predicting the dynamic behaviors of particles in suspension subject to hydrodynamic interaction (HI) and external drive can be critical for many applications. By harvesting advanced deep learning techniques, the present work introduces a new framework, hydrodynamic interaction graph neural network (HIGNN), for inferring and predicting the particles' dynamics in Stokes suspensions. It overcomes the limitations of traditional approaches in computational efficiency, accuracy, and/or transferability. In particular, by uniting the data structure represented by a graph and the neural networks with learnable parameters, the HIGNN constructs surrogate modeling for the mobility tensor of particles which is the key to predicting the dynamics of particles subject to HI and external forces. To account for the many-body nature of HI, we generalize the state-of-the-art GNN by introducing higher-order connectivity into the graph and the corresponding convolutional operation. For training the HIGNN, we only need the data for a small number of particles in the domain of interest, and hence the training cost can be maintained low. Once constructed, the HIGNN permits fast predictions of the particles' velocities and is transferable to suspensions of different numbers/concentrations of particles in the same domain and to any external forcing. It has the ability to accurately capture both the long-range HI and short-range lubrication effects. We demonstrate the accuracy, efficiency, and transferability of the proposed HIGNN framework in a variety of systems. The requirement on computing resource is minimum: most simulations only require a desktop with one GPU; the simulations for a large suspension of 100,000 particles call for up to 6 GPUs." 1513,Spherical Sliced-Wasserstein,"Many variants of the Wasserstein distance have been introduced to reduce its original computational burden. In particular the Sliced-Wasserstein distance (SW), which leverages one-dimensional projections for which a closed-form solution of the Wasserstein distance is available, has received a lot of interest. Yet, it is restricted to data living in Euclidean spaces, while the Wasserstein distance has been studied and used recently on manifolds. We focus more specifically on the sphere, for which we define a novel SW discrepancy, which we call spherical Sliced-Wasserstein, making a first step towards defining SW discrepancies on manifolds. Our construction is notably based on closed-form solutions of the Wasserstein distance on the circle, together with a new spherical Radon transform. Along with efficient algorithms and the corresponding implementations, we illustrate its properties in several machine learning use cases where spherical representations of data are at stake: density estimation on the sphere, variational inference or hyperspherical auto-encoders." 1514,Multiple-Play Stochastic Bandits with Shareable Finite-Capacity Arms,"We generalize the multiple-play multi-armed bandits (MP-MAB) problem with a shareable arm setting, in which several plays can share the same arm. Furthermore, each shareable arm has a finite reward capacity and a ''per-load'' reward distribution, both of which are unknown to the learner. The reward from a shareable arm is load-dependent, which is the ""per-load"" reward multiplying either the number of plays pulling the arm, or its reward capacity when the number of plays exceeds the capacity limit. When the ""per-load"" reward follows a Gaussian distribution, we prove a sample complexity lower bound of learning the capacity from load-dependent rewards and also a regret lower bound of this new MP-MAB problem. We devise a capacity estimator whose sample complexity upper bound matches the lower bound in terms of reward means and capacities. We also propose an online learning algorithm to address the problem and prove its regret upper bound. This regret upper bound's first term is the same as regret lower bound's, and its second and third terms also evidently correspond to lower bound's. Extensive experiments validate our algorithm's performance and also its gain in 5G & 4G base station selection." 1515,Beyond Ridge Regression for Distribution-Free Data,"In supervised batch learning, the predictive normalized maximum likelihood (pNML) has been proposed as the min-max regret solution for the distribution-free setting, where no distributional assumptions are made on the data. However, the pNML is not defined for a large capacity hypothesis class as over-parameterized linear regression. For a large class, a common approach is to use regularization or a model prior. In the context of online prediction where the min-max solution is the Normalized Maximum Likelihood (NML), it has been suggested to use NML with ``luckiness'': A prior-like function is applied to the hypothesis class, which reduces its effective size. Motivated by the luckiness concept, for linear regression we incorporate a luckiness function that penalizes the hypothesis proportionally to its l2 norm. This leads to the ridge regression solution. The associated pNML with luckiness (LpNML) prediction deviates from the ridge regression empirical risk minimizer (Ridge ERM): When the test data reside in the subspace corresponding to the small eigenvalues of the empirical correlation matrix of the training data, the prediction is shifted toward 0. Our LpNML reduces the Ridge ERM error by up to 20% for the PMLB sets, and is up to 4.9% more robust in the presence of distribution shift compared to recent leading methods for UCI sets." 1516,"Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay","We study the tensor-on-tensor regression, where the goal is to connect tensor responses to tensor covariates with a low Tucker rank parameter tensor/matrix without the prior knowledge of its intrinsic rank. We propose the Riemannian gradient descent (RGD) and Riemannian Gauss-Newton (RGN) methods and cope with the challenge of unknown rank by studying the effect of rank over-parameterization. We provide the first convergence guarantee for the general tensor-on-tensor regression by showing that RGD and RGN respectively converge linearly and quadratically to a statistically optimal estimate in both rank correctly-parameterized and over-parameterized settings. Our theory reveals an intriguing phenomenon: Riemannian optimization methods naturally adapt to over-parameterization without modifications to their implementation. We also give the first rigorous evidence for the statistical-computational gap in scalar-on-tensor regression under the low-degree polynomials framework. Our theory demonstrates a ``blessing of statistical-computational gap"" phenomenon: in a wide range of scenarios in tensor-on-tensor regression for tensors of order three or higher, the computationally required sample size matches what is needed by moderate rank over-parameterization when considering computationally feasible estimators, while there are no such benefits in the matrix settings. This shows moderate rank over-parameterization is essentially ``cost-free"" in terms of sample size in tensor-on-tensor regression of order three or higher. Finally, we conduct simulation studies to show the advantages of our proposed methods and to corroborate our theoretical findings." 1517,Federated learning with incremental clustering for heterogeneous data,"Federated learning enables different parties to collaboratively build a global model under the orchestration of a server while keeping the training data on clients' devices. However, performance is affected when clients have heterogeneous data. To cope with this problem, we assume that despite data heterogeneity, there are groups of clients who have similar data distributions that can be clustered. In previous approaches, in order to cluster clients the server requires clients to send their parameters simultaneously. However, this can be problematic in a context where there is a significant number of participants that may have limited availability. To prevent such a bottleneck, we propose FLIC (Federated Learning with Incremental Clustering), in which the server exploits the updates sent by clients during federated training instead of asking them to send their parameters simultaneously. Hence no additional communications between the server and the clients are necessary other than what classical federated learning requires. We empirically demonstrate for various non-IID cases that our approach successfully splits clients into groups following the same data distributions. We also identify the limitations of FLIC by studying its capability to partition clients at the early stages of the federated learning process efficiently. We further address attacks on models as a form of data heterogeneity and empirically show that FLIC is a robust defense against poisoning attacks even when the proportion of malicious clients is higher than 50\%." 1518,Near-Optimal No-Regret Learning for General Convex Games,"A recent line of work has established uncoupled learning dynamics such that, when employed by all players in a game, each player's \emph{regret} after $T$ repetitions grows polylogarithmically in $T$, an exponential improvement over the traditional guarantees within the no-regret framework. However, so far these results have only been limited to certain classes of games with structured strategy spaces -- such as normal-form and extensive-form games. The question as to whether $O(\text{polylog} T)$ regret bounds can be obtained for general convex and compact strategy sets -- which occur in many fundamental models in economics and multiagent systems -- while retaining efficient strategy updates is an important question. In this paper, we answer this in the positive by establishing the first uncoupled learning algorithm with $O(\log T)$ per-player regret in general \emph{convex games}, that is, games with concave utility functions supported on arbitrary convex and compact strategy sets. Our learning dynamics are based on an instantiation of optimistic follow-the-regularized-leader over an appropriately \emph{lifted} space using a \emph{self-concordant regularizer} that is, peculiarly, not a barrier for the feasible region. Further, our learning dynamics are efficiently implementable given access to a proximal oracle for the convex strategy set, leading to $O(\log\log T)$ per-iteration complexity; we also give extensions when access to only a \emph{linear} optimization oracle is assumed. Finally, we adapt our dynamics to guarantee $O(\sqrt{T})$ regret in the adversarial regime. Even in those special cases where prior results apply, our algorithm improves over the state-of-the-art regret bounds either in terms of the dependence on the number of iterations or on the dimension of the strategy sets." 1519,Learning Fair Representation via Distributional Contrastive Disentanglement,"Learning fair representation is crucial for achieving fairness or debiasing sensitive information. Most existing works rely on adversarial representation learning to inject some invariance into representation. However, adversarial learning methods are known to suffer from relatively unstable training, and this might harm the balance between fairness and predictiveness of representation. We propose a new approach, learning FAir Representation via distributional CONtrastive Variational AutoEncoder (FarconVAE), which induces the latent space to be disentangled into sensitive and nonsensitive parts. We first construct the pair of observations with different sensitive attributes but with the same labels. Then, FarconVAE enforces each non-sensitive latent to be closer, while sensitive latents to be far from each other and also far from the non-sensitive latent by contrasting their distributions. We provide a new type of contrastive loss motivated by Gaussian and Student-t kernels for distributional contrastive learning with theoretical analysis. Besides, we adopt a new swap-reconstruction loss to boost the disentanglement further. FarconVAE shows superior performance on fairness, pretrained model debiasing, and domain generalization tasks from various modalities, including tabular, image, and text." 1520,Detecting Adversarial Examples in Batches -- a geometrical approach,"Many deep learning methods have successfully solved complex tasks in computer vision and speech recognition applications. Nonetheless, the robustness of these models has been found to be vulnerable to perturbed inputs or adversarial examples, which are imperceptible to the human eye, but lead the model to erroneous output decisions. In this study, we adapt and introduce two geometric metrics, density and coverage, and evaluate their use in detecting adversarial samples in batches of unseen data. We empirically study these metrics using MNIST and two real-world biomedical datasets from MedMNIST, subjected to two different adversarial attacks. Our experiments show promising results for both metrics to detect adversarial examples. We believe that his work can lay the ground for further study on these metrics' use in deployed machine learning systems to monitor for possible attacks by adversarial examples or related pathologies such as dataset shift." 1521,Generalised Policy Improvement with Geometric Policy Composition,"We introduce a method for policy improvement that interpolates between the greedy approach of value-based reinforcement learning (RL) and the full planning approach typical of model-based RL. The new method builds on the concept of a geometric horizon model (GHM, also known as a gamma-model), which models the discounted state-visitation distribution of a given policy. We show that we can evaluate any non-Markov policy that switches between a set of base Markov policies with fixed probability by a careful composition of the base policy GHMs, without any additional learning. We can then apply generalised policy improvement (GPI) to collections of such non-Markov policies to obtain a new Markov policy that will in general outperform its precursors. We provide a thorough theoretical analysis of this approach, develop applications to transfer and standard RL, and empirically demonstrate its effectiveness over standard GPI on a challenging deep RL continuous control task. We also provide an analysis of GHM training methods, proving a novel convergence result regarding previously proposed methods and showing how to train these models stably in deep RL settings." 1522,Evaluation of Contrastive Learning with Various Code Representations for Code Clone Detection,"Code clones are pairs of code snippets that implement similar functionality. Clone detection is a fundamental branch of automatic source code comprehension, having many applications in refactoring recommendation, plagiarism detection, and code summarization. A particularly interesting case of clone detection is the detection of semantic clones, i.e., code snippets that have the same functionality but significantly differ in implementation. A promising approach to detecting semantic clones is contrastive learning (CL), a machine learning paradigm popular in computer vision but not yet commonly adopted for code processing. Our work aims to evaluate the most popular CL algorithms combined with three source code representations on two tasks. The first task is code clone detection, which we evaluate on the POJ-104 dataset containing implementations of 104 algorithms. The second task is plagiarism detection. To evaluate the models on this task, we introduce CodeTransformator, a tool for transforming source code. We use it to create a dataset that mimics plagiarised code based on competitive programming solutions. We trained nine models for both tasks and compared them with six existing approaches, including traditional tools and modern pre-trained neural models. The results of our evaluation show that proposed models perform diversely in each task, however the performance of the graph-based models is generally above the others. Among CL algorithms, SimCLR and SwAV lead to better results, while Moco is the most robust approach. Our code and trained models are available at https://doi.org/10.5281/zenodo.6360627, https://doi.org/10.5281/zenodo.5596345." 1523,Fast Finite Width Neural Tangent Kernel,"The Neural Tangent Kernel (NTK), defined as $\Theta_\theta^f(x_1, x_2) = \left[\partial f(\theta, x_1)\big/\partial \theta\right] \left[\partial f(\theta, x_2)\big/\partial \theta\right]^T$ where $\left[\partial f(\theta, \cdot)\big/\partial \theta\right]$ is a neural network (NN) Jacobian, has emerged as a central object of study in deep learning. In the infinite width limit, the NTK can sometimes be computed analytically and is useful for understanding training and generalization of NN architectures. At finite widths, the NTK is also used to better initialize NNs, compare the conditioning across models, perform architecture search, and do meta-learning. Unfortunately, the finite width NTK is notoriously expensive to compute, which severely limits its practical utility. We perform the first in-depth analysis of the compute and memory requirements for NTK computation in finite width networks. Leveraging the structure of neural networks, we further propose two novel algorithms that change the exponent of the compute and memory requirements of the finite width NTK, dramatically improving efficiency. Our algorithms can be applied in a black box fashion to any differentiable function, including those implementing neural networks. We open-source our implementations within the Neural Tangents package (arXiv:1912.02803) at https://github.com/google/neural-tangents." 1524,Evaluating the Impact of Source Code Parsers on ML4SE Models,"As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599." 1525,Statistical and Neural Methods for Cross-lingual Entity Label Mapping in Knowledge Graphs,"Knowledge bases such as Wikidata amass vast amounts of named entity information, such as multilingual labels, which can be extremely useful for various multilingual and cross-lingual applications. However, such labels are not guaranteed to match across languages from an information consistency standpoint, greatly compromising their usefulness for fields such as machine translation. In this work, we investigate the application of word and sentence alignment techniques coupled with a matching algorithm to align cross-lingual entity labels extracted from Wikidata in 10 languages. Our results indicate that mapping between Wikidata's main labels stands to be considerably improved (up to $20$ points in F1-score) by any of the employed methods. We show how methods relying on sentence embeddings outperform all others, even across different scripts. We believe the application of such techniques to measure the similarity of label pairs, coupled with a knowledge base rich in high-quality entity labels, to be an excellent asset to machine translation." 1526,Explainability's Gain is Optimality's Loss? -- How Explanations Bias Decision-making,"Decisions in organizations are about evaluating alternatives and choosing the one that would best serve organizational goals. To the extent that the evaluation of alternatives could be formulated as a predictive task with appropriate metrics, machine learning algorithms are increasingly being used to improve the efficiency of the process. Explanations help to facilitate communication between the algorithm and the human decision-maker, making it easier for the latter to interpret and make decisions on the basis of predictions by the former. Feature-based explanations' semantics of causal models, however, induce leakage from the decision-maker's prior beliefs. Our findings from a field experiment demonstrate empirically how this leads to confirmation bias and disparate impact on the decision-maker's confidence in the predictions. Such differences can lead to sub-optimal and biased decision outcomes." 1527,Maximum Class Separation as Inductive Bias in One Matrix,"Maximizing the separation between classes constitutes a well-known inductive bias in machine learning and a pillar of many traditional algorithms. By default, deep networks are not equipped with this inductive bias and therefore many alternative solutions have been proposed through differential optimization. Current approaches tend to optimize classification and separation jointly: aligning inputs with class vectors and separating class vectors angularly. This paper proposes a simple alternative: encoding maximum separation as an inductive bias in the network by adding one fixed matrix multiplication before computing the softmax activations. The main observation behind our approach is that separation does not require optimization but can be solved in closed-form prior to training and plugged into a network. We outline a recursive approach to obtain the matrix consisting of maximally separable vectors for any number of classes, which can be added with negligible engineering effort and computational overhead. Despite its simple nature, this one matrix multiplication provides real impact. We show that our proposal directly boosts classification, long-tailed recognition, out-of-distribution detection, and open-set recognition, from CIFAR to ImageNet. We find empirically that maximum separation works best as a fixed bias; making the matrix learnable adds nothing to the performance. The closed-form implementation and code to reproduce the experiments are on github." 1528,Sheaf Neural Networks with Connection Laplacians,"A Sheaf Neural Network (SNN) is a type of Graph Neural Network (GNN) that operates on a sheaf, an object that equips a graph with vector spaces over its nodes and edges and linear maps between these spaces. SNNs have been shown to have useful theoretical properties that help tackle issues arising from heterophily and over-smoothing. One complication intrinsic to these models is finding a good sheaf for the task to be solved. Previous works proposed two diametrically opposed approaches: manually constructing the sheaf based on domain knowledge and learning the sheaf end-to-end using gradient-based methods. However, domain knowledge is often insufficient, while learning a sheaf could lead to overfitting and significant computational overhead. In this work, we propose a novel way of computing sheaves drawing inspiration from Riemannian geometry: we leverage the manifold assumption to compute manifold-and-graph-aware orthogonal maps, which optimally align the tangent spaces of neighbouring data points. We show that this approach achieves promising results with less computational overhead when compared to previous SNN models. Overall, this work provides an interesting connection between algebraic topology and differential geometry, and we hope that it will spark future research in this direction." 1529,Towards Human-Level Bimanual Dexterous Manipulation with Reinforcement Learning,"Achieving human-level dexterity is an important open problem in robotics. However, tasks of dexterous hand manipulation, even at the baby level, are challenging to solve through reinforcement learning (RL). The difficulty lies in the high degrees of freedom and the required cooperation among heterogeneous agents (e.g., joints of fingers). In this study, we propose the Bimanual Dexterous Hands Benchmark (Bi-DexHands), a simulator that involves two dexterous hands with tens of bimanual manipulation tasks and thousands of target objects. Specifically, tasks in Bi-DexHands are designed to match different levels of human motor skills according to cognitive science literature. We built Bi-DexHands in the Issac Gym; this enables highly efficient RL training, reaching 30,000+ FPS by only one single NVIDIA RTX 3090. We provide a comprehensive benchmark for popular RL algorithms under different settings; this includes Single-agent/Multi-agent RL, Offline RL, Multi-task RL, and Meta RL. Our results show that the PPO type of on-policy algorithms can master simple manipulation tasks that are equivalent up to 48-month human babies (e.g., catching a flying object, opening a bottle), while multi-agent RL can further help to master manipulations that require skilled bimanual cooperation (e.g., lifting a pot, stacking blocks). Despite the success on each single task, when it comes to acquiring multiple manipulation skills, existing RL algorithms fail to work in most of the multi-task and the few-shot learning settings, which calls for more substantial development from the RL community. Our project is open sourced at https://github.com/PKU-MARL/DexterousHands." 1530,Sparse Double Descent: Where Network Pruning Aggravates Overfitting,"People usually believe that network pruning not only reduces the computational cost of deep networks, but also prevents overfitting by decreasing model capacity. However, our work surprisingly discovers that network pruning sometimes even aggravates overfitting. We report an unexpected sparse double descent phenomenon that, as we increase model sparsity via network pruning, test performance first gets worse (due to overfitting), then gets better (due to relieved overfitting), and gets worse at last (due to forgetting useful information). While recent studies focused on the deep double descent with respect to model overparameterization, they failed to recognize that sparsity may also cause double descent. In this paper, we have three main contributions. First, we report the novel sparse double descent phenomenon through extensive experiments. Second, for this phenomenon, we propose a novel learning distance interpretation that the curve of $\ell_{2}$ learning distance of sparse models (from initialized parameters to final parameters) may correlate with the sparse double descent curve well and reflect generalization better than minima flatness. Third, in the context of sparse double descent, a winning ticket in the lottery ticket hypothesis surprisingly may not always win." 1531,BITS Pilani at HinglishEval: Quality Evaluation for Code-Mixed Hinglish Text Using Transformers,"Code-Mixed text data consists of sentences having words or phrases from more than one language. Most multi-lingual communities worldwide communicate using multiple languages, with English usually one of them. Hinglish is a Code-Mixed text composed of Hindi and English but written in Roman script. This paper aims to determine the factors influencing the quality of Code-Mixed text data generated by the system. For the HinglishEval task, the proposed model uses multi-lingual BERT to find the similarity between synthetically generated and human-generated sentences to predict the quality of synthetically generated Hinglish sentences." 1532,Understanding Robust Overfitting of Adversarial Training and Beyond,"Robust overfitting widely exists in adversarial training of deep networks. The exact underlying reasons for this are still not completely understood. Here, we explore the causes of robust overfitting by comparing the data distribution of \emph{non-overfit} (weak adversary) and \emph{overfitted} (strong adversary) adversarial training, and observe that the distribution of the adversarial data generated by weak adversary mainly contain small-loss data. However, the adversarial data generated by strong adversary is more diversely distributed on the large-loss data and the small-loss data. Given these observations, we further designed data ablation adversarial training and identify that some small-loss data which are not worthy of the adversary strength cause robust overfitting in the strong adversary mode. To relieve this issue, we propose \emph{minimum loss constrained adversarial training} (MLCAT): in a minibatch, we learn large-loss data as usual, and adopt additional measures to increase the loss of the small-loss data. Technically, MLCAT hinders data fitting when they become easy to learn to prevent robust overfitting; philosophically, MLCAT reflects the spirit of turning waste into treasure and making the best use of each adversarial data; algorithmically, we designed two realizations of MLCAT, and extensive experiments demonstrate that MLCAT can eliminate robust overfitting and further boost adversarial robustness." 1533,A Deep Learning Approach for the Segmentation of Electroencephalography Data in Eye Tracking Applications,"The collection of eye gaze information provides a window into many critical aspects of human cognition, health and behaviour. Additionally, many neuroscientific studies complement the behavioural information gained from eye tracking with the high temporal resolution and neurophysiological markers provided by electroencephalography (EEG). One of the essential eye-tracking software processing steps is the segmentation of the continuous data stream into events relevant to eye-tracking applications, such as saccades, fixations, and blinks. Here, we introduce DETRtime, a novel framework for time-series segmentation that creates ocular event detectors that do not require additionally recorded eye-tracking modality and rely solely on EEG data. Our end-to-end deep learning-based framework brings recent advances in Computer Vision to the forefront of the times series segmentation of EEG data. DETRtime achieves state-of-the-art performance in ocular event detection across diverse eye-tracking experiment paradigms. In addition to that, we provide evidence that our model generalizes well in the task of EEG sleep stage segmentation." 1534,FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification,"Modern deep learning systems are increasingly deployed in situations such as personalization and federated learning where it is necessary to support i) learning on small amounts of data, and ii) communication efficient distributed training protocols. In this work we develop FiLM Transfer (FiT) which fulfills these requirements in the image classification setting. FiT uses an automatically configured Naive Bayes classifier on top of a fixed backbone that has been pretrained on large image datasets. Parameter efficient FiLM layers are used to modulate the backbone, shaping the representation for the downstream task. The network is trained via an episodic fine-tuning protocol. The approach is parameter efficient which is key for enabling few-shot learning, inexpensive model updates for personalization, and communication efficient federated learning. We experiment with FiT on a wide range of downstream datasets and show that it achieves better classification accuracy than the state-of-the-art Big Transfer (BiT) algorithm at low-shot and on the challenging VTAB-1k benchmark, with fewer than 1% of the updateable parameters. Finally, we demonstrate the parameter efficiency of FiT in distributed low-shot applications including model personalization and federated learning where model update size is an important performance metric." 1535,The Sensorium competition on predicting large-scale mouse primary visual cortex activity,"The neural underpinning of the biological visual system is challenging to study experimentally, in particular as the neuronal activity becomes increasingly nonlinear with respect to visual input. Artificial neural networks (ANNs) can serve a variety of goals for improving our understanding of this complex system, not only serving as predictive digital twins of sensory cortex for novel hypothesis generation in silico, but also incorporating bio-inspired architectural motifs to progressively bridge the gap between biological and machine vision. The mouse has recently emerged as a popular model system to study visual information processing, but no standardized large-scale benchmark to identify state-of-the-art models of the mouse visual system has been established. To fill this gap, we propose the Sensorium benchmark competition. We collected a large-scale dataset from mouse primary visual cortex containing the responses of more than 28,000 neurons across seven mice stimulated with thousands of natural images, together with simultaneous behavioral measurements that include running speed, pupil dilation, and eye movements. The benchmark challenge will rank models based on predictive performance for neuronal responses on a held-out test set, and includes two tracks for model input limited to either stimulus only (Sensorium) or stimulus plus behavior (Sensorium+). We provide a starting kit to lower the barrier for entry, including tutorials, pre-trained baseline models, and APIs with one line commands for data loading and submission. We would like to see this as a starting point for regular challenges and data releases, and as a standard tool for measuring progress in large-scale neural system identification models of the mouse visual system and beyond." 1536,Boosting Factorization Machines via Saliency-Guided Mixup,"Factorization machines (FMs) are widely used in recommender systems due to their adaptability and ability to learn from sparse data. However, for the ubiquitous non-interactive features in sparse data, existing FMs can only estimate the parameters corresponding to these features via the inner product of their embeddings. Undeniably, they cannot learn the direct interactions of these features, which limits the model's expressive power. To this end, we first present MixFM, inspired by Mixup, to generate auxiliary training data to boost FMs. Unlike existing augmentation strategies that require labor costs and expertise to collect additional information such as position and fields, these extra data generated by MixFM only by the convex combination of the raw ones without any professional knowledge support. More importantly, if the parent samples to be mixed have non-interactive features, MixFM will establish their direct interactions. Second, considering that MixFM may generate redundant or even detrimental instances, we further put forward a novel Factorization Machine powered by Saliency-guided Mixup (denoted as SMFM). Guided by the customized saliency, SMFM can generate more informative neighbor data. Through theoretical analysis, we prove that the proposed methods minimize the upper bound of the generalization error, which hold a beneficial effect on enhancing FMs. Significantly, we give the first generalization bound of FM, implying the generalization requires more data and a smaller embedding size under the sufficient representation capability. Finally, extensive experiments on five datasets confirm that our approaches are superior to baselines. Besides, the results show that ""poisoning"" mixed data is likewise beneficial to the FM variants." 1537,Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning,"A digital twin is a surrogate model that has the main feature to mirror the original process behavior. Associating the dynamical process with a digital twin model of reduced complexity has the significant advantage to map the dynamics with high accuracy and reduced costs in CPU time and hardware to timescales over which that suffers significantly changes and so it is difficult to explore. This paper introduces a new framework for creating efficient digital twin models of fluid flows. We introduce a novel algorithm that combines the advantages of Krylov based dynamic mode decomposition with proper orthogonal decomposition and outperforms the selection of the most influential modes. We prove that randomized orthogonal decomposition algorithm provides several advantages over SVD empirical orthogonal decomposition methods and mitigates the projection error formulating a multiobjective optimization problem.We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model, with increasing fidelity. The output is a high-fidelity DIGITAL TWIN DATA MODEL of the fluid flow dynamics, with the advantage of a reduced complexity. The new modelling tools are investigated in the numerical simulation of three wave phenomena with increasing complexity. We show that the outputs are consistent with the original source data.We perform a thorough assessment of the performance of the new digital twin data models, in terms of numerical accuracy and computational efficiency, including a time simulation response feature study." 1538,Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning,"Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a cross-modal encoder, or feed the last-layer uni-modal features directly into the top cross-modal encoder, ignoring the semantic information at the different levels in the deep uni-modal encoders. Both approaches possibly restrict vision-language representation learning and limit model performance. In this paper, we introduce multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables comprehensive bottom-up interactions between visual and textual representations at different semantic levels, resulting in more effective cross-modal alignment and fusion. Our proposed Bridge-Tower, pre-trained with only $4$M images, achieves state-of-the-art performance on various downstream vision-language tasks. On the VQAv2 test-std set, Bridge-Tower achieves an accuracy of $78.73\%$, outperforming the previous state-of-the-art METER model by $1.09\%$ with the same pre-training data and almost no additional parameters and computational cost. Notably, when further scaling the model, Bridge-Tower achieves an accuracy of $81.15\%$, surpassing models that are pre-trained on orders-of-magnitude larger datasets. Code is available at https://github.com/microsoft/BridgeTower." 1539,tinySNN: Towards Memory- and Energy-Efficient Spiking Neural Networks,"Larger Spiking Neural Network (SNN) models are typically favorable as they can offer higher accuracy. However, employing such models on the resource- and energy-constrained embedded platforms is inefficient. Towards this, we present a tinySNN framework that optimizes the memory and energy requirements of SNN processing in both the training and inference phases, while keeping the accuracy high. It is achieved by reducing the SNN operations, improving the learning quality, quantizing the SNN parameters, and selecting the appropriate SNN model. Furthermore, our tinySNN quantizes different SNN parameters (i.e., weights and neuron parameters) to maximize the compression while exploring different combinations of quantization schemes, precision levels, and rounding schemes to find the model that provides acceptable accuracy. The experimental results demonstrate that our tinySNN significantly reduces the memory footprint and the energy consumption of SNNs without accuracy loss as compared to the baseline network. Therefore, our tinySNN effectively compresses the given SNN model to achieve high accuracy in a memory- and energy-efficient manner, hence enabling the employment of SNNs for the resource- and energy-constrained embedded applications." 1540,All Mistakes Are Not Equal: Comprehensive Hierarchy Aware Multi-label Predictions (CHAMP),"This paper considers the problem of Hierarchical Multi-Label Classification (HMC), where (i) several labels can be present for each example, and (ii) labels are related via a domain-specific hierarchy tree. Guided by the intuition that all mistakes are not equal, we present Comprehensive Hierarchy Aware Multi-label Predictions (CHAMP), a framework that penalizes a misprediction depending on its severity as per the hierarchy tree. While there have been works that apply such an idea to single-label classification, to the best of our knowledge, there are limited such works for multilabel classification focusing on the severity of mistakes. The key reason is that there is no clear way of quantifying the severity of a misprediction a priori in the multilabel setting. In this work, we propose a simple but effective metric to quantify the severity of a mistake in HMC, naturally leading to CHAMP. Extensive experiments on six public HMC datasets across modalities (image, audio, and text) demonstrate that incorporating hierarchical information leads to substantial gains as CHAMP improves both AUPRC (2.6% median percentage improvement) and hierarchical metrics (2.85% median percentage improvement), over stand-alone hierarchical or multilabel classification methods. Compared to standard multilabel baselines, CHAMP provides improved AUPRC in both robustness (8.87% mean percentage improvement ) and less data regimes. Further, our method provides a framework to enhance existing multilabel classification algorithms with better mistakes (18.1% mean percentage increment)." 1541,Orthonormal Expansions for Translation-Invariant Kernels,"We present a general Fourier analytic technique for constructing orthonormal basis expansions of translation-invariant kernels from orthonormal bases of $\mathscr{L}_2(\mathbb{R})$. This allows us to derive explicit expansions on the real line for (i) Mat\'ern kernels of all half-integer orders in terms of associated Laguerre functions, (ii) the Cauchy kernel in terms of rational functions, and (iii) the Gaussian kernel in terms of Hermite functions." 1542,Scalable Differentially Private Clustering via Hierarchically Separated Trees,"We study the private $k$-median and $k$-means clustering problem in $d$ dimensional Euclidean space. By leveraging tree embeddings, we give an efficient and easy to implement algorithm, that is empirically competitive with state of the art non private methods. We prove that our method computes a solution with cost at most $O(d^{3/2}\log n)\cdot OPT + O(k d^2 \log^2 n / \epsilon^2)$, where $\epsilon$ is the privacy guarantee. (The dimension term, $d$, can be replaced with $O(\log k)$ using standard dimension reduction techniques.) Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical, runs in near-linear, $\tilde{O}(nkd)$, time and scales to tens of millions of points. We also show that our method is amenable to parallelization in large-scale distributed computing environments. In particular we show that our private algorithms can be implemented in logarithmic number of MPC rounds in the sublinear memory regime. Finally, we complement our theoretical analysis with an empirical evaluation demonstrating the algorithm's efficiency and accuracy in comparison to other privacy clustering baselines." 1543,Minimum Noticeable Difference based Adversarial Privacy Preserving Image Generation,"Deep learning models are found to be vulnerable to adversarial examples, as wrong predictions can be caused by small perturbation in input for deep learning models. Most of the existing works of adversarial image generation try to achieve attacks for most models, while few of them make efforts on guaranteeing the perceptual quality of the adversarial examples. High quality adversarial examples matter for many applications, especially for the privacy preserving. In this work, we develop a framework based on the Minimum Noticeable Difference (MND) concept to generate adversarial privacy preserving images that have minimum perceptual difference from the clean ones but are able to attack deep learning models. To achieve this, an adversarial loss is firstly proposed to make the deep learning models attacked by the adversarial images successfully. Then, a perceptual quality-preserving loss is developed by taking the magnitude of perturbation and perturbation-caused structural and gradient changes into account, which aims to preserve high perceptual quality for adversarial image generation. To the best of our knowledge, this is the first work on exploring quality-preserving adversarial image generation based on the MND concept for privacy preserving. To evaluate its performance in terms of perceptual quality, the deep models on image classification and face recognition are tested with the proposed method and several anchor methods in this work. Extensive experimental results demonstrate that the proposed MND framework is capable of generating adversarial images with remarkably improved performance metrics (e.g., PSNR, SSIM, and MOS) than that generated with the anchor methods." 1544,RECAPP: Crafting a More Efficient Catalyst for Convex Optimization,"The accelerated proximal point algorithm (APPA), also known as ""Catalyst"", is a well-established reduction from convex optimization to approximate proximal point computation (i.e., regularized minimization). This reduction is conceptually elegant and yields strong convergence rate guarantees. However, these rates feature an extraneous logarithmic term arising from the need to compute each proximal point to high accuracy. In this work, we propose a novel Relaxed Error Criterion for Accelerated Proximal Point (RECAPP) that eliminates the need for high accuracy subproblem solutions. We apply RECAPP to two canonical problems: finite-sum and max-structured minimization. For finite-sum problems, we match the best known complexity, previously obtained by carefully-designed problem-specific algorithms. For minimizing $\max_y f(x,y)$ where $f$ is convex in $x$ and strongly-concave in $y$, we improve on the best known (Catalyst-based) bound by a logarithmic factor." 1545,"The Role of Depth, Width, and Activation Complexity in the Number of Linear Regions of Neural Networks","Many feedforward neural networks generate continuous and piecewise-linear (CPWL) mappings. Specifically, they partition the input domain into regions on which the mapping is an affine function. The number of these so-called linear regions offers a natural metric to characterize the expressiveness of CPWL mappings. Although the precise determination of this quantity is often out of reach, bounds have been proposed for specific architectures, including the well-known ReLU and Maxout networks. In this work, we propose a more general perspective and provide precise bounds on the maximal number of linear regions of CPWL networks based on three sources of expressiveness: depth, width, and activation complexity. Our estimates rely on the combinatorial structure of convex partitions and highlight the distinctive role of depth which, on its own, is able to exponentially increase the number of regions. We then introduce a complementary stochastic framework to estimate the average number of linear regions produced by a CPWL network architecture. Under reasonable assumptions, the expected density of linear regions along any 1D path is bounded by the product of depth, width, and a measure of activation complexity (up to a scaling factor). This yields an identical role to the three sources of expressiveness: no exponential growth with depth is observed anymore." 1546,On Efficient Real-Time Semantic Segmentation: A Survey,"Semantic segmentation is the problem of assigning a class label to every pixel in an image, and is an important component of an autonomous vehicle vision stack for facilitating scene understanding and object detection. However, many of the top performing semantic segmentation models are extremely complex and cumbersome, and as such are not suited to deployment onboard autonomous vehicle platforms where computational resources are limited and low-latency operation is a vital requirement. In this survey, we take a thorough look at the works that aim to address this misalignment with more compact and efficient models capable of deployment on low-memory embedded systems while meeting the constraint of real-time inference. We discuss several of the most prominent works in the field, placing them within a taxonomy based on their major contributions, and finally we evaluate the inference speed of the discussed models under consistent hardware and software setups that represent a typical research environment with high-end GPU and a realistic deployed scenario using low-memory embedded GPU hardware. Our experimental results demonstrate that many works are capable of real-time performance on resource-constrained hardware, while illustrating the consistent trade-off between latency and accuracy." 1547,On Integrating Prior Knowledge into Gaussian Processes for Prognostic Health Monitoring,"Gaussian process regression is a powerful method for predicting states based on given data. It has been successfully applied for probabilistic predictions of structural systems to quantify, for example, the crack growth in mechanical structures. Typically, predefined mean and covariance functions are employed to construct the Gaussian process model. Then, the model is updated using current data during operation while prior information based on previous data is ignored. However, predefined mean and covariance functions without prior information reduce the potential of Gaussian processes. This paper proposes a method to improve the predictive capabilities of Gaussian processes. We integrate prior knowledge by deriving the mean and covariance functions from previous data. More specifically, we first approximate previous data by a weighted sum of basis functions and then derive the mean and covariance functions directly from the estimated weight coefficients. Basis functions may be either estimated or derived from problem-specific governing equations to incorporate physical information. The applicability and effectiveness of this approach are demonstrated for fatigue crack growth, laser degradation, and milling machine wear data. We show that well-chosen mean and covariance functions, like those based on previous data, significantly increase look-ahead time and accuracy. Using physical basis functions further improves accuracy. In addition, computation effort for training is significantly reduced." 1548,On the Influence of Enforcing Model Identifiability on Learning dynamics of Gaussian Mixture Models,"A common way to learn and analyze statistical models is to consider operations in the model parameter space. But what happens if we optimize in the parameter space and there is no one-to-one mapping between the parameter space and the underlying statistical model space? Such cases frequently occur for hierarchical models which include statistical mixtures or stochastic neural networks, and these models are said to be singular. Singular models reveal several important and well-studied problems in machine learning like the decrease in convergence speed of learning trajectories due to attractor behaviors. In this work, we propose a relative reparameterization technique of the parameter space, which yields a general method for extracting regular submodels from singular models. Our method enforces model identifiability during training and we study the learning dynamics for gradient descent and expectation maximization for Gaussian Mixture Models (GMMs) under relative parameterization, showing faster experimental convergence and a improved manifold shape of the dynamics around the singularity. Extending the analysis beyond GMMs, we furthermore analyze the Fisher information matrix under relative reparameterization and its influence on the generalization error, and show how the method can be applied to more complex models like deep neural networks." 1549,Accelerating numerical methods by gradient-based meta-solving,"In science and engineering applications, it is often required to solve similar computational problems repeatedly. In such cases, we can utilize the data from previously solved problem instances to improve the efficiency of finding subsequent solutions. This offers a unique opportunity to combine machine learning (in particular, meta-learning) and scientific computing. To date, a variety of such domain-specific methods have been proposed in the literature, but a generic approach for designing these methods remains under-explored. In this paper, we tackle this issue by formulating a general framework to describe these problems, and propose a gradient-based algorithm to solve them in a unified way. As an illustration of this approach, we study the adaptive generation of parameters for iterative solvers to accelerate the solution of differential equations. We demonstrate the performance and versatility of our method through theoretical analysis and numerical experiments, including applications to incompressible flow simulations and an inverse problem of parameter estimation." 1550,Automatic Correction of Human Translations,"We introduce translation error correction (TEC), the task of automatically correcting human-generated translations. Imperfections in machine translations (MT) have long motivated systems for improving translations post-hoc with automatic post-editing. In contrast, little attention has been devoted to the problem of automatically correcting human translations, despite the intuition that humans make distinct errors that machines would be well-suited to assist with, from typos to inconsistencies in translation conventions. To investigate this, we build and release the Aced corpus with three TEC datasets. We show that human errors in TEC exhibit a more diverse range of errors and far fewer translation fluency errors than the MT errors in automatic post-editing datasets, suggesting the need for dedicated TEC models that are specialized to correct human errors. We show that pre-training instead on synthetic errors based on human errors improves TEC F-score by as much as 5.1 points. We conducted a human-in-the-loop user study with nine professional translation editors and found that the assistance of our TEC system led them to produce significantly higher quality revised translations." 1551,NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning,"Recently, graph neural networks (GNNs) have shown prominent performance in graph representation learning by leveraging knowledge from both graph structure and node features. However, most of them have two major limitations. First, GNNs can learn higher-order structural information by stacking more layers but can not deal with large depth due to the over-smoothing issue. Second, it is not easy to apply these methods on large graphs due to the expensive computation cost and high memory usage. In this paper, we present node-adaptive feature smoothing (NAFS), a simple non-parametric method that constructs node representations without parameter learning. NAFS first extracts the features of each node with its neighbors of different hops by feature smoothing, and then adaptively combines the smoothed features. Besides, the constructed node representation can further be enhanced by the ensemble of smoothed features extracted via different smoothing strategies. We conduct experiments on four benchmark datasets on two different application scenarios: node clustering and link prediction. Remarkably, NAFS with feature ensemble outperforms the state-of-the-art GNNs on these tasks and mitigates the aforementioned two limitations of most learning-based GNN counterparts." 1552,DFG-NAS: Deep and Flexible Graph Neural Architecture Search,"Graph neural networks (GNNs) have been intensively applied to various graph-based applications. Despite their success, manually designing the well-behaved GNNs requires immense human expertise. And thus it is inefficient to discover the potentially optimal data-specific GNN architecture. This paper proposes DFG-NAS, a new neural architecture search (NAS) method that enables the automatic search of very deep and flexible GNN architectures. Unlike most existing methods that focus on micro-architectures, DFG-NAS highlights another level of design: the search for macro-architectures on how atomic propagation (\textbf{\texttt{P}}) and transformation (\textbf{\texttt{T}}) operations are integrated and organized into a GNN. To this end, DFG-NAS proposes a novel search space for \textbf{\texttt{P-T}} permutations and combinations based on message-passing dis-aggregation, defines four custom-designed macro-architecture mutations, and employs the evolutionary algorithm to conduct an efficient and effective search. Empirical studies on four node classification tasks demonstrate that DFG-NAS outperforms state-of-the-art manual designs and NAS methods of GNNs." 1553,A Flexible Diffusion Model,"Diffusion (score-based) generative models have been widely used for modeling various types of complex data, including images, audios, and point clouds. Recently, the deep connection between forward-backward stochastic differential equations (SDEs) and diffusion-based models has been revealed, and several new variants of SDEs are proposed (e.g., sub-VP, critically-damped Langevin) along this line. Despite the empirical success of the hand-crafted fixed forward SDEs, a great quantity of proper forward SDEs remain unexplored. In this work, we propose a general framework for parameterizing the diffusion model, especially the spatial part of the forward SDE. An abstract formalism is introduced with theoretical guarantees, and its connection with previous diffusion models is leveraged. We demonstrate the theoretical advantage of our method from an optimization perspective. Numerical experiments on synthetic datasets, MINIST and CIFAR10 are also presented to validate the effectiveness of our framework." 1554,Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete Sequential Data via Bayesian Optimization,"We focus on the problem of adversarial attacks against models on discrete sequential data in the black-box setting where the attacker aims to craft adversarial examples with limited query access to the victim model. Existing black-box attacks, mostly based on greedy algorithms, find adversarial examples using pre-computed key positions to perturb, which severely limits the search space and might result in suboptimal solutions. To this end, we propose a query-efficient black-box attack using Bayesian optimization, which dynamically computes important positions using an automatic relevance determination (ARD) categorical kernel. We introduce block decomposition and history subsampling techniques to improve the scalability of Bayesian optimization when an input sequence becomes long. Moreover, we develop a post-optimization algorithm that finds adversarial examples with smaller perturbation size. Experiments on natural language and protein classification tasks demonstrate that our method consistently achieves higher attack success rate with significant reduction in query count and modification rate compared to the previous state-of-the-art methods." 1555,Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization,"We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $\min_{\mathbf{x}}\max_{\mathbf{y}}~F(\mathbf{x}) + H(\mathbf{x},\mathbf{y}) - G(\mathbf{y})$, where one has access to stochastic first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$. Building upon standard stochastic extragradient analysis for variational inequalities, we present a stochastic \emph{accelerated gradient-extragradient (AG-EG)} descent-ascent algorithm that combines extragradient and Nesterov's acceleration in general stochastic settings. This algorithm leverages scheduled restarting to admit a fine-grained nonasymptotic convergence rate that matches known lower bounds by both \citet{ibrahim2020linear} and \citet{zhang2021lower} in their corresponding settings, plus an additional statistical error term for bounded stochastic noise that is optimal up to a constant prefactor. This is the first result that achieves such a relatively mature characterization of optimality in saddle-point optimization." 1556,Bootstrapped Transformer for Offline Reinforcement Learning,"Offline reinforcement learning (RL) aims at learning policies from previously collected static trajectory data without interacting with the real environment. Recent works provide a novel perspective by viewing offline RL as a generic sequence generation problem, adopting sequence models such as Transformer architecture to model distributions over trajectories, and repurposing beam search as a planning algorithm. However, the training datasets utilized in general offline RL tasks are quite limited and often suffer from insufficient distribution coverage, which could be harmful to training sequence generation models yet has not drawn enough attention in the previous works. In this paper, we propose a novel algorithm named Bootstrapped Transformer, which incorporates the idea of bootstrapping and leverages the learned model to self-generate more offline data to further boost the sequence model training. We conduct extensive experiments on two offline RL benchmarks and demonstrate that our model can largely remedy the existing offline RL training limitations and beat other strong baseline methods. We also analyze the generated pseudo data and the revealed characteristics may shed some light on offline RL training. The codes are available at https://seqml.github.io/bootorl." 1557,MET: Masked Encoding for Tabular Data,"We consider the task of self-supervised representation learning (SSL) for tabular data: tabular-SSL. Typical contrastive learning based SSL methods require instance-wise data augmentations which are difficult to design for unstructured tabular data. Existing tabular-SSL methods design such augmentations in a relatively ad-hoc fashion and can fail to capture the underlying data manifold. Instead of augmentations based approaches for tabular-SSL, we propose a new reconstruction based method, called Masked Encoding for Tabular Data (MET), that does not require augmentations. MET is based on the popular MAE approach for vision-SSL [He et al., 2021] and uses two key ideas: (i) since each coordinate in a tabular dataset has a distinct meaning, we need to use separate representations for all coordinates, and (ii) using an adversarial reconstruction loss in addition to the standard one. Empirical results on five diverse tabular datasets show that MET achieves a new state of the art (SOTA) on all of these datasets and improves up to 9% over current SOTA methods. We shed more light on the working of MET via experiments on carefully designed simple datasets." 1558,Boosting Graph Structure Learning with Dummy Nodes,"With the development of graph kernels and graph representation learning, many superior methods have been proposed to handle scalability and oversmoothing issues on graph structure learning. However, most of those strategies are designed based on practical experience rather than theoretical analysis. In this paper, we use a particular dummy node connecting to all existing vertices without affecting original vertex and edge properties. We further prove that such the dummy node can help build an efficient monomorphic edge-to-vertex transform and an epimorphic inverse to recover the original graph back. It also indicates that adding dummy nodes can preserve local and global structures for better graph representation learning. We extend graph kernels and graph neural networks with dummy nodes and conduct experiments on graph classification and subgraph isomorphism matching tasks. Empirical results demonstrate that taking graphs with dummy nodes as input significantly boosts graph structure learning, and using their edge-to-vertex graphs can also achieve similar results. We also discuss the gain of expressive power from the dummy in neural networks." 1559,How You Start Matters for Generalization,"Characterizing the remarkable generalization properties of over-parameterized neural networks remains an open problem. In this paper, we promote a shift of focus towards initialization rather than neural architecture or (stochastic) gradient descent to explain this implicit regularization. Through a Fourier lens, we derive a general result for the spectral bias of neural networks and show that the generalization of neural networks is heavily tied to their initialization. Further, we empirically solidify the developed theoretical insights using practical, deep networks. Finally, we make a case against the controversial flat-minima conjecture and show that Fourier analysis grants a more reliable framework for understanding the generalization of neural networks." 1560,Thompson Sampling for Robust Transfer in Multi-Task Bandits,"We study the problem of online multi-task learning where the tasks are performed within similar but not necessarily identical multi-armed bandit environments. In particular, we study how a learner can improve its overall performance across multiple related tasks through robust transfer of knowledge. While an upper confidence bound (UCB)-based algorithm has recently been shown to achieve nearly-optimal performance guarantees in a setting where all tasks are solved concurrently, it remains unclear whether Thompson sampling (TS) algorithms, which have superior empirical performance in general, share similar theoretical properties. In this work, we present a TS-type algorithm for a more general online multi-task learning protocol, which extends the concurrent setting. We provide its frequentist analysis and prove that it is also nearly-optimal using a novel concentration inequality for multi-task data aggregation at random stopping times. Finally, we evaluate the algorithm on synthetic data and show that the TS-type algorithm enjoys superior empirical performance in comparison with the UCB-based algorithm and a baseline algorithm that performs TS for each individual task without transfer." 1561,SOS: Score-based Oversampling for Tabular Data,"Score-based generative models (SGMs) are a recent breakthrough in generating fake images. SGMs are known to surpass other generative models, e.g., generative adversarial networks (GANs) and variational autoencoders (VAEs). Being inspired by their big success, in this work, we fully customize them for generating fake tabular data. In particular, we are interested in oversampling minor classes since imbalanced classes frequently lead to sub-optimal training outcomes. To our knowledge, we are the first presenting a score-based tabular data oversampling method. Firstly, we re-design our own score network since we have to process tabular data. Secondly, we propose two options for our generation method: the former is equivalent to a style transfer for tabular data and the latter uses the standard generative policy of SGMs. Lastly, we define a fine-tuning method, which further enhances the oversampling quality. In our experiments with 6 datasets and 10 baselines, our method outperforms other oversampling methods in all cases." 1562,NU-Wave 2: A General Neural Audio Upsampling Model for Various Sampling Rates,"Conventionally, audio super-resolution models fixed the initial and the target sampling rates, which necessitate the model to be trained for each pair of sampling rates. We introduce NU-Wave 2, a diffusion model for neural audio upsampling that enables the generation of 48 kHz audio signals from inputs of various sampling rates with a single model. Based on the architecture of NU-Wave, NU-Wave 2 uses short-time Fourier convolution (STFC) to generate harmonics to resolve the main failure modes of NU-Wave, and incorporates bandwidth spectral feature transform (BSFT) to condition the bandwidths of inputs in the frequency domain. We experimentally demonstrate that NU-Wave 2 produces high-resolution audio regardless of the sampling rate of input while requiring fewer parameters than other models. The official code and the audio samples are available at https://mindslab-ai.github.io/nuwave2." 1563,Strategic Representation,"Humans have come to rely on machines for reducing excessive information to manageable representations. But this reliance can be abused -- strategic machines might craft representations that manipulate their users. How can a user make good choices based on strategic representations? We formalize this as a learning problem, and pursue algorithms for decision-making that are robust to manipulation. In our main setting of interest, the system represents attributes of an item to the user, who then decides whether or not to consume. We model this interaction through the lens of strategic classification (Hardt et al. 2016), reversed: the user, who learns, plays first; and the system, which responds, plays second. The system must respond with representations that reveal `nothing but the truth' but need not reveal the entire truth. Thus, the user faces the problem of learning set functions under strategic subset selection, which presents distinct algorithmic and statistical challenges. Our main result is a learning algorithm that minimizes error despite strategic representations, and our theoretical analysis sheds light on the trade-off between learning effort and susceptibility to manipulation." 1564,Large-Margin Representation Learning for Texture Classification,"This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification. The core of such an approach is a loss function that computes the distances between instances of interest and support vectors. The objective is to update the weights of CLs iteratively to learn a representation with a large margin between classes. Each iteration results in a large-margin discriminant model represented by support vectors based on such a representation. The advantage of the proposed approach w.r.t. convolutional neural networks (CNNs) is two-fold. First, it allows representation learning with a small amount of data due to the reduced number of parameters compared to an equivalent CNN. Second, it has a low training cost since the backpropagation considers only support vectors. The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs." 1565,Reframed GES with a Neural Conditional Dependence Measure,"In a nonparametric setting, the causal structure is often identifiable only up to Markov equivalence, and for the purpose of causal inference, it is useful to learn a graphical representation of the Markov equivalence class (MEC). In this paper, we revisit the Greedy Equivalence Search (GES) algorithm, which is widely cited as a score-based algorithm for learning the MEC of the underlying causal structure. We observe that in order to make the GES algorithm consistent in a nonparametric setting, it is not necessary to design a scoring metric that evaluates graphs. Instead, it suffices to plug in a consistent estimator of a measure of conditional dependence to guide the search. We therefore present a reframing of the GES algorithm, which is more flexible than the standard score-based version and readily lends itself to the nonparametric setting with a general measure of conditional dependence. In addition, we propose a neural conditional dependence (NCD) measure, which utilizes the expressive power of deep neural networks to characterize conditional independence in a nonparametric manner. We establish the optimality of the reframed GES algorithm under standard assumptions and the consistency of using our NCD estimator to decide conditional independence. Together these results justify the proposed approach. Experimental results demonstrate the effectiveness of our method in causal discovery, as well as the advantages of using our NCD measure over kernel-based measures." 1566,Accelerating Shapley Explanation via Contributive Cooperator Selection,"Even though Shapley value provides an effective explanation for a DNN model prediction, the computation relies on the enumeration of all possible input feature coalitions, which leads to the exponentially growing complexity. To address this problem, we propose a novel method SHEAR to significantly accelerate the Shapley explanation for DNN models, where only a few coalitions of input features are involved in the computation. The selection of the feature coalitions follows our proposed Shapley chain rule to minimize the absolute error from the ground-truth Shapley values, such that the computation can be both efficient and accurate. To demonstrate the effectiveness, we comprehensively evaluate SHEAR across multiple metrics including the absolute error from the ground-truth Shapley value, the faithfulness of the explanations, and running speed. The experimental results indicate SHEAR consistently outperforms state-of-the-art baseline methods across different evaluation metrics, which demonstrates its potentials in real-world applications where the computational resource is limited." 1567,SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe Autonomous Driving,"Safe reinforcement learning (RL) has achieved significant success on risk-sensitive tasks and shown promise in autonomous driving (AD) as well. Considering the distinctiveness of this community, efficient and reproducible baselines are still lacking for safe AD. In this paper, we release SafeRL-Kit to benchmark safe RL methods for AD-oriented tasks. Concretely, SafeRL-Kit contains several latest algorithms specific to zero-constraint-violation tasks, including Safety Layer, Recovery RL, off-policy Lagrangian method, and Feasible Actor-Critic. In addition to existing approaches, we propose a novel first-order method named Exact Penalty Optimization (EPO) and sufficiently demonstrate its capability in safe AD. All algorithms in SafeRL-Kit are implemented (i) under the off-policy setting, which improves sample efficiency and can better leverage past logs; (ii) with a unified learning framework, providing off-the-shelf interfaces for researchers to incorporate their domain-specific knowledge into fundamental safe RL methods. Conclusively, we conduct a comparative evaluation of the above algorithms in SafeRL-Kit and shed light on their efficacy for safe autonomous driving. The source code is available at \href{ https://github.com/zlr20/saferl_kit}{this https URL}." 1568,A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models,"Computational simulations of wildfire spread typically employ empirical rate-of-spread calculations under various conditions (such as terrain, fuel type, weather). Small perturbations in conditions can often lead to significant changes in fire spread (such as speed and direction), necessitating a computationally expensive large set of simulations to quantify uncertainty. Model emulation seeks alternative representations of physical models using machine learning, aiming to provide more efficient and/or simplified surrogate models. We propose a dedicated spatio-temporal neural network based framework for model emulation, able to capture the complex behaviour of fire spread models. The proposed approach can approximate forecasts at fine spatial and temporal resolutions that are often challenging for neural network based approaches. Furthermore, the proposed approach is robust even with small training sets, due to novel data augmentation methods. Empirical experiments show good agreement between simulated and emulated firefronts, with an average Jaccard score of 0.76." 1569,Thompson Sampling Achieves $\tilde O(\sqrt{T})$ Regret in Linear Quadratic Control,"Thompson Sampling (TS) is an efficient method for decision-making under uncertainty, where an action is sampled from a carefully prescribed distribution which is updated based on the observed data. In this work, we study the problem of adaptive control of stabilizable linear-quadratic regulators (LQRs) using TS, where the system dynamics are unknown. Previous works have established that $\tilde O(\sqrt{T})$ frequentist regret is optimal for the adaptive control of LQRs. However, the existing methods either work only in restrictive settings, require a priori known stabilizing controllers, or utilize computationally intractable approaches. We propose an efficient TS algorithm for the adaptive control of LQRs, TS-based Adaptive Control, TSAC, that attains $\tilde O(\sqrt{T})$ regret, even for multidimensional systems, thereby solving the open problem posed in Abeille and Lazaric (2018). TSAC does not require a priori known stabilizing controller and achieves fast stabilization of the underlying system by effectively exploring the environment in the early stages. Our result hinges on developing a novel lower bound on the probability that the TS provides an optimistic sample. By carefully prescribing an early exploration strategy and a policy update rule, we show that TS achieves order-optimal regret in adaptive control of multidimensional stabilizable LQRs. We empirically demonstrate the performance and the efficiency of TSAC in several adaptive control tasks." 1570,MetaFed: Federated Learning among Federations with Cyclic Knowledge Distillation for Personalized Healthcare,"Federated learning has attracted increasing attention to building models without accessing the raw user data, especially in healthcare. In real applications, different federations can seldom work together due to possible reasons such as data heterogeneity and distrust/inexistence of the central server. In this paper, we propose a novel framework called MetaFed to facilitate trustworthy FL between different federations. MetaFed obtains a personalized model for each federation without a central server via the proposed Cyclic Knowledge Distillation. Specifically, MetaFed treats each federation as a meta distribution and aggregates knowledge of each federation in a cyclic manner. The training is split into two parts: common knowledge accumulation and personalization. Comprehensive experiments on three benchmarks demonstrate that MetaFed without a server achieves better accuracy compared to state-of-the-art methods (e.g., 10%+ accuracy improvement compared to the baseline for PAMAP2) with fewer communication costs." 1571,ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs,"Many real-world data can be modeled as 3D graphs, but learning representations that incorporates 3D information completely and efficiently is challenging. Existing methods either use partial 3D information, or suffer from excessive computational cost. To incorporate 3D information completely and efficiently, we propose a novel message passing scheme that operates within 1-hop neighborhood. Our method guarantees full completeness of 3D information on 3D graphs by achieving global and local completeness. Notably, we propose the important rotation angles to fulfill global completeness. Additionally, we show that our method is orders of magnitude faster than prior methods. We provide rigorous proof of completeness and analysis of time complexity for our methods. As molecules are in essence quantum systems, we build the \underline{com}plete and \underline{e}fficient graph neural network (ComENet) by combing quantum inspired basis functions and the proposed message passing scheme. Experimental results demonstrate the capability and efficiency of ComENet, especially on real-world datasets that are large in both numbers and sizes of graphs. Our code is publicly available as part of the DIG library (\url{https://github.com/divelab/DIG})." 1572,A Unified Evaluation of Textual Backdoor Learning: Frameworks and Benchmarks,"Textual backdoor attacks are a kind of practical threat to NLP systems. By injecting a backdoor in the training phase, the adversary could control model predictions via predefined triggers. As various attack and defense models have been proposed, it is of great significance to perform rigorous evaluations. However, we highlight two issues in previous backdoor learning evaluations: (1) The differences between real-world scenarios (e.g. releasing poisoned datasets or models) are neglected, and we argue that each scenario has its own constraints and concerns, thus requires specific evaluation protocols; (2) The evaluation metrics only consider whether the attacks could flip the models' predictions on poisoned samples and retain performances on benign samples, but ignore that poisoned samples should also be stealthy and semantic-preserving. To address these issues, we categorize existing works into three practical scenarios in which attackers release datasets, pre-trained models, and fine-tuned models respectively, then discuss their unique evaluation methodologies. On metrics, to completely evaluate poisoned samples, we use grammar error increase and perplexity difference for stealthiness, along with text similarity for validity. After formalizing the frameworks, we develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning. With this toolkit, we perform extensive experiments to benchmark attack and defense models under the suggested paradigm. To facilitate the underexplored defenses against poisoned datasets, we further propose CUBE, a simple yet strong clustering-based defense baseline. We hope that our frameworks and benchmarks could serve as the cornerstones for future model development and evaluations." 1573,TLETA: Deep Transfer Learning and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction,"Vehicle arrival time prediction has been studied widely. With the emergence of IoT devices and deep learning techniques, estimated time of arrival (ETA) has become a critical component in intelligent transportation systems. Though many tools exist for ETA, ETA for special vehicles, such as ambulances, fire engines, etc., is still challenging due to the limited amount of traffic data for special vehicles. Existing works use one model for all types of vehicles, which can lead to low accuracy. To tackle this, as the first in the field, we propose a deep transfer learning framework TLETA for the driving time prediction. TLETA constructs cellular spatial-temporal knowledge grids for extracting driving patterns, combined with the road network structure embedding to build a deep neural network for ETA. TLETA contains transferable layers to support knowledge transfer between different categories of vehicles. Importantly, our transfer models only train the last layers to map the transferred knowledge, that reduces the training time significantly. The experimental studies show that our model predicts travel time with high accuracy and outperforms many state-of-the-art approaches." 1574,What do navigation agents learn about their environment?,"Today's state of the art visual navigation agents typically consist of large deep learning models trained end to end. Such models offer little to no interpretability about the learned skills or the actions of the agent taken in response to its environment. While past works have explored interpreting deep learning models, little attention has been devoted to interpreting embodied AI systems, which often involve reasoning about the structure of the environment, target characteristics and the outcome of one's actions. In this paper, we introduce the Interpretability System for Embodied agEnts (iSEE) for Point Goal and Object Goal navigation agents. We use iSEE to probe the dynamic representations produced by these agents for the presence of information about the agent as well as the environment. We demonstrate interesting insights about navigation agents using iSEE, including the ability to encode reachable locations (to avoid obstacles), visibility of the target, progress from the initial spawn location as well as the dramatic effect on the behaviors of agents when we mask out critical individual neurons. The code is available at: https://github.com/allenai/iSEE" 1575,A Parametric Class of Approximate Gradient Updates for Policy Optimization,"Approaches to policy optimization have been motivated from diverse principles, based on how the parametric model is interpreted (e.g. value versus policy representation) or how the learning objective is formulated, yet they share a common goal of maximizing expected return. To better capture the commonalities and identify key differences between policy optimization methods, we develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function. In particular, we identify a parameterized space of approximate gradient updates for policy optimization that is highly structured, yet covers both classical and recent examples, including PPO. As a result, we obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality. An experimental investigation demonstrates that the additional degrees of freedom provided in the parameterized family of updates can be leveraged to obtain non-trivial improvements both in synthetic domains and on popular deep RL benchmarks." 1576,Deep reinforcement learning for fMRI prediction of Autism Spectrum Disorder,"Purpose : Because functional MRI (fMRI) data sets are in general small, we sought a data efficient approach to resting state fMRI classification of autism spectrum disorder (ASD) versus neurotypical (NT) controls. We hypothesized that a Deep Reinforcement Learning (DRL) classifier could learn effectively on a small fMRI training set. Methods : We trained a Deep Reinforcement Learning (DRL) classifier on 100 graph-label pairs from the Autism Brain Imaging Data Exchange (ABIDE) database. For comparison, we trained a Supervised Deep Learning (SDL) classifier on the same training set. Results : DRL significantly outperformed SDL, with a p-value of 2.4 x 10^(-7). DRL achieved superior results for a variety of classifier performance metrics, including an F1 score of 76, versus 67 for SDL. Whereas SDL quickly overfit the training data, DRL learned in a progressive manner that generalised to the separate testing set. Conclusion : DRL can learn to classify ASD versus NT in a data efficient manner, doing so for a small training set. Future work will involve optimizing the neural network for data efficiency and applying the approach to other fMRI data sets, namely for brain cancer patients." 1577,Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency,"Pre-training on time series poses a unique challenge due to the potential mismatch between pre-training and target domains, such as shifts in temporal dynamics, fast-evolving trends, and long-range and short cyclic effects, which can lead to poor downstream performance. While domain adaptation methods can mitigate these shifts, most methods need examples directly from the target domain, making them suboptimal for pre-training. To address this challenge, methods need to accommodate target domains with different temporal dynamics and be capable of doing so without seeing any target examples during pre-training. Relative to other modalities, in time series, we expect that time-based and frequency-based representations of the same example are located close together in the time-frequency space. To this end, we posit that time-frequency consistency (TF-C) -- embedding a time-based neighborhood of a particular example close to its frequency-based neighborhood and back -- is desirable for pre-training. Motivated by TF-C, we define a decomposable pre-training model, where the self-supervised signal is provided by the distance between time and frequency components, each individually trained by contrastive estimation. We evaluate the new method on eight datasets, including electrodiagnostic testing, human activity recognition, mechanical fault detection, and physical status monitoring. Experiments against eight state-of-the-art methods show that TF-C outperforms baselines by 15.4% (F1 score) on average in one-to-one settings (e.g., fine-tuning an EEG-pretrained model on EMG data) and by up to 8.4% (F1 score) in challenging one-to-many settings, reflecting the breadth of scenarios that arise in real-world applications. The source code and datasets are available at https: //anonymous.4open.science/r/TFC-pretraining-6B07." 1578,TKIL: Tangent Kernel Approach for Class Balanced Incremental Learning,"When learning new tasks in a sequential manner, deep neural networks tend to forget tasks that they previously learned, a phenomenon called catastrophic forgetting. Class incremental learning methods aim to address this problem by keeping a memory of a few exemplars from previously learned tasks, and distilling knowledge from them. However, existing methods struggle to balance the performance across classes since they typically overfit the model to the latest task. In our work, we propose to address these challenges with the introduction of a novel methodology of Tangent Kernel for Incremental Learning (TKIL) that achieves class-balanced performance. The approach preserves the representations across classes and balances the accuracy for each class, and as such achieves better overall accuracy and variance. TKIL approach is based on Neural Tangent Kernel (NTK), which describes the convergence behavior of neural networks as a kernel function in the limit of infinite width. In TKIL, the gradients between feature layers are treated as the distance between the representations of these layers and can be defined as Gradients Tangent Kernel loss (GTK loss) such that it is minimized along with averaging weights. This allows TKIL to automatically identify the task and to quickly adapt to it during inference. Experiments on CIFAR-100 and ImageNet datasets with various incremental learning settings show that these strategies allow TKIL to outperform existing state-of-the-art methods." 1579,Revisiting Self-Distillation,"Knowledge distillation is the procedure of transferring ""knowledge"" from a large model (the teacher) to a more compact one (the student), often being used in the context of model compression. When both models have the same architecture, this procedure is called self-distillation. Several works have anecdotally shown that a self-distilled student can outperform the teacher on held-out data. In this work, we systematically study self-distillation in a number of settings. We first show that even with a highly accurate teacher, self-distillation allows a student to surpass the teacher in all cases. Secondly, we revisit existing theoretical explanations of (self) distillation and identify contradicting examples, revealing possible drawbacks of these explanations. Finally, we provide an alternative explanation for the dynamics of self-distillation through the lens of loss landscape geometry. We conduct extensive experiments to show that self-distillation leads to flatter minima, thereby resulting in better generalization." 1580,Debugging using Orthogonal Gradient Descent,"In this report we consider the following problem: Given a trained model that is partially faulty, can we correct its behaviour without having to train the model from scratch? In other words, can we ``debug"" neural networks similar to how we address bugs in our mathematical models and standard computer code. We base our approach on the hypothesis that debugging can be treated as a two-task continual learning problem. In particular, we employ a modified version of a continual learning algorithm called Orthogonal Gradient Descent (OGD) to demonstrate, via two simple experiments on the MNIST dataset, that we can in-fact \textit{unlearn} the undesirable behaviour while retaining the general performance of the model, and we can additionally \textit{relearn} the appropriate behaviour, both without having to train the model from scratch." 1581,High-Speed Accurate Robot Control using Learned Forward Kinodynamics and Non-linear Least Squares Optimization,"Accurate control of robots in the real world requires a control system that is capable of taking into account the kinodynamic interactions of the robot with its environment. At high speeds, the dependence of the movement of the robot on these kinodynamic interactions becomes more pronounced, making high-speed, accurate robot control a challenging problem. Previous work has shown that learning the inverse kinodynamics (IKD) of the robot can be helpful for high-speed robot control. However a learned inverse kinodynamic model can only be applied to a limited class of control problems, and different control problems require the learning of a new IKD model. In this work we present a new formulation for accurate, high-speed robot control that makes use of a learned forward kinodynamic (FKD) model and non-linear least squares optimization. By nature of the formulation, this approach is extensible to a wide array of control problems without requiring the retraining of a new model. We demonstrate the ability of this approach to accurately control a scale one-tenth robot car at high speeds, and show improved results over baselines." 1582,Multi-Frequency Joint Community Detection and Phase Synchronization,"This paper studies the joint community detection and phase synchronization problem on the \textit{stochastic block model with relative phase}, where each node is associated with a phase. This problem, with a variety of real-world applications, aims to recover community memberships and associated phases simultaneously. By studying the maximum likelihood estimation formulation, we show that this problem exhibits a \textit{``multi-frequency''} structure. To this end, two simple yet efficient algorithms that leverage information across multiple frequencies are proposed. The former is a spectral method based on the novel multi-frequency column-pivoted QR factorization, and the latter is an iterative multi-frequency generalized power method. Numerical experiments indicate our proposed algorithms outperform state-of-the-art algorithms, in recovering community memberships and associated phases." 1583,Classification of datasets with imputed missing values: does imputation quality matter?,"Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by classification of the now complete, imputed, samples. The focus of the machine learning researcher is then to optimise the downstream classification performance. In this study, we highlight that it is imperative to consider the quality of the imputation. We demonstrate how the commonly used measures for assessing quality are flawed and propose a new class of discrepancy scores which focus on how well the method recreates the overall distribution of the data. To conclude, we highlight the compromised interpretability of classifier models trained using poorly imputed data." 1584,Backdoor Attacks on Vision Transformers,"Vision Transformers (ViT) have recently demonstrated exemplary performance on a variety of vision tasks and are being used as an alternative to CNNs. Their design is based on a self-attention mechanism that processes images as a sequence of patches, which is quite different compared to CNNs. Hence it is interesting to study if ViTs are vulnerable to backdoor attacks. Backdoor attacks happen when an attacker poisons a small part of the training data for malicious purposes. The model performance is good on clean test images, but the attacker can manipulate the decision of the model by showing the trigger at test time. To the best of our knowledge, we are the first to show that ViTs are vulnerable to backdoor attacks. We also find an intriguing difference between ViTs and CNNs - interpretation algorithms effectively highlight the trigger on test images for ViTs but not for CNNs. Based on this observation, we propose a test-time image blocking defense for ViTs which reduces the attack success rate by a large margin. Code is available here: https://github.com/UCDvision/backdoor_transformer.git" 1585,Zero-Shot AutoML with Pretrained Models,"Given a new dataset D and a low compute budget, how should we choose a pre-trained model to fine-tune to D, and set the fine-tuning hyperparameters without risking overfitting, particularly if D is small? Here, we extend automated machine learning (AutoML) to best make these choices. Our domain-independent meta-learning approach learns a zero-shot surrogate model which, at test time, allows to select the right deep learning (DL) pipeline (including the pre-trained model and fine-tuning hyperparameters) for a new dataset D given only trivial meta-features describing D such as image resolution or the number of classes. To train this zero-shot model, we collect performance data for many DL pipelines on a large collection of datasets and meta-train on this data to minimize a pairwise ranking objective. We evaluate our approach under the strict time limit of the vision track of the ChaLearn AutoDL challenge benchmark, clearly outperforming all challenge contenders." 1586,XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence,"Recent advances in machine learning have significantly improved the understanding of source code data and achieved good performance on a number of downstream tasks. Open source repositories like GitHub enable this process with rich unlabeled code data. However, the lack of high quality labeled data has largely hindered the progress of several code related tasks, such as program translation, summarization, synthesis, and code search. This paper introduces XLCoST, Cross-Lingual Code SnippeT dataset, a new benchmark dataset for cross-lingual code intelligence. Our dataset contains fine-grained parallel data from 8 languages (7 commonly used programming languages and English), and supports 10 cross-lingual code tasks. To the best of our knowledge, it is the largest parallel dataset for source code both in terms of size and the number of languages. We also provide the performance of several state-of-the-art baseline models for each task. We believe this new dataset can be a valuable asset for the research community and facilitate the development and validation of new methods for cross-lingual code intelligence." 1587,A Robust Stacking Framework for Training Deep Graph Models with Multifaceted Node Features,"Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data. However the numerical node features utilized by GNNs are commonly extracted from raw data which is of text or tabular (numeric/categorical) type in most real-world applications. The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not simple neural network layers and thus are not easily incorporated into a GNN. Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data, which are ensembled and stacked in multiple layers. Our layer-wise framework leverages bagging and stacking strategies to enjoy strong generalization, in a manner which effectively mitigates label leakage and overfitting. Across a variety of graph datasets with tabular/text node features, our method achieves comparable or superior performance relative to both tabular/text and graph neural network models, as well as existing state-of-the-art hybrid strategies that combine the two." 1588,Variational Estimators of the Degree-corrected Latent Block Model for Bipartite Networks,"Biclustering on bipartite graphs is an unsupervised learning task that simultaneously clusters the two types of objects in the graph, for example, users and movies in a movie review dataset. The latent block model (LBM) has been proposed as a model-based tool for biclustering. Biclustering results by the LBM are, however, usually dominated by the row and column sums of the data matrix, i.e., degrees. We propose a degree-corrected latent block model (DC-LBM) to accommodate degree heterogeneity in row and column clusters, which greatly outperforms the classical LBM in the MovieLens dataset and simulated data. We develop an efficient variational expectation-maximization algorithm by observing that the row and column degrees maximize the objective function in the M step given any probability assignment on the cluster labels. We prove the label consistency of the variational estimator under the DC-LBM, which allows the expected graph density goes to zero as long as the average expected degrees of rows and columns go to infinity." 1589,PRANC: Pseudo RAndom Networks for Compacting deep models,"Communication becomes a bottleneck in various distributed Machine Learning settings. Here, we propose a novel training framework that leads to highly efficient communication of models between agents. In short, we train our network to be a linear combination of many pseudo-randomly generated frozen models. For communication, the source agent transmits only the `seed' scalar used to generate the pseudo-random `basis' networks along with the learned linear mixture coefficients. Our method, denoted as PRANC, learns almost $100\times$ fewer parameters than a deep model and still performs well on several datasets and architectures. PRANC enables 1) efficient communication of models between agents, 2) efficient model storage, and 3) accelerated inference by generating layer-wise weights on the fly. We test PRANC on CIFAR-10, CIFAR-100, tinyImageNet, and ImageNet-100 with various architectures like AlexNet, LeNet, ResNet18, ResNet20, and ResNet56 and demonstrate a massive reduction in the number of parameters while providing satisfactory performance on these benchmark datasets. The code is available \href{https://github.com/UCDvision/PRANC}{https://github.com/UCDvision/PRANC}" 1590,Recursive Neural Programs: Variational Learning of Image Grammars and Part-Whole Hierarchies,"Human vision involves parsing and representing objects and scenes using structured representations based on part-whole hierarchies. Computer vision and machine learning researchers have recently sought to emulate this capability using capsule networks, reference frames and active predictive coding, but a generative model formulation has been lacking. We introduce Recursive Neural Programs (RNPs), which, to our knowledge, is the first neural generative model to address the part-whole hierarchy learning problem. RNPs model images as hierarchical trees of probabilistic sensory-motor programs that recursively reuse learned sensory-motor primitives to model an image within different reference frames, forming recursive image grammars. We express RNPs as structured variational autoencoders (sVAEs) for inference and sampling, and demonstrate parts-based parsing, sampling and one-shot transfer learning for MNIST, Omniglot and Fashion-MNIST datasets, demonstrating the model's expressive power. Our results show that RNPs provide an intuitive and explainable way of composing objects and scenes, allowing rich compositionality and intuitive interpretations of objects in terms of part-whole hierarchies." 1591,TUSK: Task-Agnostic Unsupervised Keypoints,"Existing unsupervised methods for keypoint learning rely heavily on the assumption that a specific keypoint type (e.g. elbow, digit, abstract geometric shape) appears only once in an image. This greatly limits their applicability, as each instance must be isolated before applying the method-an issue that is never discussed or evaluated. We thus propose a novel method to learn Task-agnostic, UnSupervised Keypoints (TUSK) which can deal with multiple instances. To achieve this, instead of the commonly-used strategy of detecting multiple heatmaps, each dedicated to a specific keypoint type, we use a single heatmap for detection, and enable unsupervised learning of keypoint types through clustering. Specifically, we encode semantics into the keypoints by teaching them to reconstruct images from a sparse set of keypoints and their descriptors, where the descriptors are forced to form distinct clusters in feature space around learned prototypes. This makes our approach amenable to a wider range of tasks than any previous unsupervised keypoint method: we show experiments on multiple-instance detection and classification, object discovery, and landmark detection-all unsupervised-with performance on par with the state of the art, while also being able to deal with multiple instances." 1592,Local overlap reduction procedure for dynamic ensemble selection,"Class imbalance is a characteristic known for making learning more challenging for classification models as they may end up biased towards the majority class. A promising approach among the ensemble-based methods in the context of imbalance learning is Dynamic Selection (DS). DS techniques single out a subset of the classifiers in the ensemble to label each given unknown sample according to their estimated competence in the area surrounding the query. Because only a small region is taken into account in the selection scheme, the global class disproportion may have less impact over the system's performance. However, the presence of local class overlap may severely hinder the DS techniques' performance over imbalanced distributions as it not only exacerbates the effects of the under-representation but also introduces ambiguous and possibly unreliable samples to the competence estimation process. Thus, in this work, we propose a DS technique which attempts to minimize the effects of the local class overlap during the classifier selection procedure. The proposed method iteratively removes from the target region the instance perceived as the hardest to classify until a classifier is deemed competent to label the query sample. The known samples are characterized using instance hardness measures that quantify the local class overlap. Experimental results show that the proposed technique can significantly outperform the baseline as well as several other DS techniques, suggesting its suitability for dealing with class under-representation and overlap. Furthermore, the proposed technique still yielded competitive results when using an under-sampled, less overlapped version of the labelled sets, specially over the problems with a high proportion of minority class samples in overlap areas. Code available at https://github.com/marianaasouza/lords." 1593,Quantifying Feature Contributions to Overall Disparity Using Information Theory,"When a machine-learning algorithm makes biased decisions, it can be helpful to understand the sources of disparity to explain why the bias exists. Towards this, we examine the problem of quantifying the contribution of each individual feature to the observed disparity. If we have access to the decision-making model, one potential approach (inspired from intervention-based approaches in explainability literature) is to vary each individual feature (while keeping the others fixed) and use the resulting change in disparity to quantify its contribution. However, we may not have access to the model or be able to test/audit its outputs for individually varying features. Furthermore, the decision may not always be a deterministic function of the input features (e.g., with human-in-the-loop). For these situations, we might need to explain contributions using purely distributional (i.e., observational) techniques, rather than interventional. We ask the question: what is the ""potential"" contribution of each individual feature to the observed disparity in the decisions when the exact decision-making mechanism is not accessible? We first provide canonical examples (thought experiments) that help illustrate the difference between distributional and interventional approaches to explaining contributions, and when either is better suited. When unable to intervene on the inputs, we quantify the ""redundant"" statistical dependency about the protected attribute that is present in both the final decision and an individual feature, by leveraging a body of work in information theory called Partial Information Decomposition. We also perform a simple case study to show how this technique could be applied to quantify contributions." 1594,GOOD: A Graph Out-of-Distribution Benchmark,"Out-of-distribution (OOD) learning deals with scenarios in which training and test data follow different distributions. Although general OOD problems have been intensively studied in machine learning, graph OOD is only an emerging area of research. Currently, there lacks a systematic benchmark tailored to graph OOD method evaluation. In this work, we aim at developing an OOD benchmark, known as GOOD, for graphs specifically. We explicitly make distinctions between covariate and concept shifts and design data splits that accurately reflect different shifts. We consider both graph and node prediction tasks as there are key differences when designing shifts. Overall, GOOD contains 8 datasets with 14 domain selections. When combined with covariate, concept, and no shifts, we obtain 42 different splits. We provide performance results on 7 commonly used baseline methods with 10 random runs. This results in 294 dataset-model combinations in total. Our results show significant performance gaps between in-distribution and OOD settings. Our results also shed light on different performance trends between covariate and concept shifts by different methods. Our GOOD benchmark is a growing project and expects to expand in both quantity and variety of resources as the area develops. The GOOD benchmark can be accessed via $\href{https://github.com/divelab/GOOD/}{\text{https://github.com/divelab/GOOD/}}$." 1595,I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences,"Machine Learning-as-a-Service (MLaaS) has become a widespread paradigm, making even the most complex machine learning models available for clients via e.g. a pay-per-query principle. This allows users to avoid time-consuming processes of data collection, hyperparameter tuning, and model training. However, by giving their customers access to the (predictions of their) models, MLaaS providers endanger their intellectual property, such as sensitive training data, optimised hyperparameters, or learned model parameters. Adversaries can create a copy of the model with (almost) identical behavior using the the prediction labels only. While many variants of this attack have been described, only scattered defence strategies have been proposed, addressing isolated threats. This raises the necessity for a thorough systematisation of the field of model stealing, to arrive at a comprehensive understanding why these attacks are successful, and how they could be holistically defended against. We address this by categorising and comparing model stealing attacks, assessing their performance, and exploring corresponding defence techniques in different settings. We propose a taxonomy for attack and defence approaches, and provide guidelines on how to select the right attack or defence strategy based on the goal and available resources. Finally, we analyse which defences are rendered less effective by current attack strategies." 1596,Active Fairness Auditing,"The fast spreading adoption of machine learning (ML) by companies across industries poses significant regulatory challenges. One such challenge is scalability: how can regulatory bodies efficiently audit these ML models, ensuring that they are fair? In this paper, we initiate the study of query-based auditing algorithms that can estimate the demographic parity of ML models in a query-efficient manner. We propose an optimal deterministic algorithm, as well as a practical randomized, oracle-efficient algorithm with comparable guarantees. Furthermore, we make inroads into understanding the optimal query complexity of randomized active fairness estimation algorithms. Our first exploration of active fairness estimation aims to put AI governance on firmer theoretical foundations." 1597,Empirical Bayesian Approaches for Robust Constraint-based Causal Discovery under Insufficient Data,"Causal discovery is to learn cause-effect relationships among variables given observational data and is important for many applications. Existing causal discovery methods assume data sufficiency, which may not be the case in many real world datasets. As a result, many existing causal discovery methods can fail under limited data. In this work, we propose Bayesian-augmented frequentist independence tests to improve the performance of constraint-based causal discovery methods under insufficient data: 1) We firstly introduce a Bayesian method to estimate mutual information (MI), based on which we propose a robust MI based independence test; 2) Secondly, we consider the Bayesian estimation of hypothesis likelihood and incorporate it into a well-defined statistical test, resulting in a robust statistical testing based independence test. We apply proposed independence tests to constraint-based causal discovery methods and evaluate the performance on benchmark datasets with insufficient samples. Experiments show significant performance improvement in terms of both accuracy and efficiency over SOTA methods." 1598,Understanding Decision-Time vs. Background Planning in Model-Based Reinforcement Learning,"In model-based reinforcement learning, an agent can leverage a learned model to improve its way of behaving in different ways. Two prevalent approaches are decision-time planning and background planning. In this study, we are interested in understanding under what conditions and in which settings one of these two planning styles will perform better than the other in domains that require fast responses. After viewing them through the lens of dynamic programming, we first consider the classical instantiations of these planning styles and provide theoretical results and hypotheses on which one will perform better in the pure planning, planning & learning, and transfer learning settings. We then consider the modern instantiations of these planning styles and provide hypotheses on which one will perform better in the last two of the considered settings. Lastly, we perform several illustrative experiments to empirically validate both our theoretical results and hypotheses. Overall, our findings suggest that even though decision-time planning does not perform as well as background planning in their classical instantiations, in their modern instantiations, it can perform on par or better than background planning in both the planning & learning and transfer learning settings." 1599,OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology,"Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at opensrh.mlins.org." 1600,SATBench: Benchmarking the speed-accuracy tradeoff in object recognition by humans and dynamic neural networks,"The core of everyday tasks like reading and driving is active object recognition. Attempts to model such tasks are currently stymied by the inability to incorporate time. People show a flexible tradeoff between speed and accuracy and this tradeoff is a crucial human skill. Deep neural networks have emerged as promising candidates for predicting peak human object recognition performance and neural activity. However, modeling the temporal dimension i.e., the speed-accuracy tradeoff (SAT), is essential for them to serve as useful computational models for how humans recognize objects. To this end, we here present the first large-scale (148 observers, 4 neural networks, 8 tasks) dataset of the speed-accuracy tradeoff (SAT) in recognizing ImageNet images. In each human trial, a beep, indicating the desired reaction time, sounds at a fixed delay after the image is presented, and observer's response counts only if it occurs near the time of the beep. In a series of blocks, we test many beep latencies, i.e., reaction times. We observe that human accuracy increases with reaction time and proceed to compare its characteristics with the behavior of several dynamic neural networks that are capable of inference-time adaptive computation. Using FLOPs as an analog for reaction time, we compare networks with humans on curve-fit error, category-wise correlation, and curve steepness, and conclude that cascaded dynamic neural networks are a promising model of human reaction time in object recognition tasks." 1601,Learning to Teach Fairness-aware Deep Multi-task Learning,"Fairness-aware learning mainly focuses on single task learning (STL). The fairness implications of multi-task learning (MTL) have only recently been considered and a seminal approach has been proposed that considers the fairness-accuracy trade-off for each task and the performance trade-off among different tasks. Instead of a rigid fairness-accuracy trade-off formulation, we propose a flexible approach that learns how to be fair in a MTL setting by selecting which objective (accuracy or fairness) to optimize at each step. We introduce the L2T-FMT algorithm that is a teacher-student network trained collaboratively; the student learns to solve the fair MTL problem while the teacher instructs the student to learn from either accuracy or fairness, depending on what is harder to learn for each task. Moreover, this dynamic selection of which objective to use at each step for each task reduces the number of trade-off weights from 2T to T, where T is the number of tasks. Our experiments on three real datasets show that L2T-FMT improves on both fairness (12-19%) and accuracy (up to 2%) over state-of-the-art approaches." 1602,Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks,"Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train." 1603,Powershap: A Power-full Shapley Feature Selection Method,"Feature selection is a crucial step in developing robust and powerful machine learning models. Feature selection techniques can be divided into two categories: filter and wrapper methods. While wrapper methods commonly result in strong predictive performances, they suffer from a large computational complexity and therefore take a significant amount of time to complete, especially when dealing with high-dimensional feature sets. Alternatively, filter methods are considerably faster, but suffer from several other disadvantages, such as (i) requiring a threshold value, (ii) not taking into account intercorrelation between features, and (iii) ignoring feature interactions with the model. To this end, we present powershap, a novel wrapper feature selection method, which leverages statistical hypothesis testing and power calculations in combination with Shapley values for quick and intuitive feature selection. Powershap is built on the core assumption that an informative feature will have a larger impact on the prediction compared to a known random feature. Benchmarks and simulations show that powershap outperforms other filter methods with predictive performances on par with wrapper methods while being significantly faster, often even reaching half or a third of the execution time. As such, powershap provides a competitive and quick algorithm that can be used by various models in different domains. Furthermore, powershap is implemented as a plug-and-play and open-source sklearn component, enabling easy integration in conventional data science pipelines. User experience is even further enhanced by also providing an automatic mode that automatically tunes the hyper-parameters of the powershap algorithm, allowing to use the algorithm without any configuration needed." 1604,SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation,"Adapting to a continuously evolving environment is a safety-critical challenge inevitably faced by all autonomous driving systems. Existing image and video driving datasets, however, fall short of capturing the mutable nature of the real world. In this paper, we introduce the largest multi-task synthetic dataset for autonomous driving, SHIFT. It presents discrete and continuous shifts in cloudiness, rain and fog intensity, time of day, and vehicle and pedestrian density. Featuring a comprehensive sensor suite and annotations for several mainstream perception tasks, SHIFT allows investigating the degradation of a perception system performance at increasing levels of domain shift, fostering the development of continuous adaptation strategies to mitigate this problem and assess model robustness and generality. Our dataset and benchmark toolkit are publicly available at www.vis.xyz/shift." 1605,Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation,"Bayesian Optimization (BO) has shown great promise for the global optimization of functions that are expensive to evaluate, but despite many successes, standard approaches can struggle in high dimensions. To improve the performance of BO, prior work suggested incorporating gradient information into a Gaussian process surrogate of the objective, giving rise to kernel matrices of size $nd \times nd$ for $n$ observations in $d$ dimensions. Na\""ively multiplying with (resp. inverting) these matrices requires $\mathcal{O}(n^2d^2)$ (resp. $\mathcal{O}(n^3d^3$)) operations, which becomes infeasible for moderate dimensions and sample sizes. Here, we observe that a wide range of kernels gives rise to structured matrices, enabling an exact $\mathcal{O}(n^2d)$ matrix-vector multiply for gradient observations and $\mathcal{O}(n^2d^2)$ for Hessian observations. Beyond canonical kernel classes, we derive a programmatic approach to leveraging this type of structure for transformations and combinations of the discussed kernel classes, which constitutes a structure-aware automatic differentiation algorithm. Our methods apply to virtually all canonical kernels and automatically extend to complex kernels, like the neural network, radial basis function network, and spectral mixture kernels without any additional derivations, enabling flexible, problem-dependent modeling while scaling first-order BO to high $d$." 1606,Interaction-Grounded Learning with Action-inclusive Feedback,"Consider the problem setting of Interaction-Grounded Learning (IGL), in which a learner's goal is to optimally interact with the environment with no explicit reward to ground its policies. The agent observes a context vector, takes an action, and receives a feedback vector, using this information to effectively optimize a policy with respect to a latent reward function. Prior analyzed approaches fail when the feedback vector contains the action, which significantly limits IGL's success in many potential scenarios such as Brain-computer interface (BCI) or Human-computer interface (HCI) applications. We address this by creating an algorithm and analysis which allows IGL to work even when the feedback vector contains the action, encoded in any fashion. We provide theoretical guarantees and large-scale experiments based on supervised datasets to demonstrate the effectiveness of the new approach." 1607,Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability,"Estimating personalized effects of treatments is a complex, yet pervasive problem. To tackle it, recent developments in the machine learning (ML) literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools: due to their flexibility, modularity and ability to learn constrained representations, neural networks in particular have become central to this literature. Unfortunately, the assets of such black boxes come at a cost: models typically involve countless nontrivial operations, making it difficult to understand what they have learned. Yet, understanding these models can be crucial -- in a medical context, for example, discovered knowledge on treatment effect heterogeneity could inform treatment prescription in clinical practice. In this work, we therefore use post-hoc feature importance methods to identify features that influence the model's predictions. This allows us to evaluate treatment effect estimators along a new and important dimension that has been overlooked in previous work: We construct a benchmarking environment to empirically investigate the ability of personalized treatment effect models to identify predictive covariates -- covariates that determine differential responses to treatment. Our benchmarking environment then enables us to provide new insight into the strengths and weaknesses of different types of treatment effects models as we modulate different challenges specific to treatment effect estimation -- e.g. the ratio of prognostic to predictive information, the possible nonlinearity of potential outcomes and the presence and type of confounding." 1608,Is Power-Seeking AI an Existential Risk?,"This report examines what I see as the core argument for concern about existential risk from misaligned artificial intelligence. I proceed in two stages. First, I lay out a backdrop picture that informs such concern. On this picture, intelligent agency is an extremely powerful force, and creating agents much more intelligent than us is playing with fire -- especially given that if their objectives are problematic, such agents would plausibly have instrumental incentives to seek power over humans. Second, I formulate and evaluate a more specific six-premise argument that creating agents of this kind will lead to existential catastrophe by 2070. On this argument, by 2070: (1) it will become possible and financially feasible to build relevantly powerful and agentic AI systems; (2) there will be strong incentives to do so; (3) it will be much harder to build aligned (and relevantly powerful/agentic) AI systems than to build misaligned (and relevantly powerful/agentic) AI systems that are still superficially attractive to deploy; (4) some such misaligned systems will seek power over humans in high-impact ways; (5) this problem will scale to the full disempowerment of humanity; and (6) such disempowerment will constitute an existential catastrophe. I assign rough subjective credences to the premises in this argument, and I end up with an overall estimate of ~5% that an existential catastrophe of this kind will occur by 2070. (May 2022 update: since making this report public in April 2021, my estimate here has gone up, and is now at >10%.)" 1609,MixGen: A New Multi-Modal Data Augmentation,"Data augmentation is a necessity to enhance data efficiency in deep learning. For vision-language pre-training, data is only augmented either for images or for text in previous works. In this paper, we present MixGen: a joint data augmentation for vision-language representation learning to further improve data efficiency. It generates new image-text pairs with semantic relationships preserved by interpolating images and concatenating text. It's simple, and can be plug-and-played into existing pipelines. We evaluate MixGen on four architectures, including CLIP, ViLT, ALBEF and TCL, across five downstream vision-language tasks to show its versatility and effectiveness. For example, adding MixGen in ALBEF pre-training leads to absolute performance improvements on downstream tasks: image-text retrieval (+6.2% on COCO fine-tuned and +5.3% on Flicker30K zero-shot), visual grounding (+0.9% on RefCOCO+), visual reasoning (+0.9% on NLVR$^{2}$), visual question answering (+0.3% on VQA2.0), and visual entailment (+0.4% on SNLI-VE)." 1610,Spatially-Adaptive Multilayer Selection for GAN Inversion and Editing,"Existing GAN inversion and editing methods work well for aligned objects with a clean background, such as portraits and animal faces, but often struggle for more difficult categories with complex scene layouts and object occlusions, such as cars, animals, and outdoor images. We propose a new method to invert and edit such complex images in the latent space of GANs, such as StyleGAN2. Our key idea is to explore inversion with a collection of layers, spatially adapting the inversion process to the difficulty of the image. We learn to predict the ""invertibility"" of different image segments and project each segment into a latent layer. Easier regions can be inverted into an earlier layer in the generator's latent space, while more challenging regions can be inverted into a later feature space. Experiments show that our method obtains better inversion results compared to the recent approaches on complex categories, while maintaining downstream editability. Please refer to our project page at https://www.cs.cmu.edu/~SAMInversion." 1611,OmniMAE: Single Model Masked Pretraining on Images and Videos,"Transformer-based architectures have become competitive across a variety of visual domains, most notably images and videos. While prior work has studied these modalities in isolation, having a common architecture suggests that one can train a single unified model for multiple visual modalities. Prior attempts at unified modeling typically use architectures tailored for vision tasks, or obtain worse performance compared to single modality models. In this work, we show that masked autoencoding can be used to train a simple Vision Transformer on images and videos, without requiring any labeled data. This single model learns visual representations that are comparable to or better than single-modality representations on both image and video benchmarks, while using a much simpler architecture. In particular, our single pretrained model can be finetuned to achieve 86.5% on ImageNet and 75.3% on the challenging Something Something-v2 video benchmark. Furthermore, this model can be learned by dropping 90% of the image and 95% of the video patches, enabling extremely fast training." 1612,Towards Understanding How Machines Can Learn Causal Overhypotheses,"Recent work in machine learning and cognitive science has suggested that understanding causal information is essential to the development of intelligence. The extensive literature in cognitive science using the ``blicket detector'' environment shows that children are adept at many kinds of causal inference and learning. We propose to adapt that environment for machine learning agents. One of the key challenges for current machine learning algorithms is modeling and understanding causal overhypotheses: transferable abstract hypotheses about sets of causal relationships. In contrast, even young children spontaneously learn and use causal overhypotheses. In this work, we present a new benchmark -- a flexible environment which allows for the evaluation of existing techniques under variable causal overhypotheses -- and demonstrate that many existing state-of-the-art methods have trouble generalizing in this environment. The code and resources for this benchmark are available at https://github.com/CannyLab/casual_overhypotheses." 1613,Know your audience: specializing grounded language models with the game of Dixit,"Effective communication requires adapting to the idiosyncratic common ground shared with each communicative partner. We study a particularly challenging instantiation of this problem: the popular game Dixit. We formulate a round of Dixit as a multi-agent image reference game where a (trained) speaker model is rewarded for describing a target image such that one (pretrained) listener model can correctly identify it from a pool of distractors, but another listener cannot. To adapt to this setting, the speaker must exploit differences in the common ground it shares with the different listeners. We show that finetuning an attention-based adapter between a CLIP vision encoder and a large language model in this contrastive, multi-agent setting gives rise to context-dependent natural language specialization from rewards only, without direct supervision. In a series of controlled experiments, we show that the speaker can adapt according to the idiosyncratic strengths and weaknesses of various pairs of different listeners. Furthermore, we show zero-shot transfer of the speaker's specialization to unseen real-world data. Our experiments offer a step towards adaptive communication in complex multi-partner settings and highlight the interesting research challenges posed by games like Dixit. We hope that our work will inspire creative new approaches to adapting pretrained models." 1614,iBoot: Image-bootstrapped Self-Supervised Video Representation Learning,"Learning visual representations through self-supervision is an extremely challenging task as the network needs to sieve relevant patterns from spurious distractors without the active guidance provided by supervision. This is achieved through heavy data augmentation, large-scale datasets and prohibitive amounts of compute. Video self-supervised learning (SSL) suffers from added challenges: video datasets are typically not as large as image datasets, compute is an order of magnitude larger, and the amount of spurious patterns the optimizer has to sieve through is multiplied several fold. Thus, directly learning self-supervised representations from video data might result in sub-optimal performance. To address this, we propose to utilize a strong image-based model, pre-trained with self- or language supervision, in a video representation learning framework, enabling the model to learn strong spatial and temporal information without relying on the video labeled data. To this end, we modify the typical video-based SSL design and objective to encourage the video encoder to \textit{subsume} the semantic content of an image-based model trained on a general domain. The proposed algorithm is shown to learn much more efficiently (i.e. in less epochs and with a smaller batch) and results in a new state-of-the-art performance on standard downstream tasks among single-modality SSL methods." 1615,Constrained Submodular Optimization for Vaccine Design,"Advances in machine learning have enabled the prediction of immune system responses to prophylactic and therapeutic vaccines. However, the engineering task of designing vaccines remains a challenge. In particular, the genetic variability of the human immune system makes it difficult to design peptide vaccines that provide widespread immunity in vaccinated populations. We introduce a framework for evaluating and designing peptide vaccines that uses probabilistic machine learning models, and demonstrate its ability to produce designs for a SARS-CoV-2 vaccine that outperform previous designs. We provide a theoretical analysis of the approximability, scalability, and complexity of our framework." 1616,BYOL-Explore: Exploration by Bootstrapped Prediction,"We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments. On this benchmark, we solve the majority of the tasks purely through augmenting the extrinsic reward with BYOL-Explore s intrinsic reward, whereas prior work could only get off the ground with human demonstrations. As further evidence of the generality of BYOL-Explore, we show that it achieves superhuman performance on the ten hardest exploration games in Atari while having a much simpler design than other competitive agents." 1617,Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data,"We propose Compressed Vertical Federated Learning (C-VFL) for communication-efficient training on vertically partitioned data. In C-VFL, a server and multiple parties collaboratively train a model on their respective features utilizing several local iterations and sharing compressed intermediate results periodically. Our work provides the first theoretical analysis of the effect message compression has on distributed training over vertically partitioned data. We prove convergence of non-convex objectives at a rate of $O(\frac{1}{\sqrt{T}})$ when the compression error is bounded over the course of training. We provide specific requirements for convergence with common compression techniques, such as quantization and top-$k$ sparsification. Finally, we experimentally show compression can reduce communication by over $90\%$ without a significant decrease in accuracy over VFL without compression." 1618,Boosting the Adversarial Transferability of Surrogate Model with Dark Knowledge,"Deep neural networks (DNNs) for image classification are known to be vulnerable to adversarial examples. And, the adversarial examples have transferability, which means an adversarial example for a DNN model can fool another black-box model with a non-trivial probability. This gave birth of the transfer-based adversarial attack where the adversarial examples generated by a pretrained or known model (called surrogate model) are used to conduct black-box attack. There are some work on how to generate the adversarial examples from a given surrogate model to achieve better transferability. However, training a special surrogate model to generate adversarial examples with better transferability is relatively under-explored. In this paper, we propose a method of training a surrogate model with abundant dark knowledge to boost the adversarial transferability of the adversarial examples generated by the surrogate model. This trained surrogate model is named dark surrogate model (DSM), and the proposed method to train DSM consists of two key components: a teacher model extracting dark knowledge and providing soft labels, and the mixing augmentation skill which enhances the dark knowledge of training data. Extensive experiments have been conducted to show that the proposed method can substantially improve the adversarial transferability of surrogate model across different architectures of surrogate model and optimizers for generating adversarial examples. We also show that the proposed method can be applied to other scenarios of transfer-based attack that contain dark knowledge, like face verification." 1619,Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations,"Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare by assisting decision-makers to answer ''what-iF'' questions. Existing causal inference approaches typically consider regular, discrete-time intervals between observations and treatment decisions and hence are unable to naturally model irregularly sampled data, which is the common setting in practice. To handle arbitrary observation patterns, we interpret the data as samples from an underlying continuous-time process and propose to model its latent trajectory explicitly using the mathematics of controlled differential equations. This leads to a new approach, the Treatment Effect Neural Controlled Differential Equation (TE-CDE), that allows the potential outcomes to be evaluated at any time point. In addition, adversarial training is used to adjust for time-dependent confounding which is critical in longitudinal settings and is an added challenge not encountered in conventional time-series. To assess solutions to this problem, we propose a controllable simulation environment based on a model of tumor growth for a range of scenarios with irregular sampling reflective of a variety of clinical scenarios. TE-CDE consistently outperforms existing approaches in all simulated scenarios with irregular sampling." 1620,Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case,"In recent years, deep generative models have attracted increasing interest due to their capacity to model complex distributions. Among those models, variational autoencoders have gained popularity as they have proven both to be computationally efficient and yield impressive results in multiple fields. Following this breakthrough, extensive research has been done in order to improve the original publication, resulting in a variety of different VAE models in response to different tasks. In this paper we present Pythae, a versatile open-source Python library providing both a unified implementation and a dedicated framework allowing straightforward, reproducible and reliable use of generative autoencoder models. We then propose to use this library to perform a case study benchmark where we present and compare 19 generative autoencoder models representative of some of the main improvements on downstream tasks such as image reconstruction, generation, classification, clustering and interpolation. The open-source library can be found at https://github.com/clementchadebec/benchmark_VAE." 1621,Deepfake histological images for enhancing digital pathology,"An optical microscopic examination of thinly cut stained tissue on glass slides prepared from a FFPE tissue blocks is the gold standard for tissue diagnostics. In addition, the diagnostic abilities and expertise of any pathologist is dependent on their direct experience with common as well as rarer variant morphologies. Recently, deep learning approaches have been used to successfully show a high level of accuracy for such tasks. However, obtaining expert-level annotated images is an expensive and time-consuming task and artificially synthesized histological images can prove greatly beneficial. Here, we present an approach to not only generate histological images that reproduce the diagnostic morphologic features of common disease but also provide a user ability to generate new and rare morphologies. Our approach involves developing a generative adversarial network model that synthesizes pathology images constrained by class labels. We investigated the ability of this framework in synthesizing realistic prostate and colon tissue images and assessed the utility of these images in augmenting diagnostic ability of machine learning methods as well as their usability by a panel of experienced anatomic pathologists. Synthetic data generated by our framework performed similar to real data in training a deep learning model for diagnosis. Pathologists were not able to distinguish between real and synthetic images and showed a similar level of inter-observer agreement for prostate cancer grading. We extended the approach to significantly more complex images from colon biopsies and showed that the complex microenvironment in such tissues can also be reproduced. Finally, we present the ability for a user to generate deepfake histological images via a simple markup of sematic labels." 1622,Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning,"We study the asynchronous stochastic gradient descent algorithm for distributed training over $n$ workers which have varying computation and communication frequency over time. In this algorithm, workers compute stochastic gradients in parallel at their own pace and return those to the server without any synchronization. Existing convergence rates of this algorithm for non-convex smooth objectives depend on the maximum gradient delay $\tau_{\max}$ and show that an $\epsilon$-stationary point is reached after $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \tau_{\max}\epsilon^{-1}\right)$ iterations, where $\sigma$ denotes the variance of stochastic gradients. In this work (i) we obtain a tighter convergence rate of $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \sqrt{\tau_{\max}\tau_{avg}}\epsilon^{-1}\right)$ without any change in the algorithm where $\tau_{avg}$ is the average delay, which can be significantly smaller than $\tau_{\max}$. We also provide (ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD achieves a convergence rate of $\mathcal{O}\!\left(\sigma^2\epsilon^{-2}+ \tau_{avg}\epsilon^{-1}\right)$, and does not require any extra hyperparameter tuning nor extra communications. Our result allows to show for the first time that asynchronous SGD is always faster than mini-batch SGD. In addition, (iii) we consider the case of heterogeneous functions motivated by federated learning applications and improve the convergence rate by proving a weaker dependence on the maximum delay compared to prior works. In particular, we show that the heterogeneity term in convergence rate is only affected by the average delay within each worker." 1623,Adversarial Patch Attacks and Defences in Vision-Based Tasks: A Survey,"Adversarial attacks in deep learning models, especially for safety-critical systems, are gaining more and more attention in recent years, due to the lack of trust in the security and robustness of AI models. Yet the more primitive adversarial attacks might be physically infeasible or require some resources that are hard to access like the training data, which motivated the emergence of patch attacks. In this survey, we provide a comprehensive overview to cover existing techniques of adversarial patch attacks, aiming to help interested researchers quickly catch up with the progress in this field. We also discuss existing techniques for developing detection and defences against adversarial patches, aiming to help the community better understand this field and its applications in the real world." 1624,On Scaled Methods for Saddle Point Problems,"Methods with adaptive scaling of different features play a key role in solving saddle point problems, primarily due to Adam's popularity for solving adversarial machine learning problems, including GANS training. This paper carries out a theoretical analysis of the following scaling techniques for solving SPPs: the well-known Adam and RmsProp scaling and the newer AdaHessian and OASIS based on Hutchison approximation. We use the Extra Gradient and its improved version with negative momentum as the basic method. Experimental studies on GANs show good applicability not only for Adam, but also for other less popular methods." 1625,GoodBye WaveNet -- A Language Model for Raw Audio with Context of 1/2 Million Samples,"Modeling long-term dependencies for audio signals is a particularly challenging problem, as even small-time scales yield on the order of a hundred thousand samples. With the recent advent of Transformers, neural architectures became good at modeling dependencies over longer time scales, but they suffered from quadratic constraints to scale them. We propose a generative auto-regressive architecture that can model audio waveforms over quite a large context, greater than 500,000 samples. Our work is adapted to learn time dependencies by learning a latent representation by a CNN front-end, and then learning dependencies over these representations using Transformer encoders, fully trained end-to-end: thereby allowing to learn representations as it deems fit for the next sample. Unlike previous works that compared different time scales to show improvement, we use a standard dataset, with the same number of parameters/context to show improvements. We achieve a state-of-the-art performance as compared to other approaches such as Wavenet, SaSHMI, and Sample-RNN on a standard dataset for modeling long-term structure. This work gives very exciting direction for the field, given improvements in context modeling that can be scaled with more data, as well as potentially better results by using billions/trillions of parameters." 1626,Switchable Representation Learning Framework with Self-compatibility,"Real-world visual search systems involve deployments on multiple platforms with different computing and storage resources. Deploying a unified model that suits the minimal-constrain platforms leads to limited accuracy. It is expected to deploy models with different capacities adapting to the resource constraints, which requires features extracted by these models to be aligned in the metric space. The method to achieve feature alignments is called ""compatible learning"". Existing research mainly focuses on the one-to-one compatible paradigm, which is limited in learning compatibility among multiple models. We propose a Switchable representation learning Framework with Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models with different capacities through one training process. The optimization of sub-models faces gradients conflict, and we mitigate it from the perspective of the magnitude and direction. We adjust the priorities of sub-models dynamically through uncertainty estimation to co-optimize sub-models properly. Besides, the gradients with conflicting directions are projected to avoid mutual interference. SFSC achieves state-of-art performance on the evaluated dataset." 1627,A machine-generated catalogue of Charon's craters and implications for the Kuiper belt,"In this paper we investigate Charon's craters size distribution using a deep learning model. This is motivated by the recent results of Singer et al. (2019) who, using manual cataloging, found a change in the size distribution slope of craters smaller than 12 km in diameter, translating into a paucity of small Kuiper Belt objects. These results were corroborated by Robbins and Singer (2021), but opposed by Morbidelli et al. (2021), necessitating an independent review. Our MaskRCNN-based ensemble of models was trained on Lunar, Mercurian, and Martian crater catalogues and both optical and digital elevation images. We use a robust image augmentation scheme to force the model to generalize and transfer-learn into icy objects. With no prior bias or exposure to Charon, our model find best fit slopes of q =-1.47+-0.33 for craters smaller than 10 km, and q =-2.91+-0.51 for craters larger than 15 km. These values indicate a clear change in slope around 15 km as suggested by Singer et al. (2019) and thus independently confirm their conclusions. Our slopes however are both slightly flatter than those found more recently by Robbins and Singer (2021). Our trained models and relevant codes are available online on github.com/malidib/ACID ." 1628,Rank the triplets: A ranking-based multiple instance learning framework for detecting HPV infection in head and neck cancers using routine H&E images,"The aetiology of head and neck squamous cell carcinoma (HNSCC) involves multiple carcinogens such as alcohol, tobacco and infection with human papillomavirus (HPV). As the HPV infection influences the prognosis, treatment and survival of patients with HNSCC, it is important to determine the HPV status of these tumours. In this paper, we propose a novel triplet-ranking loss function and a multiple instance learning pipeline for HPV status prediction. This achieves a new state-of-the-art performance in HPV detection using only the routine H&E stained WSIs on two HNSCC cohorts. Furthermore, a comprehensive tumour microenvironment profiling was performed, which characterised the unique patterns between HPV+/- HNSCC from genomic, immunology and cellular perspectives. Positive correlations of the proposed score with different subtypes of T cells (e.g. T cells follicular helper, CD8+ T cells), and negative correlations with macrophages and connective cells (e.g. fibroblast) were identified, which is in line with clinical findings. Unique gene expression profiles were also identified with respect to HPV infection status, and is in line with existing findings." 1629,Concentration of Data Encoding in Parameterized Quantum Circuits,"Variational quantum algorithms have been acknowledged as a leading strategy to realize near-term quantum advantages in meaningful tasks, including machine learning and combinatorial optimization. When applied to tasks involving classical data, such algorithms generally begin with quantum circuits for data encoding and then train quantum neural networks (QNNs) to minimize target functions. Although QNNs have been widely studied to improve these algorithms' performance on practical tasks, there is a gap in systematically understanding the influence of data encoding on the eventual performance. In this paper, we make progress in filling this gap by considering the common data encoding strategies based on parameterized quantum circuits. We prove that, under reasonable assumptions, the distance between the average encoded state and the maximally mixed state could be explicitly upper-bounded with respect to the width and depth of the encoding circuit. This result in particular implies that the average encoded state will concentrate on the maximally mixed state at an exponential speed on depth. Such concentration seriously limits the capabilities of quantum classifiers, and strictly restricts the distinguishability of encoded states from a quantum information perspective. We further support our findings by numerically verifying these results on both synthetic and public data sets. Our results highlight the significance of quantum data encoding in machine learning tasks and may shed light on future encoding strategies." 1630,Learning with little mixing,"We study square loss in a realizable time-series framework with martingale difference noise. Our main result is a fast rate excess risk bound which shows that whenever a trajectory hypercontractivity condition holds, the risk of the least-squares estimator on dependent data matches the iid rate order-wise after a burn-in time. In comparison, many existing results in learning from dependent data have rates where the effective sample size is deflated by a factor of the mixing-time of the underlying process, even after the burn-in time. Furthermore, our results allow the covariate process to exhibit long range correlations which are substantially weaker than geometric ergodicity. We call this phenomenon learning with little mixing, and present several examples for when it occurs: bounded function classes for which the $L^2$ and $L^{2+\epsilon}$ norms are equivalent, ergodic finite state Markov chains, various parametric models, and a broad family of infinite dimensional $\ell^2(\mathbb{N})$ ellipsoids. By instantiating our main result to system identification of nonlinear dynamics with generalized linear model transitions, we obtain a nearly minimax optimal excess risk bound after only a polynomial burn-in time." 1631,Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching,"Score-based generative models have excellent performance in terms of generation quality and likelihood. They model the data distribution by matching a parameterized score network with first-order data score functions. The score network can be used to define an ODE (""score-based diffusion ODE"") for exact likelihood evaluation. However, the relationship between the likelihood of the ODE and the score matching objective is unclear. In this work, we prove that matching the first-order score is not sufficient to maximize the likelihood of the ODE, by showing a gap between the maximum likelihood and score matching objectives. To fill up this gap, we show that the negative likelihood of the ODE can be bounded by controlling the first, second, and third-order score matching errors; and we further present a novel high-order denoising score matching method to enable maximum likelihood training of score-based diffusion ODEs. Our algorithm guarantees that the higher-order matching error is bounded by the training error and the lower-order errors. We empirically observe that by high-order score matching, score-based diffusion ODEs achieve better likelihood on both synthetic data and CIFAR-10, while retaining the high generation quality." 1632,ProGNNosis: A Data-driven Model to Predict GNN Computation Time Using Graph Metrics,"Graph Neural Networks (GNN) show great promise in problems dealing with graph-structured data. One of the unique points of GNNs is their flexibility to adapt to multiple problems, which not only leads to wide applicability, but also poses important challenges when finding the best model or acceleration technique for a particular problem. An example of such challenges resides in the fact that the accuracy or effectiveness of a GNN model or acceleration technique generally depends on the structure of the underlying graph. In this paper, in an attempt to address the problem of graph-dependent acceleration, we propose ProGNNosis, a data-driven model that can predict the GNN training time of a given GNN model running over a graph of arbitrary characteristics by inspecting the input graph metrics. Such prediction is made based on a regression that was previously trained offline using a diverse synthetic graph dataset. In practice, our method allows making informed decisions on which design to use for a specific problem. In the paper, the methodology to build ProGNNosis is defined and applied for a specific use case, where it helps to decide which graph representation is better. Our results show that ProGNNosis helps achieve an average speedup of 1.22X over randomly selecting a graph representation in multiple widely used GNN models such as GCN, GIN, GAT, or GraphSAGE." 1633,Gradient Descent for Low-Rank Functions,"Several recent empirical studies demonstrate that important machine learning tasks, e.g., training deep neural networks, exhibit low-rank structure, where the loss function varies significantly in only a few directions of the input space. In this paper, we leverage such low-rank structure to reduce the high computational cost of canonical gradient-based methods such as gradient descent (GD). Our proposed \emph{Low-Rank Gradient Descent} (LRGD) algorithm finds an $\epsilon$-approximate stationary point of a $p$-dimensional function by first identifying $r \leq p$ significant directions, and then estimating the true $p$-dimensional gradient at every iteration by computing directional derivatives only along those $r$ directions. We establish that the ""directional oracle complexities"" of LRGD for strongly convex and non-convex objective functions are $\mathcal{O}(r \log(1/\epsilon) + rp)$ and $\mathcal{O}(r/\epsilon^2 + rp)$, respectively. When $r \ll p$, these complexities are smaller than the known complexities of $\mathcal{O}(p \log(1/\epsilon))$ and $\mathcal{O}(p/\epsilon^2)$ of {\gd} in the strongly convex and non-convex settings, respectively. Thus, LRGD significantly reduces the computational cost of gradient-based methods for sufficiently low-rank functions. In the course of our analysis, we also formally define and characterize the classes of exact and approximately low-rank functions." 1634,Gradient-Based Adversarial and Out-of-Distribution Detection,"We propose to utilize gradients for detecting adversarial and out-of-distribution samples. We introduce confounding labels -- labels that differ from normal labels seen during training -- in gradient generation to probe the effective expressivity of neural networks. Gradients depict the amount of change required for a model to properly represent given inputs, providing insight into the representational power of the model established by network architectural properties as well as training data. By introducing a label of different design, we remove the dependency on ground truth labels for gradient generation during inference. We show that our gradient-based approach allows for capturing the anomaly in inputs based on the effective expressivity of the models with no hyperparameter tuning or additional processing, and outperforms state-of-the-art methods for adversarial and out-of-distribution detection." 1635,On the Surprising Behaviour of node2vec,"Graph embedding techniques are a staple of modern graph learning research. When using embeddings for downstream tasks such as classification, information about their stability and robustness, i.e., their susceptibility to sources of noise, stochastic effects, or specific parameter choices, becomes increasingly important. As one of the most prominent graph embedding schemes, we focus on node2vec and analyse its embedding quality from multiple perspectives. Our findings indicate that embedding quality is unstable with respect to parameter choices, and we propose strategies to remedy this in practice." 1636,Catastrophic overfitting is a bug but also a feature,"Despite clear computational advantages in building robust neural networks, adversarial training (AT) using single-step methods is unstable as it suffers from catastrophic overfitting (CO): Networks gain non-trivial robustness during the first stages of adversarial training, but suddenly reach a breaking point where they quickly lose all robustness in just a few iterations. Although some works have succeeded at preventing CO, the different mechanisms that lead to this remarkable failure mode are still poorly understood. In this work, however, we find that the interplay between the structure of the data and the dynamics of AT plays a fundamental role in CO. Specifically, through active interventions on typical datasets of natural images, we establish a causal link between the structure of the data and the onset of CO in single-step AT methods. This new perspective provides important insights into the mechanisms that lead to CO and paves the way towards a better understanding of the general dynamics of robust model construction. The code to reproduce the experiments of this paper can be found at https://github.com/gortizji/co_features ." 1637,Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening,"We investigate the problems and challenges of evaluating the robustness of Differential Equation-based (DE) networks against synthetic distribution shifts. We propose a novel and simple accuracy metric which can be used to evaluate intrinsic robustness and to validate dataset corruption simulators. We also propose methodology recommendations, destined for evaluating the many faces of neural DEs' robustness and for comparing them with their discrete counterparts rigorously. We then use this criteria to evaluate a cheap data augmentation technique as a reliable way for demonstrating the natural robustness of neural ODEs against simulated image corruptions across multiple datasets." 1638,Simple and Efficient Architectures for Semantic Segmentation,"Though the state-of-the architectures for semantic segmentation, such as HRNet, demonstrate impressive accuracy, the complexity arising from their salient design choices hinders a range of model acceleration tools, and further they make use of operations that are inefficient on current hardware. This paper demonstrates that a simple encoder-decoder architecture with a ResNet-like backbone and a small multi-scale head, performs on-par or better than complex semantic segmentation architectures such as HRNet, FANet and DDRNets. Naively applying deep backbones designed for Image Classification to the task of Semantic Segmentation leads to sub-par results, owing to a much smaller effective receptive field of these backbones. Implicit among the various design choices put forth in works like HRNet, DDRNet, and FANet are networks with a large effective receptive field. It is natural to ask if a simple encoder-decoder architecture would compare favorably if comprised of backbones that have a larger effective receptive field, though without the use of inefficient operations like dilated convolutions. We show that with minor and inexpensive modifications to ResNets, enlarging the receptive field, very simple and competitive baselines can be created for Semantic Segmentation. We present a family of such simple architectures for desktop as well as mobile targets, which match or exceed the performance of complex models on the Cityscapes dataset. We hope that our work provides simple yet effective baselines for practitioners to develop efficient semantic segmentation models." 1639,All the World's a (Hyper)Graph: A Data Drama,"We introduce Hyperbard, a dataset of diverse relational data representations derived from Shakespeare's plays. Our representations range from simple graphs capturing character co-occurrence in single scenes to hypergraphs encoding complex communication settings and character contributions as hyperedges with edge-specific node weights. By making multiple intuitive representations readily available for experimentation, we facilitate rigorous representation robustness checks in graph learning, graph mining, and network analysis, highlighting the advantages and drawbacks of specific representations. Leveraging the data released in Hyperbard, we demonstrate that many solutions to popular graph mining problems are highly dependent on the representation choice, thus calling current graph curation practices into question. As an homage to our data source, and asserting that science can also be art, we present all our points in the form of a play." 1640,Adapting Self-Supervised Vision Transformers by Probing Attention-Conditioned Masking Consistency,"Visual domain adaptation (DA) seeks to transfer trained models to unseen, unlabeled domains across distribution shift, but approaches typically focus on adapting convolutional neural network architectures initialized with supervised ImageNet representations. In this work, we shift focus to adapting modern architectures for object recognition -- the increasingly popular Vision Transformer (ViT) -- and modern pretraining based on self-supervised learning (SSL). Inspired by the design of recent SSL approaches based on learning from partial image inputs generated via masking or cropping -- either by learning to predict the missing pixels, or learning representational invariances to such augmentations -- we propose PACMAC, a simple two-stage adaptation algorithm for self-supervised ViTs. PACMAC first performs in-domain SSL on pooled source and target data to learn task-discriminative features, and then probes the model's predictive consistency across a set of partial target inputs generated via a novel attention-conditioned masking strategy, to identify reliable candidates for self-training. Our simple approach leads to consistent performance gains over competing methods that use ViTs and self-supervised initializations on standard object recognition benchmarks. Code available at https://github.com/virajprabhu/PACMAC" 1641,Functional Output Regression with Infimal Convolution: Exploring the Huber and $ε$-insensitive Losses,"The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the $\epsilon$-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks." 1642,A Closer Look at Smoothness in Domain Adversarial Training,"Domain adversarial training has been ubiquitous for achieving invariant representations and is used widely for various domain adaptation tasks. In recent times, methods converging to smooth optima have shown improved generalization for supervised learning tasks like classification. In this work, we analyze the effect of smoothness enhancing formulations on domain adversarial training, the objective of which is a combination of task loss (eg. classification, regression, etc.) and adversarial terms. We find that converging to a smooth minima with respect to (w.r.t.) task loss stabilizes the adversarial training leading to better performance on target domain. In contrast to task loss, our analysis shows that converging to smooth minima w.r.t. adversarial loss leads to sub-optimal generalization on the target domain. Based on the analysis, we introduce the Smooth Domain Adversarial Training (SDAT) procedure, which effectively enhances the performance of existing domain adversarial methods for both classification and object detection tasks. Our analysis also provides insight into the extensive usage of SGD over Adam in the community for domain adversarial training." 1643,Inherent Inconsistencies of Feature Importance,"The black-box nature of modern machine learning techniques invokes a practical and ethical need for explainability. Feature importance aims to meet this need by assigning scores to features, so humans can understand their influence on predictions. Feature importance can be used to explain predictions under different settings: of the entire sample space or a specific instance; of model behavior, or the dependencies in the data themselves. However, in most cases thus far, each of these settings was studied in isolation. We attempt to develop a sound feature importance score framework by defining a small set of desired properties. Surprisingly, we prove an inconsistency theorem, showing that the expected properties cannot hold simultaneously. To overcome this difficulty, we propose the novel notion of re-partitioning the feature space into separable sets. Such sets are constructed to contain features that exhibit inter-set independence with respect to the target variable. We show that there exists a unique maximal partitioning into separable sets. Moreover, assigning scores to separable sets, instead of single features, unifies the results of commonly used feature importance scores and annihilates the inconsistencies we demonstrated." 1644,Learning Physics between Digital Twins with Low-Fidelity Models and Physics-Informed Gaussian Processes,"A digital twin is a computer model that represents an individual, for example, a component, a patient or a process. In many situations, we want to gain knowledge about an individual from its data while incorporating imperfect physical knowledge and also learn from data from other individuals. In this paper, we introduce and demonstrate a fully Bayesian methodology for learning between digital twins in a setting where the physical parameters of each individual are of interest. For each individual, the methodology is based on Bayesian calibration with model discrepancy. Through the discrepancy, modelled as a Gaussian process, the imperfect low-fidelity physical model is accounted for. Using ideas from Bayesian hierarchical models, a joint probabilistic model of digital twins is constructed by connecting them through a new level in the hierarchy. For the physical parameters, the methodology can be seen as using a prior distribution in the individual model that is the posterior of the corresponding hyperparameter in the joint model. For learning the imperfect physics between individuals two approaches are introduced, one that assumes the same discrepancy for all individuals and one that can be seen as using a prior learned from all individuals for the parameters of the Gaussian processes representing the discrepancies. Based on recent advances related to physics-informed priors, Hamiltonian Monte Carlo methods and using these for inverse problems we set up an inference methodology that allows our approach to be computational feasible also for physical models based on partial differential equations and individual data that are not aligned. The methodology is demonstrated in two synthetic case studies, a toy example previously used in the literature extended to more individuals and an example based on a cardiovascular differential equation model relevant for the treatment of hypertension." 1645,MAGIC: Microlensing Analysis Guided by Intelligent Computation,"The modeling of binary microlensing light curves via the standard sampling-based method can be challenging, because of the time-consuming light curve computation and the pathological likelihood landscape in the high-dimensional parameter space. In this work, we present MAGIC, which is a machine learning framework to efficiently and accurately infer the microlensing parameters of binary events with realistic data quality. In MAGIC, binary microlensing parameters are divided into two groups and inferred separately with different neural networks. The key feature of MAGIC is the introduction of neural controlled differential equation, which provides the capability to handle light curves with irregular sampling and large data gaps. Based on simulated light curves, we show that MAGIC can achieve fractional uncertainties of a few percent on the binary mass ratio and separation. We also test MAGIC on a real microlensing event. MAGIC is able to locate the degenerate solutions even when large data gaps are introduced. As irregular samplings are common in astronomical surveys, our method also has implications to other studies that involve time series." 1646,ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural Networks via Normalization,"Graph Neural Networks (GNNs) have attracted much attention due to their ability in learning representations from graph-structured data. Despite the successful applications of GNNs in many domains, the optimization of GNNs is less well studied, and the performance on node classification heavily suffers from the long-tailed node degree distribution. This paper focuses on improving the performance of GNNs via normalization. In detail, by studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs, which is termed ResNorm (\textbf{Res}haping the long-tailed distribution into a normal-like distribution via \textbf{norm}alization). The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes (\textit{i}.\textit{e}., low-degree nodes). We provide a theoretical interpretation and empirical evidence for understanding the mechanism of the above $scale$. In addition to the long-tailed distribution issue, over-smoothing is also a fundamental issue plaguing the community. To this end, we analyze the behavior of the standard shift and prove that the standard shift serves as a preconditioner on the weight matrix, increasing the risk of over-smoothing. With the over-smoothing issue in mind, we design a $shift$ operation for ResNorm that simulates the degree-specific parameter strategy in a low-cost manner. Extensive experiments have validated the effectiveness of ResNorm on several node classification benchmark datasets." 1647,User Engagement in Mobile Health Applications,"Mobile health apps are revolutionizing the healthcare ecosystem by improving communication, efficiency, and quality of service. In low- and middle-income countries, they also play a unique role as a source of information about health outcomes and behaviors of patients and healthcare workers, while providing a suitable channel to deliver both personalized and collective policy interventions. We propose a framework to study user engagement with mobile health, focusing on healthcare workers and digital health apps designed to support them in resource-poor settings. The behavioral logs produced by these apps can be transformed into daily time series characterizing each user's activity. We use probabilistic and survival analysis to build multiple personalized measures of meaningful engagement, which could serve to tailor content and digital interventions suiting each health worker's specific needs. Special attention is given to the problem of detecting churn, understood as a marker of complete disengagement. We discuss the application of our methods to the Indian and Ethiopian users of the Safe Delivery App, a capacity-building tool for skilled birth attendants. This work represents an important step towards a full characterization of user engagement in mobile health applications, which can significantly enhance the abilities of health workers and, ultimately, save lives." 1648,Not All Lotteries Are Made Equal,"The Lottery Ticket Hypothesis (LTH) states that for a reasonably sized neural network, a sub-network within the same network yields no less performance than the dense counterpart when trained from the same initialization. This work investigates the relation between model size and the ease of finding these sparse sub-networks. We show through experiments that, surprisingly, under a finite budget, smaller models benefit more from Ticket Search (TS)." 1649,Adversarial Privacy Protection on Speech Enhancement,"Speech is easily leaked imperceptibly, such as being recorded by mobile phones in different situations. Private content in speech may be maliciously extracted through speech enhancement technology. Speech enhancement technology has developed rapidly along with deep neural networks (DNNs), but adversarial examples can cause DNNs to fail. In this work, we propose an adversarial method to degrade speech enhancement systems. Experimental results show that generated adversarial examples can erase most content information in original examples or replace it with target speech content through speech enhancement. The word error rate (WER) between an enhanced original example and enhanced adversarial example recognition result can reach 89.0%. WER of target attack between enhanced adversarial example and target example is low to 33.75% . Adversarial perturbation can bring the rate of change to the original example to more than 1.4430. This work can prevent the malicious extraction of speech." 1650,Long Range Graph Benchmark,"Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm exchange information between 1-hop neighbors to build node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI." 1651,Zero-Shot Video Question Answering via Frozen Bidirectional Language Models,"Video question answering (VideoQA) is a complex task that requires diverse multi-modal data for training. Manual annotation of question and answers for videos, however, is tedious and prohibits scalability. To tackle this problem, recent methods consider zero-shot settings with no manual annotation of visual question-answer. In particular, a promising approach adapts frozen autoregressive language models pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we here build on frozen bidirectional language models (BiLM) and show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform zero-shot VideoQA inference through masked language modeling, where the masked text is the answer to a given question. Our proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA. It also demonstrates competitive performance in the few-shot and fully-supervised setting. Our code and models will be made publicly available at https://antoyang.github.io/frozenbilm.html." 1652,Fault-Tolerant Collaborative Inference through the Edge-PRUNE Framework,"Collaborative inference has received significant research interest in machine learning as a vehicle for distributing computation load, reducing latency, as well as addressing privacy preservation in communications. Recent collaborative inference frameworks have adopted dynamic inference methodologies such as early-exit and run-time partitioning of neural networks. However, as machine learning frameworks scale in the number of inference inputs, e.g., in surveillance applications, fault tolerance related to device failure needs to be considered. This paper presents the Edge-PRUNE distributed computing framework, built on a formally defined model of computation, which provides a flexible infrastructure for fault tolerant collaborative inference. The experimental section of this work shows results on achievable inference time savings by collaborative inference, presents fault tolerant system topologies and analyzes their cost in terms of execution time overhead." 1653,A Contextual Combinatorial Semi-Bandit Approach to Network Bottleneck Identification,"Bottleneck identification is a challenging task in network analysis, especially when the network is not fully specified. To address this task, we develop a unified online learning framework based on combinatorial semi-bandits that performs bottleneck identification alongside learning the specifications of the underlying network. Within this framework, we adapt and investigate several combinatorial semi-bandit methods such as epsilon-greedy, LinUCB, BayesUCB, and Thompson Sampling. Our framework is able to employ contextual information in the form of contextual bandits. We evaluate our framework on the real-world application of road networks and demonstrate its effectiveness in different settings." 1654,Using adversarial images to improve outcomes of federated learning for non-IID data,"One of the important problems in federated learning is how to deal with unbalanced data. This contribution introduces a novel technique designed to deal with label skewed non-IID data, using adversarial inputs, created by the I-FGSM method. Adversarial inputs guide the training process and allow the Weighted Federated Averaging to give more importance to clients with 'selected' local label distributions. Experimental results, gathered from image classification tasks, for MNIST and CIFAR-10 datasets, are reported and analyzed." 1655,Learning to Infer Structures of Network Games,"Strategic interactions between a group of individuals or organisations can be modelled as games played on networks, where a player's payoff depends not only on their actions but also on those of their neighbours. Inferring the network structure from observed game outcomes (equilibrium actions) is an important problem with numerous potential applications in economics and social sciences. Existing methods mostly require the knowledge of the utility function associated with the game, which is often unrealistic to obtain in real-world scenarios. We adopt a transformer-like architecture which correctly accounts for the symmetries of the problem and learns a mapping from the equilibrium actions to the network structure of the game without explicit knowledge of the utility function. We test our method on three different types of network games using both synthetic and real-world data, and demonstrate its effectiveness in network structure inference and superior performance over existing methods." 1656,On Private Online Convex Optimization: Optimal Algorithms in $\ell_p$-Geometry and High Dimensional Contextual Bandits,"Differentially private (DP) stochastic convex optimization (SCO) is ubiquitous in trustworthy machine learning algorithm design. This paper studies the DP-SCO problem with streaming data sampled from a distribution and arrives sequentially. We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms. Despite that numerous algorithms have been developed to achieve the optimal excess risks in different $\ell_p$ norm geometries, yet none of the existing ones can be adapted to the streaming and continual release setting. To address such a challenge as the online convex optimization with privacy protection, we propose a private variant of online Frank-Wolfe algorithm with recursive gradients for variance reduction to update and reveal the parameters upon each data. Combined with the adaptive differential privacy analysis, our online algorithm achieves in linear time the optimal excess risk when $1$1.5%." 1714,Domain Generalization via Selective Consistency Regularization for Time Series Classification,"Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains and without access to target domain samples during training. Popular domain alignment methods for domain generalization seek to extract domain-invariant features by minimizing the discrepancy between feature distributions across all domains, disregarding inter-domain relationships. In this paper, we instead propose a novel representation learning methodology that selectively enforces prediction consistency between source domains estimated to be closely-related. Specifically, we hypothesize that domains share different class-informative representations, so instead of aligning all domains which can cause negative transfer, we only regularize the discrepancy between closely-related domains. We apply our method to time-series classification tasks and conduct comprehensive experiments on three public real-world datasets. Our method significantly improves over the baseline and achieves better or competitive performance in comparison with state-of-the-art methods in terms of both accuracy and model calibration." 1715,Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training,"Recently, Optimization-Derived Learning (ODL) has attracted attention from learning and vision areas, which designs learning models from the perspective of optimization. However, previous ODL approaches regard the training and hyper-training procedures as two separated stages, meaning that the hyper-training variables have to be fixed during the training process, and thus it is also impossible to simultaneously obtain the convergence of training and hyper-training variables. In this work, we design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module, which unifies existing ODL methods as special cases. Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hyper-training variables together. We rigorously prove the essential joint convergence of the fixed-point iteration for training and the process of optimizing hyper-parameters for hyper-training, both on the approximation quality, and on the stationary analysis. Experiments demonstrate the efficiency of BMO with competitive performance on sparse coding and real-world applications such as image deconvolution and rain streak removal." 1716,Let Invariant Rationale Discovery Inspire Graph Contrastive Learning,"Leading graph contrastive learning (GCL) methods perform graph augmentations in two fashions: (1) randomly corrupting the anchor graph, which could cause the loss of semantic information, or (2) using domain knowledge to maintain salient features, which undermines the generalization to other domains. Taking an invariance look at GCL, we argue that a high-performing augmentation should preserve the salient semantics of anchor graphs regarding instance-discrimination. To this end, we relate GCL with invariant rationale discovery, and propose a new framework, Rationale-aware Graph Contrastive Learning (RGCL). Specifically, without supervision signals, RGCL uses a rationale generator to reveal salient features about graph instance-discrimination as the rationale, and then creates rationale-aware views for contrastive learning. This rationale-aware pre-training scheme endows the backbone model with the powerful representation ability, further facilitating the fine-tuning on downstream tasks. On MNIST-Superpixel and MUTAG datasets, visual inspections on the discovered rationales showcase that the rationale generator successfully captures the salient features (i.e. distinguishing semantic nodes in graphs). On biochemical molecule and social network benchmark datasets, the state-of-the-art performance of RGCL demonstrates the effectiveness of rationale-aware views for contrastive learning. Our codes are available at https://github.com/lsh0520/RGCL." 1717,EPG2S: Speech Generation and Speech Enhancement based on Electropalatography and Audio Signals using Multimodal Learning,"Speech generation and enhancement based on articulatory movements facilitate communication when the scope of verbal communication is absent, e.g., in patients who have lost the ability to speak. Although various techniques have been proposed to this end, electropalatography (EPG), which is a monitoring technique that records contact between the tongue and hard palate during speech, has not been adequately explored. Herein, we propose a novel multimodal EPG-to-speech (EPG2S) system that utilizes EPG and speech signals for speech generation and enhancement. Different fusion strategies based on multiple combinations of EPG and noisy speech signals are examined, and the viability of the proposed method is investigated. Experimental results indicate that EPG2S achieves desirable speech generation outcomes based solely on EPG signals. Further, the addition of noisy speech signals is observed to improve quality and intelligibility. Additionally, EPG2S is observed to achieve high-quality speech enhancement based solely on audio signals, with the addition of EPG signals further improving the performance. The late fusion strategy is deemed to be the most effective approach for simultaneous speech generation and enhancement." 1718,The Scattering Transform Network with Generalized Morse Wavelets and Its Application to Music Genre Classification,"We propose to use the Generalized Morse Wavelets (GMWs) instead of commonly-used Morlet (or Gabor) wavelets in the Scattering Transform Network (STN), which we call the GMW-STN, for signal classification problems. The GMWs form a parameterized family of truly analytic wavelets while the Morlet wavelets are only approximately analytic. The analyticity of underlying wavelet filters in the STN is particularly important for nonstationary oscillatory signals such as music signals because it improves interpretability of the STN representations by providing multiscale amplitude and phase (and consequently frequency) information of input signals. We demonstrate the superiority of the GMW-STN over the conventional STN in music genre classification using the so-called GTZAN database. Moreover, we show the performance improvement of the GMW-STN by increasing its number of layers to three over the typical two-layer STN.}" 1719,Performance analysis of coreset selection for quantum implementation of K-Means clustering algorithm,"Quantum computing is anticipated to offer immense computational capabilities which could provide efficient solutions to many data science problems. However, the current generation of quantum devices are small and noisy, which makes it difficult to process large data sets relevant for practical problems. Coreset selection aims to circumvent this problem by reducing the size of input data without compromising the accuracy. Recent work has shown that coreset selection can help to implement quantum K-Means clustering problem. However, the impact of coreset selection on the performance of quantum K-Means clustering has not been explored. In this work, we compare the relative performance of two coreset techniques (BFL16 and ONESHOT), and the size of coreset construction in each case, with respect to a variety of data sets and layout the advantages and limitations of coreset selection in implementing quantum algorithms. We also investigated the effect of depolarisation quantum noise and bit-flip error, and implemented the Quantum AutoEncoder technique for surpassing the noise effect. Our work provides useful insights for future implementation of data science algorithms on near-term quantum devices where problem size has been reduced by coreset selection." 1720,Conformal prediction set for time-series,"When building either prediction intervals for regression (with real-valued response) or prediction sets for classification (with categorical responses), uncertainty quantification is essential to studying complex machine learning methods. In this paper, we develop Ensemble Regularized Adaptive Prediction Set (ERAPS) to construct prediction sets for time-series (with categorical responses), based on the prior work of [Xu and Xie, 2021]. In particular, we allow unknown dependencies to exist within features and responses that arrive in sequence. Method-wise, ERAPS is a distribution-free and ensemble-based framework that is applicable for arbitrary classifiers. Theoretically, we bound the coverage gap without assuming data exchangeability and show asymptotic set convergence. Empirically, we demonstrate valid marginal and conditional coverage by ERAPS, which also tends to yield smaller prediction sets than competing methods." 1721,Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning,"Class-incremental learning (CIL) suffers from the notorious dilemma between learning newly added classes and preserving previously learned class knowledge. That catastrophic forgetting issue could be mitigated by storing historical data for replay, which yet would cause memory overheads as well as imbalanced prediction updates. To address this dilemma, we propose to leverage ""free"" external unlabeled data querying in continual learning. We first present a CIL with Queried Unlabeled Data (CIL-QUD) scheme, where we only store a handful of past training samples as anchors and use them to query relevant unlabeled examples each time. Along with new and past stored data, the queried unlabeled are effectively utilized, through learning-without-forgetting (LwF) regularizers and class-balance training. Besides preserving model generalization over past and current tasks, we next study the problem of adversarial robustness for CIL-QUD. Inspired by the recent success of learning robust models with unlabeled data, we explore a new robustness-aware CIL setting, where the learned adversarial robustness has to resist forgetting and be transferred as new tasks come in continually. While existing options easily fail, we show queried unlabeled data can continue to benefit, and seamlessly extend CIL-QUD into its robustified versions, RCIL-QUD. Extensive experiments demonstrate that CIL-QUD achieves substantial accuracy gains on CIFAR-10 and CIFAR-100, compared to previous state-of-the-art CIL approaches. Moreover, RCIL-QUD establishes the first strong milestone for robustness-aware CIL. Codes are available in https://github.com/VITA-Group/CIL-QUD." 1722,Architectural Backdoors in Neural Networks,"Machine learning is vulnerable to adversarial manipulation. Previous literature has demonstrated that at the training stage attackers can manipulate data and data sampling procedures to control model behaviour. A common attack goal is to plant backdoors i.e. force the victim model to learn to recognise a trigger known only by the adversary. In this paper, we introduce a new class of backdoor attacks that hide inside model architectures i.e. in the inductive bias of the functions used to train. These backdoors are simple to implement, for instance by publishing open-source code for a backdoored model architecture that others will reuse unknowingly. We demonstrate that model architectural backdoors represent a real threat and, unlike other approaches, can survive a complete re-training from scratch. We formalise the main construction principles behind architectural backdoors, such as a link between the input and the output, and describe some possible protections against them. We evaluate our attacks on computer vision benchmarks of different scales and demonstrate the underlying vulnerability is pervasive in a variety of training settings." 1723,Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness,"Certifiable robustness is a highly desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios, but often demands tedious computations to establish. The main hurdle lies in the massive amount of non-linearity in large DNNs. To trade off the DNN expressiveness (which calls for more non-linearity) and robustness certification scalability (which prefers more linearity), we propose a novel solution to strategically manipulate neurons, by ""grafting"" appropriate levels of linearity. The core of our proposal is to first linearize insignificant ReLU neurons, to eliminate the non-linear components that are both redundant for DNN performance and harmful to its certification. We then optimize the associated slopes and intercepts of the replaced linear activations for restoring model performance while maintaining certifiability. Hence, typical neuron pruning could be viewed as a special case of grafting a linear function of the fixed zero slopes and intercept, that might overly restrict the network flexibility and sacrifice its performance. Extensive experiments on multiple datasets and network backbones show that our linearity grafting can (1) effectively tighten certified bounds; (2) achieve competitive certifiable robustness without certified robust training (i.e., over 30% improvements on CIFAR-10 models); and (3) scale up complete verification to large adversarially trained models with 17M parameters. Codes are available at https://github.com/VITA-Group/Linearity-Grafting." 1724,Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization,"Real-world data collected from multiple domains can have multiple, distinct distribution shifts over multiple attributes. However, state-of-the art advances in domain generalization (DG) algorithms focus only on specific shifts over a single attribute. We introduce datasets with multi-attribute distribution shifts and find that existing DG algorithms fail to generalize. To explain this, we use causal graphs to characterize the different types of shifts based on the relationship between spurious attributes and the classification label. Each multi-attribute causal graph entails different constraints over observed variables, and therefore any algorithm based on a single, fixed independence constraint cannot work well across all shifts. We present Causally Adaptive Constraint Minimization (CACM), a new algorithm for identifying the correct independence constraints for regularization. Results on fully synthetic, MNIST and small NORB datasets, covering binary and multi-valued attributes and labels, confirm our theoretical claim: correct independence constraints lead to the highest accuracy on unseen domains whereas incorrect constraints fail to do so. Our results demonstrate the importance of modeling the causal relationships inherent in the data-generating process: in many cases, it is impossible to know the correct regularization constraints without this information." 1725,Efficient Approximation of Expected Hypervolume Improvement using Gauss-Hermite Quadrature,"Many methods for performing multi-objective optimisation of computationally expensive problems have been proposed recently. Typically, a probabilistic surrogate for each objective is constructed from an initial dataset. The surrogates can then be used to produce predictive densities in the objective space for any solution. Using the predictive densities, we can compute the expected hypervolume improvement (EHVI) due to a solution. Maximising the EHVI, we can locate the most promising solution that may be expensively evaluated next. There are closed-form expressions for computing the EHVI, integrating over the multivariate predictive densities. However, they require partitioning the objective space, which can be prohibitively expensive for more than three objectives. Furthermore, there are no closed-form expressions for a problem where the predictive densities are dependent, capturing the correlations between objectives. Monte Carlo approximation is used instead in such cases, which is not cheap. Hence, the need to develop new accurate but cheaper approximation methods remains. Here we investigate an alternative approach toward approximating the EHVI using Gauss-Hermite quadrature. We show that it can be an accurate alternative to Monte Carlo for both independent and correlated predictive densities with statistically significant rank correlations for a range of popular test problems." 1726,Adaptive Expert Models for Personalization in Federated Learning,"Federated Learning (FL) is a promising framework for distributed learning when data is private and sensitive. However, the state-of-the-art solutions in this framework are not optimal when data is heterogeneous and non-Independent and Identically Distributed (non-IID). We propose a practical and robust approach to personalization in FL that adjusts to heterogeneous and non-IID data by balancing exploration and exploitation of several global models. To achieve our aim of personalization, we use a Mixture of Experts (MoE) that learns to group clients that are similar to each other, while using the global models more efficiently. We show that our approach achieves an accuracy up to 29.78 % and up to 4.38 % better compared to a local model in a pathological non-IID setting, even though we tune our approach in the IID setting." 1727,Metric-Fair Classifier Derandomization,"We study the problem of classifier derandomization in machine learning: given a stochastic binary classifier $f: X \to [0,1]$, sample a deterministic classifier $\hat{f}: X \to \{0,1\}$ that approximates the output of $f$ in aggregate over any data distribution. Recent work revealed how to efficiently derandomize a stochastic classifier with strong output approximation guarantees, but at the cost of individual fairness -- that is, if $f$ treated similar inputs similarly, $\hat{f}$ did not. In this paper, we initiate a systematic study of classifier derandomization with metric fairness guarantees. We show that the prior derandomization approach is almost maximally metric-unfair, and that a simple ``random threshold'' derandomization achieves optimal fairness preservation but with weaker output approximation. We then devise a derandomization procedure that provides an appealing tradeoff between these two: if $f$ is $\alpha$-metric fair according to a metric $d$ with a locality-sensitive hash (LSH) family, then our derandomized $\hat{f}$ is, with high probability, $O(\alpha)$-metric fair and a close approximation of $f$. We also prove generic results applicable to all (fair and unfair) classifier derandomization procedures, including a bias-variance decomposition and reductions between various notions of metric fairness." 1728,Large-Scale Differentiable Causal Discovery of Factor Graphs,"A common theme in causal inference is learning causal relationships between observed variables, also known as causal discovery. This is usually a daunting task, given the large number of candidate causal graphs and the combinatorial nature of the search space. Perhaps for this reason, most research has so far focused on relatively small causal graphs, with up to hundreds of nodes. However, recent advances in fields like biology enable generating experimental data sets with thousands of interventions followed by rich profiling of thousands of variables, raising the opportunity and urgent need for large causal graph models. Here, we introduce the notion of factor directed acyclic graphs (f-DAGs) as a way to restrict the search space to non-linear low-rank causal interaction models. Combining this novel structural assumption with recent advances that bridge the gap between causal discovery and continuous optimization, we achieve causal discovery on thousands of variables. Additionally, as a model for the impact of statistical noise on this estimation procedure, we study a model of edge perturbations of the f-DAG skeleton based on random graphs and quantify the effect of such perturbations on the f-DAG rank. This theoretical analysis suggests that the set of candidate f-DAGs is much smaller than the whole DAG space and thus more statistically robust in the high-dimensional regime where the underlying skeleton is hard to assess. We propose Differentiable Causal Discovery of Factor Graphs (DCD-FG), a scalable implementation of f-DAG constrained causal discovery for high-dimensional interventional data. DCD-FG uses a Gaussian non-linear low-rank structural equation model and shows significant improvements compared to state-of-the-art methods in both simulations as well as a recent large-scale single-cell RNA sequencing data set with hundreds of genetic interventions." 1729,Discovery of the Content and Engagement with the Content,"In the second half of the 20th century, Parliament allowed broadcasters to transmit radio and eventually television coverage of debates and meetings of select committees. More recently, in an effort to further improve transparency and citizen engagement, the UK Parliament started publishing videos of these debates and meetings itself, and tweeting details of debates as they happened. In this paper, we attempt to characterise how people engage with video data of Parliamentary debates by using more than two years of Google Analytics data around these videos. We analyse the patterns of engagement - how do they land on a particular video? How do they hear about this video, i.e., what is the (HTTP) referrer website that led to the user clicking on the video? Once a user lands on a video, how do they engage with it? For how long is the video played? What is the next destination? etc. Answering these questions is an important first step towards understanding why and how people use Parliamentary videos, and therefore, how the video delivery platform should be adapted and personalised for the needs of the citizens of the country. Taking inspiration from An, Kwak, and Jansen (2017), we employ Non-Negative Matrix Factorization (NMF) (Lee and Seung, 1999) on the video views matrix to identify different archetypes of users, and identify archetypes. A deeper examination of the archetypes we find reveals that they are primarily distinguished by how they land on the video page: Search (i.e., through a search engine), Referral (i.e., from other Parliamentary websites), Direct (i.e., through a direct link, which is embedded on another website), Social (i.e., through a social platform such as Facebook or Twitter) and Others." 1730,Search-Based Testing Approach for Deep Reinforcement Learning Agents,"Deep Reinforcement Learning (DRL) algorithms have been increasingly employed during the last decade to solve various decision-making problems such as autonomous driving and robotics. However, these algorithms have faced great challenges when deployed in safety-critical environments since they often exhibit erroneous behaviors that can lead to potentially critical errors. One way to assess the safety of DRL agents is to test them to detect possible faults leading to critical failures during their execution. This raises the question of how we can efficiently test DRL policies to ensure their correctness and adherence to safety requirements. Most existing works on testing DRL agents use adversarial attacks that perturb states or actions of the agent. However, such attacks often lead to unrealistic states of the environment. Their main goal is to test the robustness of DRL agents rather than testing the compliance of agents' policies with respect to requirements. Due to the huge state space of DRL environments, the high cost of test execution, and the black-box nature of DRL algorithms, the exhaustive testing of DRL agents is impossible. In this paper, we propose a Search-based Testing Approach of Reinforcement Learning Agents (STARLA) to test the policy of a DRL agent by effectively searching for failing executions of the agent within a limited testing budget. We use machine learning models and a dedicated genetic algorithm to narrow the search towards faulty episodes. We apply STARLA on a Deep-Q-Learning agent which is widely used as a benchmark and show that it significantly outperforms Random Testing by detecting more faults related to the agent's policy. We also investigate how to extract rules that characterize faulty episodes of the DRL agent using our search results. Such rules can be used to understand the conditions under which the agent fails and thus assess its deployment risks." 1731,Alexa Teacher Model: Pretraining and Distilling Multi-Billion-Parameter Encoders for Natural Language Understanding Systems,"We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system. Though we train using 70% spoken-form data, our teacher models perform comparably to XLM-R and mT5 when evaluated on the written-form Cross-lingual Natural Language Inference (XNLI) corpus. We perform a second stage of pretraining on our teacher models using in-domain data from our system, improving error rates by 3.86% relative for intent classification and 7.01% relative for slot filling. We find that even a 170M-parameter model distilled from our Stage 2 teacher model has 2.88% better intent classification and 7.69% better slot filling error rates when compared to the 2.3B-parameter teacher trained only on public data (Stage 1), emphasizing the importance of in-domain data for pretraining. When evaluated offline using labeled NLU data, our 17M-parameter Stage 2 distilled model outperforms both XLM-R Base (85M params) and DistillBERT (42M params) by 4.23% to 6.14%, respectively. Finally, we present results from a full virtual assistant experimentation platform, where we find that models trained using our pretraining and distillation pipeline outperform models distilled from 85M-parameter teachers by 3.74%-4.91% on an automatic measurement of full-system user dissatisfaction." 1732,Beyond Adult and COMPAS: Fairness in Multi-Class Prediction,"We consider the problem of producing fair probabilistic classifiers for multi-class classification tasks. We formulate this problem in terms of ""projecting"" a pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness requirements. The new, projected model is given by post-processing the outputs of the pre-trained classifier by a multiplicative factor. We provide a parallelizable iterative algorithm for computing the projected classifier and derive both sample complexity and convergence guarantees. Comprehensive numerical comparisons with state-of-the-art benchmarks demonstrate that our approach maintains competitive performance in terms of accuracy-fairness trade-off curves, while achieving favorable runtime on large datasets. We also evaluate our method at scale on an open dataset with multiple classes, multiple intersectional protected groups, and over 1M samples." 1733,Gaussian Blue Noise,"Among the various approaches for producing point distributions with blue noise spectrum, we argue for an optimization framework using Gaussian kernels. We show that with a wise selection of optimization parameters, this approach attains unprecedented quality, provably surpassing the current state of the art attained by the optimal transport (BNOT) approach. Further, we show that our algorithm scales smoothly and feasibly to high dimensions while maintaining the same quality, realizing unprecedented high-quality high-dimensional blue noise sets. Finally, we show an extension to adaptive sampling." 1734,FixEval: Execution-based Evaluation of Program Fixes for Competitive Programming Problems,"Source code repositories consist of large codebases, often containing error-prone programs. The increasing complexity of software has led to a drastic rise in time and costs for identifying and fixing these defects. Various methods exist to automatically generate fixes for buggy code. However, due to the large combinatorial space of possible solutions for a particular bug, there are not many tools and datasets available to evaluate generated code effectively. In this work, we introduce FixEval, a benchmark comprising buggy code submissions to competitive programming problems and their respective fixes. We introduce a rich test suite to evaluate and assess the correctness of model-generated program fixes. We consider two Transformer language models pretrained on programming languages as our baselines, and compare them using match-based and execution-based evaluation metrics. Our experiments show that match-based metrics do not reflect model-generated program fixes accurately, while execution-based methods evaluate programs through all cases and scenarios specifically designed for that solution. Therefore, we believe FixEval provides a step towards real-world automatic bug fixing and model-generated code evaluation." 1735,On Calibrated Model Uncertainty in Deep Learning,"Estimated uncertainty by approximate posteriors in Bayesian neural networks are prone to miscalibration, which leads to overconfident predictions in critical tasks that have a clear asymmetric cost or significant losses. Here, we extend the approximate inference for the loss-calibrated Bayesian framework to dropweights based Bayesian neural networks by maximising expected utility over a model posterior to calibrate uncertainty in deep learning. Furthermore, we show that decisions informed by loss-calibrated uncertainty can improve diagnostic performance to a greater extent than straightforward alternatives. We propose Maximum Uncertainty Calibration Error (MUCE) as a metric to measure calibrated confidence, in addition to its prediction especially for high-risk applications, where the goal is to minimise the worst-case deviation between error and estimated uncertainty. In experiments, we show the correlation between error in prediction and estimated uncertainty by interpreting Wasserstein distance as the accuracy of prediction. We evaluated the effectiveness of our approach to detecting Covid-19 from X-Ray images. Experimental results show that our method reduces miscalibration considerably, without impacting the models accuracy and improves reliability of computer-based diagnostics." 1736,Leveraging Uncertainty in Deep Learning for Pancreatic Adenocarcinoma Grading,"Pancreatic cancers have one of the worst prognoses compared to other cancers, as they are diagnosed when cancer has progressed towards its latter stages. The current manual histological grading for diagnosing pancreatic adenocarcinomas is time-consuming and often results in misdiagnosis. In digital pathology, AI-based cancer grading must be extremely accurate in prediction and uncertainty quantification to improve reliability and explainability and are essential for gaining clinicians trust in the technology. We present Bayesian Convolutional Neural Networks for automated pancreatic cancer grading from MGG and HE stained images to estimate uncertainty in model prediction. We show that the estimated uncertainty correlates with prediction error. Specifically, it is useful in setting the acceptance threshold using a metric that weighs classification accuracy-reject trade-off and misclassification cost controlled by hyperparameters and can be employed in clinical settings." 1737,Federated Data Analytics: A Study on Linear Models,"As edge devices become increasingly powerful, data analytics are gradually moving from a centralized to a decentralized regime where edge compute resources are exploited to process more of the data locally. This regime of analytics is coined as federated data analytics (FDA). In spite of the recent success stories of FDA, most literature focuses exclusively on deep neural networks. In this work, we take a step back to develop an FDA treatment for one of the most fundamental statistical models: linear regression. Our treatment is built upon hierarchical modeling that allows borrowing strength across multiple groups. To this end, we propose two federated hierarchical model structures that provide a shared representation across devices to facilitate information sharing. Notably, our proposed frameworks are capable of providing uncertainty quantification, variable selection, hypothesis testing and fast adaptation to new unseen data. We validate our methods on a range of real-life applications including condition monitoring for aircraft engines. The results show that our FDA treatment for linear models can serve as a competing benchmark model for future development of federated algorithms." 1738,Participation and Data Valuation in IoT Data Markets through Distributed Coalitions,"This paper considers a market for Internet of Things (IoT) data that is used to train machine learning models. The data is supplied to the market platform through a network and the price of the data is controlled based on the value it brings to the machine learning model. We explore the correlation property of data in a game-theoretical setting to eventually derive a simplified distributed solution for a data trading mechanism that emphasizes the mutual benefit of devices and the market. The key proposal is an efficient algorithm for markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between devices with correlated data to avoid information leakage. Therein, we develop a network-wide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller." 1739,Evaluating Short-Term Forecasting of Multiple Time Series in IoT Environments,"Modern Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices, with the data acquisition and processing infrastructure setting restrictions in terms of computational power and energy resources. To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies, yielding a reduced set of observations. Nevertheless, this can hamper dramatically subsequent decision-making, such as forecasting. To address this problem, in this work we evaluate short-term forecasting in highly underdetermined cases, i.e., the number of sensor streams is much higher than the number of observations. Several statistical, machine learning and neural network-based models are thoroughly examined with respect to the resulting forecasting accuracy on five different real-world datasets. The focus is given on a unified experimental protocol especially designed for short-term prediction of multiple time series at the IoT edge. The proposed framework can be considered as an important step towards establishing a solid forecasting strategy in resource constrained IoT applications." 1740,A machine learning approach to predicting pore pressure response in liquefiable sands under cyclic loading,"Shear stress history controls the pore pressure response in liquefiable soils. The excess pore pressure does not increase under cyclic loading when shear stress amplitude is lower than the peak prior amplitude -- the shielding effect. Many sophisticated constitutive models fail to capture the shielding effect observed in the cyclic liquefaction experiments. We develop a data-driven machine learning model based on the LSTM neural network to capture the liquefaction response of soils under cyclic loading. The LSTM model is trained on 12 laboratory cyclic simple shear tests on Nevada sand in loose and dense conditions subjected to different cyclic simple shear loading conditions. The LSTM model features include the relative density of soil and the previous stress history to predict the pore water pressure response. The LSTM model successfully replicates the pore pressure response for three cyclic simple test results considering the shielding and density effects." 1741,Robust Attack Graph Generation,"We present a method to learn automaton models that are more robust to input modifications. It iteratively aligns sequences to a learned model, modifies the sequences to their aligned versions, and re-learns the model. Automaton learning algorithms are typically very good at modeling the frequent behavior of a software system. Our solution can be used to also learn the behavior present in infrequent sequences, as these will be aligned to the frequent ones represented by the model. We apply our method to the SAGE tool for modeling attacker behavior from intrusion alerts. In experiments, we demonstrate that our algorithm learns models that can handle noise such as added and removed symbols from sequences. Furthermore, it learns more concise models that fit better to the training data." 1742,HyperImpute: Generalized Iterative Imputation with Automatic Model Selection,"Consider the problem of imputing missing values in a dataset. One the one hand, conventional approaches using iterative imputation benefit from the simplicity and customizability of learning conditional distributions directly, but suffer from the practical requirement for appropriate model specification of each and every variable. On the other hand, recent methods using deep generative modeling benefit from the capacity and efficiency of learning with neural network function approximators, but are often difficult to optimize and rely on stronger data assumptions. In this work, we study an approach that marries the advantages of both: We propose *HyperImpute*, a generalized iterative imputation framework for adaptively and automatically configuring column-wise models and their hyperparameters. Practically, we provide a concrete implementation with out-of-the-box learners, optimizers, simulators, and extensible interfaces. Empirically, we investigate this framework via comprehensive experiments and sensitivities on a variety of public datasets, and demonstrate its ability to generate accurate imputations relative to a strong suite of benchmarks. Contrary to recent work, we believe our findings constitute a strong defense of the iterative imputation paradigm." 1743,Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport?,"Wasserstein Generative Adversarial Networks (WGANs) are the popular generative models built on the theory of Optimal Transport (OT) and the Kantorovich duality. Despite the success of WGANs, it is still unclear how well the underlying OT dual solvers approximate the OT cost (Wasserstein-1 distance, $\mathbb{W}_{1}$) and the OT gradient needed to update the generator. In this paper, we address these questions. We construct 1-Lipschitz functions and use them to build ray monotone transport plans. This strategy yields pairs of continuous benchmark distributions with the analytically known OT plan, OT cost and OT gradient in high-dimensional spaces such as spaces of images. We thoroughly evaluate popular WGAN dual form solvers (gradient penalty, spectral normalization, entropic regularization, etc.) using these benchmark pairs. Even though these solvers perform well in WGANs, none of them faithfully compute $\mathbb{W}_{1}$ in high dimensions. Nevertheless, many provide a meaningful approximation of the OT gradient. These observations suggest that these solvers should not be treated as good estimators of $\mathbb{W}_{1}$, but to some extent they indeed can be used in variational problems requiring the minimization of $\mathbb{W}_{1}$." 1744,Pareto Invariant Risk Minimization,"Despite the success of invariant risk minimization (IRM) in tackling the Out-of-Distribution generalization problem, IRM can compromise the optimality when applied in practice. The practical variants of IRM, e.g., IRMv1, have been shown to have significant gaps with IRM and thus could fail to capture the invariance even in simple problems. Moreover, the optimization procedure in IRMv1 involves two intrinsically conflicting objectives, and often requires careful tuning for the objective weights. To remedy the above issues, we reformulate IRM as a multi-objective optimization problem, and propose a new optimization scheme for IRM, called PAreto Invariant Risk Minimization (PAIR). PAIR can adaptively adjust the optimization direction under the objective conflicts. Furthermore, we show PAIR can empower the practical IRM variants to overcome the barriers with the original IRM when provided with proper guidance. We conduct experiments with ColoredMNIST to confirm our theory and the effectiveness of PAIR." 1745,SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos,"The visual world can be parsimoniously characterized in terms of distinct entities with sparse interactions. Discovering this compositional structure in dynamic visual scenes has proven challenging for end-to-end computer vision approaches unless explicit instance-level supervision is provided. Slot-based models leveraging motion cues have recently shown great promise in learning to represent, segment, and track objects without direct supervision, but they still fail to scale to complex real-world multi-object videos. In an effort to bridge this gap, we take inspiration from human development and hypothesize that information about scene geometry in the form of depth signals can facilitate object-centric learning. We introduce SAVi++, an object-centric video model which is trained to predict depth signals from a slot-based video representation. By further leveraging best practices for model scaling, we are able to train SAVi++ to segment complex dynamic scenes recorded with moving cameras, containing both static and moving objects of diverse appearance on naturalistic backgrounds, without the need for segmentation supervision. Finally, we demonstrate that by using sparse depth signals obtained from LiDAR, SAVi++ is able to learn emergent object segmentation and tracking from videos in the real-world Waymo Open dataset." 1746,Reconstructing Training Data from Trained Neural Networks,"Understanding to what extent neural networks memorize training data is an intriguing question with practical and theoretical implications. In this paper we show that in some cases a significant fraction of the training data can in fact be reconstructed from the parameters of a trained neural network classifier. We propose a novel reconstruction scheme that stems from recent theoretical results about the implicit bias in training neural networks with gradient-based methods. To the best of our knowledge, our results are the first to show that reconstructing a large portion of the actual training samples from a trained neural network classifier is generally possible. This has negative implications on privacy, as it can be used as an attack for revealing sensitive training data. We demonstrate our method for binary MLP classifiers on a few standard computer vision datasets." 1747,Hybrid full-field thermal characterization of additive manufacturing processes using physics-informed neural networks with data,"Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the technique of transfer learning on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM." 1748,On the Identifiability of Nonlinear ICA: Sparsity and Beyond,"Nonlinear independent component analysis (ICA) aims to recover the underlying independent latent sources from their observable nonlinear mixtures. How to make the nonlinear ICA model identifiable up to certain trivial indeterminacies is a long-standing problem in unsupervised learning. Recent breakthroughs reformulate the standard independence assumption of sources as conditional independence given some auxiliary variables (e.g., class labels and/or domain/time indexes) as weak supervision or inductive bias. However, nonlinear ICA with unconditional priors cannot benefit from such developments. We explore an alternative path and consider only assumptions on the mixing process, such as Structural Sparsity or Independent Influences. We show that under specific instantiations of such constraints, the independent latent sources can be identified from their nonlinear mixtures up to a permutation and a component-wise transformation, thus achieving nontrivial identifiability of nonlinear ICA without auxiliary variables. We provide estimation methods and validate the theoretical results experimentally. The results on image data suggest that our conditions may hold in a number of practical data generating processes." 1749,Condensing Graphs via One-Step Gradient Matching,"As training deep learning models on large dataset takes a lot of time and resources, it is desired to construct a small synthetic dataset with which we can train deep learning models sufficiently. There are recent works that have explored solutions on condensing image datasets through complex bi-level optimization. For instance, dataset condensation (DC) matches network gradients w.r.t. large-real data and small-synthetic data, where the network weights are optimized for multiple steps at each outer iteration. However, existing approaches have their inherent limitations: (1) they are not directly applicable to graphs where the data is discrete; and (2) the condensation process is computationally expensive due to the involved nested optimization. To bridge the gap, we investigate efficient dataset condensation tailored for graph datasets where we model the discrete graph structure as a probabilistic model. We further propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights. Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs. Extensive experiments on various graph datasets demonstrate the effectiveness and efficiency of the proposed method. In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance and our method is significantly faster than multi-step gradient matching (e.g. 15x in CIFAR10 for synthesizing 500 graphs)." 1750,When to intervene? Prescriptive Process Monitoring Under Uncertainty and Resource Constraints,"Prescriptive process monitoring approaches leverage historical data to prescribe runtime interventions that will likely prevent negative case outcomes or improve a process's performance. A centerpiece of a prescriptive process monitoring method is its intervention policy: a decision function determining if and when to trigger an intervention on an ongoing case. Previous proposals in this field rely on intervention policies that consider only the current state of a given case. These approaches do not consider the tradeoff between triggering an intervention in the current state, given the level of uncertainty of the underlying predictive models, versus delaying the intervention to a later state. Moreover, they assume that a resource is always available to perform an intervention (infinite capacity). This paper addresses these gaps by introducing a prescriptive process monitoring method that filters and ranks ongoing cases based on prediction scores, prediction uncertainty, and causal effect of the intervention, and triggers interventions to maximize a gain function, considering the available resources. The proposal is evaluated using a real-life event log. The results show that the proposed method outperforms existing baselines regarding total gain." 1751,Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective,"Recent years have witnessed remarkable success achieved by graph neural networks (GNNs) in many real-world applications such as recommendation and drug discovery. Despite the success, oversmoothing has been identified as one of the key issues which limit the performance of deep GNNs. It indicates that the learned node representations are highly indistinguishable due to the stacked aggregators. In this paper, we propose a new perspective to look at the performance degradation of deep GNNs, i.e., feature overcorrelation. Through empirical and theoretical study on this matter, we demonstrate the existence of feature overcorrelation in deeper GNNs and reveal potential reasons leading to this issue. To reduce the feature correlation, we propose a general framework DeCorr which can encourage GNNs to encode less redundant information. Extensive experiments have demonstrated that DeCorr can help enable deeper GNNs and is complementary to existing techniques tackling the oversmoothing issue." 1752,Edge Inference with Fully Differentiable Quantized Mixed Precision Neural Networks,"The large computing and memory cost of deep neural networks (DNNs) often precludes their use in resource-constrained devices. Quantizing the parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference, facilitating the use of DNNs on edge computing platforms. Recent efforts at quantizing DNNs have employed a range of techniques encompassing progressive quantization, step-size adaptation, and gradient scaling. This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing. Our method establishes a new pareto frontier in model accuracy and memory footprint demonstrating a range of quantized models, delivering best-in-class accuracy below 4.3 MB of weights (wgts.) and activations (acts.). Our main contributions are: (i) hardware-aware heterogeneous differentiable quantization with tensor-sliced learned precision, (ii) targeted gradient modification for wgts. and acts. to mitigate quantization errors, and (iii) a multi-phase learning schedule to address instability in learning arising from updates to the learned quantizer and model parameters. We demonstrate the effectiveness of our techniques on the ImageNet dataset across a range of models including EfficientNet-Lite0 (e.g., 4.14MB of wgts. and acts. at 67.66% accuracy) and MobileNetV2 (e.g., 3.51MB wgts. and acts. at 65.39% accuracy)." 1753,Disparate Impact in Differential Privacy from Gradient Misalignment,"As machine learning becomes more widespread throughout society, aspects including data privacy and fairness must be carefully considered, and are crucial for deployment in highly regulated industries. Unfortunately, the application of privacy enhancing technologies can worsen unfair tendencies in models. In particular, one of the most widely used techniques for private model training, differentially private stochastic gradient descent (DPSGD), frequently intensifies disparate impact on groups within data. In this work we study the fine-grained causes of unfairness in DPSGD and identify gradient misalignment due to inequitable gradient clipping as the most significant source. This observation leads us to a new method for reducing unfairness by preventing gradient misalignment in DPSGD." 1754,Improving Diversity with Adversarially Learned Transformations for Domain Generalization,"To be successful in single source domain generalization, maximizing diversity of synthesized domains has emerged as one of the most effective strategies. Many of the recent successes have come from methods that pre-specify the types of diversity that a model is exposed to during training, so that it can ultimately generalize well to new domains. However, na\""ive diversity based augmentations do not work effectively for domain generalization either because they cannot model large domain shift, or because the span of transforms that are pre-specified do not cover the types of shift commonly occurring in domain generalization. To address this issue, we present a novel framework that uses adversarially learned transformations (ALT) using a neural network to model plausible, yet hard image transformations that fool the classifier. This network is randomly initialized for each batch and trained for a fixed number of steps to maximize classification error. Further, we enforce consistency between the classifier's predictions on the clean and transformed images. With extensive empirical analysis, we find that this new form of adversarial transformations achieve both objectives of diversity and hardness simultaneously, outperforming all existing techniques on competitive benchmarks for single source domain generalization. We also show that ALT can naturally work with existing diversity modules to produce highly distinct, and large transformations of the source domain leading to state-of-the-art performance." 1755,Taxonomy of Benchmarks in Graph Representation Learning,"Graph Neural Networks (GNNs) extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNN models with superior performance according to a collection of graph representation learning benchmarks, it is currently not well understood what aspects of a given model are probed by them. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a $\textit{sensitivity profile}$ that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in $\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task types and future datasets." 1756,Variable Bitrate Neural Fields,"Neural approximations of scalar and vector fields, such as signed distance functions and radiance fields, have emerged as accurate, high-quality representations. State-of-the-art results are obtained by conditioning a neural approximation with a lookup from trainable feature grids that take on part of the learning task and allow for smaller, more efficient neural networks. Unfortunately, these feature grids usually come at the cost of significantly increased memory consumption compared to stand-alone neural network models. We present a dictionary method for compressing such feature grids, reducing their memory consumption by up to 100x and permitting a multiresolution representation which can be useful for out-of-core streaming. We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available and with dynamic topology and structure. Our source code will be available at https://github.com/nv-tlabs/vqad." 1757,Masked Frequency Modeling for Self-Supervised Visual Pre-Training,"We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models. Instead of randomly inserting mask tokens to the input embeddings in the spatial domain, in this paper, we shift the perspective to the frequency domain. Specifically, MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum. Our key insight is that predicting masked components in the frequency domain is more ideal to reveal underlying image patterns rather than predicting masked patches in the spatial domain, due to the heavy spatial redundancy. Our findings suggest that with the right configuration of mask-and-predict strategy, both the structural information within high-frequency components and the low-level statistics among low-frequency counterparts are useful in learning good representations. For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token. Experimental results on ImageNet and several robustness benchmarks show the competitive performance and advanced robustness of MFM compared with recent masked image modeling approaches. Furthermore, we also comprehensively investigate the effectiveness of classical image restoration tasks for representation learning from a unified frequency perspective and reveal their intriguing relations with our MFM approach. Project page: https://www.mmlab-ntu.com/project/mfm/index.html." 1758,Masked Siamese ConvNets,"Self-supervised learning has shown superior performances over supervised methods on various vision benchmarks. The siamese network, which encourages embeddings to be invariant to distortions, is one of the most successful self-supervised visual representation learning approaches. Among all the augmentation methods, masking is the most general and straightforward method that has the potential to be applied to all kinds of input and requires the least amount of domain knowledge. However, masked siamese networks require particular inductive bias and practically only work well with Vision Transformers. This work empirically studies the problems behind masked siamese networks with ConvNets. We propose several empirical designs to overcome these problems gradually. Our method performs competitively on low-shot image classification and outperforms previous methods on object detection benchmarks. We discuss several remaining issues and hope this work can provide useful data points for future general-purpose self-supervised learning." 1759,Prefix Language Models are Unified Modal Learners,"With the success of vision-language pre-training, we have witnessed the state-of-the-art has been pushed on multi-modal understanding and generation. However, the current pre-training paradigm is either incapable of targeting all modalities at once (e.g., text generation and image generation), or requires multi-fold well-designed tasks which significantly limits the scalability. We demonstrate that a unified modal model could be learned with a prefix language modeling objective upon text and image sequences. Thanks to the simple but powerful pre-training paradigm, our proposed model, DaVinci, is simple to train, scalable to huge data, and adaptable to a variety of downstream tasks across modalities (language / vision / vision+language), types (understanding / generation) and settings (e.g., zero-shot, fine-tuning, linear evaluation) with a single unified architecture. DaVinci achieves the competitive performance on a wide range of 26 understanding / generation tasks, and outperforms previous unified vision-language models on most tasks, including ImageNet classification (+1.6%), VQAv2 (+1.4%), COCO caption generation (BLEU@4 +1.1%, CIDEr +1.5%) and COCO image generation (IS +0.9%, FID -1.0%), at the comparable model and data scale. Furthermore, we offer a well-defined benchmark for future research by reporting the performance on different scales of the pre-training dataset on a heterogeneous and wide distribution coverage. Our results establish new, stronger baselines for future comparisons at different data scales and shed light on the difficulties of comparing VLP models more generally." 1760,MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields,"Creating fast and accurate force fields is a long-standing challenge in computational chemistry and materials science. Recently, several equivariant message passing neural networks (MPNNs) have been shown to outperform models built using other approaches in terms of accuracy. However, most MPNNs suffer from high computational cost and poor scalability. We propose that these limitations arise because MPNNs only pass two-body messages leading to a direct relationship between the number of layers and the expressivity of the network. In this work, we introduce MACE, a new equivariant MPNN model that uses higher body order messages. In particular, we show that using four-body messages reduces the required number of message passing iterations to just \emph{two}, resulting in a fast and highly parallelizable model, reaching or exceeding state-of-the-art accuracy on the rMD17, 3BPA, and AcAc benchmark tasks. We also demonstrate that using higher order messages leads to an improved steepness of the learning curves." 1761,Diffusion Models for Video Prediction and Infilling,"To predict and anticipate future outcomes or reason about missing information in a sequence is a key ability for agents to be able to make intelligent decisions. This requires strong temporally coherent generative capabilities. Diffusion models have shown huge success in several generative tasks lately, but have not been extensively explored in the video domain. We present Random-Mask Video Diffusion (RaMViD), which extends image diffusion models to videos using 3D convolutions, and introduces a new conditioning technique during training. By varying the mask we condition on, the model is able to perform video prediction, infilling and upsampling. Since we do not use concatenation to condition on a mask, as done in most conditionally trained diffusion models, we are able to decrease the memory footprint. We evaluated the model on two benchmark datasets for video prediction and one for video generation on which we achieved competitive results. On Kinetics-600 we achieved state-of-the-art for video prediction." 1762,ELUDE: Generating interpretable explanations via a decomposition into labelled and unlabelled features,"Deep learning models have achieved remarkable success in different areas of machine learning over the past decade; however, the size and complexity of these models make them difficult to understand. In an effort to make them more interpretable, several recent works focus on explaining parts of a deep neural network through human-interpretable, semantic attributes. However, it may be impossible to completely explain complex models using only semantic attributes. In this work, we propose to augment these attributes with a small set of uninterpretable features. Specifically, we develop a novel explanation framework ELUDE (Explanation via Labelled and Unlabelled DEcomposition) that decomposes a model's prediction into two parts: one that is explainable through a linear combination of the semantic attributes, and another that is dependent on the set of uninterpretable features. By identifying the latter, we are able to analyze the ""unexplained"" portion of the model, obtaining insights into the information used by the model. We show that the set of unlabelled features can generalize to multiple models trained with the same feature space and compare our work to two popular attribute-oriented methods, Interpretable Basis Decomposition and Concept Bottleneck, and discuss the additional insights ELUDE provides." 1763,Learning to Accelerate Partial Differential Equations via Latent Global Evolution,"Simulating the time evolution of Partial Differential Equations (PDEs) of large-scale systems is crucial in many scientific and engineering domains such as fluid dynamics, weather forecasting and their inverse optimization problems. However, both classical solvers and recent deep learning-based surrogate models are typically extremely computationally intensive, because of their local evolution: they need to update the state of each discretized cell at each time step during inference. Here we develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns a compact, global representation of the system and efficiently evolves it fully in the latent space with learned latent evolution models. LE-PDE achieves speed-up by having a much smaller latent dimension to update during long rollout as compared to updating in the input space. We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability. We further introduce techniques for speeding-up inverse optimization of boundary conditions for PDEs via backpropagation through time in latent space, and an annealing technique to address the non-differentiability and sparse interaction of boundary conditions. We test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows into turbulent phase and an inverse optimization of boundary conditions in 2D Navier-Stokes flow. Compared to state-of-the-art deep learning-based surrogate models and other strong baselines, we demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy." 1764,Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator,"Subsurface simulations use computational models to predict the flow of fluids (e.g., oil, water, gas) through porous media. These simulations are pivotal in industrial applications such as petroleum production, where fast and accurate models are needed for high-stake decision making, for example, for well placement optimization and field development planning. Classical finite difference numerical simulators require massive computational resources to model large-scale real-world reservoirs. Alternatively, streamline simulators and data-driven surrogate models are computationally more efficient by relying on approximate physics models, however they are insufficient to model complex reservoir dynamics at scale. Here we introduce Hybrid Graph Network Simulator (HGNS), which is a data-driven surrogate model for learning reservoir simulations of 3D subsurface fluid flows. To model complex reservoir dynamics at both local and global scale, HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure. HGNS is able to scale to grids with millions of cells per time step, two orders of magnitude higher than previous surrogate models, and can accurately predict the fluid flow for tens of time steps (years into the future). Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators, and that it outperforms other learning-based models by reducing long-term prediction errors by up to 21%." 1765,Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling,"We introduce repriorisation, a data-dependent reparameterisation which transforms a Bayesian neural network (BNN) posterior to a distribution whose KL divergence to the BNN prior vanishes as layer widths grow. The repriorisation map acts directly on parameters, and its analytic simplicity complements the known neural network Gaussian process (NNGP) behaviour of wide BNNs in function space. Exploiting the repriorisation, we develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm which mixes faster the wider the BNN. This contrasts with the typically poor performance of MCMC in high dimensions. We observe up to 50x higher effective sample size relative to no reparametrisation for both fully-connected and residual networks. Improvements are achieved at all widths, with the margin between reparametrised and standard BNNs growing with layer width." 1766,A Unified Sequence Interface for Vision Tasks,"While language tasks are naturally expressed in a single, unified, modeling framework, i.e., generating sequences of tokens, this has not been the case in computer vision. As a result, there is a proliferation of distinct architectures and loss functions for different vision tasks. In this work we show that a diverse set of ""core"" computer vision tasks can also be unified if formulated in terms of a shared pixel-to-sequence interface. We focus on four tasks, namely, object detection, instance segmentation, keypoint detection, and image captioning, all with diverse types of outputs, e.g., bounding boxes or dense masks. Despite that, by formulating the output of each task as a sequence of discrete tokens with a unified interface, we show that one can train a neural network with a single model architecture and loss function on all these tasks, with no task-specific customization. To solve a specific task, we use a short prompt as task description, and the sequence output adapts to the prompt so it can produce task-specific output. We show that such a model can achieve competitive performance compared to well-established task-specific models." 1767,Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity,"We propose a general framework to design posterior sampling methods for model-based RL. We show that the proposed algorithms can be analyzed by reducing regret to Hellinger distance based conditional probability estimation. We further show that optimistic posterior sampling can control this Hellinger distance, when we measure model error via data likelihood. This technique allows us to design and analyze unified posterior sampling algorithms with state-of-the-art sample complexity guarantees for many model-based RL settings. We illustrate our general result in many special cases, demonstrating the versatility of our framework." 1768,Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution,"Outlier detection (OD) literature exhibits numerous algorithms as it applies to diverse domains. However, given a new detection task, it is unclear how to choose an algorithm to use, nor how to set its hyperparameter(s) (HPs) in unsupervised settings. HP tuning is an ever-growing problem with the arrival of many new detectors based on deep learning. While they have appealing properties such as task- driven representation learning and end-to-end optimization, deep models come with a long list of HPs. Surprisingly, the issue of model selection in the outlier mining literature has been ""the elephant in the room""; a significant factor in unlocking the utmost potential of deep methods, yet little said or done to systematically tackle the issue. In the first part of this paper, we conduct the first large-scale analysis on the HP sensitivity of deep OD methods, and through more than 35,000 trained models, quantitatively demonstrate that model selection is inevitable. Next, we design a HP-robust and scalable deep hyper-ensemble model called ROBOD that assembles models with varying HP configurations, bypassing the choice paralysis. Importantly, we introduce novel strategies to speed up ensemble training, such as parameter sharing, batch/simultaneous training, and data subsampling, that allow us to train fewer models with fewer parameters. Extensive experiments on both image and tabular datasets show that ROBOD achieves and retains robust, state-of-the-art detection performance as compared to its modern counterparts, while taking only 2-10% of the time by the naive hyper-ensemble with independent training." 1769,Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone,"Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones, bringing gains in terms of memory and performance. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is available at https://github.com/microsoft/FIBER." 1770,Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games,"We study the performance of policy gradient methods for the subclass of Markov games known as Markov potential games (MPGs), which extends the notion of normal-form potential games to the stateful setting and includes the important special case of the fully cooperative setting where the agents share an identical reward function. Our focus in this paper is to study the convergence of the policy gradient method for solving MPGs under softmax policy parameterization, both tabular and parameterized with general function approximators such as neural networks. We first show the asymptotic convergence of this method to a Nash equilibrium of MPGs for tabular softmax policies. Second, we derive the finite-time performance of the policy gradient in two settings: 1) using the log-barrier regularization, and 2) using the natural policy gradient under the best-response dynamics (NPG-BR). Finally, extending the notion of price of anarchy (POA) and smoothness in normal-form games, we introduce the POA for MPGs and provide a POA bound for NPG-BR. To our knowledge, this is the first POA bound for solving MPGs. To support our theoretical results, we empirically compare the convergence rates and POA of policy gradient variants for both tabular and neural softmax policies." 1771,Statistical and Computational Phase Transitions in Group Testing,"We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease within a population of size n, based on the outcomes of pooled tests which return positive whenever there is at least one infected individual in the tested group. We consider two different simple random procedures for assigning individuals to tests: the constant-column design and Bernoulli design. Our first set of results concerns the fundamental statistical limits. For the constant-column design, we give a new information-theoretic lower bound which implies that the proportion of correctly identifiable infected individuals undergoes a sharp ""all-or-nothing"" phase transition when the number of tests crosses a particular threshold. For the Bernoulli design, we determine the precise number of tests required to solve the associated detection problem (where the goal is to distinguish between a group testing instance and pure noise), improving both the upper and lower bounds of Truong, Aldridge, and Scarlett (2020). For both group testing models, we also study the power of computationally efficient (polynomial-time) inference procedures. We determine the precise number of tests required for the class of low-degree polynomial algorithms to solve the detection problem. This provides evidence for an inherent computational-statistical gap in both the detection and recovery problems at small sparsity levels. Notably, our evidence is contrary to that of Iliopoulos and Zadik (2021), who predicted the absence of a computational-statistical gap in the Bernoulli design." 1772,Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays,"The existing analysis of asynchronous stochastic gradient descent (SGD) degrades dramatically when any delay is large, giving the impression that performance depends primarily on the delay. On the contrary, we prove much better guarantees for the same asynchronous SGD algorithm regardless of the delays in the gradients, depending instead just on the number of parallel devices used to implement the algorithm. Our guarantees are strictly better than the existing analyses, and we also argue that asynchronous SGD outperforms synchronous minibatch SGD in the settings we consider. For our analysis, we introduce a novel recursion based on ""virtual iterates"" and delay-adaptive stepsizes, which allow us to derive state-of-the-art guarantees for both convex and non-convex objectives." 1773,Sublinear Algorithms for Hierarchical Clustering,"Hierarchical clustering over graphs is a fundamental task in data mining and machine learning with applications in domains such as phylogenetics, social network analysis, and information retrieval. Specifically, we consider the recently popularized objective function for hierarchical clustering due to Dasgupta. Previous algorithms for (approximately) minimizing this objective function require linear time/space complexity. In many applications the underlying graph can be massive in size making it computationally challenging to process the graph even using a linear time/space algorithm. As a result, there is a strong interest in designing algorithms that can perform global computation using only sublinear resources. The focus of this work is to study hierarchical clustering for massive graphs under three well-studied models of sublinear computation which focus on space, time, and communication, respectively, as the primary resources to optimize: (1) (dynamic) streaming model where edges are presented as a stream, (2) query model where the graph is queried using neighbor and degree queries, (3) MPC model where the graph edges are partitioned over several machines connected via a communication channel. We design sublinear algorithms for hierarchical clustering in all three models above. At the heart of our algorithmic results is a view of the objective in terms of cuts in the graph, which allows us to use a relaxed notion of cut sparsifiers to do hierarchical clustering while introducing only a small distortion in the objective function. Our main algorithmic contributions are then to show how cut sparsifiers of the desired form can be efficiently constructed in the query model and the MPC model. We complement our algorithmic results by establishing nearly matching lower bounds that rule out the possibility of designing better algorithms in each of these models." 1774,Clustered Scheduling and Communication Pipelining For Efficient Resource Management Of Wireless Federated Learning,"This paper proposes using communication pipelining to enhance the wireless spectrum utilization efficiency and convergence speed of federated learning in mobile edge computing applications. Due to limited wireless sub-channels, a subset of the total clients is scheduled in each iteration of federated learning algorithms. On the other hand, the scheduled clients wait for the slowest client to finish its computation. We propose to first cluster the clients based on the time they need per iteration to compute the local gradients of the federated learning model. Then, we schedule a mixture of clients from all clusters to send their local updates in a pipelined manner. In this way, instead of just waiting for the slower clients to finish their computation, more clients can participate in each iteration. While the time duration of a single iteration does not change, the proposed method can significantly reduce the number of required iterations to achieve a target accuracy. We provide a generic formulation for optimal client clustering under different settings, and we analytically derive an efficient algorithm for obtaining the optimal solution. We also provide numerical results to demonstrate the gains of the proposed method for different datasets and deep learning architectures." 1775,Rethinking Initialization of the Sinkhorn Algorithm,"Computing an optimal transport (OT) coupling between distributions plays an increasingly important role in machine learning. While OT problems can be solved as linear programs, adding an entropic smoothing term is known to result in solvers that are faster and more robust to outliers, differentiable and easier to parallelize. The Sinkhorn fixed point algorithm is the cornerstone of these approaches, and, as a result, multiple attempts have been made to shorten its runtime using, for instance, annealing, momentum or acceleration. The premise of this paper is that \textit{initialization} of the Sinkhorn algorithm has received comparatively little attention, possibly due to two preconceptions: as the regularized OT problem is convex, it may not be worth crafting a tailored initialization as \textit{any} is guaranteed to work; secondly, because the Sinkhorn algorithm is often differentiated in end-to-end pipelines, data-dependent initializations could potentially bias gradient estimates obtained by unrolling iterations. We challenge this conventional wisdom and show that carefully chosen initializations can result in dramatic speed-ups, and will not bias gradients which are computed with implicit differentiation. We detail how initializations can be recovered from closed-form or approximate OT solutions, using known results in the 1D or Gaussian settings. We show empirically that these initializations can be used off-the-shelf, with little to no tuning, and result in consistent speed-ups for a variety of OT problems." 1776,Epistemic Deep Learning,"The belief function approach to uncertainty quantification as proposed in the Demspter-Shafer theory of evidence is established upon the general mathematical models for set-valued observations, called random sets. Set-valued predictions are the most natural representations of uncertainty in machine learning. In this paper, we introduce a concept called epistemic deep learning based on the random-set interpretation of belief functions to model epistemic learning in deep neural networks. We propose a novel random-set convolutional neural network for classification that produces scores for sets of classes by learning set-valued ground truth representations. We evaluate different formulations of entropy and distance measures for belief functions as viable loss functions for these random-set networks. We also discuss methods for evaluating the quality of epistemic predictions and the performance of epistemic random-set neural networks. We demonstrate through experiments that the epistemic approach produces better performance results when compared to traditional approaches of estimating uncertainty." 1777,ARES: Locally Adaptive Reconstruction-based Anomaly Scoring,"How can we detect anomalies: that is, samples that significantly differ from a given set of high-dimensional data, such as images or sensor data? This is a practical problem with numerous applications and is also relevant to the goal of making learning algorithms more robust to unexpected inputs. Autoencoders are a popular approach, partly due to their simplicity and their ability to perform dimension reduction. However, the anomaly scoring function is not adaptive to the natural variation in reconstruction error across the range of normal samples, which hinders their ability to detect real anomalies. In this paper, we empirically demonstrate the importance of local adaptivity for anomaly scoring in experiments with real data. We then propose our novel Adaptive Reconstruction Error-based Scoring approach, which adapts its scoring based on the local behaviour of reconstruction error over the latent space. We show that this improves anomaly detection performance over relevant baselines in a wide variety of benchmark datasets." 1778,Sparse Subspace Clustering in Diverse Multiplex Network Model,"The paper considers the DIverse MultiPLEx (DIMPLE) network model, introduced in Pensky and Wang (2021), where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. The DIMPLE model generalizes a multitude of papers that study multilayer networks with the same community structures in all layers, as well as the Mixture Multilayer Stochastic Block Model (MMLSBM), where the layers in the same group have identical matrices of block connection probabilities. While Pensky and Wang (2021) applied spectral clustering to the proxy of the adjacency tensor, the present paper uses Sparse Subspace Clustering (SSC) for identifying groups of layers with identical community structures. Under mild conditions, the latter leads to the strongly consistent between-layer clustering. In addition, SSC allows to handle much larger networks than methodology of Pensky and Wang (2021), and is perfectly suitable for application of parallel computing." 1779,BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and Clinical Data,"Fast and accurate detection of the disease can significantly help in reducing the strain on the healthcare facility of any country to reduce the mortality during any pandemic. The goal of this work is to create a multimodal system using a novel machine learning framework that uses both Chest X-ray (CXR) images and clinical data to predict severity in COVID-19 patients. In addition, the study presents a nomogram-based scoring technique for predicting the likelihood of death in high-risk patients. This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted during the first wave of COVID-19 (March-June 2020) in Italy. The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively to identify low or high-risk patients. This multimodal approach improved the accuracy by 6% in comparison to the CXR image or clinical data alone. Finally, nomogram scoring system using multivariate logistic regression -- was used to stratify the mortality risk among the high-risk patients identified in the first stage. Lactate Dehydrogenase (LDH), O2 percentage, White Blood Cells (WBC) Count, Age, and C-reactive protein (CRP) were identified as useful predictor using random forest feature selection model. Five predictors parameters and a CXR image based nomogram score was developed for quantifying the probability of death and categorizing them into two risk groups: survived (<50%), and death (>=50%), respectively. The multi-modal technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %. The area under the curves for the development and validation cohorts are 0.981 and 0.939, respectively." 1780,Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates,"Robust and sparse estimation of linear regression coefficients is investigated. The situation addressed by the present paper is that covariates and noises are sampled from heavy-tailed distributions, and the covariates and noises are contaminated by malicious outliers. Our estimator can be computed efficiently. Further, our estimation error bound is sharp." 1781,"Characteristic kernels on Hilbert spaces, Banach spaces, and on sets of measures","We present new classes of positive definite kernels on non-standard spaces that are integrally strictly positive definite or characteristic. In particular, we discuss radial kernels on separable Hilbert spaces, and introduce broad classes of kernels on Banach spaces and on metric spaces of strong negative type. The general results are used to give explicit classes of kernels on separable $L^p$ spaces and on sets of measures." 1782,Machine Learning is Abduction Inference,"Concept of Abduction with Gradated Contradictions is introduced here as a form of Peirce's abduction inference. The general form of abduction criterion is formalized in the proposed Logic of Gradated Contradictions and Logic of Recursive Aggregation. Common steps of an abduction procedure as minimization of such a criterion are specified as well. It is demonstrated on examples of 14 popular textbook learners (from hierarchical clustering to k-NN and SVR) that each of them performs AGC. The proposed theory explains real life learners, yet it avoids any mention of statistics, so it can be considered as a logical alternative to the statistical learning theory." 1783,"NatGen: Generative pre-training by ""Naturalizing"" source code","Pre-trained Generative Language models (e.g. PLBART, CodeT5, SPT-Code) for source code yielded strong results on several tasks in the past few years, including code generation and translation. These models have adopted varying pre-training objectives to learn statistics of code construction from very large-scale corpora in a self-supervised fashion; the success of pre-trained models largely hinges on these pre-training objectives. This paper proposes a new pre-training objective, ""Naturalizing"" of source code, exploiting code's bimodal, dual-channel (formal & natural channels) nature. Unlike natural language, code's bimodal, dual-channel nature allows us to generate semantically equivalent code at scale. We introduce six classes of semantic preserving transformations to introduce un-natural forms of code, and then force our model to produce more natural original programs written by developers. Learning to generate equivalent, but more natural code, at scale, over large corpora of open-source code, without explicit manual supervision, helps the model learn to both ingest & generate code. We fine-tune our model in three generative Software Engineering tasks: code generation, code translation, and code refinement with limited human-curated labeled data and achieve state-of-the-art performance rivaling CodeT5. We show that our pre-trained model is especially competitive at zero-shot and few-shot learning, and better at learning code properties (e.g., syntax, data flow)." 1784,"A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions","Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions." 1785,E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations,"Event cameras respond to brightness changes in the scene asynchronously and independently for every pixel. Due to the properties, these cameras have distinct features: high dynamic range (HDR), high temporal resolution, and low power consumption. However, the results of event cameras should be processed into an alternative representation for computer vision tasks. Also, they are usually noisy and cause poor performance in areas with few events. In recent years, numerous researchers have attempted to reconstruct videos from events. However, they do not provide good quality videos due to a lack of temporal information from irregular and discontinuous data. To overcome these difficulties, we introduce an E2V-SDE whose dynamics are governed in a latent space by Stochastic differential equations (SDE). Therefore, E2V-SDE can rapidly reconstruct images at arbitrary time steps and make realistic predictions on unseen data. In addition, we successfully adopted a variety of image composition techniques for improving image clarity and temporal consistency. By conducting extensive experiments on simulated and real-scene datasets, we verify that our model outperforms state-of-the-art approaches under various video reconstruction settings. In terms of image quality, the LPIPS score improves by up to 12% and the reconstruction speed is 87% higher than that of ET-Net." 1786,Calibrating Agent-based Models to Microdata with Graph Neural Networks,"Calibrating agent-based models (ABMs) to data is among the most fundamental requirements to ensure the model fulfils its desired purpose. In recent years, simulation-based inference methods have emerged as powerful tools for performing this task when the model likelihood function is intractable, as is often the case for ABMs. In some real-world use cases of ABMs, both the observed data and the ABM output consist of the agents' states and their interactions over time. In such cases, there is a tension between the desire to make full use of the rich information content of such granular data on the one hand, and the need to reduce the dimensionality of the data to prevent difficulties associated with high-dimensional learning tasks on the other. A possible resolution is to construct lower-dimensional time-series through the use of summary statistics describing the macrostate of the system at each time point. However, a poor choice of summary statistics can result in an unacceptable loss of information from the original dataset, dramatically reducing the quality of the resulting calibration. In this work, we instead propose to learn parameter posteriors associated with granular microdata directly using temporal graph neural networks. We will demonstrate that such an approach offers highly compelling inductive biases for Bayesian inference using the raw ABM microstates as output." 1787,Contrastive Learning as Goal-Conditioned Reinforcement Learning,"In reinforcement learning (RL), it is easier to solve a task if given a good representation. While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable and instead equip RL algorithms with additional representation learning parts (e.g., auxiliary losses, data augmentation). How can we design RL algorithms that directly acquire good representations? In this paper, instead of adding representation learning parts to an existing RL algorithm, we show (contrastive) representation learning methods can be cast as RL algorithms in their own right. To do this, we build upon prior work and apply contrastive representation learning to action-labeled trajectories, in such a way that the (inner product of) learned representations exactly corresponds to a goal-conditioned value function. We use this idea to reinterpret a prior RL method as performing contrastive learning, and then use the idea to propose a much simpler method that achieves similar performance. Across a range of goal-conditioned RL tasks, we demonstrate that contrastive RL methods achieve higher success rates than prior non-contrastive methods, including in the offline RL setting. We also show that contrastive RL outperforms prior methods on image-based tasks, without using data augmentation or auxiliary objectives." 1788,A Meta-Analysis of Distributionally-Robust Models,"State-of-the-art image classifiers trained on massive datasets (such as ImageNet) have been shown to be vulnerable to a range of both intentional and incidental distribution shifts. On the other hand, several recent classifiers with favorable out-of-distribution (OOD) robustness properties have emerged, achieving high accuracy on their target tasks while maintaining their in-distribution accuracy on challenging benchmarks. We present a meta-analysis on a wide range of publicly released models, most of which have been published over the last twelve months. Through this meta-analysis, we empirically identify four main commonalities for all the best-performing OOD-robust models, all of which illuminate the considerable promise of vision-language pre-training." 1789,Bayesian Federated Learning via Predictive Distribution Distillation,"For most existing federated learning algorithms, each round consists of minimizing a loss function at each client to learn an optimal model at the client, followed by aggregating these client models at the server. Point estimation of the model parameters at the clients does not take into account the uncertainty in the models estimated at each client. In many situations, however, especially in limited data settings, it is beneficial to take into account the uncertainty in the client models for more accurate and robust predictions. Uncertainty also provides useful information for other important tasks, such as active learning and out-of-distribution (OOD) detection. We present a framework for Bayesian federated learning where each client infers the posterior predictive distribution using its training data and present various ways to aggregate these client-specific predictive distributions at the server. Since communicating and aggregating predictive distributions can be challenging and expensive, our approach is based on distilling each client's predictive distribution into a single deep neural network. This enables us to leverage advances in standard federated learning to Bayesian federated learning as well. Unlike some recent works that have tried to estimate model uncertainty of each client, our work also does not make any restrictive assumptions, such as the form of the client's posterior distribution. We evaluate our approach on classification in federated setting, as well as active learning and OOD detection in federated settings, on which our approach outperforms various existing federated learning baselines." 1790,On the fast convergence of minibatch heavy ball momentum,"Simple stochastic momentum methods are widely used in machine learning optimization, but their good practical performance is at odds with an absence of theoretical guarantees of acceleration in the literature. In this work, we aim to close the gap between theory and practice by showing that stochastic heavy ball momentum, which can be interpreted as a randomized Kaczmarz algorithm with momentum, retains the fast linear rate of (deterministic) heavy ball momentum on quadratic optimization problems, at least when minibatching with a sufficiently large batch size is used. The analysis relies on carefully decomposing the momentum transition matrix, and using new spectral norm concentration bounds for products of independent random matrices. We provide numerical experiments to demonstrate that our bounds are reasonably sharp." 1791,Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation,"Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with \textit{unknown} classes leads to the negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing \textit{known} classes. However, this \textit{known}-only matching may fail to learn the target-\textit{unknown} feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which \textit{aligns} the source and the targe-\textit{known} distribution while simultaneously \textit{segregating} the target-\textit{unknown} distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed \textit{unknown-aware} feature alignment, so we can guarantee both \textit{alignment} and \textit{segregation} theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting the state-of-the-art performances." 1792,A Deep Generative Model of Neonatal Cortical Surface Development,"The neonatal cortical surface is known to be affected by preterm birth, and the subsequent changes to cortical organisation have been associated with poorer neurodevelopmental outcomes. Deep Generative models have the potential to lead to clinically interpretable models of disease, but developing these on the cortical surface is challenging since established techniques for learning convolutional filters are inappropriate on non-flat topologies. To close this gap, we implement a surface-based CycleGAN using mixture model CNNs (MoNet) to translate sphericalised neonatal cortical surface features (curvature and T1w/T2w cortical myelin) between different stages of cortical maturity. Results show our method is able to reliably predict changes in individual patterns of cortical organisation at later stages of gestation, validated by comparison to longitudinal data; and translate appearance between preterm and term gestation (> 37 weeks gestation), validated through comparison with a trained term/preterm classifier. Simulated differences in cortical maturation are consistent with observations in the literature." 1793,Body Gesture Recognition to Control a Social Robot,"In this work, we propose a gesture based language to allow humans to interact with robots using their body in a natural way. We have created a new gesture detection model using neural networks and a custom dataset of humans performing a set of body gestures to train our network. Furthermore, we compare body gesture communication with other communication channels to acknowledge the importance of adding this knowledge to robots. The presented approach is extensively validated in diverse simulations and real-life experiments with non-trained volunteers. This attains remarkable results and shows that it is a valuable framework for social robotics applications, such as human robot collaboration or human-robot interaction." 1794,Autonomous Platoon Control with Integrated Deep Reinforcement Learning and Dynamic Programming,"Deep Reinforcement Learning (DRL) is regarded as a potential method for car-following control and has been mostly studied to support a single following vehicle. However, it is more challenging to learn a stable and efficient car-following policy when there are multiple following vehicles in a platoon, especially with unpredictable leading vehicle behavior. In this context, we adopt an integrated DRL and Dynamic Programming (DP) approach to learn autonomous platoon control policies, which embeds the Deep Deterministic Policy Gradient (DDPG) algorithm into a finite-horizon value iteration framework. Although the DP framework can improve the stability and performance of DDPG, it has the limitations of lower sampling and training efficiency. In this paper, we propose an algorithm, namely Finite-Horizon-DDPG with Sweeping through reduced state space using Stationary approximation (FH-DDPG-SS), which uses three key ideas to overcome the above limitations, i.e., transferring network weights backward in time, stationary policy approximation for earlier time steps, and sweeping through reduced state space. In order to verify the effectiveness of FH-DDPG-SS, simulation using real driving data is performed, where the performance of FH-DDPG-SS is compared with those of the benchmark algorithms. Finally, platoon safety and string stability for FH-DDPG-SS are demonstrated." 1795,BaIT: Barometer for Information Trustworthiness,"This paper presents a new approach to the FNC-1 fake news classification task which involves employing pre-trained encoder models from similar NLP tasks, namely sentence similarity and natural language inference, and two neural network architectures using this approach are proposed. Methods in data augmentation are explored as a means of tackling class imbalance in the dataset, employing common pre-existing methods and proposing a method for sample generation in the under-represented class using a novel sentence negation algorithm. Comparable overall performance with existing baselines is achieved, while significantly increasing accuracy on an under-represented but nonetheless important class for FNC-1." 1796,Corruption-Robust Contextual Search through Density Updates,"We study the problem of contextual search in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of noise in the system. For the $\eps$-ball loss, we give a tight regret bound of $O(C + d \log(1/\eps))$ improving over the $O(d^3 \log(1/\eps)) \log^2(T) + C \log(T) \log(1/\eps))$ bound of Krishnamurthy et al (STOC21). For the symmetric loss, we give an efficient algorithm with regret $O(C+d \log T)$. Our techniques are a significant departure from prior approaches. Specifically, we keep track of density functions over the candidate vectors instead of a knowledge set consisting of the candidate vectors consistent with the feedback obtained." 1797,QONNX: Representing Arbitrary-Precision Quantized Neural Networks,"We present extensions to the Open Neural Network Exchange (ONNX) intermediate representation format to represent arbitrary-precision quantized neural networks. We first introduce support for low precision quantization in existing ONNX-based quantization formats by leveraging integer clipping, resulting in two new backward-compatible variants: the quantized operator format with clipping and quantize-clip-dequantize (QCDQ) format. We then introduce a novel higher-level ONNX format called quantized ONNX (QONNX) that introduces three new operators -- Quant, BipolarQuant, and Trunc -- in order to represent uniform quantization. By keeping the QONNX IR high-level and flexible, we enable targeting a wider variety of platforms. We also present utilities for working with QONNX, as well as examples of its usage in the FINN and hls4ml toolchains. Finally, we introduce the QONNX model zoo to share low-precision quantized neural networks." 1798,Investigating Multi-Feature Selection and Ensembling for Audio Classification,"Deep Learning (DL) algorithms have shown impressive performance in diverse domains. Among them, audio has attracted many researchers over the last couple of decades due to some interesting patterns--particularly in classification of audio data. For better performance of audio classification, feature selection and combination play a key role as they have the potential to make or break the performance of any DL model. To investigate this role, we conduct an extensive evaluation of the performance of several cutting-edge DL models (i.e., Convolutional Neural Network, EfficientNet, MobileNet, Supper Vector Machine and Multi-Perceptron) with various state-of-the-art audio features (i.e., Mel Spectrogram, Mel Frequency Cepstral Coefficients, and Zero Crossing Rate) either independently or as a combination (i.e., through ensembling) on three different datasets (i.e., Free Spoken Digits Dataset, Audio Urdu Digits Dataset, and Audio Gujarati Digits Dataset). Overall, results suggest feature selection depends on both the dataset and the model. However, feature combinations should be restricted to the only features that already achieve good performances when used individually (i.e., mostly Mel Spectrogram, Mel Frequency Cepstral Coefficients). Such feature combination/ensembling enabled us to outperform the previous state-of-the-art results irrespective of our choice of DL model." 1799,Deep Multi-Task Networks For Occluded Pedestrian Pose Estimation,"Most of the existing works on pedestrian pose estimation do not consider estimating the pose of an occluded pedestrians, as the annotations of the occluded parts are not available in relevant automotive datasets. For example, CityPersons, a well-known dataset for pedestrian detection in automotive scenes does not provide pose annotations, whereas MS-COCO, a non-automotive dataset, contains human pose estimation. In this work, we propose a multi-task framework to extract pedestrian features through detection and instance segmentation tasks performed separately on these two distributions. Thereafter, an encoder learns pose specific features using an unsupervised instance-level domain adaptation method for the pedestrian instances from both distributions. The proposed framework has improved state-of-the-art performances of pose estimation, pedestrian detection, and instance segmentation." 1800,"Large-scale, multi-centre, multi-disease validation of an AI clinical tool for cine CMR analysis","INTRODUCTION: Artificial intelligence (AI) has the potential to facilitate the automation of CMR analysis for biomarker extraction. However, most AI algorithms are trained on a specific input domain (e.g., single scanner vendor or hospital-tailored imaging protocol) and lack the robustness to perform optimally when applied to CMR data from other input domains. METHODS: Our proposed framework consists of an AI-based algorithm for biventricular segmentation of short-axis images, followed by a post-analysis quality control to detect erroneous results. The segmentation algorithm was trained on a large dataset of clinical CMR scans from two NHS hospitals (n=2793) and validated on additional cases from this dataset (n=441) and on five external datasets (n=6808). The validation data included CMR scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. RESULTS: Our method yielded median Dice scores over 87%, translating into median absolute errors in cardiac biomarkers within the range of inter-observer variability: <8.4mL (left ventricle), <9.2mL (right ventricle), <13.3g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good agreement. CONCLUSIONS: We show that our proposed tool, which combines a state-of-the-art AI algorithm trained on a large-scale multi-domain CMR dataset with a post-analysis quality control, allows us to robustly deal with routine clinical data from multiple centres, vendors, and cardiac diseases. This is a fundamental step for the clinical translation of AI algorithms. Moreover, our method yields a range of additional biomarkers of cardiac function (filling and ejection rates, regional wall motion, and strain) at no extra computational cost." 1801,VisageSynTalk: Unseen Speaker Video-to-Speech Synthesis via Speech-Visage Feature Selection,"The goal of this work is to reconstruct speech from a silent talking face video. Recent studies have shown impressive performance on synthesizing speech from silent talking face videos. However, they have not explicitly considered on varying identity characteristics of different speakers, which place a challenge in the video-to-speech synthesis, and this becomes more critical in unseen-speaker settings. Distinct from the previous methods, our approach is to separate the speech content and the visage-style from a given silent talking face video. By guiding the model to independently focus on modeling the two representations, we can obtain the speech of high intelligibility from the model even when the input video of an unseen subject is given. To this end, we introduce speech-visage selection module that separates the speech content and the speaker identity from the visual features of the input video. The disentangled representations are jointly incorporated to synthesize speech through visage-style based synthesizer which generates speech by coating the visage-styles while maintaining the speech content. Thus, the proposed framework brings the advantage of synthesizing the speech containing the right content even when the silent talking face video of an unseen subject is given. We validate the effectiveness of the proposed framework on the GRID, TCD-TIMIT volunteer, and LRW datasets. The synthesized speech can be heard in supplementary materials." 1802,Understanding and Optimizing Deep Learning Cold-Start Latency on Edge Devices,"DNNs are ubiquitous on edge devices nowadays. With its increasing importance and use cases, it's not likely to pack all DNNs into device memory and expect that each inference has been warmed up. Therefore, cold inference, the process to read, initialize, and execute a DNN model, is becoming commonplace and its performance is urgently demanded to be optimized. To this end, we present NNV12, the first on-device inference engine that optimizes for cold inference NNV12 is built atop 3 novel optimization knobs: selecting a proper kernel (implementation) for each DNN operator, bypassing the weights transformation process by caching the post-transformed weights on disk, and pipelined execution of many kernels on asymmetric processors. To tackle with the huge search space, NNV12 employs a heuristic-based scheme to obtain a near-optimal kernel scheduling plan. We fully implement a prototype of NNV12 and evaluate its performance across extensive experiments. It shows that NNV12 achieves up to 15.2x and 401.5x compared to the state-of-the-art DNN engines on edge CPUs and GPUs, respectively." 1803,Predicting Gender via Eye Movements,"In this paper, we report the first stable results on gender prediction via eye movements. We use a dataset with images of faces as stimuli and with a large number of 370 participants. Stability has two meanings for us: first that we are able to estimate the standard deviation (SD) of a single prediction experiment (it is around 4.1 %); this is achieved by varying the number of participants. And second, we are able to provide a mean accuracy with a very low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this is achieved through many runs of randomly selecting training and test sets for the prediction. Our study shows that two particular classifiers achieve the best accuracies: Random Forests and Logistic Regression. Our results reconfirm previous findings that females are more biased towards the left eyes of the stimuli." 1804,Lessons learned from the NeurIPS 2021 MetaDL challenge: Backbone fine-tuning without episodic meta-learning dominates for few-shot learning image classification,"Although deep neural networks are capable of achieving performance superior to humans on various tasks, they are notorious for requiring large amounts of data and computing resources, restricting their success to domains where such resources are available. Metalearning methods can address this problem by transferring knowledge from related tasks, thus reducing the amount of data and computing resources needed to learn new tasks. We organize the MetaDL competition series, which provide opportunities for research groups all over the world to create and experimentally assess new meta-(deep)learning solutions for real problems. In this paper, authored collaboratively between the competition organizers and the top-ranked participants, we describe the design of the competition, the datasets, the best experimental results, as well as the top-ranked methods in the NeurIPS 2021 challenge, which attracted 15 active teams who made it to the final phase (by outperforming the baseline), making over 100 code submissions during the feedback phase. The solutions of the top participants have been open-sourced. The lessons learned include that learning good representations is essential for effective transfer learning." 1805,Multi-Objective Hyperparameter Optimization -- An Overview,"Hyperparameter optimization constitutes a large part of typical modern machine learning workflows. This arises from the fact that machine learning methods and corresponding preprocessing steps often only yield optimal performance when hyperparameters are properly tuned. But in many applications, we are not only interested in optimizing ML pipelines solely for predictive accuracy; additional metrics or constraints must be considered when determining an optimal configuration, resulting in a multi-objective optimization problem. This is often neglected in practice, due to a lack of knowledge and readily available software implementations for multi-objective hyperparameter optimization. In this work, we introduce the reader to the basics of multi- objective hyperparameter optimization and motivate its usefulness in applied ML. Furthermore, we provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization. We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness." 1806,Hardening DNNs against Transfer Attacks during Network Compression using Greedy Adversarial Pruning,"The prevalence and success of Deep Neural Network (DNN) applications in recent years have motivated research on DNN compression, such as pruning and quantization. These techniques accelerate model inference, reduce power consumption, and reduce the size and complexity of the hardware necessary to run DNNs, all with little to no loss in accuracy. However, since DNNs are vulnerable to adversarial inputs, it is important to consider the relationship between compression and adversarial robustness. In this work, we investigate the adversarial robustness of models produced by several irregular pruning schemes and by 8-bit quantization. Additionally, while conventional pruning removes the least important parameters in a DNN, we investigate the effect of an unconventional pruning method: removing the most important model parameters based on the gradient on adversarial inputs. We call this method Greedy Adversarial Pruning (GAP) and we find that this pruning method results in models that are resistant to transfer attacks from their uncompressed counterparts." 1807,Automating the resolution of flight conflicts: Deep reinforcement learning in service of air traffic controllers,"Dense and complex air traffic scenarios require higher levels of automation than those exhibited by tactical conflict detection and resolution (CD\&R) tools that air traffic controllers (ATCO) use today. However, the air traffic control (ATC) domain, being safety critical, requires AI systems to which operators are comfortable to relinquishing control, guaranteeing operational integrity and automation adoption. Two major factors towards this goal are quality of solutions, and transparency in decision making. This paper proposes using a graph convolutional reinforcement learning method operating in a multiagent setting where each agent (flight) performs a CD\&R task, jointly with other agents. We show that this method can provide high-quality solutions with respect to stakeholders interests (air traffic controllers and airspace users), addressing operational transparency issues." 1808,"""Why Here and Not There?"" -- Diverse Contrasting Explanations of Dimensionality Reduction","Dimensionality reduction is a popular preprocessing and a widely used tool in data mining. Transparency, which is usually achieved by means of explanations, is nowadays a widely accepted and crucial requirement of machine learning based systems like classifiers and recommender systems. However, transparency of dimensionality reduction and other data mining tools have not been considered much yet, still it is crucial to understand their behavior -- in particular practitioners might want to understand why a specific sample got mapped to a specific location. In order to (locally) understand the behavior of a given dimensionality reduction method, we introduce the abstract concept of contrasting explanations for dimensionality reduction, and apply a realization of this concept to the specific application of explaining two dimensional data visualization." 1809,Subsurface Depths Structure Maps Reconstruction with Generative Adversarial Networks,"This paper described a method for reconstruction of detailed-resolution depth structure maps, usually obtained after the 3D seismic surveys, using the data from 2D seismic depth maps. The method uses two algorithms based on the generative-adversarial neural network architecture. The first algorithm StyleGAN2-ADA accumulates in the hidden space of the neural network the semantic images of mountainous terrain forms first, and then with help of transfer learning, in the ideal case - the structure geometry of stratigraphic horizons. The second algorithm, the Pixel2Style2Pixel encoder, using the semantic level of generalization of the first algorithm, learns to reconstruct the original high-resolution images from their degraded copies (super-resolution technology). There was demonstrated a methodological approach to transferring knowledge on the structural forms of stratigraphic horizon boundaries from the well-studied areas to the underexplored ones. Using the multimodal synthesis of Pixel2Style2Pixel encoder, it is proposed to create a probabilistic depth space, where each point of the project area is represented by the density of probabilistic depth distribution of equally probable reconstructed geological forms of structural images. Assessment of the reconstruction quality was carried out for two blocks. Using this method, credible detailed depth reconstructions comparable with the quality of 3D seismic maps have been obtained from 2D seismic maps." 1810,The Manifold Hypothesis for Gradient-Based Explanations,"When do gradient-based explanation algorithms provide meaningful explanations? We propose a necessary criterion: their feature attributions need to be aligned with the tangent space of the data manifold. To provide evidence for this hypothesis, we introduce a framework based on variational autoencoders that allows to estimate and generate image manifolds. Through experiments across a range of different datasets -- MNIST, EMNIST, CIFAR10, X-ray pneumonia and Diabetic Retinopathy detection -- we demonstrate that the more a feature attribution is aligned with the tangent space of the data, the more structured and explanatory it tends to be. In particular, the attributions provided by popular post-hoc methods such as Integrated Gradients, SmoothGrad and Input $\times$ Gradient tend to be more strongly aligned with the data manifold than the raw gradient. As a consequence, we suggest that explanation algorithms should actively strive to align their explanations with the data manifold. In part, this can be achieved by adversarial training, which leads to better alignment across all datasets. Some form of adjustment to the model architecture or training algorithm is necessary, since we show that generalization of neural networks alone does not imply the alignment of model gradients with the data manifold." 1811,Finite-Sample Guarantees for High-Dimensional DML,"Debiased machine learning (DML) offers an attractive way to estimate treatment effects in observational settings, where identification of causal parameters requires a conditional independence or unconfoundedness assumption, since it allows to control flexibly for a potentially very large number of covariates. This paper gives novel finite-sample guarantees for joint inference on high-dimensional DML, bounding how far the finite-sample distribution of the estimator is from its asymptotic Gaussian approximation. These guarantees are useful to applied researchers, as they are informative about how far off the coverage of joint confidence bands can be from the nominal level. There are many settings where high-dimensional causal parameters may be of interest, such as the ATE of many treatment profiles, or the ATE of a treatment on many outcomes. We also cover infinite-dimensional parameters, such as impacts on the entire marginal distribution of potential outcomes. The finite-sample guarantees in this paper complement the existing results on consistency and asymptotic normality of DML estimators, which are either asymptotic or treat only the one-dimensional case." 1812,Mean-Semivariance Policy Optimization via Risk-Averse Reinforcement Learning,"Keeping risk under control is often more crucial than maximizing expected reward in real-world decision-making situations, such as finance, robotics, autonomous driving, etc. The most natural choice of risk measures is variance, while it penalizes the upside volatility as much as the downside part. Instead, the (downside) semivariance, which captures negative deviation of a random variable under its mean, is more suitable for risk-averse proposes. This paper aims at optimizing the mean-semivariance (MSV) criterion in reinforcement learning w.r.t. steady rewards. Since semivariance is time-inconsistent and does not satisfy the standard Bellman equation, the traditional dynamic programming methods are inapplicable to MSV problems directly. To tackle this challenge, we resort to the Perturbation Analysis (PA) theory and establish the performance difference formula for MSV. We reveal that the MSV problem can be solved by iteratively solving a sequence of RL problems with a policy-dependent reward function. Further, we propose two on-policy algorithms based on the policy gradient theory and the trust region method. Finally, we conduct diverse experiments from simple bandit problems to continuous control tasks in MuJoCo, which demonstrate the effectiveness of our proposed methods." 1813,Lattice Convolutional Networks for Learning Ground States of Quantum Many-Body Systems,"Deep learning methods have been shown to be effective in representing ground-state wave functions of quantum many-body systems. Existing methods use convolutional neural networks (CNNs) for square lattices due to their image-like structures. For non-square lattices, existing method uses graph neural network (GNN) in which structure information is not precisely captured, thereby requiring additional hand-crafted sublattice encoding. In this work, we propose lattice convolutions in which a set of proposed operations are used to convert non-square lattices into grid-like augmented lattices on which regular convolution can be applied. Based on the proposed lattice convolutions, we design lattice convolutional networks (LCN) that use self-gating and attention mechanisms. Experimental results show that our method achieves performance on par or better than existing methods on spin 1/2 $J_1$-$J_2$ Heisenberg model over the square, honeycomb, triangular, and kagome lattices while without using hand-crafted encoding." 1814,DiffWire: Inductive Graph Rewiring via the Lovász Bound,"Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks, such as node and graph classification, link prediction and node and graph clustering in a variety of domains. Most GNNs use a message passing framework and hence are called MPNNs. Despite their promising results, MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching. Graph rewiring and graph pooling have been proposed in the literature as solutions to address these limitations. However, most state-of-the-art graph rewiring methods fail to preserve the global topology of the graph, are not differentiable (inductive) and require the tuning of hyper-parameters. In this paper, we propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free by leveraging the Lov\'asz bound. Our approach provides a unified theory for graph rewiring by proposing two new, complementary layers in MPNNs: first, CTLayer, a layer that learns the commute times and uses them as a relevance function for edge re-weighting; second, GAPLayer, a layer to optimize the spectral gap, depending on the nature of the network and the task at hand. We empirically validate the value of our proposed approach and each of these layers separately with benchmark datasets for graph classification. DiffWire brings together the learnability of commute times to related definitions of curvature, opening the door to the development of more expressive MPNNs." 1815,Modern Machine-Learning Predictive Models for Diagnosing Infectious Diseases,"Controlling infectious diseases is a major health priority because they can spread and infect humans, thus evolving into epidemics or pandemics. Therefore, early detection of infectious diseases is a significant need, and many researchers have developed models to diagnose them in the early stages. This paper reviewed research articles for recent machine-learning (ML) algorithms applied to infectious disease diagnosis. We searched the Web of Science, ScienceDirect, PubMed, Springer, and IEEE databases from 2015 to 2022, identified the pros and cons of the reviewed ML models, and discussed the possible recommendations to advance the studies in this field. We found that most of the articles used small datasets, and few of them used real-time data. Our results demonstrated that a suitable ML technique depends on the nature of the dataset and the desired goal." 1816,Robust SAR ATR on MSTAR with Deep Learning Models trained on Full Synthetic MOCEM data,"The promising potential of Deep Learning for Automatic Target Recognition (ATR) on Synthetic Aperture Radar (SAR) images vanishes when considering the complexity of collecting training datasets measurements. Simulation can overcome this issue by producing synthetic training datasets. However, because of the limited representativeness of simulation, models trained in a classical way with synthetic images have limited generalization abilities when dealing with real measurement at test time. Previous works identified a set of equally promising deep-learning algorithms to tackle this issue. However, these approaches have been evaluated in a very favorable scenario with a synthetic training dataset that overfits the ground truth of the measured test data. In this work, we study the ATR problem outside of this ideal condition, which is unlikely to occur in real operational contexts. Our contribution is threefold. (1) Using the MOCEM simulator (developed by SCALIAN DS for the French MoD/DGA), we produce a synthetic MSTAR training dataset that differs significantly from the real measurements. (2) We experimentally demonstrate the limits of the state-of-the-art. (3) We show that domain randomization techniques and adversarial training can be combined to overcome this issue. We demonstrate that this approach is more robust than the state-of-the-art, with an accuracy of 75 %, while having a limited impact on computing performance during training." 1817,Automatic Detection of Rice Disease in Images of Various Leaf Sizes,"Fast, accurate and affordable rice disease detection method is required to assist rice farmers tackling equipment and expertise shortages problems. In this paper, we focused on the solution using computer vision technique to detect rice diseases from rice field photograph images. Dealing with images took in real-usage situation by general farmers is quite challenging due to various environmental factors, and rice leaf object size variation is one major factor caused performance gradation. To solve this problem, we presented a technique combining a CNN object detection with image tiling technique, based on automatically estimated width size of rice leaves in the images as a size reference for dividing the original input image. A model to estimate leaf width was created by small size CNN such as 18 layer ResNet architecture model. A new divided tiled sub-image set with uniformly sized object was generated and used as input for training a rice disease prediction model. Our technique was evaluated on 4,960 images of eight different types of rice leaf diseases, including blast, blight, brown spot, narrow brown spot, orange, red stripe, rice grassy stunt virus, and streak disease. The mean absolute percentage error (MAPE) for leaf width prediction task evaluated on all eight classes was 11.18% in the experiment, indicating that the leaf width prediction model performed well. The mean average precision (mAP) of the prediction performance on YOLOv4 architecture was enhanced from 87.56% to 91.14% when trained and tested with the tiled dataset. According to our study, the proposed image tiling technique improved rice disease detection efficiency." 1818,Cautious Learning of Multiattribute Preferences,"This paper is dedicated to a cautious learning methodology for predicting preferences between alternatives characterized by binary attributes (formally, each alternative is seen as a subset of attributes). By ""cautious"", we mean that the model learned to represent the multi-attribute preferences is general enough to be compatible with any strict weak order on the alternatives, and that we allow ourselves not to predict some preferences if the data collected are not compatible with a reliable prediction. A predicted preference will be considered reliable if all the simplest models (following Occam's razor principle) explaining the training data agree on it. Predictions are based on an ordinal dominance relation between alternatives [Fishburn and LaValle, 1996]. The dominance relation relies on an uncertainty set encompassing the possible values of the parameters of the multi-attribute utility function. Numerical tests are provided to evaluate the richness and the reliability of the predictions made." 1819,On Numerical Integration in Neural Ordinary Differential Equations,"The combination of ordinary differential equations and neural networks, i.e., neural ordinary differential equations (Neural ODE), has been widely studied from various angles. However, deciphering the numerical integration in Neural ODE is still an open challenge, as many researches demonstrated that numerical integration significantly affects the performance of the model. In this paper, we propose the inverse modified differential equations (IMDE) to clarify the influence of numerical integration on training Neural ODE models. IMDE is determined by the learning task and the employed ODE solver. It is shown that training a Neural ODE model actually returns a close approximation of the IMDE, rather than the true ODE. With the help of IMDE, we deduce that (i) the discrepancy between the learned model and the true ODE is bounded by the sum of discretization error and learning loss; (ii) Neural ODE using non-symplectic numerical integration fail to learn conservation laws theoretically. Several experiments are performed to numerically verify our theoretical analysis." 1820,Detection of magnetohydrodynamic waves by using machine learning,"Nonlinear wave interactions, such as shock refraction at an inclined density interface, in magnetohydrodynamic (MHD) lead to a plethora of wave patterns with myriad wave types. Identification of different types of MHD waves is an important and challenging task in such complex wave patterns. Moreover, owing to the multiplicity of solutions and their admissibility for different systems, especially for intermediate-type MHD shock waves, the identification of MHD wave types is complicated if one solely relies on the Rankine-Hugoniot jump conditions. MHD wave detection is further exacerbated by the unphysical smearing of discontinuous shock waves in numerical simulations. We present two MHD wave detection methods based on a convolutional neural network (CNN) which enables the classification of waves and identification of their locations. The first method separates the output into a regression (location prediction) and a classification problem assuming the number of waves for each training data is fixed. In the second method, the number of waves is not specified a priori and the algorithm, using only regression, predicts the waves' locations and classifies their types. The first fixed output model efficiently provides high precision and recall, the accuracy of the entire neural network achieved is up to 0.99, and the classification accuracy of some waves approaches unity. The second detection model has relatively lower performance, with more sensitivity to the setting of parameters, such as the number of grid cells N_{grid} and the thresholds of confidence score and class probability, etc. The proposed two methods demonstrate very strong potential to be applied for MHD wave detection in some complex wave structures and interactions." 1821,A Survey : Neural Networks for AMR-to-Text,"AMR-to-text is one of the key techniques in the NLP community that aims at generating sentences from the Abstract Meaning Representation (AMR) graphs. Since AMR was proposed in 2013, the study on AMR-to-Text has become increasingly prevalent as an essential branch of structured data to text because of the unique advantages of AMR as a high-level semantic description of natural language. In this paper, we provide a brief survey of AMR-to-Text. Firstly, we introduce the current scenario of this technique and point out its difficulties. Secondly, based on the methods used in previous studies, we roughly divided them into five categories according to their respective mechanisms, i.e., Rules-based, Seq-to-Seq-based, Graph-to-Seq-based, Transformer-based, and Pre-trained Language Model (PLM)-based. In particular, we detail the neural network-based method and present the latest progress of AMR-to-Text, which refers to AMR reconstruction, Decoder optimization, etc. Furthermore, we present the benchmarks and evaluation methods of AMR-to-Text. Eventually, we provide a summary of current techniques and the outlook for future research." 1822,A smile is all you need: Predicting limiting activity coefficients from SMILES with natural language processing,"Knowledge of mixtures' phase equilibria is crucial in nature and technical chemistry. Phase equilibria calculations of mixtures require activity coefficients. However, experimental data on activity coefficients is often limited due to high cost of experiments. For an accurate and efficient prediction of activity coefficients, machine learning approaches have been recently developed. However, current machine learning approaches still extrapolate poorly for activity coefficients of unknown molecules. In this work, we introduce the SMILES-to-Properties-Transformer (SPT), a natural language processing network to predict binary limiting activity coefficients from SMILES codes. To overcome the limitations of available experimental data, we initially train our network on a large dataset of synthetic data sampled from COSMO-RS (10 Million data points) and then fine-tune the model on experimental data (20 870 data points). This training strategy enables SPT to accurately predict limiting activity coefficients even for unknown molecules, cutting the mean prediction error in half compared to state-of-the-art models for activity coefficient predictions such as COSMO-RS, UNIFAC, and improving on recent machine learning approaches." 1823,Morphence-2.0: Evasion-Resilient Moving Target Defense Powered by Out-of-Distribution Detection,"Evasion attacks against machine learning models often succeed via iterative probing of a fixed target model, whereby an attack that succeeds once will succeed repeatedly. One promising approach to counter this threat is making a model a moving target against adversarial inputs. To this end, we introduce Morphence-2.0, a scalable moving target defense (MTD) powered by out-of-distribution (OOD) detection to defend against adversarial examples. By regularly moving the decision function of a model, Morphence-2.0 makes it significantly challenging for repeated or correlated attacks to succeed. Morphence-2.0 deploys a pool of models generated from a base model in a manner that introduces sufficient randomness when it responds to prediction queries. Via OOD detection, Morphence-2.0 is equipped with a scheduling approach that assigns adversarial examples to robust decision functions and benign samples to an undefended accurate models. To ensure repeated or correlated attacks fail, the deployed pool of models automatically expires after a query budget is reached and the model pool is seamlessly replaced by a new model pool generated in advance. We evaluate Morphence-2.0 on two benchmark image classification datasets (MNIST and CIFAR10) against 4 reference attacks (3 white-box and 1 black-box). Morphence-2.0 consistently outperforms prior defenses while preserving accuracy on clean data and reducing attack transferability. We also show that, when powered by OOD detection, Morphence-2.0 is able to precisely make an input-based movement of the model's decision function that leads to higher prediction accuracy on both adversarial and benign queries." 1824,A Proposed Bi-LSTM Method to Fake News Detection,"Recent years have seen an explosion in social media usage, allowing people to connect with others. Since the appearance of platforms such as Facebook and Twitter, such platforms influence how we speak, think, and behave. This problem negatively undermines confidence in content because of the existence of fake news. For instance, false news was a determining factor in influencing the outcome of the U.S. presidential election and other sites. Because this information is so harmful, it is essential to make sure we have the necessary tools to detect and resist it. We applied Bidirectional Long Short-Term Memory (Bi-LSTM) to determine if the news is false or real in order to showcase this study. A number of foreign websites and newspapers were used for data collection. After creating & running the model, the work achieved 84% model accuracy and 62.0 F1-macro scores with training data." 1825,Online Contextual Decision-Making with a Smart Predict-then-Optimize Method,"We study an online contextual decision-making problem with resource constraints. At each time period, the decision-maker first predicts a reward vector and resource consumption matrix based on a given context vector and then solves a downstream optimization problem to make a decision. The final goal of the decision-maker is to maximize the summation of the reward and the utility from resource consumption, while satisfying the resource constraints. We propose an algorithm that mixes a prediction step based on the ""Smart Predict-then-Optimize (SPO)"" method with a dual update step based on mirror descent. We prove regret bounds and demonstrate that the overall convergence rate of our method depends on the $\mathcal{O}(T^{-1/2})$ convergence of online mirror descent as well as risk bounds of the surrogate loss function used to learn the prediction model. Our algorithm and regret bounds apply to a general convex feasible region for the resource constraints, including both hard and soft resource constraint cases, and they apply to a wide class of prediction models in contrast to the traditional settings of linear contextual models or finite policy spaces. We also conduct numerical experiments to empirically demonstrate the strength of our proposed SPO-type methods, as compared to traditional prediction-error-only methods, on multi-dimensional knapsack and longest path instances." 1826,Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack,"The AutoAttack (AA) has been the most reliable method to evaluate adversarial robustness when considerable computational resources are available. However, the high computational cost (e.g., 100 times more than that of the project gradient descent attack) makes AA infeasible for practitioners with limited computational resources, and also hinders applications of AA in the adversarial training (AT). In this paper, we propose a novel method, minimum-margin (MM) attack, to fast and reliably evaluate adversarial robustness. Compared with AA, our method achieves comparable performance but only costs 3% of the computational time in extensive experiments. The reliability of our method lies in that we evaluate the quality of adversarial examples using the margin between two targets that can precisely identify the most adversarial example. The computational efficiency of our method lies in an effective Sequential TArget Ranking Selection (STARS) method, ensuring that the cost of the MM attack is independent of the number of classes. The MM attack opens a new way for evaluating adversarial robustness and provides a feasible and reliable way to generate high-quality adversarial examples in AT." 1827,Can pruning improve certified robustness of neural networks?,"With the rapid development of deep learning, the sizes of neural networks become larger and larger so that the training and inference often overwhelm the hardware resources. Given the fact that neural networks are often over-parameterized, one effective way to reduce such computational overhead is neural network pruning, by removing redundant parameters from trained neural networks. It has been recently observed that pruning can not only reduce computational overhead but also can improve empirical robustness of deep neural networks (NNs), potentially owing to removing spurious correlations while preserving the predictive accuracies. This paper for the first time demonstrates that pruning can generally improve certified robustness for ReLU-based NNs under the complete verification setting. Using the popular Branch-and-Bound (BaB) framework, we find that pruning can enhance the estimated bound tightness of certified robustness verification, by alleviating linear relaxation and sub-domain split problems. We empirically verify our findings with off-the-shelf pruning methods and further present a new stability-based pruning method tailored for reducing neuron instability, that outperforms existing pruning methods in enhancing certified robustness. Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training, and up to 24.5% under adversarial training on the CIFAR10 dataset. We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models across different datasets. Our findings offer a new angle to study the intriguing interaction between sparsity and robustness, i.e. interpreting the interaction of sparsity and certified robustness via neuron stability. Codes are available at: https://github.com/VITA-Group/CertifiedPruning." 1828,Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models,"Diffusion probabilistic models (DPMs) are a class of powerful deep generative models (DGMs). Despite their success, the iterative generation process over the full timesteps is much less efficient than other DGMs such as GANs. Thus, the generation performance on a subset of timesteps is crucial, which is greatly influenced by the covariance design in DPMs. In this work, we consider diagonal and full covariances to improve the expressive power of DPMs. We derive the optimal result for such covariances, and then correct it when the mean of DPMs is imperfect. Both the optimal and the corrected ones can be decomposed into terms of conditional expectations over functions of noise. Building upon it, we propose to estimate the optimal covariance and its correction given imperfect mean by learning these conditional expectations. Our method can be applied to DPMs with both discrete and continuous timesteps. We consider the diagonal covariance in our implementation for computational efficiency. For an efficient practical implementation, we adopt a parameter sharing scheme and a two-stage training process. Empirically, our method outperforms a wide variety of covariance design on likelihood results, and improves the sample quality especially on a small number of timesteps." 1829,VCT: A Video Compression Transformer,"We show how transformers can be used to vastly simplify neural video compression. Previous methods have been relying on an increasing number of architectural biases and priors, including motion prediction and warping operations, resulting in complex models. Instead, we independently map input frames to representations and use a transformer to model their dependencies, letting it predict the distribution of future representations given the past. The resulting video compression transformer outperforms previous methods on standard video compression data sets. Experiments on synthetic data show that our model learns to handle complex motion patterns such as panning, blurring and fading purely from data. Our approach is easy to implement, and we release code to facilitate future research." 1830,Diffusion Transport Alignment,"The integration of multimodal data presents a challenge in cases when the study of a given phenomena by different instruments or conditions generates distinct but related domains. Many existing data integration methods assume a known one-to-one correspondence between domains of the entire dataset, which may be unrealistic. Furthermore, existing manifold alignment methods are not suited for cases where the data contains domain-specific regions, i.e., there is not a counterpart for a certain portion of the data in the other domain. We propose Diffusion Transport Alignment (DTA), a semi-supervised manifold alignment method that exploits prior correspondence knowledge between only a few points to align the domains. By building a diffusion process, DTA finds a transportation plan between data measured from two heterogeneous domains with different feature spaces, which by assumption, share a similar geometrical structure coming from the same underlying data generating process. DTA can also compute a partial alignment in a data-driven fashion, resulting in accurate alignments when some data are measured in only one domain. We empirically demonstrate that DTA outperforms other methods in aligning multimodal data in this semisupervised setting. We also empirically show that the alignment obtained by DTA can improve the performance of machine learning tasks, such as domain adaptation, inter-domain feature mapping, and exploratory data analysis, while outperforming competing methods." 1831,Knowledge Management System with NLP-Assisted Annotations: A Brief Survey and Outlook,"Knowledge management systems are in high demand for industrial researchers, chemical or research enterprises, or evidence-based decision making. However, existing systems have limitations in categorizing and organizing paper insights or relationships. Traditional databases are usually disjoint with logging systems, which limit its utility in generating concise, collated overviews. In this work, we briefly survey existing approaches of this problem space and propose a unified framework that utilizes relational databases to log hierarchical information to facilitate the research and writing process, or generate useful knowledge from references or insights from connected concepts. This framework of knowledge management system enables novel functionalities encompassing improved hierarchical notetaking, AI-assisted brainstorming, and multi-directional relationships. Potential applications include managing inventories and changes for manufacture or research enterprises, or generating analytic reports with evidence-based decision making." 1832,FOLD-TR: A Scalable and Efficient Inductive Learning Algorithm for Learning To Rank,"FOLD-R++ is a new inductive learning algorithm for binary classification tasks. It generates an (explainable) normal logic program for mixed type (numerical and categorical) data. We present a customized FOLD-R++ algorithm with the ranking framework, called FOLD-TR, that aims to rank new items following the ranking pattern in the training data. Like FOLD-R++, the FOLD-TR algorithm is able to handle mixed-type data directly and provide native justification to explain the comparison between a pair of items." 1833,Differentiable Top-k Classification Learning,"The top-k classification accuracy is one of the core metrics in machine learning. Here, k is conventionally a positive integer, such as 1 or 5, leading to top-1 or top-5 training objectives. In this work, we relax this assumption and optimize the model for multiple k simultaneously instead of using a single k. Leveraging recent advances in differentiable sorting and ranking, we propose a differentiable top-k cross-entropy classification loss. This allows training the network while not only considering the top-1 prediction, but also, e.g., the top-2 and top-5 predictions. We evaluate the proposed loss function for fine-tuning on state-of-the-art architectures, as well as for training from scratch. We find that relaxing k does not only produce better top-5 accuracies, but also leads to top-1 accuracy improvements. When fine-tuning publicly available ImageNet models, we achieve a new state-of-the-art for these models." 1834,"A Survey on Gradient Inversion: Attacks, Defenses and Future Directions","Recent studies have shown that the training samples can be recovered from gradients, which are called Gradient Inversion (GradInv) attacks. However, there remains a lack of extensive surveys covering recent advances and thorough analysis of this issue. In this paper, we present a comprehensive survey on GradInv, aiming to summarize the cutting-edge research and broaden the horizons for different domains. Firstly, we propose a taxonomy of GradInv attacks by characterizing existing attacks into two paradigms: iteration- and recursion-based attacks. In particular, we dig out some critical ingredients from the iteration-based attacks, including data initialization, model training and gradient matching. Second, we summarize emerging defense strategies against GradInv attacks. We find these approaches focus on three perspectives covering data obscuration, model improvement and gradient protection. Finally, we discuss some promising directions and open problems for further research." 1835,Global Convergence of Federated Learning for Mixed Regression,"This paper studies the problem of model training under Federated Learning when clients exhibit cluster structure. We contextualize this problem in mixed regression, where each client has limited local data generated from one of $k$ unknown regression models. We design an algorithm that achieves global convergence from any initialization, and works even when local data volume is highly unbalanced -- there could exist clients that contain $O(1)$ data points only. Our algorithm first runs moment descent on a few anchor clients (each with $\tilde{\Omega}(k)$ data points) to obtain coarse model estimates. Then each client alternately estimates its cluster labels and refines the model estimates based on FedAvg or FedProx. A key innovation in our analysis is a uniform estimate on the clustering errors, which we prove by bounding the VC dimension of general polynomial concept classes based on the theory of algebraic geometry." 1836,ALASCA: Rethinking Label Smoothing for Deep Learning Under Label Noise,"As label noise, one of the most popular distribution shifts, severely degrades deep neural networks' generalization performance, robust training with noisy labels is becoming an important task in modern deep learning. In this paper, we propose our framework, coined as Adaptive LAbel smoothing on Sub-ClAssifier (ALASCA), that provides a robust feature extractor with theoretical guarantee and negligible additional computation. First, we derive that the label smoothing (LS) incurs implicit Lipschitz regularization (LR). Furthermore, based on these derivations, we apply the adaptive LS (ALS) on sub-classifiers architectures for the practical application of adaptive LR on intermediate layers. We conduct extensive experiments for ALASCA and combine it with previous noise-robust methods on several datasets and show our framework consistently outperforms corresponding baselines." 1837,CARD: Classification and Regression Diffusion Models,"Learning the distribution of a continuous or categorical response variable $\boldsymbol y$ given its covariates $\boldsymbol x$ is a fundamental problem in statistics and machine learning. Deep neural network-based supervised learning algorithms have made great progress in predicting the mean of $\boldsymbol y$ given $\boldsymbol x$, but they are often criticized for their ability to accurately capture the uncertainty of their predictions. In this paper, we introduce classification and regression diffusion (CARD) models, which combine a denoising diffusion-based conditional generative model and a pre-trained conditional mean estimator, to accurately predict the distribution of $\boldsymbol y$ given $\boldsymbol x$. We demonstrate the outstanding ability of CARD in conditional distribution prediction with both toy examples and real-world datasets, the experimental results on which show that CARD in general outperforms state-of-the-art methods, including Bayesian neural network-based ones that are designed for uncertainty estimation, especially when the conditional distribution of $\boldsymbol y$ given $\boldsymbol x$ is multi-modal." 1838,SmartMask- Developing an automated self-care system,"COVID-19 has changed our world and has filled people with fear and anxiety. Everyone has a fear of coming in contact with people having the Coronavirus. In Spite of releasing full lockdowns, there is still a pressing need to maintain social distancing in the short- to medium-term to control the spread of coronavirus. Due to lack of self discipline or obviously pulling down the mask to get some fresh air, might pose a threat when you come near a person showing COVID symptoms. Abiding to WHO guidelines to avoid touching the mask while wearing it, we propose a wearable device for no contact pulling up of mask on face and additionally to implement social distancing with sensors mounted on the device. The SmartMask will detect if we are in the vicinity of any other person and will pull itself up. With sensors for detecting the closeness of objects around you and prompting you to take a proper action or pull the mask automatically. Along with the automated mask we will incorporate a temperature sensor to check vitals of an individual at all times and give an alert to the peers around him. This will ensure social distancing and help in avoiding spread of the virus." 1839,Resource-Constrained Edge AI with Early Exit Prediction,"By leveraging the data sample diversity, the early-exit network recently emerges as a prominent neural network architecture to accelerate the deep learning inference process. However, intermediate classifiers of the early exits introduce additional computation overhead, which is unfavorable for resource-constrained edge artificial intelligence (AI). In this paper, we propose an early exit prediction mechanism to reduce the on-device computation overhead in a device-edge co-inference system supported by early-exit networks. Specifically, we design a low-complexity module, namely the Exit Predictor, to guide some distinctly ""hard"" samples to bypass the computation of the early exits. Besides, considering the varying communication bandwidth, we extend the early exit prediction mechanism for latency-aware edge inference, which adapts the prediction thresholds of the Exit Predictor and the confidence thresholds of the early-exit network via a few simple regression models. Extensive experiment results demonstrate the effectiveness of the Exit Predictor in achieving a better tradeoff between accuracy and on-device computation overhead for early-exit networks. Besides, compared with the baseline methods, the proposed method for latency-aware edge inference attains higher inference accuracy under different bandwidth conditions." 1840,Latency Control for Keyword Spotting,"Conversational agents commonly utilize keyword spotting (KWS) to initiate voice interaction with the user. For user experience and privacy considerations, existing approaches to KWS largely focus on accuracy, which can often come at the expense of introduced latency. To address this tradeoff, we propose a novel approach to control KWS model latency and which generalizes to any loss function without explicit knowledge of the keyword endpoint. Through a single, tunable hyperparameter, our approach enables one to balance detection latency and accuracy for the targeted application. Empirically, we show that our approach gives superior performance under latency constraints when compared to existing methods. Namely, we make a substantial 25\% relative false accepts improvement for a fixed latency target when compared to the baseline state-of-the-art. We also show that when our approach is used in conjunction with a max-pooling loss, we are able to improve relative false accepts by 25 % at a fixed latency when compared to cross entropy loss." 1841,On Enforcing Better Conditioned Meta-Learning for Rapid Few-Shot Adaptation,"Inspired by the concept of preconditioning, we propose a novel method to increase adaptation speed for gradient-based meta-learning methods without incurring extra parameters. We demonstrate that recasting the optimization problem to a non-linear least-squares formulation provides a principled way to actively enforce a $\textit{well-conditioned}$ parameter space for meta-learning models based on the concepts of the condition number and local curvature. Our comprehensive evaluations show that the proposed method significantly outperforms its unconstrained counterpart especially during initial adaptation steps, while achieving comparable or better overall results on several few-shot classification tasks -- creating the possibility of dynamically choosing the number of adaptation steps at inference time." 1842,CLNode: Curriculum Learning for Node Classification,"Node classification is a fundamental graph-based task that aims to predict the classes of unlabeled nodes, for which Graph Neural Networks (GNNs) are the state-of-the-art methods. In current GNNs, training nodes (or training samples) are treated equally throughout training. The quality of the samples, however, varies greatly according to the graph structure. Consequently, the performance of GNNs could be harmed by two types of low-quality samples: (1) Inter-class nodes situated near class boundaries that connect neighboring classes. These nodes' representations lack the typical characteristics of their corresponding classes. Because GNNs are data-driven approaches, training on these nodes could degrade the accuracy. (2) Mislabeled nodes. In real-world graphs, nodes are often mislabeled, which can significantly degrade the robustness of GNNs. To mitigate the detrimental effect of the low-quality samples, we present CLNode (Curriculum Learning for Node Classification), which automatically adjusts the weights of samples during training based on their quality. Specifically, we first design a neighborhood-based difficulty measurer to accurately measure the quality of samples. Subsequently, based on these measurements, we employ a training scheduler to adjust the sample weights in each training epoch. To evaluate the effectiveness of CLNode, we conduct extensive experiments by applying it to four representative backbone GNNs. Experimental results on six real-world networks demonstrate that CLNode is a general framework that can be combined with various GNNs to improve their accuracy and robustness." 1843,Investigation of stellar magnetic activity using variational autoencoder based on low-resolution spectroscopic survey,"We apply the variational autoencoder (VAE) to the LAMOST-K2 low-resolution spectra to detect the magnetic activity of the stars in the K2 field. After the training on the spectra of the selected inactive stars, the VAE model can efficiently generate the synthetic reference templates needed by the spectral subtraction procedure, without knowing any stellar parameters. Then we detect the peculiar spectral features, such as chromospheric emissions, strong nebular emissions and lithium absorptions, in our sample. We measure the emissions of the chromospheric activity indicators, H$\alpha$ and Ca II infrared triplet (IRT) lines, to quantify the stellar magnetic activity. The excess emissions of H$\alpha$ and Ca II IRT lines of the active stars are correlated well to the rotational periods and the amplitudes of light curves derived from the K2 photometry. We degrade the LAMOST spectra to simulate the slitless spectra of the China Space Station Telescope (CSST) and apply the VAE to the simulated data. For cool active stars, we reveal a good agreement between the equivalent widths (EWs) of H$\alpha$ line derived from the spectra with two resolutions. The result indicates the ability of identifying the magnetically active stars in the future CSST survey, which will deliver an unprecedented large database of low-resolution spectra as well as simultaneous multi-band photometry of stars." 1844,TeKo: Text-Rich Graph Neural Networks with External Knowledge,"Graph Neural Networks (GNNs) have gained great popularity in tackling various analytical tasks on graph-structured data (i.e., networks). Typical GNNs and their variants follow a message-passing manner that obtains network representations by the feature propagation process along network topology, which however ignore the rich textual semantics (e.g., local word-sequence) that exist in many real-world networks. Existing methods for text-rich networks integrate textual semantics by mainly utilizing internal information such as topics or phrases/words, which often suffer from an inability to comprehensively mine the text semantics, limiting the reciprocal guidance between network structure and text semantics. To address these problems, we propose a novel text-rich graph neural network with external knowledge (TeKo), in order to take full advantage of both structural and textual information within text-rich networks. Specifically, we first present a flexible heterogeneous semantic network that incorporates high-quality entities and interactions among documents and entities. We then introduce two types of external knowledge, that is, structured triplets and unstructured entity description, to gain a deeper insight into textual semantics. We further design a reciprocal convolutional mechanism for the constructed heterogeneous semantic network, enabling network structure and textual semantics to collaboratively enhance each other and learn high-level network representations. Extensive experimental results on four public text-rich networks as well as a large-scale e-commerce searching dataset illustrate the superior performance of TeKo over state-of-the-art baselines." 1845,Implicit Regularization or Implicit Conditioning? Exact Risk Trajectories of SGD in High Dimensions,"Stochastic gradient descent (SGD) is a pillar of modern machine learning, serving as the go-to optimization algorithm for a diverse array of problems. While the empirical success of SGD is often attributed to its computational efficiency and favorable generalization behavior, neither effect is well understood and disentangling them remains an open problem. Even in the simple setting of convex quadratic problems, worst-case analyses give an asymptotic convergence rate for SGD that is no better than full-batch gradient descent (GD), and the purported implicit regularization effects of SGD lack a precise explanation. In this work, we study the dynamics of multi-pass SGD on high-dimensional convex quadratics and establish an asymptotic equivalence to a stochastic differential equation, which we call homogenized stochastic gradient descent (HSGD), whose solutions we characterize explicitly in terms of a Volterra integral equation. These results yield precise formulas for the learning and risk trajectories, which reveal a mechanism of implicit conditioning that explains the efficiency of SGD relative to GD. We also prove that the noise from SGD negatively impacts generalization performance, ruling out the possibility of any type of implicit regularization in this context. Finally, we show how to adapt the HSGD formalism to include streaming SGD, which allows us to produce an exact prediction for the excess risk of multi-pass SGD relative to that of streaming SGD (bootstrap risk)." 1846,Fair Ranking as Fair Division: Impact-Based Individual Fairness in Ranking,"Rankings have become the primary interface in two-sided online markets. Many have noted that the rankings not only affect the satisfaction of the users (e.g., customers, listeners, employers, travelers), but that the position in the ranking allocates exposure -- and thus economic opportunity -- to the ranked items (e.g., articles, products, songs, job seekers, restaurants, hotels). This has raised questions of fairness to the items, and most existing works have addressed fairness by explicitly linking item exposure to item relevance. However, we argue that any particular choice of such a link function may be difficult to defend, and we show that the resulting rankings can still be unfair. To avoid these shortcomings, we develop a new axiomatic approach that is rooted in principles of fair division. This not only avoids the need to choose a link function, but also more meaningfully quantifies the impact on the items beyond exposure. Our axioms of envy-freeness and dominance over uniform ranking postulate that for a fair ranking policy every item should prefer their own rank allocation over that of any other item, and that no item should be actively disadvantaged by the rankings. To compute ranking policies that are fair according to these axioms, we propose a new ranking objective related to the Nash Social Welfare. We show that the solution has guarantees regarding its envy-freeness, its dominance over uniform rankings for every item, and its Pareto optimality. In contrast, we show that conventional exposure-based fairness can produce large amounts of envy and have a highly disparate impact on the items. Beyond these theoretical results, we illustrate empirically how our framework controls the trade-off between impact-based individual item fairness and user utility." 1847,Test-Time Adaptation for Visual Document Understanding,"Self-supervised pretraining has been able to produce transferable representations for various visual document understanding (VDU) tasks. However, the ability of such representations to adapt to new distribution shifts at test-time has not been studied yet. We propose DocTTA, a novel test-time adaptation approach for documents that leverages cross-modality self-supervised learning via masked visual language modeling as well as pseudo labeling to adapt models learned on a \textit{source} domain to an unlabeled \textit{target} domain at test time. We also introduce new benchmarks using existing public datasets for various VDU tasks including entity recognition, key-value extraction, and document visual question answering tasks where DocTTA improves the source model performance up to 1.79\% in (F1 score), 3.43\% (F1 score), and 17.68\% (ANLS score), respectively while drastically reducing calibration error on target data." 1848,A Multiple kernel testing procedure for non-proportional hazards in factorial designs,"In this paper we propose a Multiple kernel testing procedure to infer survival data when several factors (e.g. different treatment groups, gender, medical history) and their interaction are of interest simultaneously. Our method is able to deal with complex data and can be seen as an alternative to the omnipresent Cox model when assumptions such as proportionality cannot be justified. Our methodology combines well-known concepts from Survival Analysis, Machine Learning and Multiple Testing: differently weighted log-rank tests, kernel methods and multiple contrast tests. By that, complex hazard alternatives beyond the classical proportional hazard set-up can be detected. Moreover, multiple comparisons are performed by fully exploiting the dependence structure of the single testing procedures to avoid a loss of power. In all, this leads to a flexible and powerful procedure for factorial survival designs whose theoretical validity is proven by martingale arguments and the theory for $V$-statistics. We evaluate the performance of our method in an extensive simulation study and illustrate it by a real data analysis." 1849,Location-based Twitter Filtering for the Creation of Low-Resource Language Datasets in Indonesian Local Languages,"Twitter contains an abundance of linguistic data from the real world. We examine Twitter for user-generated content in low-resource languages such as local Indonesian. For NLP to work in Indonesian, it must consider local dialects, geographic context, and regional culture influence Indonesian languages. This paper identifies the problems we faced when constructing a Local Indonesian NLP dataset. Furthermore, we are developing a framework for creating, collecting, and classifying Local Indonesian datasets for NLP. Using twitter's geolocation tool for automatic annotating." 1850,Query-Adaptive Predictive Inference with Partial Labels,"The cost and scarcity of fully supervised labels in statistical machine learning encourage using partially labeled data for model validation as a cheaper and more accessible alternative. Effectively collecting and leveraging weakly supervised data for large-space structured prediction tasks thus becomes an important part of an end-to-end learning system. We propose a new computationally-friendly methodology to construct predictive sets using only partially labeled data on top of black-box predictive models. To do so, we introduce ""probe"" functions as a way to describe weakly supervised instances and define a false discovery proportion-type loss, both of which seamlessly adapt to partial supervision and structured prediction -- ranking, matching, segmentation, multilabel or multiclass classification. Our experiments highlight the validity of our predictive set construction as well as the attractiveness of a more flexible user-dependent loss framework." 1851,Training Discrete Deep Generative Models via Gapped Straight-Through Estimator,"While deep generative models have succeeded in image processing, natural language processing, and reinforcement learning, training that involves discrete random variables remains challenging due to the high variance of its gradient estimation process. Monte Carlo is a common solution used in most variance reduction approaches. However, this involves time-consuming resampling and multiple function evaluations. We propose a Gapped Straight-Through (GST) estimator to reduce the variance without incurring resampling overhead. This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax. We determine these properties and show via an ablation study that they are essential. Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks, MNIST-VAE and ListOps." 1852,Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints,"There is a disconnect between how researchers and practitioners handle privacy-utility tradeoffs. Researchers primarily operate from a privacy first perspective, setting strict privacy requirements and minimizing risk subject to these constraints. Practitioners often desire an accuracy first perspective, possibly satisfied with the greatest privacy they can get subject to obtaining sufficiently small error. Ligett et al. have introduced a ""noise reduction"" algorithm to address the latter perspective. The authors show that by adding correlated Laplace noise and progressively reducing it on demand, it is possible to produce a sequence of increasingly accurate estimates of a private parameter while only paying a privacy cost for the least noisy iterate released. In this work, we generalize noise reduction to the setting of Gaussian noise, introducing the Brownian mechanism. The Brownian mechanism works by first adding Gaussian noise of high variance corresponding to the final point of a simulated Brownian motion. Then, at the practitioner's discretion, noise is gradually decreased by tracing back along the Brownian path to an earlier time. Our mechanism is more naturally applicable to the common setting of bounded $\ell_2$-sensitivity, empirically outperforms existing work on common statistical tasks, and provides customizable control of privacy loss over the entire interaction with the practitioner. We complement our Brownian mechanism with ReducedAboveThreshold, a generalization of the classical AboveThreshold algorithm that provides adaptive privacy guarantees. Overall, our results demonstrate that one can meet utility constraints while still maintaining strong levels of privacy." 1853,Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on Data-Driven Deep Learning,"Emotion classification of speech and assessment of the emotion strength are required in applications such as emotional text-to-speech and voice conversion. The emotion attribute ranking function based on Support Vector Machine (SVM) was proposed to predict emotion strength for emotional speech corpus. However, the trained ranking function doesn't generalize to new domains, which limits the scope of applications, especially for out-of-domain or unseen speech. In this paper, we propose a data-driven deep learning model, i.e. StrengthNet, to improve the generalization of emotion strength assessment for seen and unseen speech. This is achieved by the fusion of emotional data from various domains. We follow a multi-task learning network architecture that includes an acoustic encoder, a strength predictor, and an auxiliary emotion predictor. Experiments show that the predicted emotion strength of the proposed StrengthNet is highly correlated with ground truth scores for both seen and unseen speech. We release the source codes at: https://github.com/ttslr/StrengthNet." 1854,A Projection-Based K-space Transformer Network for Undersampled Radial MRI Reconstruction with Limited Training Subjects,"The recent development of deep learning combined with compressed sensing enables fast reconstruction of undersampled MR images and has achieved state-of-the-art performance for Cartesian k-space trajectories. However, non-Cartesian trajectories such as the radial trajectory need to be transformed onto a Cartesian grid in each iteration of the network training, slowing down the training process and posing inconvenience and delay during training. Multiple iterations of nonuniform Fourier transform in the networks offset the deep learning advantage of fast inference. Current approaches typically either work on image-to-image networks or grid the non-Cartesian trajectories before the network training to avoid the repeated gridding process. However, the image-to-image networks cannot ensure the k-space data consistency in the reconstructed images and the pre-processing of non-Cartesian k-space leads to gridding errors which cannot be compensated by the network training. Inspired by the Transformer network to handle long-range dependencies in sequence transduction tasks, we propose to rearrange the radial spokes to sequential data based on the chronological order of acquisition and use the Transformer to predict unacquired radial spokes from acquired ones. We propose novel data augmentation methods to generate a large amount of training data from a limited number of subjects. The network can be generated to different anatomical structures. Experimental results show superior performance of the proposed framework compared to state-of-the-art deep neural networks." 1855,Explainable expected goal models for performance analysis in football analytics,"The expected goal provides a more representative measure of the team and player performance which also suit the low-scoring nature of football instead of score in modern football. The score of a match involves randomness and often may not represent the performance of the teams and players, therefore it has been popular to use the alternative statistics in recent years such as shots on target, ball possessions, and drills. To measure the probability of a shot being a goal by the expected goal, several features are used to train an expected goal model which is based on the event and tracking football data. The selection of these features, the size and date of the data, and the model which are used as the parameters that may affect the performance of the model. Using black-box machine learning models for increasing the predictive performance of the model decreases its interpretability that causes the loss of information that can be gathered from the model. This paper proposes an accurate expected goal model trained consisting of 315,430 shots from seven seasons between 2014-15 and 2020-21 of the top-five European football leagues. Moreover, this model is explained by using explainable artificial intelligence tool to obtain an explainable expected goal model for evaluating a team or player performance. To best of our knowledge, this is the first paper that demonstrates a practical application of an explainable artificial intelligence tool aggregated profiles to explain a group of observations on an accurate expected goal model for monitoring the team and player performance. Moreover, these methods can be generalized to other sports branches." 1856,Attributions Beyond Neural Networks: The Linear Program Case,"Linear Programs (LPs) have been one of the building blocks in machine learning and have championed recent strides in differentiable optimizers for learning systems. While there exist solvers for even high-dimensional LPs, understanding said high-dimensional solutions poses an orthogonal and unresolved problem. We introduce an approach where we consider neural encodings for LPs that justify the application of attribution methods from explainable artificial intelligence (XAI) designed for neural learning systems. The several encoding functions we propose take into account aspects such as feasibility of the decision space, the cost attached to each input, or the distance to special points of interest. We investigate the mathematical consequences of several XAI methods on said neural LP encodings. We empirically show that the attribution methods Saliency and LIME reveal indistinguishable results up to perturbation levels, and we propose the property of Directedness as the main discriminative criterion between Saliency and LIME on one hand, and a perturbation-based Feature Permutation approach on the other hand. Directedness indicates whether an attribution method gives feature attributions with respect to an increase of that feature. We further notice the baseline selection problem beyond the classical computer vision setting for Integrated Gradients." 1857,Using Machine Learning to Augment Dynamic Time Warping Based Signal Classification,"Modern applications such as voice recognition rely on the ability to compare signals to pre-recorded ones to classify them. However, this comparison typically needs to ignore differences due to signal noise, temporal offset, signal magnitude, and other external factors. The Dynamic Time Warping (DTW) algorithm quantifies this similarity by finding corresponding regions between the signals and non-linearly warping one signal by stretching and shrinking it. Unfortunately, searching through all ""warps"" of a signal to find the best corresponding regions is computationally expensive. The FastDTW algorithm improves performance, but sacrifices accuracy by only considering small signal warps. My goal is to improve the speed of DTW while maintaining high accuracy. My key insight is that in any particular application domain, signals exhibit specific types of variation. For example, the accelerometer signal measured for two different people would differ based on their stride length and weight. My system, called Machine Learning DTW (MLDTW), uses machine learning to learn the types of warps that are common in a particular domain. It then uses the learned model to improve DTW performance by limiting the search of potential warps appropriately. My results show that compared to FastDTW, MLDTW is at least as fast and reduces errors by 60% on average across four different data sets. These improvements will significantly impact a wide variety of applications (e.g. health monitoring) and enable more scalable processing of multivariate, higher frequency, and longer signal recordings." 1858,Benefits of Additive Noise in Composing Classes with Bounded Capacity,"We observe that given two (compatible) classes of functions $\mathcal{F}$ and $\mathcal{H}$ with small capacity as measured by their uniform covering numbers, the capacity of the composition class $\mathcal{H} \circ \mathcal{F}$ can become prohibitively large or even unbounded. We then show that adding a small amount of Gaussian noise to the output of $\mathcal{F}$ before composing it with $\mathcal{H}$ can effectively control the capacity of $\mathcal{H} \circ \mathcal{F}$, offering a general recipe for modular design. To prove our results, we define new notions of uniform covering number of random functions with respect to the total variation and Wasserstein distances. We instantiate our results for the case of multi-layer sigmoid neural networks. Preliminary empirical results on MNIST dataset indicate that the amount of noise required to improve over existing uniform bounds can be numerically negligible (i.e., element-wise i.i.d. Gaussian noise with standard deviation $10^{-240}$). The source codes are available at https://github.com/fathollahpour/composition_noise." 1859,Improving Solar Flare Prediction by Time Series Outlier Detection,"Solar flares not only pose risks to outer space technologies and astronauts' well being, but also cause disruptions on earth to our hight-tech, interconnected infrastructure our lives highly depend on. While a number of machine-learning methods have been proposed to improve flare prediction, none of them, to the best of our knowledge, have investigated the impact of outliers on the reliability and those models' performance. In this study, we investigate the impact of outliers in a multivariate time series benchmark dataset, namely SWAN-SF, on flare prediction models, and test our hypothesis. That is, there exist outliers in SWAN-SF, removal of which enhances the performance of the prediction models on unseen datasets. We employ Isolation Forest to detect the outliers among the weaker flare instances. Several experiments are carried out using a large range of contamination rates which determine the percentage of present outliers. We asses the quality of each dataset in terms of its actual contamination using TimeSeriesSVC. In our best finding, we achieve a 279% increase in True Skill Statistic and 68% increase in Heidke Skill Score. The results show that overall a significant improvement can be achieved to flare prediction if outliers are detected and removed properly." 1860,Can Foundation Models Talk Causality?,"Foundation models are subject to an ongoing heated debate, leaving open the question of progress towards AGI and dividing the community into two camps: the ones who see the arguably impressive results as evidence to the scaling hypothesis, and the others who are worried about the lack of interpretability and reasoning capabilities. By investigating to which extent causal representations might be captured by these large scale language models, we make a humble efforts towards resolving the ongoing philosophical conflicts." 1861,Towards a Solution to Bongard Problems: A Causal Approach,"To date, Bongard Problems (BP) remain one of the few fortresses of AI history yet to be raided by the powerful models of the current era. We present a systematic analysis using modern techniques from the intersection of causality and AI/ML in a humble effort of reviving research around BPs. Specifically, we first compile the BPs into a Markov decision process, then secondly pose causal assumptions on the data generating process arguing for their applicability to BPs, and finally apply reinforcement learning techniques for solving the BPs subject to the causal assumptions." 1862,Tearing Apart NOTEARS: Controlling the Graph Prediction via Variance Manipulation,"Simulations are ubiquitous in machine learning. Especially in graph learning, simulations of Directed Acyclic Graphs (DAG) are being deployed for evaluating new algorithms. In the literature, it was recently argued that continuous-optimization approaches to structure discovery such as NOTEARS might be exploiting the sortability of the variable's variances in the available data due to their use of least square losses. Specifically, since structure discovery is a key problem in science and beyond, we want to be invariant to the scale being used for measuring our data (e.g. meter versus centimeter should not affect the causal direction inferred by the algorithm). In this work, we further strengthen this initial, negative empirical suggestion by both proving key results in the multivariate case and corroborating with further empirical evidence. In particular, we show that we can control the resulting graph with our targeted variance attacks, even in the case where we can only partially manipulate the variances of the data." 1863,Machines Explaining Linear Programs,"There has been a recent push in making machine learning models more interpretable so that their performance can be trusted. Although successful, these methods have mostly focused on the deep learning methods while the fundamental optimization methods in machine learning such as linear programs (LP) have been left out. Even if LPs can be considered as whitebox or clearbox models, they are not easy to understand in terms of relationships between inputs and outputs. As a linear program only provides the optimal solution to an optimization problem, further explanations are often helpful. In this work, we extend the attribution methods for explaining neural networks to linear programs. These methods explain the model by providing relevance scores for the model inputs, to show the influence of each input on the output. Alongside using classical gradient-based attribution methods we also propose a way to adapt perturbation-based attribution methods to LPs. Our evaluations of several different linear and integer problems showed that attribution methods can generate useful explanations for linear programs. However, we also demonstrate that using a neural attribution method directly might come with some drawbacks, as the properties of these methods on neural networks do not necessarily transfer to linear programs. The methods can also struggle if a linear program has more than one optimal solution, as a solver just returns one possible solution. Our results can hopefully be used as a good starting point for further research in this direction." 1864,Codec at SemEval-2022 Task 5: Multi-Modal Multi-Transformer Misogynous Meme Classification Framework,"In this paper we describe our work towards building a generic framework for both multi-modal embedding and multi-label binary classification tasks, while participating in task 5 (Multimedia Automatic Misogyny Identification) of SemEval 2022 competition. Since pretraining deep models from scratch is a resource and data hungry task, our approach is based on three main strategies. We combine different state-of-the-art architectures to capture a wide spectrum of semantic signals from the multi-modal input. We employ a multi-task learning scheme to be able to use multiple datasets from the same knowledge domain to help increase the model's performance. We also use multiple objectives to regularize and fine tune different system components." 1865,Defending Observation Attacks in Deep Reinforcement Learning via Detection and Denoising,"Neural network policies trained using Deep Reinforcement Learning (DRL) are well-known to be susceptible to adversarial attacks. In this paper, we consider attacks manifesting as perturbations in the observation space managed by the external environment. These attacks have been shown to downgrade policy performance significantly. We focus our attention on well-trained deterministic and stochastic neural network policies in the context of continuous control benchmarks subject to four well-studied observation space adversarial attacks. To defend against these attacks, we propose a novel defense strategy using a detect-and-denoise schema. Unlike previous adversarial training approaches that sample data in adversarial scenarios, our solution does not require sampling data in an environment under attack, thereby greatly reducing risk during training. Detailed experimental results show that our technique is comparable with state-of-the-art adversarial training approaches." 1866,To Aggregate or Not? Learning with Separate Noisy Labels,"The rawly collected training data often comes with separate noisy labels collected from multiple imperfect annotators (e.g., via crowdsourcing). Typically one would first aggregate the separate noisy labels into one and apply standard training methods. The literature has also studied extensively on effective aggregation approaches. This paper revisits this choice and aims to provide an answer to the question of whether one should aggregate separate noisy labels into single ones or use them separately as given. We theoretically analyze the performance of both approaches under the empirical risk minimization framework for a number of popular loss functions, including the ones designed specifically for the problem of learning with noisy labels. Our theorems conclude that label separation is preferred over label aggregation when the noise rates are high, or the number of labelers/annotations is insufficient. Extensive empirical results validate our conclusion." 1867,Proximal Splitting Adversarial Attacks for Semantic Segmentation,"Classification has been the focal point of research on adversarial attacks, but only a few works investigate methods suited to denser prediction tasks, such as semantic segmentation. The methods proposed in these works do not accurately solve the adversarial segmentation problem and, therefore, are overoptimistic in terms of size of the perturbations required to fool models. Here, we propose a white-box attack for these models based on a proximal splitting to produce adversarial perturbations with much smaller $\ell_1$, $\ell_2$, or $\ell_\infty$ norms. Our attack can handle large numbers of constraints within a nonconvex minimization framework via an Augmented Lagrangian approach, coupled with adaptive constraint scaling and masking strategies. We demonstrate that our attack significantly outperforms previously proposed ones, as well as classification attacks that we adapted for segmentation, providing a first comprehensive benchmark for this dense task. Our results push current limits concerning robustness evaluations in segmentation tasks." 1868,"Towards Goal, Feasibility, and Diversity-Oriented Deep Generative Models in Design","Deep Generative Machine Learning Models (DGMs) have been growing in popularity across the design community thanks to their ability to learn and mimic complex data distributions. DGMs are conventionally trained to minimize statistical divergence between the distribution over generated data and distribution over the dataset on which they are trained. While sufficient for the task of generating ""realistic"" fake data, this objective is typically insufficient for design synthesis tasks. Instead, design problems typically call for adherence to design requirements, such as performance targets and constraints. Advancing DGMs in engineering design requires new training objectives which promote engineering design objectives. In this paper, we present the first Deep Generative Model that simultaneously optimizes for performance, feasibility, diversity, and target achievement. We benchmark performance of the proposed method against several Deep Generative Models over eight evaluation metrics that focus on feasibility, diversity, and satisfaction of design performance targets. Methods are tested on a challenging multi-objective bicycle frame design problem with skewed, multimodal data of different datatypes. The proposed framework was found to outperform all Deep Generative Models in six of eight metrics." 1869,Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning,"Offline reinforcement learning (RL) extends the paradigm of classical RL algorithms to purely learning from static datasets, without interacting with the underlying environment during the learning process. A key challenge of offline RL is the instability of policy training, caused by the mismatch between the distribution of the offline data and the undiscounted stationary state-action distribution of the learned policy. To avoid the detrimental impact of distribution mismatch, we regularize the undiscounted stationary distribution of the current policy towards the offline data during the policy optimization process. Further, we train a dynamics model to both implement this regularization and better estimate the stationary distribution of the current policy, reducing the error induced by distribution mismatch. On a wide range of continuous-control offline RL datasets, our method indicates competitive performance, which validates our algorithm. The code is publicly available." 1870,DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction via A Structure-Specific Generative Method,"Joint 2D cardiac segmentation and 3D volume reconstruction are fundamental to building statistical cardiac anatomy models and understanding functional mechanisms from motion patterns. However, due to the low through-plane resolution of cine MR and high inter-subject variance, accurately segmenting cardiac images and reconstructing the 3D volume are challenging. In this study, we propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes, including accurate image segmentation, synthetic high-resolution 3D image, and 3D reconstructed volume. Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures. In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures using the optimal latent representation. We further explore downstream applications of 3D shape reconstruction and 4D motion pattern adaptation by the different latent-space manipulation strategies.The simultaneously generated high-resolution images present a high interpretable value to assess the cardiac shape and motion.Experimental results demonstrate the effectiveness of our approach on multiple fronts including 2D segmentation, 3D reconstruction, downstream 4D motion pattern adaption performance." 1871,Category-Agnostic 6D Pose Estimation with Conditional Neural Processes,"We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to ""instance-level"" pose estimation methods, our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities within and across object categories. Specifically, we employ a conditional neural process-based meta-learning approach to train an encoder to capture texture and geometry of an object in a latent representation, based on very few RGB-D images and ground-truth keypoints. The latent representation is then used by a simultaneously meta-trained decoder to predict the 6D pose of the object in new images. To evaluate our algorithm, experiments are conducted on our new fully-annotated synthetic datasets generated from Multiple Categories in Multiple Scenes (MCMS). Experimental results demonstrate that our model performs well on unseen objects with various shapes and appearances." 1872,GraphFM: Improving Large-Scale GNN Training via Feature Momentum,"Training of graph neural networks (GNNs) for large-scale node classification is challenging. A key difficulty lies in obtaining accurate hidden node representations while avoiding the neighborhood explosion problem. Here, we propose a new technique, named feature momentum (FM), that uses a momentum step to incorporate historical embeddings when updating feature representations. We develop two specific algorithms, known as GraphFM-IB and GraphFM-OB, that consider in-batch and out-of-batch data, respectively. GraphFM-IB applies FM to in-batch sampled data, while GraphFM-OB applies FM to out-of-batch data that are 1-hop neighborhood of in-batch data. We provide a convergence analysis for GraphFM-IB and some theoretical insight for GraphFM-OB. Empirically, we observe that GraphFM-IB can effectively alleviate the neighborhood explosion problem of existing methods. In addition, GraphFM-OB achieves promising performance on multiple large-scale graph datasets." 1873,Self-Supervision on Images and Text Reduces Reliance on Visual Shortcut Features,"Deep learning models trained in a fully supervised manner have been shown to rely on so-called ""shortcut"" features. Shortcut features are inputs that are associated with the outcome of interest in the training data, but are either no longer associated or not present in testing or deployment settings. Here we provide experiments that show recent self-supervised models trained on images and text provide more robust image representations and reduce the model's reliance on visual shortcut features on a realistic medical imaging example. Additionally, we find that these self-supervised models ""forget"" shortcut features more quickly than fully supervised ones when fine-tuned on labeled data. Though not a complete solution, our experiments provide compelling evidence that self-supervised models trained on images and text provide some resilience to visual shortcut features." 1874,An Intelligent Assistant for Converting City Requirements to Formal Specification,"As more and more monitoring systems have been deployed to smart cities, there comes a higher demand for converting new human-specified requirements to machine-understandable formal specifications automatically. However, these human-specific requirements are often written in English and bring missing, inaccurate, or ambiguous information. In this paper, we present CitySpec, an intelligent assistant system for requirement specification in smart cities. CitySpec not only helps overcome the language differences brought by English requirements and formal specifications, but also offers solutions to those missing, inaccurate, or ambiguous information. The goal of this paper is to demonstrate how CitySpec works. Specifically, we present three demos: (1) interactive completion of requirements in CitySpec; (2) human-in-the-loop correction while CitySepc encounters exceptions; (3) online learning in CitySpec." 1875,Flatten the Curve: Efficiently Training Low-Curvature Neural Networks,"The highly non-linear nature of deep neural networks causes them to be susceptible to adversarial examples and have unstable gradients which hinders interpretability. However, existing methods to solve these issues, such as adversarial training, are expensive and often sacrifice predictive accuracy. In this work, we consider curvature, which is a mathematical quantity which encodes the degree of non-linearity. Using this, we demonstrate low-curvature neural networks (LCNNs) that obtain drastically lower curvature than standard models while exhibiting similar predictive performance, which leads to improved robustness and stable gradients, with only a marginally increased training time. To achieve this, we minimize a data-independent upper bound on the curvature of a neural network, which decomposes overall curvature in terms of curvatures and slopes of its constituent layers. To efficiently minimize this bound, we introduce two novel architectural components: first, a non-linearity called centered-softplus that is a stable variant of the softplus non-linearity, and second, a Lipschitz-constrained batch normalization layer. Our experiments show that LCNNs have lower curvature, more stable gradients and increased off-the-shelf adversarial robustness when compared to their standard high-curvature counterparts, all without affecting predictive performance. Our approach is easy to use and can be readily incorporated into existing neural network models." 1876,MBGDT:Robust Mini-Batch Gradient Descent,"In high dimensions, most machine learning method perform fragile even there are a little outliers. To address this, we hope to introduce a new method with the base learner, such as Bayesian regression or stochastic gradient descent to solve the problem of the vulnerability in the model. Because the mini-batch gradient descent allows for a more robust convergence than the batch gradient descent, we work a method with the mini-batch gradient descent, called Mini-Batch Gradient Descent with Trimming (MBGDT). Our method show state-of-art performance and have greater robustness than several baselines when we apply our method in designed dataset." 1877,"Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt","Training on web-scale data can take months. But most computation and time is wasted on redundant and noisy points that are already learnt or not learnable. To accelerate training, we introduce Reducible Holdout Loss Selection (RHO-LOSS), a simple but principled technique which selects approximately those points for training that most reduce the model's generalization loss. As a result, RHO-LOSS mitigates the weaknesses of existing data selection methods: techniques from the optimization literature typically select 'hard' (e.g. high loss) points, but such points are often noisy (not learnable) or less task-relevant. Conversely, curriculum learning prioritizes 'easy' points, but such points need not be trained on once learned. In contrast, RHO-LOSS selects points that are learnable, worth learning, and not yet learnt. RHO-LOSS trains in far fewer steps than prior art, improves accuracy, and speeds up training on a wide range of datasets, hyperparameters, and architectures (MLPs, CNNs, and BERT). On the large web-scraped image dataset Clothing-1M, RHO-LOSS trains in 18x fewer steps and reaches 2% higher final accuracy than uniform data shuffling." 1878,Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger,"Per-example gradient clipping is a key algorithmic step that enables practical differential private (DP) training for deep learning models. The choice of clipping norm $R$, however, is shown to be vital for achieving high accuracy under DP. We propose an easy-to-use replacement, called AutoClipping, that eliminates the need to tune $R$ for any DP optimizers, including DP-SGD, DP-Adam, DP-LAMB and many others. The automatic variants are as private and computationally efficient as existing DP optimizers, but require no DP-specific hyperparameters and thus make DP training as amenable as the standard non-private training. We give a rigorous convergence analysis of automatic DP-SGD in the non-convex setting, which shows that it enjoys an asymptotic convergence rate that matches the standard SGD. We also demonstrate on various language and vision tasks that automatic clipping outperforms or matches the state-of-the-art, and can be easily employed with minimal changes to existing codebases." 1879,Stability of image reconstruction algorithms,"Robustness and stability of image reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ($\ell_2$ and $\ell_1$ regularization), and present new stability results for $\ell_p$ regularized linear inverse problems for $p\in(1,\infty)$. Our results generalize well to the respective $L_p(\Omega)$ function spaces." 1880,Lazy Queries Can Reduce Variance in Zeroth-order Optimization,"A major challenge of applying zeroth-order (ZO) methods is the high query complexity, especially when queries are costly. We propose a novel gradient estimation technique for ZO methods based on adaptive lazy queries that we term as LAZO. Different from the classic one-point or two-point gradient estimation methods, LAZO develops two alternative ways to check the usefulness of old queries from previous iterations, and then adaptively reuses them to construct the low-variance gradient estimates. We rigorously establish that through judiciously reusing the old queries, LAZO can reduce the variance of stochastic gradient estimates so that it not only saves queries per iteration but also achieves the regret bound for the symmetric two-point method. We evaluate the numerical performance of LAZO, and demonstrate the low-variance property and the performance gain of LAZO in both regret and query complexity relative to several existing ZO methods. The idea of LAZO is general, and can be applied to other variants of ZO methods." 1881,Loss Functions for Classification using Structured Entropy,"Cross-entropy loss is the standard metric used to train classification models in deep learning and gradient boosting. It is well-known that this loss function fails to account for similarities between the different values of the target. We propose a generalization of entropy called {\em structured entropy} which uses a random partition to incorporate the structure of the target variable in a manner which retains many theoretical properties of standard entropy. We show that a structured cross-entropy loss yields better results on several classification problems where the target variable has an a priori known structure. The approach is simple, flexible, easily computable, and does not rely on a hierarchically defined notion of structure." 1882,Combining Counterfactuals With Shapley Values To Explain Image Models,"With the widespread use of sophisticated machine learning models in sensitive applications, understanding their decision-making has become an essential task. Models trained on tabular data have witnessed significant progress in explanations of their underlying decision making processes by virtue of having a small number of discrete features. However, applying these methods to high-dimensional inputs such as images is not a trivial task. Images are composed of pixels at an atomic level and do not carry any interpretability by themselves. In this work, we seek to use annotated high-level interpretable features of images to provide explanations. We leverage the Shapley value framework from Game Theory, which has garnered wide acceptance in general XAI problems. By developing a pipeline to generate counterfactuals and subsequently using it to estimate Shapley values, we obtain contrastive and interpretable explanations with strong axiomatic guarantees." 1883,Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction,"Normalization layers (e.g., Batch Normalization, Layer Normalization) were introduced to help with optimization difficulties in very deep nets, but they clearly also help generalization, even in not-so-deep nets. Motivated by the long-held belief that flatter minima lead to better generalization, this paper gives mathematical analysis and supporting experiments suggesting that normalization (together with accompanying weight-decay) encourages GD to reduce the sharpness of loss surface. Here ""sharpness"" is carefully defined given that the loss is scale-invariant, a known consequence of normalization. Specifically, for a fairly broad class of neural nets with normalization, our theory explains how GD with a finite learning rate enters the so-called Edge of Stability (EoS) regime, and characterizes the trajectory of GD in this regime via a continuous sharpness-reduction flow." 1884,Learning the Structure of Large Networked Systems Obeying Conservation Laws,"Many networked systems such as electric networks, the brain, and social networks of opinion dynamics are known to obey conservation laws. Examples of this phenomenon include the Kirchoff laws in electric networks and opinion consensus in social networks. Conservation laws in networked systems may be modeled as balance equations of the form $X = B^{*} Y$, where the sparsity pattern of $B^{*}$ captures the connectivity of the network, and $Y, X \in \mathbb{R}^p$ are vectors of ""potentials"" and ""injected flows"" at the nodes respectively. The node potentials $Y$ cause flows across edges and the flows $X$ injected at the nodes are extraneous to the network dynamics. In several practical systems, the network structure is often unknown and needs to be estimated from data. Towards this, one has access to samples of the node potentials $Y$, but only the statistics of the node injections $X$. Motivated by this important problem, we study the estimation of the sparsity structure of the matrix $B^{*}$ from $n$ samples of $Y$ under the assumption that the node injections $X$ follow a Gaussian distribution with a known covariance $\Sigma_X$. We propose a new $\ell_{1}$-regularized maximum likelihood estimator for this problem in the high-dimensional regime where the size of the network $p$ is larger than sample size $n$. We show that this optimization problem is convex in the objective and admits a unique solution. Under a new mutual incoherence condition, we establish sufficient conditions on the triple $(n,p,d)$ for which exact sparsity recovery of $B^{*}$ is possible with high probability; $d$ is the degree of the graph. We also establish guarantees for the recovery of $B^{*}$ in the element-wise maximum, Frobenius, and operator norms. Finally, we complement these theoretical results with experimental validation of the performance of the proposed estimator on synthetic and real-world data." 1885,Applications of Generative Adversarial Networks in Neuroimaging and Clinical Neuroscience,"Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to a broader family called generative methods, which generate new data with a probabilistic model by learning sample distribution from real examples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases." 1886,ReCo: Retrieve and Co-segment for Zero-shot Transfer,"Semantic segmentation has a broad range of applications, but its real-world impact has been significantly limited by the prohibitive annotation costs necessary to enable deployment. Segmentation methods that forgo supervision can side-step these costs, but exhibit the inconvenient requirement to provide labelled examples from the target distribution to assign concept names to predictions. An alternative line of work in language-image pre-training has recently demonstrated the potential to produce models that can both assign names across large vocabularies of concepts and enable zero-shot transfer for classification, but do not demonstrate commensurate segmentation abilities. In this work, we strive to achieve a synthesis of these two approaches that combines their strengths. We leverage the retrieval abilities of one such language-image pre-trained model, CLIP, to dynamically curate training sets from unlabelled images for arbitrary collections of concept names, and leverage the robust correspondences offered by modern image representations to co-segment entities among the resulting collections. The synthetic segment collections are then employed to construct a segmentation model (without requiring pixel labels) whose knowledge of concepts is inherited from the scalable pre-training process of CLIP. We demonstrate that our approach, termed Retrieve and Co-segment (ReCo) performs favourably to unsupervised segmentation approaches while inheriting the convenience of nameable predictions and zero-shot transfer. We also demonstrate ReCo's ability to generate specialist segmenters for extremely rare objects." 1887,Learning Behavior Representations Through Multi-Timescale Bootstrapping,"Natural behavior consists of dynamics that are both unpredictable, can switch suddenly, and unfold over many different timescales. While some success has been found in building representations of behavior under constrained or simplified task-based conditions, many of these models cannot be applied to free and naturalistic settings due to the fact that they assume a single scale of temporal dynamics. In this work, we introduce Bootstrap Across Multiple Scales (BAMS), a multi-scale representation learning model for behavior: we combine a pooling module that aggregates features extracted over encoders with different temporal receptive fields, and design a set of latent objectives to bootstrap the representations in each respective space to encourage disentanglement across different timescales. We first apply our method on a dataset of quadrupeds navigating in different terrain types, and show that our model captures the temporal complexity of behavior. We then apply our method to the MABe 2022 Multi-agent behavior challenge, where our model ranks 3rd overall and 1st on two subtasks, and show the importance of incorporating multi-timescales when analyzing behavior." 1888,Federated Optimization Algorithms with Random Reshuffling and Gradient Compression,"Gradient compression is a popular technique for improving communication complexity of stochastic first-order methods in distributed training of machine learning models. However, the existing works consider only with-replacement sampling of stochastic gradients. In contrast, it is well-known in practice and recently confirmed in theory that stochastic methods based on without-replacement sampling, e.g., Random Reshuffling (RR) method, perform better than ones that sample the gradients with-replacement. In this work, we close this gap in the literature and provide the first analysis of methods with gradient compression and without-replacement sampling. We first develop a distributed variant of random reshuffling with gradient compression (Q-RR), and show how to reduce the variance coming from gradient quantization through the use of control iterates. Next, to have a better fit to Federated Learning applications, we incorporate local computation and propose a variant of Q-RR called Q-NASTYA. Q-NASTYA uses local gradient steps and different local and global stepsizes. Next, we show how to reduce compression variance in this setting as well. Finally, we prove the convergence results for the proposed methods and outline several settings in which they improve upon existing algorithms." 1889,Exploring Representation of Horn Clauses using GNNs (Extended Technique Report),"Learning program semantics from raw source code is challenging due to the complexity of real-world programming language syntax and due to the difficulty of reconstructing long-distance relational information implicitly represented in programs using identifiers. Addressing the first point, we consider Constrained Horn Clauses (CHCs) as a standard representation of program verification problems, providing a simple and programming language-independent syntax. For the second challenge, we explore graph representations of CHCs, and propose a new Relational Hypergraph Neural Network (R-HyGNN) architecture to learn program features. We introduce two different graph representations of CHCs. One is called constraint graph (CG), and emphasizes syntactic information of CHCs by translating the symbols and their relations in CHCs as typed nodes and binary edges, respectively, and constructing the constraints as abstract syntax trees. The second one is called control- and data-flow hypergraph (CDHG), and emphasizes semantic information of CHCs by representing the control and data flow through ternary hyperedges. We then propose a new GNN architecture, R-HyGNN, extending Relational Graph Convolutional Networks, to handle hypergraphs. To evaluate the ability of R-HyGNN to extract semantic information from programs, we use R-HyGNNs to train models on the two graph representations, and on five proxy tasks with increasing difficulty, using benchmarks from CHC-COMP 2021 as training data. The most difficult proxy task requires the model to predict the occurrence of clauses in counter-examples, which subsumes satisfiability of CHCs. CDHG achieves 90.59% accuracy in this task. Furthermore, R-HyGNN has perfect predictions on one of the graphs consisting of more than 290 clauses. Overall, our experiments indicate that R-HyGNN can capture intricate program features for guiding verification problems." 1890,Two-terminal source coding with common sum reconstruction,"We present the problem of two-terminal source coding with Common Sum Reconstruction (CSR). Consider two terminals, each with access to one of two correlated sources. Both terminals want to reconstruct the sum of the two sources under some average distortion constraint, and the reconstructions at two terminals must be identical with high probability. In this paper, we develop inner and outer bounds to the achievable rate distortion region of the CSR problem for a doubly symmetric binary source. We employ existing achievability results for Steinberg's common reconstruction and Wyner-Ziv's source coding with side information problems, and an achievability result for the lossy version of Korner-Marton's modulo-two sum computation problem." 1891,Highly Efficient Structural Learning of Sparse Staged Trees,"Several structural learning algorithms for staged tree models, an asymmetric extension of Bayesian networks, have been defined. However, they do not scale efficiently as the number of variables considered increases. Here we introduce the first scalable structural learning algorithm for staged trees, which searches over a space of models where only a small number of dependencies can be imposed. A simulation study as well as a real-world application illustrate our routines and the practical use of such data-learned staged trees." 1892,Deep Reinforcement Learning for Exact Combinatorial Optimization: Learning to Branch,"Branch-and-bound is a systematic enumerative method for combinatorial optimization, where the performance highly relies on the variable selection strategy. State-of-the-art handcrafted heuristic strategies suffer from relatively slow inference time for each selection, while the current machine learning methods require a significant amount of labeled data. We propose a new approach for solving the data labeling and inference latency issues in combinatorial optimization based on the use of the reinforcement learning (RL) paradigm. We use imitation learning to bootstrap an RL agent and then use Proximal Policy Optimization (PPO) to further explore global optimal actions. Then, a value network is used to run Monte-Carlo tree search (MCTS) to enhance the policy network. We evaluate the performance of our method on four different categories of combinatorial optimization problems and show that our approach performs strongly compared to the state-of-the-art machine learning and heuristics based methods." 1893,Transfer Learning for Rapid Extraction of Thickness from Optical Spectra of Semiconductor Thin Films,"High-throughput experimentation with autonomous workflows, increasingly used to screen and optimize optoelectronic thin films, requires matching throughput of downstream characterizations. Despite being essential, thickness characterization lags in throughput. Although optical spectroscopic methods, e.g., spectrophotometry, provide quick measurements, a critical bottleneck is the ensuing manual fitting of optical oscillation models to the measured reflection and transmission. This study presents a machine-learning (ML) framework called thicknessML, which rapidly extracts film thickness from spectroscopic reflection and transmission. thicknessML leverages transfer learning to generalize to materials of different underlying optical oscillator models (i.e., different material classes).We demonstrate that thicknessML can extract film thickness from six perovskite samples in a two-stage process: (1) pre-training on a generic simulated dataset of Tauc-Lorentz oscillator, and (2) transfer learning to a simulated perovskite dataset of several literature perovskite refractive indices. Results show a pre-training thickness mean absolute percentage error (MAPE) of 5-7% and an experimental thickness MAPE of 6-19%." 1894,ABCinML: Anticipatory Bias Correction in Machine Learning Applications,"The idealization of a static machine-learned model, trained once and deployed forever, is not practical. As input distributions change over time, the model will not only lose accuracy, any constraints to reduce bias against a protected class may fail to work as intended. Thus, researchers have begun to explore ways to maintain algorithmic fairness over time. One line of work focuses on dynamic learning: retraining after each batch, and the other on robust learning which tries to make algorithms robust against all possible future changes. Dynamic learning seeks to reduce biases soon after they have occurred and robust learning often yields (overly) conservative models. We propose an anticipatory dynamic learning approach for correcting the algorithm to mitigate bias before it occurs. Specifically, we make use of anticipations regarding the relative distributions of population subgroups (e.g., relative ratios of male and female applicants) in the next cycle to identify the right parameters for an importance weighing fairness approach. Results from experiments over multiple real-world datasets suggest that this approach has promise for anticipatory bias correction." 1895,AuxMix: Semi-Supervised Learning with Unconstrained Unlabeled Data,"Semi-supervised learning (SSL) has seen great strides when labeled data is scarce but unlabeled data is abundant. Critically, most recent work assume that such unlabeled data is drawn from the same distribution as the labeled data. In this work, we show that state-of-the-art SSL algorithms suffer a degradation in performance in the presence of unlabeled auxiliary data that does not necessarily possess the same class distribution as the labeled set. We term this problem as Auxiliary-SSL and propose AuxMix, an algorithm that leverages self-supervised learning tasks to learn generic features in order to mask auxiliary data that are not semantically similar to the labeled set. We also propose to regularize learning by maximizing the predicted entropy for dissimilar auxiliary samples. We show an improvement of 5% over existing baselines on a ResNet-50 model when trained on CIFAR10 dataset with 4k labeled samples and all unlabeled data is drawn from the Tiny-ImageNet dataset. We report competitive results on several datasets and conduct ablation studies." 1896,Continual-Learning-as-a-Service (CLaaS): On-Demand Efficient Adaptation of Predictive Models,"Predictive machine learning models nowadays are often updated in a stateless and expensive way. The two main future trends for companies that want to build machine learning-based applications and systems are real-time inference and continual updating. Unfortunately, both trends require a mature infrastructure that is hard and costly to realize on-premise. This paper defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CLaaS) to address these issues. Specifically, it embraces continual machine learning and continuous integration techniques. It provides support for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and easy-to-use manner. Finally, this CL model service is easy to encapsulate in any machine learning infrastructure or cloud system. This paper presents the design and implementation of a CLaaS instantiation, called LiquidBrain, evaluated in two real-world scenarios. The former is a robotic object recognition setting using the CORe50 dataset while the latter is a named category and attribute prediction using the DeepFashion-C dataset in the fashion domain. Our preliminary results suggest the usability and efficiency of the Continual Learning model services and the effectiveness of the solution in addressing real-world use-cases regardless of where the computation happens in the continuum Edge-Cloud." 1897,FETILDA: An Effective Framework For Fin-tuned Embeddings For Long Financial Text Documents,"Unstructured data, especially text, continues to grow rapidly in various domains. In particular, in the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company's performance. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). Whereas there has been a great progress in pre-trained language models (LMs) that learn from tremendously large corpora of textual data, they still struggle in terms of effective representations for long documents. Our work fills this critical need, namely how to develop better models to extract useful information from long textual documents and learn effective features that can leverage the soft financial and risk information for text regression (prediction) tasks. In this paper, we propose and implement a deep learning framework that splits long documents into chunks and utilizes pre-trained LMs to process and aggregate the chunks into vector representations, followed by self-attention to extract valuable document-level features. We evaluate our model on a collection of 10-K public disclosure reports from US banks, and another dataset of reports submitted by US companies. Overall, our framework outperforms strong baseline methods for textual modeling as well as a baseline regression model using only numerical data. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs in representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses." 1898,Monitoring Urban Forests from Auto-Generated Segmentation Maps,"We present and evaluate a weakly-supervised methodology to quantify the spatio-temporal distribution of urban forests based on remotely sensed data with close-to-zero human interaction. Successfully training machine learning models for semantic segmentation typically depends on the availability of high-quality labels. We evaluate the benefit of high-resolution, three-dimensional point cloud data (LiDAR) as source of noisy labels in order to train models for the localization of trees in orthophotos. As proof of concept we sense Hurricane Sandy's impact on urban forests in Coney Island, New York City (NYC) and reference it to less impacted urban space in Brooklyn, NYC." 1899,Bayesian neural networks for the probabilistic forecasting of wind direction and speed using ocean data,"Neural networks are increasingly being used in a variety of settings to predict wind direction and speed, two of the most important factors for estimating the potential power output of a wind farm. However, these predictions are arguably of limited value because classical neural networks lack the ability to express uncertainty. Here we instead consider the use of Bayesian Neural Networks (BNNs), for which the weights, biases and outputs are distributions rather than deterministic point values. This allows for the evaluation of both epistemic and aleatoric uncertainty and leads to well-calibrated uncertainty predictions of both wind speed and power. Here we consider the application of BNNs to the problem of offshore wind resource prediction for renewable energy applications. For our dataset, we use observations recorded at the FINO1 research platform in the North Sea and our predictors are ocean data such as water temperature and current direction. The probabilistic forecast predicted by the BNN adds considerable value to the results and, in particular, informs the user of the network's ability to make predictions of out-of-sample datapoints. We use this property of BNNs to conclude that the accuracy and uncertainty of the wind speed and direction predictions made by our network are unaffected by the construction of the nearby Alpha Ventus wind farm. Hence, at this site, networks trained on pre-farm ocean data can be used to accurately predict wind field information from ocean data after the wind farm has been constructed." 1900,Scaling ResNets in the Large-depth Regime,"Deep ResNets are recognized for achieving state-of-the-art results in complex machine learning tasks. However, the remarkable performance of these architectures relies on a training procedure that needs to be carefully crafted to avoid vanishing or exploding gradients, particularly as the depth $L$ increases. No consensus has been reached on how to mitigate this issue, although a widely discussed strategy consists in scaling the output of each layer by a factor $\alpha_L$. We show in a probabilistic setting that with standard i.i.d. initializations, the only non-trivial dynamics is for $\alpha_L = 1/\sqrt{L}$ (other choices lead either to explosion or to identity mapping). This scaling factor corresponds in the continuous-time limit to a neural stochastic differential equation, contrarily to a widespread interpretation that deep ResNets are discretizations of neural ordinary differential equations. By contrast, in the latter regime, stability is obtained with specific correlated initializations and $\alpha_L = 1/L$. Our analysis suggests a strong interplay between scaling and regularity of the weights as a function of the layer index. Finally, in a series of experiments, we exhibit a continuous range of regimes driven by these two parameters, which jointly impact performance before and after training." 1901,Object Scene Representation Transformer,"A compositional understanding of the world in terms of objects and their geometry in 3D space is considered a cornerstone of human cognition. Facilitating the learning of such a representation in neural networks holds promise for substantially improving labeled data efficiency. As a key step in this direction, we make progress on the problem of learning 3D-consistent decompositions of complex scenes into individual objects in an unsupervised fashion. We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis. OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods. At the same time, it is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder. We believe this work will not only accelerate future architecture exploration and scaling efforts, but it will also serve as a useful tool for both object-centric as well as neural scene representation learning communities." 1902,Manifold Alignment-Based Multi-Fidelity Reduced-Order Modeling Applied to Structural Analysis,"This work presents the application of a recently developed parametric, non-intrusive, and multi-fidelity reduced-order modeling method on high-dimensional displacement and stress fields arising from the structural analysis of geometries that differ in the size of discretization and structural topology.The proposed approach leverages manifold alignment to fuse inconsistent field outputs from high- and low-fidelity simulations by individually projecting their solution onto a common subspace. The effectiveness of the method is demonstrated on two multi-fidelity scenarios involving the structural analysis of a benchmark wing geometry. Results show that outputs from structural simulations using incompatible grids, or related yet different topologies, are easily combined into a single predictive model, thus eliminating the need for additional pre-processing of the data. The new multi-fidelity reduced-order model achieves a relatively higher predictive accuracy at a lower computational cost when compared to a single-fidelity model." 1903,Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method,"The classical AdaGrad method adapts the learning rate by dividing by the square root of a sum of squared gradients. Because this sum on the denominator is increasing, the method can only decrease step sizes over time, and requires a learning rate scaling hyper-parameter to be carefully tuned. To overcome this restriction, we introduce GradaGrad, a method in the same family that naturally grows or shrinks the learning rate based on a different accumulation in the denominator, one that can both increase and decrease. We show that it obeys a similar convergence rate as AdaGrad and demonstrate its non-monotone adaptation capability with experiments." 1904,Neural interval-censored Cox regression with feature selection,"The classical Cox model emerged in 1972 promoting breakthroughs in how patient prognosis is quantified using time-to-event analysis in biomedicine. One of the most useful characteristics of the model for practitioners is the interpretability of the variables in the analysis. However, this comes at the price of introducing strong assumptions concerning the functional form of the regression model. To break this gap, this paper aims to exploit the explainability advantages of the classical Cox model in the setting of interval-censoring using a new Lasso neural network that simultaneously selects the most relevant variables while quantifying non-linear relations between predictors and survival times. The gain of the new method is illustrated empirically in an extensive simulation study with examples that involve linear and non-linear ground dependencies. We also demonstrate the performance of our strategy in the analysis of physiological, clinical and accelerometer data from the NHANES 2003-2006 waves to predict the effect of physical activity on the survival of patients. Our method outperforms the prior results in the literature that use the traditional Cox model." 1905,A Truthful Owner-Assisted Scoring Mechanism,"Alice (owner) has knowledge of the underlying quality of her items measured in grades. Given the noisy grades provided by an independent party, can Bob (appraiser) obtain accurate estimates of the ground-truth grades of the items by asking Alice a question about the grades? We address this when the payoff to Alice is additive convex utility over all her items. We establish that if Alice has to truthfully answer the question so that her payoff is maximized, the question must be formulated as pairwise comparisons between her items. Next, we prove that if Alice is required to provide a ranking of her items, which is the most fine-grained question via pairwise comparisons, she would be truthful. By incorporating the ground-truth ranking, we show that Bob can obtain an estimator with the optimal squared error in certain regimes based on any possible way of truthful information elicitation. Moreover, the estimated grades are substantially more accurate than the raw grades when the number of items is large and the raw grades are very noisy. Finally, we conclude the paper with several extensions and some refinements for practical considerations." 1906,Temporal Multimodal Multivariate Learning,"We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings." 1907,On Provably Robust Meta-Bayesian Optimization,"Bayesian optimization (BO) has become popular for sequential optimization of black-box functions. When BO is used to optimize a target function, we often have access to previous evaluations of potentially related functions. This begs the question as to whether we can leverage these previous experiences to accelerate the current BO task through meta-learning (meta-BO), while ensuring robustness against potentially harmful dissimilar tasks that could sabotage the convergence of BO. This paper introduces two scalable and provably robust meta-BO algorithms: robust meta-Gaussian process-upper confidence bound (RM-GP-UCB) and RM-GP-Thompson sampling (RM-GP-TS). We prove that both algorithms are asymptotically no-regret even when some or all previous tasks are dissimilar to the current task, and show that RM-GP-UCB enjoys a better theoretical robustness than RM-GP-TS. We also exploit the theoretical guarantees to optimize the weights assigned to individual previous tasks through regret minimization via online learning, which diminishes the impact of dissimilar tasks and hence further enhances the robustness. Empirical evaluations show that (a) RM-GP-UCB performs effectively and consistently across various applications, and (b) RM-GP-TS, despite being less robust than RM-GP-UCB both in theory and in practice, performs competitively in some scenarios with less dissimilar tasks and is more computationally efficient." 1908,How are policy gradient methods affected by the limits of control?,"We study stochastic policy gradient methods from the perspective of control-theoretic limitations. Our main result is that ill-conditioned linear systems in the sense of Doyle inevitably lead to noisy gradient estimates. We also give an example of a class of stable systems in which policy gradient methods suffer from the curse of dimensionality. Our results apply to both state feedback and partially observed systems." 1909,Evaluating histopathology transfer learning with ChampKit,"Histopathology remains the gold standard for diagnosis of various cancers. Recent advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology images for various tasks, including immune cell detection and microsatellite instability classification. The state-of-the-art for each task often employs base architectures that have been pretrained for image classification on ImageNet. The standard approach to develop classifiers in histopathology tends to focus narrowly on optimizing models for a single task, not considering the aspects of modeling innovations that improve generalization across tasks. Here we present ChampKit (Comprehensive Histopathology Assessment of Model Predictions toolKit): an extensible, fully reproducible benchmarking toolkit that consists of a broad collection of patch-level image classification tasks across different cancers. ChampKit enables a way to systematically document the performance impact of proposed improvements in models and methodology. ChampKit source code and data are freely accessible at https://github.com/kaczmarj/champkit ." 1910,When adversarial attacks become interpretable counterfactual explanations,"We argue that, when learning a 1-Lipschitz neural network with the dual loss of an optimal transportation problem, the gradient of the model is both the direction of the transportation plan and the direction to the closest adversarial attack. Traveling along the gradient to the decision boundary is no more an adversarial attack but becomes a counterfactual explanation, explicitly transporting from one class to the other. Through extensive experiments on XAI metrics, we find that the simple saliency map method, applied on such networks, becomes a reliable explanation, and outperforms the state-of-the-art explanation approaches on unconstrained models. The proposed networks were already known to be certifiably robust, and we prove that they are also explainable with a fast and simple method." 1911,On the Finite-Time Performance of the Knowledge Gradient Algorithm,"The knowledge gradient (KG) algorithm is a popular and effective algorithm for the best arm identification (BAI) problem. Due to the complex calculation of KG, theoretical analysis of this algorithm is difficult, and existing results are mostly about the asymptotic performance of it, e.g., consistency, asymptotic sample allocation, etc. In this research, we present new theoretical results about the finite-time performance of the KG algorithm. Under independent and normally distributed rewards, we derive lower bounds and upper bounds for the probability of error and simple regret of the algorithm. With these bounds, existing asymptotic results become simple corollaries. We also show the performance of the algorithm for the multi-armed bandit (MAB) problem. These developments not only extend the existing analysis of the KG algorithm, but can also be used to analyze other improvement-based algorithms. Last, we use numerical experiments to further demonstrate the finite-time behavior of the KG algorithm." 1912,Robust Reinforcement Learning with Distributional Risk-averse formulation,"Robust Reinforcement Learning tries to make predictions more robust to changes in the dynamics or rewards of the system. This problem is particularly important when the dynamics and rewards of the environment are estimated from the data. In this paper, we approximate the Robust Reinforcement Learning constrained with a $\Phi$-divergence using an approximate Risk-Averse formulation. We show that the classical Reinforcement Learning formulation can be robustified using standard deviation penalization of the objective. Two algorithms based on Distributional Reinforcement Learning, one for discrete and one for continuous action spaces are proposed and tested in a classical Gym environment to demonstrate the robustness of the algorithms." 1913,Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception,"Data-driven models (DDM) based on machine learning and other AI techniques play an important role in the perception of increasingly autonomous systems. Due to the merely implicit definition of their behavior mainly based on the data used for training, DDM outputs are subject to uncertainty. This poses a challenge with respect to the realization of safety-critical perception tasks by means of DDMs. A promising approach to tackling this challenge is to estimate the uncertainty in the current situation during operation and adapt the system behavior accordingly. In previous work, we focused on runtime estimation of uncertainty and discussed approaches for handling uncertainty estimations. In this paper, we present additional architectural patterns for handling uncertainty. Furthermore, we evaluate the four patterns qualitatively and quantitatively with respect to safety and performance gains. For the quantitative evaluation, we consider a distance controller for vehicle platooning where performance gains are measured by considering how much the distance can be reduced in different operational situations. We conclude that the consideration of context information of the driving situation makes it possible to accept more or less uncertainty depending on the inherent risk of the situation, which results in performance gains." 1914,Variance Reduction for Policy-Gradient Methods via Empirical Variance Minimization,"Policy-gradient methods in Reinforcement Learning(RL) are very universal and widely applied in practice but their performance suffers from the high variance of the gradient estimate. Several procedures were proposed to reduce it including actor-critic(AC) and advantage actor-critic(A2C) methods. Recently the approaches have got new perspective due to the introduction of Deep RL: both new control variates(CV) and new sub-sampling procedures became available in the setting of complex models like neural networks. The vital part of CV-based methods is the goal functional for the training of the CV, the most popular one is the least-squares criterion of A2C. Despite its practical success, the criterion is not the only one possible. In this paper we for the first time investigate the performance of the one called Empirical Variance(EV). We observe in the experiments that not only EV-criterion performs not worse than A2C but sometimes can be considerably better. Apart from that, we also prove some theoretical guarantees of the actual variance reduction under very general assumptions and show that A2C least-squares goal functional is an upper bound for EV goal. Our experiments indicate that in terms of variance reduction EV-based methods are much better than A2C and allow stronger variance reduction." 1915,Tailored max-out networks for learning convex PWQ functions,"Convex piecewise quadratic (PWQ) functions frequently appear in control and elsewhere. For instance, it is well-known that the optimal value function (OVF) as well as Q-functions for linear MPC are convex PWQ functions. Now, in learning-based control, these functions are often represented with the help of artificial neural networks (NN). In this context, a recurring question is how to choose the topology of the NN in terms of depth, width, and activations in order to enable efficient learning. An elegant answer to that question could be a topology that, in principle, allows to exactly describe the function to be learned. Such solutions are already available for related problems. In fact, suitable topologies are known for piecewise affine (PWA) functions that can, for example, reflect the optimal control law in linear MPC. Following this direction, we show in this paper that convex PWQ functions can be exactly described by max-out-NN with only one hidden layer and two neurons." 1916,Disentangled Federated Learning for Tackling Attributes Skew via Invariant Aggregation and Diversity Transferring,"Attributes skew hinders the current federated learning (FL) frameworks from consistent optimization directions among the clients, which inevitably leads to performance reduction and unstable convergence. The core problems lie in that: 1) Domain-specific attributes, which are non-causal and only locally valid, are indeliberately mixed into global aggregation. 2) The one-stage optimizations of entangled attributes cannot simultaneously satisfy two conflicting objectives, i.e., generalization and personalization. To cope with these, we proposed disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches, which are trained by the proposed alternating local-global optimization independently. Importantly, convergence analysis proves that the FL system can be stably converged even if incomplete client models participate in the global aggregation, which greatly expands the application scope of FL. Extensive experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods on both manually synthesized and realistic attributes skew datasets." 1917,Physics-Informed Transfer Learning Strategy to Accelerate Unsteady Fluid Flow Simulations,"Since the derivation of the Navier Stokes equations, it has become possible to numerically solve real world viscous flow problems (computational fluid dynamics (CFD)). However, despite the rapid advancements in the performance of central processing units (CPUs), the computational cost of simulating transient flows with extremely small time/grid scale physics is still unrealistic. In recent years, machine learning (ML) technology has received significant attention across industries, and this big wave has propagated various interests in the fluid dynamics community. Recent ML CFD studies have revealed that completely suppressing the increase in error with the increase in interval between the training and prediction times in data driven methods is unrealistic. The development of a practical CFD acceleration methodology that applies ML is a remaining issue. Therefore, the objectives of this study were developing a realistic ML strategy based on a physics-informed transfer learning and validating the accuracy and acceleration performance of this strategy using an unsteady CFD dataset. This strategy can determine the timing of transfer learning while monitoring the residuals of the governing equations in a cross coupling computation framework. Consequently, our hypothesis that continuous fluid flow time series prediction is feasible was validated, as the intermediate CFD simulations periodically not only reduce the increased residuals but also update the network parameters. Notably, the cross coupling strategy with a grid based network model does not compromise the simulation accuracy for computational acceleration. The simulation was accelerated by 1.8 times in the laminar counterflow CFD dataset condition including the parameter updating time. Open source CFD software OpenFOAM and open-source ML software TensorFlow were used in this feasibility study." 1918,Learning towards Synchronous Network Memorizability and Generalizability for Continual Segmentation across Multiple Sites,"In clinical practice, a segmentation network is often required to continually learn on a sequential data stream from multiple sites rather than a consolidated set, due to the storage cost and privacy restriction. However, during the continual learning process, existing methods are usually restricted in either network memorizability on previous sites or generalizability on unseen sites. This paper aims to tackle the challenging problem of Synchronous Memorizability and Generalizability (SMG) and to simultaneously improve performance on both previous and unseen sites, with a novel proposed SMG-learning framework. First, we propose a Synchronous Gradient Alignment (SGA) objective, which not only promotes the network memorizability by enforcing coordinated optimization for a small exemplar set from previous sites (called replay buffer), but also enhances the generalizability by facilitating site-invariance under simulated domain shift. Second, to simplify the optimization of SGA objective, we design a Dual-Meta algorithm that approximates the SGA objective as dual meta-objectives for optimization without expensive computation overhead. Third, for efficient rehearsal, we configure the replay buffer comprehensively considering additional inter-site diversity to reduce redundancy. Experiments on prostate MRI data sequentially acquired from six institutes demonstrate that our method can simultaneously achieve higher memorizability and generalizability over state-of-the-art methods. Code is available at https://github.com/jingyzhang/SMG-Learning." 1919,Adversarial Audio Synthesis with Complex-valued Polynomial Networks,"Time-frequency (TF) representations in audio synthesis have been increasingly modeled with real-valued networks. However, overlooking the complex-valued nature of TF representations can result in suboptimal performance and require additional modules (e.g., for modeling the phase). To this end, we introduce complex-valued polynomial networks, called APOLLO, that integrate such complex-valued representations in a natural way. Concretely, APOLLO captures high-order correlations of the input elements using high-order tensors as scaling parameters. By leveraging standard tensor decompositions, we derive different architectures and enable modeling richer correlations. We outline such architectures and showcase their performance in audio generation across four benchmarks. As a highlight, APOLLO results in $17.5\%$ improvement over adversarial methods and $8.2\%$ over the state-of-the-art diffusion models on SC09 dataset in audio generation. Our models can encourage the systematic design of other efficient architectures on the complex field." 1920,Adversarially Robust Multi-Armed Bandit Algorithm with Variance-Dependent Regret Bounds,"This paper considers the multi-armed bandit (MAB) problem and provides a new best-of-both-worlds (BOBW) algorithm that works nearly optimally in both stochastic and adversarial settings. In stochastic settings, some existing BOBW algorithms achieve tight gap-dependent regret bounds of $O(\sum_{i: \Delta_i>0} \frac{\log T}{\Delta_i})$ for suboptimality gap $\Delta_i$ of arm $i$ and time horizon $T$. As Audibert et al. [2007] have shown, however, that the performance can be improved in stochastic environments with low-variance arms. In fact, they have provided a stochastic MAB algorithm with gap-variance-dependent regret bounds of $O(\sum_{i: \Delta_i>0} (\frac{\sigma_i^2}{\Delta_i} + 1) \log T )$ for loss variance $\sigma_i^2$ of arm $i$. In this paper, we propose the first BOBW algorithm with gap-variance-dependent bounds, showing that the variance information can be used even in the possibly adversarial environment. Further, the leading constant factor in our gap-variance dependent bound is only (almost) twice the value for the lower bound. Additionally, the proposed algorithm enjoys multiple data-dependent regret bounds in adversarial settings and works well in stochastic settings with adversarial corruptions. The proposed algorithm is based on the follow-the-regularized-leader method and employs adaptive learning rates that depend on the empirical prediction error of the loss, which leads to gap-variance-dependent regret bounds reflecting the variance of the arms." 1921,Reconstructing vehicles from orthographic drawings using deep neural networks,"This paper explores the current state-of-the-art of object reconstruction from multiple orthographic drawings using deep neural networks. It proposes two algorithms to extract multiple views from a single image. The paper proposes a system based on pixel-aligned implicit functions (PIFu) and develops an advanced sampling strategy to generate signed distance samples. It also compares this approach to depth map regression from multiple views. Additionally, the paper uses a novel dataset for vehicle reconstruction from the racing game Assetto Corsa, which features higher quality models than the commonly used ShapeNET dataset. The trained neural network generalizes well to real-world inputs and creates plausible and detailed reconstructions." 1922,The Dynamics of Riemannian Robbins-Monro Algorithms,"Many important learning algorithms, such as stochastic gradient methods, are often deployed to solve nonlinear problems on Riemannian manifolds. Motivated by these applications, we propose a family of Riemannian algorithms generalizing and extending the seminal stochastic approximation framework of Robbins and Monro. Compared to their Euclidean counterparts, Riemannian iterative algorithms are much less understood due to the lack of a global linear structure on the manifold. We overcome this difficulty by introducing an extended Fermi coordinate frame which allows us to map the asymptotic behavior of the proposed Riemannian Robbins-Monro (RRM) class of algorithms to that of an associated deterministic dynamical system under very mild assumptions on the underlying manifold. In so doing, we provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes, albeit with a significantly more involved analysis that requires a number of new geometric ingredients. We showcase the flexibility of the proposed RRM framework by using it to establish the convergence of a retraction-based analogue of the popular optimistic / extra-gradient methods for solving minimization problems and games, and we provide a unified treatment for their convergence." 1923,Classification of ECG based on Hybrid Features using CNNs for Wearable Applications,"Sudden cardiac death and arrhythmia account for a large percentage of all deaths worldwide. Electrocardiography (ECG) is the most widely used screening tool for cardiovascular diseases. Traditionally, ECG signals are classified manually, requiring experience and great skill, while being time-consuming and prone to error. Thus machine learning algorithms have been widely adopted because of their ability to perform complex data analysis. Features derived from the points of interest in ECG - mainly Q, R, and S, are widely used for arrhythmia detection. In this work, we demonstrate improved performance for ECG classification using hybrid features and three different models, building on a 1-D convolutional neural network (CNN) model that we had proposed in the past. An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model. To make the model immune to noise, we updated the model using frequency features and achieved good sustained performance in presence of noise with a slightly lower accuracy of 98.69%. Further, another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments. Due to its high accuracy and noise immunity, the proposed model which combines multiple hybrid features, is well suited for ambulatory wearable sensing applications." 1924,Supervised Dictionary Learning with Auxiliary Covariates,"Supervised dictionary learning (SDL) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. The goal of SDL is to learn a class-discriminative dictionary, which is a set of latent feature vectors that can well-explain both the features as well as labels of observed data. In this paper, we provide a systematic study of SDL, including the theory, algorithm, and applications of SDL. First, we provide a novel framework that `lifts' SDL as a convex problem in a combined factor space and propose a low-rank projected gradient descent algorithm that converges exponentially to the global minimizer of the objective. We also formulate generative models of SDL and provide global estimation guarantees of the true parameters depending on the hyperparameter regime. Second, viewed as a nonconvex constrained optimization problem, we provided an efficient block coordinate descent algorithm for SDL that is guaranteed to find an $\varepsilon$-stationary point of the objective in $O(\varepsilon^{-1}(\log \varepsilon^{-1})^{2})$ iterations. For the corresponding generative model, we establish a novel non-asymptotic local consistency result for constrained and regularized maximum likelihood estimation problems, which may be of independent interest. Third, we apply SDL for imbalanced document classification by supervised topic modeling and also for pneumonia detection from chest X-ray images. We also provide simulation studies to demonstrate that SDL becomes more effective when there is a discrepancy between the best reconstructive and the best discriminative dictionaries." 1925,"Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised Convolutional Neural Networks","Deep neural networks (DNN) are a promising tool in medical applications. However, the implementation of complex DNNs on battery-powered devices is challenging due to high energy costs for communication. In this work, a convolutional neural network model is developed for detecting atrial fibrillation from electrocardiogram (ECG) signals. The model demonstrates high performance despite being trained on limited, variable-length input data. Weight pruning and logarithmic quantisation are combined to introduce sparsity and reduce model size, which can be exploited for reduced data movement and lower computational complexity. The final model achieved a 91.1% model compression ratio while maintaining high model accuracy of 91.7% and less than 1% loss." 1926,Universally Expressive Communication in Multi-Agent Reinforcement Learning,"Allowing agents to share information through communication is crucial for solving complex tasks in multi-agent reinforcement learning. In this work, we consider the question of whether a given communication protocol can express an arbitrary policy. By observing that many existing protocols can be viewed as instances of graph neural networks (GNNs), we demonstrate the equivalence of joint action selection to node labelling. With standard GNN approaches provably limited in their expressive capacity, we draw from existing GNN literature and consider augmenting agent observations with: (1) unique agent IDs and (2) random noise. We provide a theoretical analysis as to how these approaches yield universally expressive communication, and also prove them capable of targeting arbitrary sets of actions for identical agents. Empirically, these augmentations are found to improve performance on tasks where expressive communication is required, whilst, in general, the optimal communication protocol is found to be task-dependent." 1927,RoSGAS: Adaptive Social Bot Detection with Reinforced Self-Supervised GNN Architecture Search,"Social bots are referred to as the automated accounts on social networks that make attempts to behave like human. While Graph Neural Networks (GNNs) has been massively applied to the field of social bot detection, a huge amount of domain expertise and prior knowledge is heavily engaged in the state-of-the art approaches to design a dedicated neural network architecture for a specific classification task. Involving oversized nodes and network layers in the model design, however, usually causes the over-smoothing problem and the lack of embedding discrimination. In this paper, we propose RoSGAS, a novel Reinforced and Self-supervised GNN Architecture Search framework to adaptively pinpoint the most suitable multi-hop neighborhood and the number of layers in the GNN architecture. More specifically, we consider the social bot detection problem as a user-centric subgraph embedding and classification task. We exploit heterogeneous information network to present the user connectivity by leveraging account metadata, relationships, behavioral features and content features. RoSGAS uses a multi-agent deep reinforcement learning (RL) mechanism for navigating the search of optimal neighborhood and network layers to learn individually the subgraph embedding for each target user. A nearest neighbor mechanism is developed for accelerating the RL training process, and RoSGAS can learn more discriminative subgraph embedding with the aid of self-supervised learning. Experiments on 5 Twitter datasets show that RoSGAS outperforms the state-of-the-art approaches in terms of accuracy, training efficiency and stability, and has better generalization when handling unseen samples." 1928,Counting Markov Equivalent Directed Acyclic Graphs Consistent with Background Knowledge,"A polynomial-time exact algorithm for counting the number of directed acyclic graphs in a Markov equivalence class was recently given by Wien\""obst, Bannach, and Li\'skiewicz (AAAI 2021). In this paper, we consider the more general problem of counting the number of directed acyclic graphs in a Markov equivalence class when the directions of some of the edges are also fixed (this setting arises, for example, when interventional data is partially available). This problem has been shown in earlier work to be complexity-theoretically hard. In contrast, we show that the problem is nevertheless tractable in an interesting class of instances, by establishing that it is ``fixed-parameter tractable''. In particular, our counting algorithm runs in time that is bounded by a polynomial in the size of the graph, where the degree of the polynomial does \emph{not} depend upon the number of additional edges provided as input." 1929,Adversarial Vulnerability of Randomized Ensembles,"Despite the tremendous success of deep neural networks across various tasks, their vulnerability to imperceptible adversarial perturbations has hindered their deployment in the real world. Recently, works on randomized ensembles have empirically demonstrated significant improvements in adversarial robustness over standard adversarially trained (AT) models with minimal computational overhead, making them a promising solution for safety-critical resource-constrained applications. However, this impressive performance raises the question: Are these robustness gains provided by randomized ensembles real? In this work we address this question both theoretically and empirically. We first establish theoretically that commonly employed robustness evaluation methods such as adaptive PGD provide a false sense of security in this setting. Subsequently, we propose a theoretically-sound and efficient adversarial attack algorithm (ARC) capable of compromising random ensembles even in cases where adaptive PGD fails to do so. We conduct comprehensive experiments across a variety of network architectures, training schemes, datasets, and norms to support our claims, and empirically establish that randomized ensembles are in fact more vulnerable to $\ell_p$-bounded adversarial perturbations than even standard AT models. Our code can be found at https://github.com/hsndbk4/ARC." 1930,Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images,"Motion artefacts in magnetic resonance brain images are a crucial issue. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. If the motion artefacts alter a correct delineation of structure and substructures of the brain, lesions, tumours and so on, the patients need to be re-scanned. Otherwise, neuro-radiologists could report an inaccurate or incorrect diagnosis. The first step right after scanning a patient is the ""\textit{image quality assessment}"" in order to decide if the acquired images are diagnostically acceptable. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network has been proposed here, with the possibility to perform also the classification in different groups - by subdividing with SSIM ranges. This method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. Mean and standard deviation of residuals' distribution were $\mu=-0.0009$ and $\sigma=0.0139$, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The obtained results show that the proposed method could be a tool in supporting neuro-radiologists and radiographers in evaluating the image quality before the diagnosis." 1931,Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning,"This work is concerned with the following fundamental question in scientific machine learning: Can deep-learning-based methods solve noise-free inverse problems to near-perfect accuracy? Positive evidence is provided for the first time, focusing on a prototypical computed tomography (CT) setup. We demonstrate that an iterative end-to-end network scheme enables reconstructions close to numerical precision, comparable to classical compressed sensing strategies. Our results build on our winning submission to the recent AAPM DL-Sparse-View CT Challenge. Its goal was to identify the state-of-the-art in solving the sparse-view CT inverse problem with data-driven techniques. A specific difficulty of the challenge setup was that the precise forward model remained unknown to the participants. Therefore, a key feature of our approach was to initially estimate the unknown fanbeam geometry in a data-driven calibration step. Apart from an in-depth analysis of our methodology, we also demonstrate its state-of-the-art performance on the open-access real-world dataset LoDoPaB CT." 1932,Deep Variational Implicit Processes,"Implicit processes (IPs) are a generalization of Gaussian processes (GPs). IPs may lack a closed-form expression but are easy to sample from. Examples include, among others, Bayesian neural networks or neural samplers. IPs can be used as priors over functions, resulting in flexible models with well-calibrated prediction uncertainty estimates. Methods based on IPs usually carry out function-space approximate inference, which overcomes some of the difficulties of parameter-space approximate inference. Nevertheless, the approximations employed often limit the expressiveness of the final model, resulting, \emph{e.g.}, in a Gaussian predictive distribution, which can be restrictive. We propose here a multi-layer generalization of IPs called the Deep Variational Implicit process (DVIP). This generalization is similar to that of deep GPs over GPs, but it is more flexible due to the use of IPs as the prior distribution over the latent functions. We describe a scalable variational inference algorithm for training DVIP and show that it outperforms previous IP-based methods and also deep GPs. We support these claims via extensive regression and classification experiments. We also evaluate DVIP on large datasets with up to several million data instances to illustrate its good scalability and performance." 1933,Stein Variational Goal Generation For Reinforcement Learning in Hard Exploration Problems,"Multi-goal Reinforcement Learning has recently attracted a large amount of research interest. By allowing experience to be shared between related training tasks, this setting favors generalization for new tasks at test time, whenever some smoothness exists in the considered representation space of goals. However, in settings with discontinuities in state or goal spaces (e.g. walls in a maze), a majority of goals are difficult to reach, due to the sparsity of rewards in the absence of expert knowledge. This implies hard exploration, for which some curriculum of goals must be discovered, to help agents learn by adapting training tasks to their current capabilities. Building on recent automatic curriculum learning techniques for goal-conditioned policies, we propose a novel approach: Stein Variational Goal Generation (SVGG), which seeks at preferably sampling new goals in the zone of proximal development of the agent, by leveraging a learned model of its abilities, and a goal distribution modeled as particles in the exploration space. Our approach relies on Stein Variational Gradient Descent to dynamically attract the goal sampling distribution in areas of appropriate difficulty. We demonstrate the performances of the approach, in terms of success coverage in the goal space, compared to recent state-of-the-art RL methods for hard exploration problems." 1934,Visual Radial Basis Q-Network,"While reinforcement learning (RL) from raw images has been largely investigated in the last decade, existing approaches still suffer from a number of constraints. The high input dimension is often handled using either expert knowledge to extract handcrafted features or environment encoding through convolutional networks. Both solutions require numerous parameters to be optimized. In contrast, we propose a generic method to extract sparse features from raw images with few trainable parameters. We achieved this using a Radial Basis Function Network (RBFN) directly on raw image. We evaluate the performance of the proposed approach for visual extraction in Q-learning tasks in the Vizdoom environment. Then, we compare our results with two Deep Q-Network, one trained directly on images and another one trained on feature extracted by a pretrained auto-encoder. We show that the proposed approach provides similar or, in some cases, even better performances with fewer trainable parameters while being conceptually simpler." 1935,Conformal Off-Policy Prediction,"Off-policy evaluation is critical in a number of applications where new policies need to be evaluated offline before online deployment. Most existing methods focus on the expected return, define the target parameter through averaging and provide a point estimator only. In this paper, we develop a novel procedure to produce reliable interval estimators for a target policy's return starting from any initial state. Our proposal accounts for the variability of the return around its expectation, focuses on the individual effect and offers valid uncertainty quantification. Our main idea lies in designing a pseudo policy that generates subsamples as if they were sampled from the target policy so that existing conformal prediction algorithms are applicable to prediction interval construction. Our methods are justified by theories, synthetic data and real data from short-video platforms." 1936,Task Transfer and Domain Adaptation for Zero-Shot Question Answering,"Pretrained language models have shown success in various areas of natural language processing, including reading comprehension tasks. However, when applying machine learning methods to new domains, labeled data may not always be available. To address this, we use supervised pretraining on source-domain data to reduce sample complexity on domain-specific downstream tasks. We evaluate zero-shot performance on domain-specific reading comprehension tasks by combining task transfer with domain adaptation to fine-tune a pretrained model with no labelled data from the target task. Our approach outperforms Domain-Adaptive Pretraining on downstream domain-specific reading comprehension tasks in 3 out of 4 domains." 1937,CNN-based Classification Framework for Lung Tissues with Auxiliary Information,"Interstitial lung diseases are a large group of heterogeneous diseases characterized by different degrees of alveolitis and pulmonary fibrosis. Accurately diagnosing these diseases has significant guiding value for formulating treatment plans. Although previous work has produced impressive results in classifying interstitial lung diseases, there is still room for improving the accuracy of these techniques, mainly to enhance automated decision-making. In order to improve the classification precision, our study proposes a convolutional neural networks-based framework with auxiliary information. Firstly, ILD images are added with their medical information by re-scaling the original image in Hounsfield Units. Secondly, a modified CNN model is used to produce a vector of classification probability for each tissue. Thirdly, location information of the input image, consisting of the occurrence frequencies of different diseases in the CT scans on certain locations, is used to calculate a location weight vector. Finally, the Hadamard product between two vectors is used to produce a decision vector for the prediction. Compared to the state-of-the-art methods, the results using a publicly available ILD database show the potential of predicting these using different auxiliary information." 1938,Generalizing experimental findings: identification beyond adjustments,"We aim to generalize the results of a randomized controlled trial (RCT) to a target population with the help of some observational data. This is a problem of causal effect identification with multiple data sources. Challenges arise when the RCT is conducted in a context that differs from the target population. Earlier research has focused on cases where the estimates from the RCT can be adjusted by observational data in order to remove the selection bias and other domain specific differences. We consider examples where the experimental findings cannot be generalized by an adjustment and show that the generalization may still be possible by other identification strategies that can be derived by applying do-calculus. The obtained identifying functionals for these examples contain trapdoor variables of a new type. The value of a trapdoor variable needs to be fixed in the estimation and the choice of the value may have a major effect on the bias and accuracy of estimates, which is also seen in simulations. The presented results expand the scope of settings where the generalization of experimental findings is doable" 1939,COVIDHunter: COVID-19 pandemic wave prediction and mitigation via seasonality-aware modeling,"Early detection and isolation of COVID-19 patients are essential for successful implementation of mitigation strategies and eventually curbing the disease spread. With a limited number of daily COVID-19 tests performed in every country, simulating the COVID-19 spread along with the potential effect of each mitigation strategy currently remains one of the most effective ways in managing the healthcare system and guiding policy-makers. We introduce COVIDHunter, a flexible and accurate COVID-19 outbreak simulation model that evaluates the current mitigation measures that are applied to a region, predicts COVID-19 statistics (the daily number of cases, hospitalizations, and deaths), and provides suggestions on what strength the upcoming mitigation measure should be. The key idea of COVIDHunter is to quantify the spread of COVID-19 in a geographical region by simulating the average number of new infections caused by an infected person considering the effect of external factors, such as environmental conditions (e.g., climate, temperature, humidity), different variants of concern, vaccination rate, and mitigation measures. Using Switzerland as a case study, COVIDHunter estimates that we are experiencing a deadly new wave that will peak on 26 January 2022, which is very similar in numbers to the wave we had in February 2020. The policy-makers have only one choice that is to increase the strength of the currently applied mitigation measures for 30 days. Unlike existing models, the COVIDHunter model accurately monitors and predicts the daily number of cases, hospitalizations, and deaths due to COVID-19. Our model is flexible to configure and simple to modify for modeling different scenarios under different environmental conditions and mitigation measures. We release the source code of the COVIDHunter implementation at https://github.com/CMU-SAFARI/COVIDHunter." 1940,Bandwidth Enables Generalization in Quantum Kernel Models,"Quantum computers are known to provide speedups over classical state-of-the-art machine learning methods in some specialized settings. For example, quantum kernel methods have been shown to provide an exponential speedup on a learning version of the discrete logarithm problem. Understanding the generalization of quantum models is essential to realizing similar speedups on problems of practical interest. Recent results demonstrate that generalization is hindered by the exponential size of the quantum feature space. Although these results suggest that quantum models cannot generalize when the number of qubits is large, in this paper we show that these results rely on overly restrictive assumptions. We consider a wider class of models by varying a hyperparameter that we call quantum kernel bandwidth. We analyze the large-qubit limit and provide explicit formulas for the generalization of a quantum model that can be solved in closed form. Specifically, we show that changing the value of the bandwidth can take a model from provably not being able to generalize to any target function to good generalization for well-aligned targets. Our analysis shows how the bandwidth controls the spectrum of the kernel integral operator and thereby the inductive bias of the model. We demonstrate empirically that our theory correctly predicts how varying the bandwidth affects generalization of quantum models on challenging datasets, including those far outside our theoretical assumptions. We discuss the implications of our results for quantum advantage in machine learning." 1941,Causal Discovery for Fairness,"It is crucial to consider the social and ethical consequences of AI and ML based decisions for the safe and acceptable use of these emerging technologies. Fairness, in particular, guarantees that the ML decisions do not result in discrimination against individuals or minorities. Identifying and measuring reliably fairness/discrimination is better achieved using causality which considers the causal relation, beyond mere association, between the sensitive attribute (e.g. gender, race, religion, etc.) and the decision (e.g. job hiring, loan granting, etc.). The big impediment to the use of causality to address fairness, however, is the unavailability of the causal model (typically represented as a causal graph). Existing causal approaches to fairness in the literature do not address this problem and assume that the causal model is available. In this paper, we do not make such assumption and we review the major algorithms to discover causal relations from observable data. This study focuses on causal discovery and its impact on fairness. In particular, we show how different causal discovery approaches may result in different causal models and, most importantly, how even slight differences between causal models can have significant impact on fairness/discrimination conclusions. These results are consolidated by empirical analysis using synthetic and standard fairness benchmark datasets. The main goal of this study is to highlight the importance of the causal discovery step to appropriately address fairness using causality." 1942,Exploring speaker enrolment for few-shot personalisation in emotional vocalisation prediction,"In this work, we explore a novel few-shot personalisation architecture for emotional vocalisation prediction. The core contribution is an `enrolment' encoder which utilises two unlabelled samples of the target speaker to adjust the output of the emotion encoder; the adjustment is based on dot-product attention, thus effectively functioning as a form of `soft' feature selection. The emotion and enrolment encoders are based on two standard audio architectures: CNN14 and CNN10. The two encoders are further guided to forget or learn auxiliary emotion and/or speaker information. Our best approach achieves a CCC of $.650$ on the ExVo Few-Shot dev set, a $2.5\%$ increase over our baseline CNN14 CCC of $.634$." 1943,Matching Pursuit Based Scheduling for Over-the-Air Federated Learning,"This paper develops a class of low-complexity device scheduling algorithms for over-the-air federated learning via the method of matching pursuit. The proposed scheme tracks closely the close-to-optimal performance achieved by difference-of-convex programming, and outperforms significantly the well-known benchmark algorithms based on convex relaxation. Compared to the state-of-the-art, the proposed scheme poses a drastically lower computational load on the system: For $K$ devices and $N$ antennas at the parameter server, the benchmark complexity scales with $\left(N^2+K\right)^3 + N^6$ while the complexity of the proposed scheme scales with $K^p N^q$ for some $0 < p,q \leq 2$. The efficiency of the proposed scheme is confirmed via numerical experiments on the CIFAR-10 dataset." 1944,Severe Damage Recovery in Evolving Soft Robots through Differentiable Programming,"Biological systems are very robust to morphological damage, but artificial systems (robots) are currently not. In this paper we present a system based on neural cellular automata, in which locomoting robots are evolved and then given the ability to regenerate their morphology from damage through gradient-based training. Our approach thus combines the benefits of evolution to discover a wide range of different robot morphologies, with the efficiency of supervised training for robustness through differentiable update rules. The resulting neural cellular automata are able to grow virtual robots capable of regaining more than 80\% of their functionality, even after severe types of morphological damage." 1945,Energy Flows: Towards Determinant-Free Training of Normalizing Flows,"Normalizing flows are a popular approach for constructing probabilistic and generative models. However, maximum likelihood training of flows is challenging due to the need to calculate computationally expensive determinants of Jacobians. This paper takes steps towards addressing this challenge by introducing an approach for determinant-free training of flows inspired by two-sample testing. Central to our framework is the energy objective, a multidimensional extension of proper scoring rules that admits efficient estimators based on random projections and that outperforms a range of alternative two-sample objectives that can be derived in our framework. Crucially, the energy objective and its alternatives do not require calculating determinants and therefore support general flow architectures that are not well-suited to maximum likelihood training (e.g., densely connected networks). We empirically demonstrate that energy flows achieve competitive generative modeling performance while maintaining fast generation and posterior inference." 1946,Learning Best Combination for Efficient N:M Sparsity,"By forcing at most N out of M consecutive weights to be non-zero, the recent N:M network sparsity has received increasing attention for its two attractive advantages: 1) Promising performance at a high sparsity. 2) Significant speedups on NVIDIA A100 GPUs. Recent studies require an expensive pre-training phase or a heavy dense-gradient computation. In this paper, we show that the N:M learning can be naturally characterized as a combinatorial problem which searches for the best combination candidate within a finite collection. Motivated by this characteristic, we solve N:M sparsity in an efficient divide-and-conquer manner. First, we divide the weight vector into $C_{\text{M}}^{\text{N}}$ combination subsets of a fixed size N. Then, we conquer the combinatorial problem by assigning each combination a learnable score that is jointly optimized with its associate weights. We prove that the introduced scoring mechanism can well model the relative importance between combination subsets. And by gradually removing low-scored subsets, N:M fine-grained sparsity can be efficiently optimized during the normal training phase. Comprehensive experiments demonstrate that our learning best combination (LBC) performs consistently better than off-the-shelf N:M sparsity methods across various networks. Our code is released at \url{https://github.com/zyxxmu/LBC}." 1947,SoTeacher: A Student-oriented Teacher Network Training Framework for Knowledge Distillation,"How to train an ideal teacher for knowledge distillation is still an open problem. It has been widely observed that a teacher minimizing the empirical risk not necessarily yields the best performing student, suggesting a fundamental discrepancy between the common practice in teacher network training and the distillation objective. To fill this gap, we propose a novel student-oriented teacher network training framework SoTeacher, inspired by recent findings that student performance hinges on teacher's capability to approximate the true label distribution of training samples. We theoretically established that (1) the empirical risk minimizer with proper scoring rules as loss function can provably approximate the true label distribution of training data if the hypothesis function is locally Lipschitz continuous around training samples; and (2) when data augmentation is employed for training, an additional constraint is required that the minimizer has to produce consistent predictions across augmented views of the same training input. In light of our theory, SoTeacher renovates the empirical risk minimization by incorporating Lipschitz regularization and consistency regularization. It is worth mentioning that SoTeacher is applicable to almost all teacher-student architecture pairs, requires no prior knowledge of the student upon teacher's training, and induces almost no computation overhead. Experiments on two benchmark datasets confirm that SoTeacher can improve student performance significantly and consistently across various knowledge distillation algorithms and teacher-student pairs." 1948,The Open Kidney Ultrasound Data Set,"Ultrasound use is because of its low cost, non-ionizing, and non-invasive characteristics, and has established itself as a cornerstone radiological examination. Research on ultrasound applications has also expanded, especially with image analysis with machine learning. However, ultrasound data are frequently restricted to closed data sets, with only a few openly available. Despite being a frequently examined organ, the kidney lacks a publicly available ultrasonography data set. The proposed Open Kidney Ultrasound Data Set is the first publicly available set of kidney B-mode ultrasound data that includes annotations for multi-class semantic segmentation. It is based on data retrospectively collected in a 5-year period from over 500 patients with a mean age of 53.2 +/- 14.7 years, body mass index of 27.0 +/- 5.4 kg/m2, and most common primary diseases being diabetes mellitus, IgA nephropathy, and hypertension. There are labels for the view and fine-grained manual annotations from two expert sonographers. Notably, this data includes native and transplanted kidneys. Initial benchmarking measurements are performed, demonstrating a state-of-the-art algorithm achieving a Dice Sorenson Coefficient of 0.74 for the kidney capsule. This data set is a high-quality data set, including two sets of expert annotations, with a larger breadth of images than previously available. In increasing access to kidney ultrasound data, future researchers may be able to create novel image analysis techniques for tissue characterization, disease detection, and prognostication." 1949,The Kidneys Are Not All Normal: Investigating the Speckle Distributions of Transplanted Kidneys,"Modelling ultrasound speckle has generated considerable interest for its ability to characterize tissue properties. As speckle is dependent on the underlying tissue architecture, modelling it may aid in tasks like segmentation or disease detection. However, for the transplanted kidney where ultrasound is commonly used to investigate dysfunction, it is currently unknown which statistical distribution best characterises such speckle. This is especially true for the regions of the transplanted kidney: the cortex, the medulla and the central echogenic complex. Furthermore, it is unclear how these distributions vary by patient variables such as age, sex, body mass index, primary disease, or donor type. These traits may influence speckle modelling given their influence on kidney anatomy. We are the first to investigate these two aims. N=821 kidney transplant recipient B-mode images were automatically segmented into the cortex, medulla, and central echogenic complex using a neural network. Seven distinct probability distributions were fitted to each region. The Rayleigh and Nakagami distributions had model parameters that differed significantly between the three regions (p <= 0.05). While both had excellent goodness of fit, the Nakagami had higher Kullbeck-Leibler divergence. Recipient age correlated weakly with scale in the cortex (Omega: rho = 0.11, p = 0.004), while body mass index correlated weakly with shape in the medulla (m: rho = 0.08, p = 0.04). Neither sex, primary disease, nor donor type demonstrated any correlation. We propose the Nakagami distribution be used to characterize transplanted kidneys regionally independent of disease etiology and most patient characteristics based on our findings." 1950,SpecNet2: Orthogonalization-free spectral embedding by neural networks,"Spectral methods which represent data points by eigenvectors of kernel matrices or graph Laplacian matrices have been a primary tool in unsupervised data analysis. In many application scenarios, parametrizing the spectral embedding by a neural network that can be trained over batches of data samples gives a promising way to achieve automatic out-of-sample extension as well as computational scalability. Such an approach was taken in the original paper of SpectralNet (Shaham et al. 2018), which we call SpecNet1. The current paper introduces a new neural network approach, named SpecNet2, to compute spectral embedding which optimizes an equivalent objective of the eigen-problem and removes the orthogonalization layer in SpecNet1. SpecNet2 also allows separating the sampling of rows and columns of the graph affinity matrix by tracking the neighbors of each data point through the gradient formula. Theoretically, we show that any local minimizer of the new orthogonalization-free objective reveals the leading eigenvectors. Furthermore, global convergence for this new orthogonalization-free objective using a batch-based gradient descent method is proved. Numerical experiments demonstrate the improved performance and computational efficiency of SpecNet2 on simulated data and image datasets." 1951,Confidence Score for Source-Free Unsupervised Domain Adaptation,"Source-free unsupervised domain adaptation (SFUDA) aims to obtain high performance in the unlabeled target domain using the pre-trained source model, not the source data. Existing SFUDA methods assign the same importance to all target samples, which is vulnerable to incorrect pseudo-labels. To differentiate between sample importance, in this study, we propose a novel sample-wise confidence score, the Joint Model-Data Structure (JMDS) score for SFUDA. Unlike existing confidence scores that use only one of the source or target domain knowledge, the JMDS score uses both knowledge. We then propose a Confidence score Weighting Adaptation using the JMDS (CoWA-JMDS) framework for SFUDA. CoWA-JMDS consists of the JMDS scores as sample weights and weight Mixup that is our proposed variant of Mixup. Weight Mixup promotes the model make more use of the target domain knowledge. The experimental results show that the JMDS score outperforms the existing confidence scores. Moreover, CoWA-JMDS achieves state-of-the-art performance on various SFUDA scenarios: closed, open, and partial-set scenarios." 1952,Explainable AI for High Energy Physics,"Neural Networks are ubiquitous in high energy physics research. However, these highly nonlinear parameterized functions are treated as \textit{black boxes}- whose inner workings to convey information and build the desired input-output relationship are often intractable. Explainable AI (xAI) methods can be useful in determining a neural model's relationship with data toward making it \textit{interpretable} by establishing a quantitative and tractable relationship between the input and the model's output. In this letter of interest, we explore the potential of using xAI methods in the context of problems in high energy physics." 1953,Transformers are Meta-Reinforcement Learners,"The transformer architecture and variants presented remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task -- which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments." 1954,Astock: A New Dataset and Automated Stock Trading based on Stock-specific News Analyzing Model,"Natural Language Processing(NLP) demonstrates a great potential to support financial decision-making by analyzing the text from social media or news outlets. In this work, we build a platform to study the NLP-aided stock auto-trading algorithms systematically. In contrast to the previous work, our platform is characterized by three features: (1) We provide financial news for each specific stock. (2) We provide various stock factors for each stock. (3) We evaluate performance from more financial-relevant metrics. Such a design allows us to develop and evaluate NLP-aided stock auto-trading algorithms in a more realistic setting. In addition to designing an evaluation platform and dataset collection, we also made a technical contribution by proposing a system to automatically learn a good feature representation from various input information. The key to our algorithm is a method called semantic role labeling Pooling (SRLP), which leverages Semantic Role Labeling (SRL) to create a compact representation of each news paragraph. Based on SRLP, we further incorporate other stock factors to make the final prediction. In addition, we propose a self-supervised learning strategy based on SRLP to enhance the out-of-distribution generalization performance of our system. Through our experimental study, we show that the proposed method achieves better performance and outperforms all the baselines' annualized rate of return as well as the maximum drawdown of the CSI300 index and XIN9 index on real trading. Our Astock dataset and code are available at https://github.com/JinanZou/Astock." 1955,Deep Isolation Forest for Anomaly Detection,"Isolation forest (iForest) has been emerging as arguably the most popular anomaly detector in recent years. It iteratively performs axis-parallel data space partition in a tree structure to isolate deviated data objects from the other data, with the isolation difficulty of the objects defined as anomaly scores. iForest shows effective performance across popular dataset benchmarks, but its axis-parallel-based linear data partition is ineffective in handling hard anomalies in high-dimensional/non-linear-separable data space, and even worse, it leads to a notorious algorithmic bias that assigns unexpectedly large anomaly scores to artefact regions. There have been several extensions of iForest, but they still focus on linear data partition, failing to effectively isolate those hard anomalies. This paper introduces a novel extension of iForest, deep isolation forest. Our method offers a comprehensive isolation method that can arbitrarily partition the data at any random direction and angle on subspaces of any size, effectively avoiding the algorithmic bias in the linear partition. Further, it requires only randomly initialised neural networks (i.e., no optimisation is required in our method) to ensure the freedom of the partition. In doing so, desired randomness and diversity in both random network-based representations and random partition-based isolation can be fully leveraged to significantly enhance the isolation ensemble-based anomaly detection. Also, our approach offers a data-type-agnostic anomaly detection solution. It is versatile to detect anomalies in different types of data by simply plugging in corresponding randomly initialised neural networks in the feature mapping. Extensive empirical results on a large collection of real-world datasets show that our model achieves substantial improvement over state-of-the-art isolation-based and non-isolation-based anomaly detection models." 1956,"CorticalFlow$^{++}$: Boosting Cortical Surface Reconstruction Accuracy, Regularity, and Interoperability","The problem of Cortical Surface Reconstruction from magnetic resonance imaging has been traditionally addressed using lengthy pipelines of image processing techniques like FreeSurfer, CAT, or CIVET. These frameworks require very long runtimes deemed unfeasible for real-time applications and unpractical for large-scale studies. Recently, supervised deep learning approaches have been introduced to speed up this task cutting down the reconstruction time from hours to seconds. Using the state-of-the-art CorticalFlow model as a blueprint, this paper proposes three modifications to improve its accuracy and interoperability with existing surface analysis tools, while not sacrificing its fast inference time and low GPU memory consumption. First, we employ a more accurate ODE solver to reduce the diffeomorphic mapping approximation error. Second, we devise a routine to produce smoother template meshes avoiding mesh artifacts caused by sharp edges in CorticalFlow's convex-hull based template. Last, we recast pial surface prediction as the deformation of the predicted white surface leading to a one-to-one mapping between white and pial surface vertices. This mapping is essential to many existing surface analysis tools for cortical morphometry. We name the resulting method CorticalFlow$^{++}$. Using large-scale datasets, we demonstrate the proposed changes provide more geometric accuracy and surface regularity while keeping the reconstruction time and GPU memory requirements almost unchanged." 1957,Permutation Search of Tensor Network Structures via Local Sampling,"Recent works put much effort into tensor network structure search (TN-SS), aiming to select suitable tensor network (TN) structures, involving the TN-ranks, formats, and so on, for the decomposition or learning tasks. In this paper, we consider a practical variant of TN-SS, dubbed TN permutation search (TN-PS), in which we search for good mappings from tensor modes onto TN vertices (core tensors) for compact TN representations. We conduct a theoretical investigation of TN-PS and propose a practically-efficient algorithm to resolve the problem. Theoretically, we prove the counting and metric properties of search spaces of TN-PS, analyzing for the first time the impact of TN structures on these unique properties. Numerically, we propose a novel meta-heuristic algorithm, in which the searching is done by randomly sampling in a neighborhood established in our theory, and then recurrently updating the neighborhood until convergence. Numerical results demonstrate that the new algorithm can reduce the required model size of TNs in extensive benchmarks, implying the improvement in the expressive power of TNs. Furthermore, the computational cost for the new algorithm is significantly less than that in~\cite{li2020evolutionary}." 1958,On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear Independent Component Analysis,"Nonlinear independent component analysis (nICA) aims at recovering statistically independent latent components that are mixed by unknown nonlinear functions. Central to nICA is the identifiability of the latent components, which had been elusive until very recently. Specifically, Hyv\""arinen et al. have shown that the nonlinearly mixed latent components are identifiable (up to often inconsequential ambiguities) under a generalized contrastive learning (GCL) formulation, given that the latent components are independent conditioned on a certain auxiliary variable. The GCL-based identifiability of nICA is elegant, and establishes interesting connections between nICA and popular unsupervised/self-supervised learning paradigms in representation learning, causal learning, and factor disentanglement. However, existing identifiability analyses of nICA all build upon an unlimited sample assumption and the use of ideal universal function learners -- which creates a non-negligible gap between theory and practice. Closing the gap is a nontrivial challenge, as there is a lack of established ``textbook'' routine for finite sample analysis of such unsupervised problems. This work puts forth a finite-sample identifiability analysis of GCL-based nICA. Our analytical framework judiciously combines the properties of the GCL loss function, statistical generalization analysis, and numerical differentiation. Our framework also takes the learning function's approximation error into consideration, and reveals an intuitive trade-off between the complexity and expressiveness of the employed function learner. Numerical experiments are used to validate the theorems." 1959,Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial Attacks and Training,"The successful emergence of deep learning (DL) in wireless system applications has raised concerns about new security-related challenges. One such security challenge is adversarial attacks. Although there has been much work demonstrating the susceptibility of DL-based classification tasks to adversarial attacks, regression-based problems in the context of a wireless system have not been studied so far from an attack perspective. The aim of this paper is twofold: (i) we consider a regression problem in a wireless setting and show that adversarial attacks can break the DL-based approach and (ii) we analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly. Specifically, the wireless application considered in this paper is the DL-based power allocation in the downlink of a multicell massive multi-input-multi-output system, where the goal of the attack is to yield an infeasible solution by the DL model. We extend the gradient-based adversarial attacks: fast gradient sign method (FGSM), momentum iterative FGSM, and projected gradient descent method to analyze the susceptibility of the considered wireless application with and without adversarial training. We analyze the deep neural network (DNN) models performance against these attacks, where the adversarial perturbations are crafted using both the white-box and black-box attacks." 1960,Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search,"Improving the quality of search results can significantly enhance users experience and engagement with search engines. In spite of several recent advancements in the fields of machine learning and data mining, correctly classifying items for a particular user search query has been a long-standing challenge, which still has a large room for improvement. This paper introduces the ""Shopping Queries Dataset"", a large dataset of difficult Amazon search queries and results, publicly released with the aim of fostering research in improving the quality of search results. The dataset contains around 130 thousand unique queries and 2.6 million manually labeled (query,product) relevance judgements. The dataset is multilingual with queries in English, Japanese, and Spanish. The Shopping Queries Dataset is being used in one of the KDDCup'22 challenges. In this paper, we describe the dataset and present three evaluation tasks along with baseline results: (i) ranking the results list, (ii) classifying product results into relevance categories, and (iii) identifying substitute products for a given query. We anticipate that this data will become the gold standard for future research in the topic of product search." 1961,Learning Enhanced Representations for Tabular Data via Neighborhood Propagation,"Prediction over tabular data is an essential and fundamental problem in many important downstream tasks. However, existing methods either take a data instance of the table independently as input or do not fully utilize the multi-rows features and labels to directly change and enhance the target data representations. In this paper, we propose to 1) construct a hypergraph from relevant data instance retrieval to model the cross-row and cross-column patterns of those instances, and 2) perform message Propagation to Enhance the target data instance representation for Tabular prediction tasks. Specifically, our specially-designed message propagation step benefits from 1) fusion of label and features during propagation, and 2) locality-aware high-order feature interactions. Experiments on two important tabular data prediction tasks validate the superiority of the proposed PET model against other baselines. Additionally, we demonstrate the effectiveness of the model components and the feature enhancement ability of PET via various ablation studies and visualizations. The code is included in https://github.com/KounianhuaDu/PET." 1962,Probabilistic Conformal Prediction Using Conditional Random Samples,"This paper proposes probabilistic conformal prediction (PCP), a predictive inference algorithm that estimates a target variable by a discontinuous predictive set. Given inputs, PCP construct the predictive set based on random samples from an estimated generative model. It is efficient and compatible with either explicit or implicit conditional generative models. Theoretically, we show that PCP guarantees correct marginal coverage with finite samples. Empirically, we study PCP on a variety of simulated and real datasets. Compared to existing methods for conformal inference, PCP provides sharper predictive sets." 1963,Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data,"High-fidelity reconstruction of fluids from sparse multiview RGB videos remains a formidable challenge due to the complexity of the underlying physics as well as complex occlusion and lighting in captures. Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting, and thus are unsuitable for real-world scenes with unknown lighting or arbitrary obstacles. We present the first method to reconstruct dynamic fluid by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization from sparse videos without taking lighting conditions, geometry information, or boundary conditions as input. We provide a continuous spatio-temporal scene representation using neural networks as the ansatz of density and velocity solution functions for fluids as well as the radiance field for static objects. With a hybrid architecture that separates static and dynamic contents, fluid interactions with static obstacles are reconstructed for the first time without additional geometry input or human labeling. By augmenting time-varying neural radiance fields with physics-informed deep learning, our method benefits from the supervision of images and physical priors. To achieve robust optimization from sparse views, we introduced a layer-by-layer growing strategy to progressively increase the network capacity. Using progressively growing models with a new regularization term, we manage to disentangle density-color ambiguity in radiance fields without overfitting. A pretrained density-to-velocity fluid model is leveraged in addition as the data prior to avoid suboptimal velocity which underestimates vorticity but trivially fulfills physical equations. Our method exhibits high-quality results with relaxed constraints and strong flexibility on a representative set of synthetic and real flow captures." 1964,LIFT: Language-Interfaced Fine-Tuning for Non-Language Machine Learning Tasks,"Fine-tuning pretrained language models (LMs) without making any architectural changes has become a norm for learning various language downstream tasks. However, for non-language downstream tasks, a common practice is to employ task-specific designs for input, output layers, and loss functions. For instance, it is possible to fine-tune an LM into an MNIST classifier by replacing the word embedding layer with an image patch embedding layer, the word token output layer with a 10-way output layer, and the word prediction loss with a 10-way classification loss, respectively. A natural question arises: can LM fine-tuning solve non-language downstream tasks without changing the model architecture or loss function? To answer this, we propose Language-Interfaced Fine-Tuning (LIFT) and study its efficacy and limitations by conducting an extensive empirical study on a suite of non-language classification and regression tasks. LIFT does not make any changes to the model architecture or loss function, and it solely relies on the natural language interface, enabling ""no-code machine learning with LMs."" We find that LIFT performs relatively well across a wide range of low-dimensional classification and regression tasks, matching the performances of the best baselines in many cases, especially for the classification tasks. We report the experimental results on the fundamental properties of LIFT, including its inductive bias, sample efficiency, ability to extrapolate, robustness to outliers and label noise, and generalization. We also analyze a few properties/techniques specific to LIFT, e.g., context-aware learning via appropriate prompting, quantification of predictive uncertainty, and two-stage fine-tuning. Our code is available at https://github.com/UW-Madison-Lee-Lab/LanguageInterfacedFineTuning." 1965,Label-enhanced Prototypical Network with Contrastive Learning for Multi-label Few-shot Aspect Category Detection,"Multi-label aspect category detection allows a given review sentence to contain multiple aspect categories, which is shown to be more practical in sentiment analysis and attracting increasing attention. As annotating large amounts of data is time-consuming and labor-intensive, data scarcity occurs frequently in real-world scenarios, which motivates multi-label few-shot aspect category detection. However, research on this problem is still in infancy and few methods are available. In this paper, we propose a novel label-enhanced prototypical network (LPN) for multi-label few-shot aspect category detection. The highlights of LPN can be summarized as follows. First, it leverages label description as auxiliary knowledge to learn more discriminative prototypes, which can retain aspect-relevant information while eliminating the harmful effect caused by irrelevant aspects. Second, it integrates with contrastive learning, which encourages that the sentences with the same aspect label are pulled together in embedding space while simultaneously pushing apart the sentences with different aspect labels. In addition, it introduces an adaptive multi-label inference module to predict the aspect count in the sentence, which is simple yet effective. Extensive experimental results on three datasets demonstrate that our proposed model LPN can consistently achieve state-of-the-art performance." 1966,Zeroth-Order Topological Insights into Iterative Magnitude Pruning,"Modern-day neural networks are famously large, yet also highly redundant and compressible; there exist numerous pruning strategies in the deep learning literature that yield over 90% sparser sub-networks of fully-trained, dense architectures while still maintaining their original accuracies. Amongst these many methods though -- thanks to its conceptual simplicity, ease of implementation, and efficacy -- Iterative Magnitude Pruning (IMP) dominates in practice and is the de facto baseline to beat in the pruning community. However, theoretical explanations as to why a simplistic method such as IMP works at all are few and limited. In this work, we leverage the notion of persistent homology to gain insights into the workings of IMP and show that it inherently encourages retention of those weights which preserve topological information in a trained network. Subsequently, we also provide bounds on how much different networks can be pruned while perfectly preserving their zeroth order topological features, and present a modified version of IMP to do the same." 1967,FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks,"Knowledge distillation (KD) has demonstrated its effectiveness to boost the performance of graph neural networks (GNNs), where its goal is to distill knowledge from a deeper teacher GNN into a shallower student GNN. However, it is actually difficult to train a satisfactory teacher GNN due to the well-known over-parametrized and over-smoothing issues, leading to invalid knowledge transfer in practical applications. In this paper, we propose the first Free-direction Knowledge Distillation framework via Reinforcement learning for GNNs, called FreeKD, which is no longer required to provide a deeper well-optimized teacher GNN. The core idea of our work is to collaboratively build two shallower GNNs in an effort to exchange knowledge between them via reinforcement learning in a hierarchical way. As we observe that one typical GNN model often has better and worse performances at different nodes during training, we devise a dynamic and free-direction knowledge transfer strategy that consists of two levels of actions: 1) node-level action determines the directions of knowledge transfer between the corresponding nodes of two networks; and then 2) structure-level action determines which of the local structures generated by the node-level actions to be propagated. In essence, our FreeKD is a general and principled framework which can be naturally compatible with GNNs of different architectures. Extensive experiments on five benchmark datasets demonstrate our FreeKD outperforms two base GNNs in a large margin, and shows its efficacy to various GNNs. More surprisingly, our FreeKD has comparable or even better performance than traditional KD algorithms that distill knowledge from a deeper and stronger teacher GNN." 1968,Resolution Limits of Non-Adaptive 20 Questions Search for a Moving Target,"Using the 20 questions estimation framework with query-dependent noise, we study non-adaptive search strategies for a moving target over the unit cube with unknown initial location and velocities under a piecewise constant velocity model. In this search problem, there is an oracle who knows the instantaneous location of the target at any time. Our task is to query the oracle as few times as possible to accurately estimate the location of the target at any specified time. We first study the case where the oracle's answer to each query is corrupted by discrete noise and then generalize our results to the case of additive white Gaussian noise. In our formulation, the performance criterion is the resolution, which is defined as the maximal $L_\infty$ distance between the true locations and estimated locations. We characterize the minimal resolution of an optimal non-adaptive query procedure with a finite number of queries by deriving non-asymptotic and asymptotic bounds. Our bounds are tight in the first-order asymptotic sense when the number of queries satisfies a certain condition and our bounds are tight in the stronger second-order asymptotic sense when the target moves with a constant velocity. To prove our results, we relate the current problem to channel coding, borrow ideas from finite blocklength information theory and construct bounds on the number of possible quantized target trajectories." 1969,Safe Output Feedback Motion Planning from Images via Learned Perception Modules and Contraction Theory,"We present a motion planning algorithm for a class of uncertain control-affine nonlinear systems which guarantees runtime safety and goal reachability when using high-dimensional sensor measurements (e.g., RGB-D images) and a learned perception module in the feedback control loop. First, given a dataset of states and observations, we train a perception system that seeks to invert a subset of the state from an observation, and estimate an upper bound on the perception error which is valid with high probability in a trusted domain near the data. Next, we use contraction theory to design a stabilizing state feedback controller and a convergent dynamic state observer which uses the learned perception system to update its state estimate. We derive a bound on the trajectory tracking error when this controller is subjected to errors in the dynamics and incorrect state estimates. Finally, we integrate this bound into a sampling-based motion planner, guiding it to return trajectories that can be safely tracked at runtime using sensor data. We demonstrate our approach in simulation on a 4D car, a 6D planar quadrotor, and a 17D manipulation task with RGB(-D) sensor measurements, demonstrating that our method safely and reliably steers the system to the goal, while baselines that fail to consider the trusted domain or state estimation errors can be unsafe." 1970,Embarrassingly Parallel Independent Training of Multi-Layer Perceptrons with Heterogeneous Architectures,"The definition of a Neural Network architecture is one of the most critical and challenging tasks to perform. In this paper, we propose ParallelMLPs. ParallelMLPs is a procedure to enable the training of several independent Multilayer Perceptron Neural Networks with a different number of neurons and activation functions in parallel by exploring the principle of locality and parallelization capabilities of modern CPUs and GPUs. The core idea of this technique is to use a Modified Matrix Multiplication that replaces an ordinal matrix multiplication by two simple matrix operations that allow separate and independent paths for gradient flowing, which can be used in other scenarios. We have assessed our algorithm in simulated datasets varying the number of samples, features and batches using 10,000 different models. We achieved a training speedup from 1 to 4 orders of magnitude if compared to the sequential approach." 1971,A theory of learning with constrained weight-distribution,"A central question in computational neuroscience is how structure determines function in neural networks. The emerging high-quality large-scale connectomic datasets raise the question of what general functional principles can be gleaned from structural information such as the distribution of excitatory/inhibitory synapse types and the distribution of synaptic weights. Motivated by this question, we developed a statistical mechanical theory of learning in neural networks that incorporates structural information as constraints. We derived an analytical solution for the memory capacity of the perceptron, a basic feedforward model of supervised learning, with constraint on the distribution of its weights. Our theory predicts that the reduction in capacity due to the constrained weight-distribution is related to the Wasserstein distance between the imposed distribution and that of the standard normal distribution. To test the theoretical predictions, we use optimal transport theory and information geometry to develop an SGD-based algorithm to find weights that simultaneously learn the input-output task and satisfy the distribution constraint. We show that training in our algorithm can be interpreted as geodesic flows in the Wasserstein space of probability distributions. We further developed a statistical mechanical theory for teacher-student perceptron rule learning and ask for the best way for the student to incorporate prior knowledge of the rule. Our theory shows that it is beneficial for the learner to adopt different prior weight distributions during learning, and shows that distribution-constrained learning outperforms unconstrained and sign-constrained learning. Our theory and algorithm provide novel strategies for incorporating prior knowledge about weights into learning, and reveal a powerful connection between structure and function in neural networks." 1972,A Stochastic Proximal Method for Nonsmooth Regularized Finite Sum Optimization,"We consider the problem of training a deep neural network with nonsmooth regularization to retrieve a sparse and efficient sub-structure. Our regularizer is only assumed to be lower semi-continuous and prox-bounded. We combine an adaptive quadratic regularization approach with proximal stochastic gradient principles to derive a new solver, called SR2, whose convergence and worst-case complexity are established without knowledge or approximation of the gradient's Lipschitz constant. We formulate a stopping criteria that ensures an appropriate first-order stationarity measure converges to zero under certain conditions. We establish a worst-case iteration complexity of $\mathcal{O}(\epsilon^{-2})$ that matches those of related methods like ProxGEN, where the learning rate is assumed to be related to the Lipschitz constant. Our experiments on network instances trained on CIFAR-10 and CIFAR-100 with $\ell_1$ and $\ell_0$ regularizations show that SR2 consistently achieves higher sparsity and accuracy than related methods such as ProxGEN and ProxSGD." 1973,Overparametrized linear dimensionality reductions: From projection pursuit to two-layer neural networks,"Given a cloud of $n$ data points in $\mathbb{R}^d$, consider all projections onto $m$-dimensional subspaces of $\mathbb{R}^d$ and, for each such projection, the empirical distribution of the projected points. What does this collection of probability distributions look like when $n,d$ grow large? We consider this question under the null model in which the points are i.i.d. standard Gaussian vectors, focusing on the asymptotic regime in which $n,d\to\infty$, with $n/d\to\alpha\in (0,\infty)$, while $m$ is fixed. Denoting by $\mathscr{F}_{m, \alpha}$ the set of probability distributions in $\mathbb{R}^m$ that arise as low-dimensional projections in this limit, we establish new inner and outer bounds on $\mathscr{F}_{m, \alpha}$. In particular, we characterize the Wasserstein radius of $\mathscr{F}_{m,\alpha}$ up to logarithmic factors, and determine it exactly for $m=1$. We also prove sharp bounds in terms of Kullback-Leibler divergence and R\'{e}nyi information dimension. The previous question has application to unsupervised learning methods, such as projection pursuit and independent component analysis. We introduce a version of the same problem that is relevant for supervised learning, and prove a sharp Wasserstein radius bound. As an application, we establish an upper bound on the interpolation threshold of two-layers neural networks with $m$ hidden neurons." 1974,Fiberwise dimensionality reduction of topologically complex data with vector bundles,"Datasets with non-trivial large scale topology can be hard to embed in low-dimensional Euclidean space with existing dimensionality reduction algorithms. We propose to model topologically complex datasets using vector bundles, in such a way that the base space accounts for the large scale topology, while the fibers account for the local geometry. This allows one to reduce the dimensionality of the fibers, while preserving the large scale topology. We formalize this point of view, and, as an application, we describe an algorithm which takes as input a dataset together with an initial representation of it in Euclidean space, assumed to recover part of its large scale topology, and outputs a new representation that integrates local representations, obtained through local linear dimensionality reduction, along the initial global representation. We demonstrate this algorithm on examples coming from dynamical systems and chemistry. In these examples, our algorithm is able to learn topologically faithful embeddings of the data in lower target dimension than various well known metric-based dimensionality reduction algorithms." 1975,Generalizable Method for Face Anti-Spoofing with Semi-Supervised Learning,"Face anti-spoofing has drawn a lot of attention due to the high security requirements in biometric authentication systems. Bringing face biometric to commercial hardware became mostly dependent on developing reliable methods for detecting fake login sessions without specialized sensors. Current CNN-based method perform well on the domains they were trained for, but often show poor generalization on previously unseen datasets. In this paper we describe a method for utilizing unsupervised pretraining for improving performance across multiple datasets without any adaptation, introduce the Entry Antispoofing Dataset for supervised fine-tuning, and propose a multi-class auxiliary classification layer for augmenting the binary classification task of detecting spoofing attempts with explicit interpretable signals. We demonstrate the efficiency of our model by achieving state-of-the-art results on cross-dataset testing on MSU-MFSD, Replay-Attack, and OULU-NPU datasets." 1976,Machine Learning-Driven Process of Alumina Ceramics Laser Machining,"Laser machining is a highly flexible non-contact manufacturing technique that has been employed widely across academia and industry. Due to nonlinear interactions between light and matter, simulation methods are extremely crucial, as they help enhance the machining quality by offering comprehension of the inter-relationships between the laser processing parameters. On the other hand, experimental processing parameter optimization recommends a systematic, and consequently time-consuming, investigation over the available processing parameter space. An intelligent strategy is to employ machine learning (ML) techniques to capture the relationship between picosecond laser machining parameters for finding proper parameter combinations to create the desired cuts on industrial-grade alumina ceramic with deep, smooth and defect-free patterns. Laser parameters such as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, as well as the vertical distance of the scanner from the sample surface, are used for predicting the depth, top width, and bottom width of the engraved channels using ML models. Owing to the complex correlation between laser parameters, it is shown that Neural Networks (NN) are the most efficient in predicting the outputs. Equipped with an ML model that captures the interconnection between laser parameters and the engraved channel dimensions, one can predict the required input parameters to achieve a target channel geometry. This strategy significantly reduces the cost and effort of experimental laser machining during the development phase, without compromising accuracy or performance. The developed techniques can be applied to a wide range of ceramic laser machining processes." 1977,Optimal Clipping and Magnitude-aware Differentiation for Improved Quantization-aware Training,"Data clipping is crucial in reducing noise in quantization operations and improving the achievable accuracy of quantization-aware training (QAT). Current practices rely on heuristics to set clipping threshold scalars and cannot be shown to be optimal. We propose Optimally Clipped Tensors And Vectors (OCTAV), a recursive algorithm to determine MSE-optimal clipping scalars. Derived from the fast Newton-Raphson method, OCTAV finds optimal clipping scalars on the fly, for every tensor, at every iteration of the QAT routine. Thus, the QAT algorithm is formulated with provably minimum quantization noise at each step. In addition, we reveal limitations in common gradient estimation techniques in QAT and propose magnitude-aware differentiation as a remedy to further improve accuracy. Experimentally, OCTAV-enabled QAT achieves state-of-the-art accuracy on multiple tasks. These include training-from-scratch and retraining ResNets and MobileNets on ImageNet, and Squad fine-tuning using BERT models, where OCTAV-enabled QAT consistently preserves accuracy at low precision (4-to-6-bits). Our results require no modifications to the baseline training recipe, except for the insertion of quantization operations where appropriate." 1978,Towards Alternative Techniques for Improving Adversarial Robustness: Analysis of Adversarial Training at a Spectrum of Perturbations,"Adversarial training (AT) and its variants have spearheaded progress in improving neural network robustness to adversarial perturbations and common corruptions in the last few years. Algorithm design of AT and its variants are focused on training models at a specified perturbation strength $\epsilon$ and only using the feedback from the performance of that $\epsilon$-robust model to improve the algorithm. In this work, we focus on models, trained on a spectrum of $\epsilon$ values. We analyze three perspectives: model performance, intermediate feature precision and convolution filter sensitivity. In each, we identify alternative improvements to AT that otherwise wouldn't have been apparent at a single $\epsilon$. Specifically, we find that for a PGD attack at some strength $\delta$, there is an AT model at some slightly larger strength $\epsilon$, but no greater, that generalizes best to it. Hence, we propose overdesigning for robustness where we suggest training models at an $\epsilon$ just above $\delta$. Second, we observe (across various $\epsilon$ values) that robustness is highly sensitive to the precision of intermediate features and particularly those after the first and second layer. Thus, we propose adding a simple quantization to defenses that improves accuracy on seen and unseen adaptive attacks. Third, we analyze convolution filters of each layer of models at increasing $\epsilon$ and notice that those of the first and second layer may be solely responsible for amplifying input perturbations. We present our findings and demonstrate our techniques through experiments with ResNet and WideResNet models on the CIFAR-10 and CIFAR-10-C datasets." 1979,Multimodal Learning with Transformers: A Survey,"Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community." 1980,The Modality Focusing Hypothesis: On the Blink of Multimodal Knowledge Distillation,"Multimodal knowledge distillation (KD) extends traditional knowledge distillation to the area of multimodal learning. One common practice is to adopt a well-performed multimodal network as the teacher in the hope that it can transfer its full knowledge to a unimodal student for performance improvement. In this paper, we investigate the efficacy of multimodal KD. We begin by providing two failure cases of it and demonstrate that KD is not a universal cure in multimodal knowledge transfer. We present the modality Venn diagram to understand modality relationships and the modality focusing hypothesis revealing the decisive factor in the efficacy of multimodal KD. Experimental results on 6 multimodal datasets help justify our hypothesis, diagnose failure cases, and point directions to improve distillation performance." 1981,Mapping fNIRS to fMRI with Neural Data Augmentation and Machine Learning Models,"Advances in neuroimaging techniques have provided us novel insights into understanding how the human mind works. Functional magnetic resonance imaging (fMRI) is the most popular and widely used neuroimaging technique, and there is growing interest in fMRI-based markers of individual differences. However, its utility is often limited due to its high cost and difficulty acquiring from specific populations, including children and infants. Surrogate markers, or neural correlates of fMRI markers, would have important practical implications, but we have few stand-alone predictors for the fMRI markers. Here, using machine learning (ML) models and data augmentation, we predicted well-validated fMRI markers of human cognition from multivariate patterns of functional near-infrared spectroscopy (fNIRS), a portable and relatively inexpensive optical neuroimaging technique. We recruited 50 human participants who performed two cognitive tasks (stop signal task and probabilistic reversal learning task), while neural activation was measured with either fNIRS or fMRI at each of the total two visits. Using ML models and data augmentation, we could predict the well-established fMRI markers of response inhibition or prediction error signals from 48-channel fNIRS activation in the prefrontal cortex. These results suggest that fNIRS might offer a surrogate marker of fMRI activation, which would broaden our understanding of various populations, including infants." 1982,What Should I Know? Using Meta-gradient Descent for Predictive Feature Discovery in a Single Stream of Experience,"In computational reinforcement learning, a growing body of work seeks to construct an agent's perception of the world through predictions of future sensations; predictions about environment observations are used as additional input features to enable better goal-directed decision-making. An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making. This challenge is especially apparent in continual learning problems where a single stream of experience is available to a singular agent. As a primary contribution, we introduce a meta-gradient descent process by which an agent learns 1) what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward -- all during a single ongoing process of continual learning. In this manuscript we consider predictions expressed as General Value Functions: temporally extended estimates of the accumulation of a future signal. We demonstrate that through interaction with the environment an agent can independently select predictions that resolve partial-observability, resulting in performance similar to expertly specified GVFs. By learning, rather than manually specifying these predictions, we enable the agent to identify useful predictions in a self-supervised manner, taking a step towards truly autonomous systems." 1983,On Image Segmentation With Noisy Labels: Characterization and Volume Properties of the Optimal Solutions to Accuracy and Dice,"We study two of the most popular performance metrics in medical image segmentation, Accuracy and Dice, when the target labels are noisy. For both metrics, several statements related to characterization and volume properties of the set of optimal segmentations are proved, and associated experiments are provided. Our main insights are: (i) the volume of the solutions to both metrics may deviate significantly from the expected volume of the target, (ii) the volume of a solution to Accuracy is always less than or equal to the volume of a solution to Dice and (iii) the optimal solutions to both of these metrics coincide when the set of feasible segmentations is constrained to the set of segmentations with the volume equal to the expected volume of the target." 1984,Robust Distillation for Worst-class Performance,"Knowledge distillation has proven to be an effective technique in improving the performance a student model using predictions from a teacher model. However, recent work has shown that gains in average efficiency are not uniform across subgroups in the data, and in particular can often come at the cost of accuracy on rare subgroups and classes. To preserve strong performance across classes that may follow a long-tailed distribution, we develop distillation techniques that are tailored to improve the student's worst-class performance. Specifically, we introduce robust optimization objectives in different combinations for the teacher and student, and further allow for training with any tradeoff between the overall accuracy and the robust worst-class objective. We show empirically that our robust distillation techniques not only achieve better worst-class performance, but also lead to Pareto improvement in the tradeoff between overall performance and worst-class performance compared to other baseline methods. Theoretically, we provide insights into what makes a good teacher when the goal is to train a robust student." 1985,Explainable Mixed Data Representation and Lossless Visualization Toolkit for Knowledge Discovery,"Developing Machine Learning (ML) algorithms for heterogeneous/mixed data is a longstanding problem. Many ML algorithms are not applicable to mixed data, which include numeric and non-numeric data, text, graphs and so on to generate interpretable models. Another longstanding problem is developing algorithms for lossless visualization of multidimensional mixed data. The further progress in ML heavily depends on success interpretable ML algorithms for mixed data and lossless interpretable visualization of multidimensional data. The later allows developing interpretable ML models using visual knowledge discovery by end-users, who can bring valuable domain knowledge which is absent in the training data. The challenges for mixed data include: (1) generating numeric coding schemes for non-numeric attributes for numeric ML algorithms to provide accurate and interpretable ML models, (2) generating methods for lossless visualization of n-D non-numeric data and visual rule discovery in these visualizations. This paper presents a classification of mixed data types, analyzes their importance for ML and present the developed experimental toolkit to deal with mixed data. It combines the Data Types Editor, VisCanvas data visualization and rule discovery system which is available on GitHub." 1986,Invariant Structure Learning for Better Generalization and Causal Explainability,"Learning the causal structure behind data is invaluable for improving generalization and obtaining high-quality explanations. We propose a novel framework, Invariant Structure Learning (ISL), that is designed to improve causal structure discovery by utilizing generalization as an indication. ISL splits the data into different environments, and learns a structure that is invariant to the target across different environments by imposing a consistency constraint. An aggregation mechanism then selects the optimal classifier based on a graph structure that reflects the causal mechanisms in the data more accurately compared to the structures learnt from individual environments. Furthermore, we extend ISL to a self-supervised learning setting where accurate causal structure discovery does not rely on any labels. This self-supervised ISL utilizes invariant causality proposals by iteratively setting different nodes as targets. On synthetic and real-world datasets, we demonstrate that ISL accurately discovers the causal structure, outperforms alternative methods, and yields superior generalization for datasets with significant distribution shifts." 1987,Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classification,"It is generally believed that the human visual system is biased towards the recognition of shapes rather than textures. This assumption has led to a growing body of work aiming to align deep models' decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of shape-biases for the classification of skin lesion images. Our analysis shows that different skin lesion datasets exhibit varying biases towards individual image features. Interestingly, despite deep feature extractors being inclined towards learning entangled features for skin lesion classification, individual features can still be decoded from this entangled representation. This indicates that these features are still represented in the learnt embedding spaces of the models, but not used for classification. In addition, the spectral analysis of different datasets shows that in contrast to common visual recognition, dermoscopic skin lesion classification, by nature, is reliant on complex feature combinations beyond shape-bias. As a natural consequence, shifting away from the prevalent desire of shape-biasing models can even improve skin lesion classifiers in some cases." 1988,Density Estimation with Autoregressive Bayesian Predictives,"Bayesian methods are a popular choice for statistical inference in small-data regimes due to the regularization effect induced by the prior, which serves to counteract overfitting. In the context of density estimation, the standard Bayesian approach is to target the posterior predictive. In general, direct estimation of the posterior predictive is intractable and so methods typically resort to approximating the posterior distribution as an intermediate step. The recent development of recursive predictive copula updates, however, has made it possible to perform tractable predictive density estimation without the need for posterior approximation. Although these estimators are computationally appealing, they tend to struggle on non-smooth data distributions. This is largely due to the comparatively restrictive form of the likelihood models from which the proposed copula updates were derived. To address this shortcoming, we consider a Bayesian nonparametric model with an autoregressive likelihood decomposition and Gaussian process prior, which yields a data-dependent bandwidth parameter in the copula update. Further, we formulate a novel parameterization of the bandwidth using an autoregressive neural network that maps the data into a latent space, and is thus able to capture more complex dependencies in the data. Our extensions increase the modelling capacity of existing recursive Bayesian density estimators, achieving state-of-the-art results on tabular data sets." 1989,Assessing Privacy Leakage in Synthetic 3-D PET Imaging using Transversal GAN,"Training computer-vision related algorithms on medical images for disease diagnosis or image segmentation is difficult in large part due to privacy concerns. For this reason, generative image models are highly sought after to facilitate data sharing. However, 3-D generative models are understudied, and investigation of their privacy leakage is needed. We introduce our 3-D generative model, Transversal GAN (TrGAN), using head & neck PET images which are conditioned on tumour masks as a case study. We define quantitative measures of image fidelity, utility and privacy for our model. These metrics are evaluated in the course of training to identify ideal fidelity, utility and privacy trade-offs and establish the relationships between these parameters. We show that the discriminator of the TrGAN is vulnerable to attack, and that an attacker can identify which samples were used in training with almost perfect accuracy (AUC = 0.99). We also show that an attacker with access to only the generator cannot reliably classify whether a sample had been used for training (AUC = 0.51). This suggests that TrGAN generators, but not discriminators, may be used for sharing synthetic 3-D PET data with minimal privacy risk while maintaining good utility and fidelity." 1990,Automated Coronary Calcium Scoring using U-Net Models through Semi-supervised Learning on Non-Gated CT Scans,"Every year, thousands of innocent people die due to heart attacks. Often undiagnosed heart attacks can hit people by surprise since many current medical plans don't cover the costs to require the searching of calcification on these scans. Only if someone is suspected to have a heart problem, a gated CT scan is taken, otherwise, there's no way for the patient to be aware of a possible heart attack/disease. While nongated CT scans are more periodically taken, it is harder to detect calcification and is usually taken for a purpose other than locating calcification in arteries. In fact, in real time coronary artery calcification scores are only calculated on gated CT scans, not nongated CT scans. After training a unet model on the Coronary Calcium and chest CT's gated scans, it received a DICE coefficient of 0.95 on its untouched test set. This model was used to predict on nongated CT scans, performing with a mean absolute error (MAE) of 674.19 and bucket classification accuracy of 41% (5 classes). Through the analysis of the images and the information stored in the images, mathematical equations were derived and used to automatically crop the images around the location of the heart. By performing semi-supervised learning the new cropped nongated scans were able to closely resemble gated CT scans, improving the performance by 91% in MAE (62.38) and 23% in accuracy." 1991,SmartGD: A Self-Challenging Generative Adversarial Network for Graph Drawing,"A multitude of studies have been conducted on graph drawing, but many existing methods only focus on optimizing particular aesthetic aspects of graph layout. Given a graph, generating a good layout that satisfies certain human aesthetic preference remains a challenging task, especially if such preference can not be expressed as a differentiable objective function. In this paper, we propose a student-teacher GAN-based graph drawing framework, SmartGD, which learns to draw graphs just like how humans learn to perform tasks. The student network in the SmartGD learns graph drawing by imitating good layout examples, while the teacher network in SmartGD is responsible for providing ratings regarding the goodness of the generated layouts. When there is a lack of concrete aesthetic criteria to specify what constitutes a good layout, the student network can learn from the good layout examples. On the other hand, when the goodness of a layout can be assessed by quantitative criteria (even if not differentiable), the student network can use it as a concrete goal to optimize the target aesthetics. To accomplish the goal, we propose a novel variant of GAN, self-challenging GAN, to learn the optimal layout distribution with respect to any aesthetic criterion, whether the criterion is differentiable or not. The proposed graph drawing framework can not only draw graphs in a similar style as the good layout examples but also optimize the graph layouts according to any given aesthetic criteria when available. Once the model is trained, it can be used to visualize arbitrary graphs according to the style of the example layouts or the chosen aesthetic criteria. The comprehensive experimental studies show that SmartGD outperforms 12 benchmark methods according to the commonly agreed metrics." 1992,ReViSe: Remote Vital Signs Measurement Using Smartphone Camera,"Remote Photoplethysmography (rPPG) is a fast, effective, inexpensive and convenient method for collecting biometric data as it enables vital signs estimation using face videos. Remote contactless medical service provisioning has proven to be a dire necessity during the COVID-19 pandemic. We propose an end-to-end framework to measure people's vital signs including Heart Rate (HR), Heart Rate Variability (HRV), Oxygen Saturation (SpO2) and Blood Pressure (BP) based on the rPPG methodology from the video of a user's face captured with a smartphone camera. We extract face landmarks with a deep learning-based neural network model in real-time. Multiple face patches also called Region-of-Interests (RoIs) are extracted by using the predicted face landmarks. Several filters are applied to reduce the noise from the RoIs in the extracted cardiac signals called Blood Volume Pulse (BVP) signal. We trained and validated machine learning models using two public rPPG datasets namely the TokyoTech rPPG and the Pulse Rate Detection (PURE) datasets, on which our models achieved the following Mean Absolute Errors (MAE): a) for HR, 1.73 and 3.95 Beats-Per-Minute (bpm) respectively, b) for HRV, 18.55 and 25.03 ms respectively, and c) for SpO2, a MAE of 1.64 on the PURE dataset. We validated our end-to-end rPPG framework, ReViSe, in real life environment, and thereby created the Video-HR dataset. Our HR estimation model achieved a MAE of 2.49 bpm on this dataset. Since no publicly available rPPG datasets existed for BP measurement with face videos, we used a dataset with signals from fingertip sensor to train our model and also created our own video dataset, Video-BP. On our Video-BP dataset, our BP estimation model achieved a MAE of 6.7 mmHg for Systolic Blood Pressure (SBP), and a MAE of 9.6 mmHg for Diastolic Blood Pressure (DBP)." 1993,Provably Efficient Offline Reinforcement Learning with Trajectory-Wise Reward,"The remarkable success of reinforcement learning (RL) heavily relies on observing the reward of every visited state-action pair. In many real world applications, however, an agent can observe only a score that represents the quality of the whole trajectory, which is referred to as the {\em trajectory-wise reward}. In such a situation, it is difficult for standard RL methods to well utilize trajectory-wise reward, and large bias and variance errors can be incurred in policy evaluation. In this work, we propose a novel offline RL algorithm, called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED), which decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value iteration based on the learned proxy reward. To ensure the value functions constructed by PARTED are always pessimistic with respect to the optimal ones, we design a new penalty term to offset the uncertainty of the proxy reward. For general episodic MDPs with large state space, we show that PARTED with overparameterized neural network function approximation achieves an $\tilde{\mathcal{O}}(D_{\text{eff}}H^2/\sqrt{N})$ suboptimality, where $H$ is the length of episode, $N$ is the total number of samples, and $D_{\text{eff}}$ is the effective dimension of the neural tangent kernel matrix. To further illustrate the result, we show that PARTED achieves an $\tilde{\mathcal{O}}(dH^3/\sqrt{N})$ suboptimality with linear MDPs, where $d$ is the feature dimension, which matches with that with neural network function approximation, when $D_{\text{eff}}=dH$. To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward." 1994,"Look, Radiate, and Learn: Self-supervised Localisation via Radio-Visual Correspondence","Next generation cellular networks will implement radio sensing functions alongside customary communications, thereby enabling unprecedented worldwide sensing coverage outdoors. Deep learning has revolutionised computer vision but has had limited application to radio perception tasks, in part due to lack of systematic datasets and benchmarks dedicated to the study of the performance and promise of radio sensing. To address this gap, we present MaxRay: a synthetic radio-visual dataset and benchmark that facilitate precise target localisation in radio. We further propose to learn to localise targets in radio without supervision by extracting self-coordinates from radio-visual correspondence. We use such self-supervised coordinates to train a radio localiser network. We characterise our performance against a number of state-of-the-art baselines. Our results indicate that accurate radio target localisation can be automatically learned from paired radio-visual data without labels, which is highly relevant to empirical data. This opens the door for vast data scalability and may prove key to realising the promise of robust radio sensing atop a unified perception-communication cellular infrastructure. Dataset will be hosted on IEEE DataPort." 1995,Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data,"Particle-based modeling of materials at atomic scale plays an important role in the development of new materials and understanding of their properties. The accuracy of particle simulations is determined by interatomic potentials, which allow to calculate the potential energy of an atomic system as a function of atomic coordinates and potentially other properties. First-principles-based ab initio potentials can reach arbitrary levels of accuracy, however their aplicability is limited by their high computational cost. Machine learning (ML) has recently emerged as an effective way to offset the high computational costs of ab initio atomic potentials by replacing expensive models with highly efficient surrogates trained on electronic structure data. Among a plethora of current methods, symbolic regression (SR) is gaining traction as a powerful ""white-box"" approach for discovering functional forms of interatomic potentials. This contribution discusses the role of symbolic regression in Materials Science (MS) and offers a comprehensive overview of current methodological challenges and state-of-the-art results. A genetic programming-based approach for modeling atomic potentials from raw data (consisting of snapshots of atomic positions and associated potential energy) is presented and empirically validated on ab initio electronic structure data." 1996,GraphMLP: A Graph MLP-Like Architecture for 3D Human Pose Estimation,"Modern multi-layer perceptron (MLP) models have shown competitive results in learning visual representations without self-attention. However, existing MLP models are not good at capturing local details and lack prior knowledge of human configurations, which limits their modeling power for skeletal representation learning. To address these issues, we propose a simple yet effective graph-reinforced MLP-Like architecture, named GraphMLP, that combines MLPs and graph convolutional networks (GCNs) in a global-local-graphical unified architecture for 3D human pose estimation. GraphMLP incorporates the graph structure of human bodies into an MLP model to meet the domain-specific demand while also allowing for both local and global spatial interactions. Extensive experiments show that the proposed GraphMLP achieves state-of-the-art performance on two datasets, i.e., Human3.6M and MPI-INF-3DHP. Our source code and pretrained models will be publicly available." 1997,Image-based Treatment Effect Heterogeneity,"Randomized controlled trials (RCTs) are considered the gold standard for estimating the effects of interventions. Recent work has studied effect heterogeneity in RCTs by conditioning estimates on tabular variables such as age and ethnicity. However, such variables are often only observed near the time of the experiment and may fail to capture historical or geographical reasons for effect variation. When experiment units are associated with a particular location, satellite imagery can provide such historical and geographical information, yet there is no method which incorporates it for describing effect heterogeneity. In this paper, we develop such a method which estimates, using a deep probabilistic modeling framework, the clusters of images having the same distribution over treatment effects. We compare the proposed methods against alternatives in simulation and in an application to estimating the effects of an anti-poverty intervention in Uganda. A causal regularization penalty is introduced to ensure reliability of the cluster model in recovering Average Treatment Effects (ATEs). Finally, we discuss feasibility, limitations, and the applicability of these methods to other domains, such as medicine and climate science, where image information is prevalent. We make code for all modeling strategies publicly available in an open-source software package." 1998,Estimating Causal Effects Under Image Confounding Bias with an Application to Poverty in Africa,"Observational studies of causal effects require adjustment for confounding factors. In the tabular setting, where these factors are well-defined, separate random variables, the effect of confounding is well understood. However, in public policy, ecology, and in medicine, decisions are often made in non-tabular settings, informed by patterns or objects detected in images (e.g., maps, satellite or tomography imagery). Using such imagery for causal inference presents an opportunity because objects in the image may be related to the treatment and outcome of interest. In these cases, we rely on the images to adjust for confounding but observed data do not directly label the existence of the important objects. Motivated by real-world applications, we formalize this challenge, how it can be handled, and what conditions are sufficient to identify and estimate causal effects. We analyze finite-sample performance using simulation experiments, estimating effects using a propensity adjustment algorithm that employs a machine learning model to estimate the image confounding. Our experiments also examine sensitivity to misspecification of the image pattern mechanism. Finally, we use our methodology to estimate the effects of policy interventions on poverty in African communities from satellite imagery." 1999,Compositional Mixture Representations for Vision and Text,"Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture representation imposing the compositionality of the text onto the visual domain without having explicit location supervision. By combining the spatial transformer with a representation learning approach we learn to split images into separately encoded patches to associate visual and textual representations in an interpretable manner. On variations of MNIST and CIFAR10, our model is able to perform weakly supervised object detection and demonstrates its ability to extrapolate to unseen combination of objects." 2000,Discovering Object Masks with Transformers for Unsupervised Semantic Segmentation,"The task of unsupervised semantic segmentation aims to cluster pixels into semantically meaningful groups. Specifically, pixels assigned to the same cluster should share high-level semantic properties like their object or part category. This paper presents MaskDistill: a novel framework for unsupervised semantic segmentation based on three key ideas. First, we advocate a data-driven strategy to generate object masks that serve as a pixel grouping prior for semantic segmentation. This approach omits handcrafted priors, which are often designed for specific scene compositions and limit the applicability of competing frameworks. Second, MaskDistill clusters the object masks to obtain pseudo-ground-truth for training an initial object segmentation model. Third, we leverage this model to filter out low-quality object masks. This strategy mitigates the noise in our pixel grouping prior and results in a clean collection of masks which we use to train a final segmentation model. By combining these components, we can considerably outperform previous works for unsupervised semantic segmentation on PASCAL (+11% mIoU) and COCO (+4% mask AP50). Interestingly, as opposed to existing approaches, our framework does not latch onto low-level image cues and is not limited to object-centric datasets. The code and models will be made available." 2001,EnergyMatch: Energy-based Pseudo-Labeling for Semi-Supervised Learning,"Recent state-of-the-art methods in semi-supervised learning (SSL) combine consistency regularization with confidence-based pseudo-labeling. To obtain high-quality pseudo-labels, a high confidence threshold is typically adopted. However, it has been shown that softmax-based confidence scores in deep networks can be arbitrarily high for samples far from the training data, and thus, the pseudo-labels for even high-confidence unlabeled samples may still be unreliable. In this work, we present a new perspective of pseudo-labeling: instead of relying on model confidence, we instead measure whether an unlabeled sample is likely to be ""in-distribution""; i.e., close to the current training data. To classify whether an unlabeled sample is ""in-distribution"" or ""out-of-distribution"", we adopt the energy score from out-of-distribution detection literature. As training progresses and more unlabeled samples become in-distribution and contribute to training, the combined labeled and pseudo-labeled data can better approximate the true distribution to improve the model. Experiments demonstrate that our energy-based pseudo-labeling method, albeit conceptually simple, significantly outperforms confidence-based methods on imbalanced SSL benchmarks, and achieves competitive performance on class-balanced data. For example, it produces a 4-6% absolute accuracy improvement on CIFAR10-LT when the imbalance ratio is higher than 50. When combined with state-of-the-art long-tailed SSL methods, further improvements are attained." 2002,Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process,"In typical scenarios where the Federated Learning (FL) framework applies, it is common for clients to have insufficient training data to produce an accurate model. Thus, models that provide not only point estimations, but also some notion of confidence are beneficial. Gaussian Process (GP) is a powerful Bayesian model that comes with naturally well-calibrated variance estimations. However, it is challenging to learn a stand-alone global GP since merging local kernels leads to privacy leakage. To preserve privacy, previous works that consider federated GPs avoid learning a global model by focusing on the personalized setting or learning an ensemble of local models. We present Federated Bayesian Neural Regression (FedBNR), an algorithm that learns a scalable stand-alone global federated GP that respects clients' privacy. We incorporate deep kernel learning and random features for scalability by defining a unifying random kernel. We show this random kernel can recover any stationary kernel and many non-stationary kernels. We then derive a principled approach of learning a global predictive model as if all client data is centralized. We also learn global kernels with knowledge distillation methods for non-identically and independently distributed (non-i.i.d.) clients. Experiments are conducted on real-world regression datasets and show statistically significant improvements compared to other federated GP models." 2003,Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets,"Smart manufacturing systems are being deployed at a growing rate because of their ability to interpret a wide variety of sensed information and act on the knowledge gleaned from system observations. In many cases, the principal goal of the smart manufacturing system is to rapidly detect (or anticipate) failures to reduce operational cost and eliminate downtime. This often boils down to detecting anomalies within the sensor date acquired from the system. The smart manufacturing application domain poses certain salient technical challenges. In particular, there are often multiple types of sensors with varying capabilities and costs. The sensor data characteristics change with the operating point of the environment or machines, such as, the RPM of the motor. The anomaly detection process therefore has to be calibrated near an operating point. In this paper, we analyze four datasets from sensors deployed from manufacturing testbeds. We evaluate the performance of several traditional and ML-based forecasting models for predicting the time series of sensor data. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor to perform defect type classification. Taken together, we show that predictive failure classification can be achieved, thus paving the way for predictive maintenance." 2004,Differentiable and Transportable Structure Learning,"We are interested in unsupervised structure learning with a particular focus on directed acyclic graphical (DAG) models. Compute required to infer these structures is typically super-exponential in the amount of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances allowed to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. In our paper we introduce D-Struct which recovers transportability in the found structures through a novel architecture and loss function, while remaining completely differentiable. As D-Struct remains differentiable, one can easily adopt our method in differentiable architectures as was previously done with NOTEARS. In our experiments we empirically validate D-Struct with respect to edge accuracy and the structural Hamming distance." 2005,Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network,"Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. With 9-fold cross-validation, compared with both traditional and deep learning baselines, we demonstrated that the proposed network obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric $K_{i}$ and $V_{b}$ images and in significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings." 2006,Learning Uncertainty with Artificial Neural Networks for Improved Predictive Process Monitoring,"The inability of artificial neural networks to assess the uncertainty of their predictions is an impediment to their widespread use. We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty. Bayesian neural networks use solid mathematical foundations to learn the model uncertainties of their predictions. The observational uncertainty can be calculated by adding one layer to these networks and augmenting their loss functions. Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes. Our experiments show that uncertainty estimates allow more and less accurate predictions to be differentiated and confidence intervals to be constructed in both regression and classification tasks. These conclusions remain true even in early stages of running processes. Moreover, the deployed techniques are fast and produce more accurate predictions. The learned uncertainty could increase users' confidence in their process prediction systems, promote better cooperation between humans and these systems, and enable earlier implementations with smaller datasets." 2007,Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients,"Minimizing the inclusive Kullback-Leibler (KL) divergence with stochastic gradient descent (SGD) is challenging since its gradient is defined as an integral over the posterior. Recently, multiple methods have been proposed to run SGD with biased gradient estimates obtained from a Markov chain. This paper provides the first non-asymptotic convergence analysis of these methods by establishing their mixing rate and gradient variance. To do this, we demonstrate that these methods-which we collectively refer to as Markov chain score ascent (MCSA) methods-can be cast as special cases of the Markov chain gradient descent framework. Furthermore, by leveraging this new understanding, we develop a novel MCSA scheme, parallel MCSA (pMCSA), that achieves a tighter bound on the gradient variance. We demonstrate that this improved theoretical result translates to superior empirical performance." 2008,Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and Heuristic Rule-based Methods for Object Manipulation,"This paper presents an overview and comparative analysis of our systems designed for the following two tracks in SAPIEN ManiSkill Challenge 2021: No Interaction Track: The No Interaction track targets for learning policies from pre-collected demonstration trajectories. We investigate both imitation learning-based approach, i.e., imitating the observed behavior using classical supervised learning techniques, and offline reinforcement learning-based approaches, for this track. Moreover, the geometry and texture structures of objects and robotic arms are exploited via Transformer-based networks to facilitate imitation learning. No Restriction Track: In this track, we design a Heuristic Rule-based Method (HRM) to trigger high-quality object manipulation by decomposing the task into a series of sub-tasks. For each sub-task, the simple rule-based controlling strategies are adopted to predict actions that can be applied to robotic arms. To ease the implementations of our systems, all the source codes and pre-trained models are available at \url{https://github.com/caiqi/Silver-Bullet-3D/}." 2009,On the reusability of samples in active learning,"An interesting but not extensively studied question in active learning is that of sample reusability: to what extent can samples selected for one learner be reused by another? This paper explains why sample reusability is of practical interest, why reusability can be a problem, how reusability could be improved by importance-weighted active learning, and which obstacles to universal reusability remain. With theoretical arguments and practical demonstrations, this paper argues that universal reusability is impossible. Because every active learning strategy must undersample some areas of the sample space, learners that depend on the samples in those areas will learn more from a random sample selection. This paper describes several experiments with importance-weighted active learning that show the impact of the reusability problem in practice. The experiments confirmed that universal reusability does not exist, although in some cases -- on some datasets and with some pairs of classifiers -- there is sample reusability. Finally, this paper explores the conditions that could guarantee the reusability between two classifiers." 2010,Near-Optimal Sample Complexity Bounds for Constrained MDPs,"In contrast to the advances in characterizing the sample complexity for solving Markov decision processes (MDPs), the optimal statistical complexity for solving constrained MDPs (CMDPs) remains unknown. We resolve this question by providing minimax upper and lower bounds on the sample complexity for learning near-optimal policies in a discounted CMDP with access to a generative model (simulator). In particular, we design a model-based algorithm that addresses two settings: (i) relaxed feasibility, where small constraint violations are allowed, and (ii) strict feasibility, where the output policy is required to satisfy the constraint. For (i), we prove that our algorithm returns an $\epsilon$-optimal policy with probability $1 - \delta$, by making $\tilde{O}\left(\frac{S A \log(1/\delta)}{(1 - \gamma)^3 \epsilon^2}\right)$ queries to the generative model, thus matching the sample-complexity for unconstrained MDPs. For (ii), we show that the algorithm's sample complexity is upper-bounded by $\tilde{O} \left(\frac{S A \, \log(1/\delta)}{(1 - \gamma)^5 \, \epsilon^2 \zeta^2} \right)$ where $\zeta$ is the problem-dependent Slater constant that characterizes the size of the feasible region. Finally, we prove a matching lower-bound for the strict feasibility setting, thus obtaining the first near minimax optimal bounds for discounted CMDPs. Our results show that learning CMDPs is as easy as MDPs when small constraint violations are allowed, but inherently more difficult when we demand zero constraint violation." 2011,Distributed Adversarial Training to Robustify Deep Neural Networks at Scale,"Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification. To defend against such attacks, an effective and popular approach, known as adversarial training (AT), has been shown to mitigate the negative impact of adversarial attacks by virtue of a min-max robust training method. While effective, it remains unclear whether it can successfully be adapted to the distributed learning context. The power of distributed optimization over multiple machines enables us to scale up robust training over large models and datasets. Spurred by that, we propose distributed adversarial training (DAT), a large-batch adversarial training framework implemented over multiple machines. We show that DAT is general, which supports training over labeled and unlabeled data, multiple types of attack generation methods, and gradient compression operations favored for distributed optimization. Theoretically, we provide, under standard conditions in the optimization theory, the convergence rate of DAT to the first-order stationary points in general non-convex settings. Empirically, we demonstrate that DAT either matches or outperforms state-of-the-art robust accuracies and achieves a graceful training speedup (e.g., on ResNet-50 under ImageNet). Codes are available at https://github.com/dat-2022/dat." 2012,On the impact of dataset size and class imbalance in evaluating machine-learning-based windows malware detection techniques,"The purpose of this project was to collect and analyse data about the comparability and real-life applicability of published results focusing on Microsoft Windows malware, more specifically the impact of dataset size and testing dataset imbalance on measured detector performance. Some researchers use smaller datasets, and if dataset size has a significant impact on performance, that makes comparison of the published results difficult. Researchers also tend to use balanced datasets and accuracy as a metric for testing. The former is not a true representation of reality, where benign samples significantly outnumber malware, and the latter is approach is known to be problematic for imbalanced problems. The project identified two key objectives, to understand if dataset size correlates to measured detector performance to an extent that prevents meaningful comparison of published results, and to understand if good performance reported in published research can be expected to perform well in a real-world deployment scenario. The research's results suggested that dataset size does correlate with measured detector performance to an extent that prevents meaningful comparison of published results, and without understanding the nature of the training set size-accuracy curve for published results conclusions between approaches on which approach is ""better"" shouldn't be made solely based on accuracy scores. Results also suggested that high accuracy scores don't necessarily translate to high real-world performance." 2013,RPLHR-CT Dataset and Transformer Baseline for Volumetric Super-Resolution from CT Scans,"In clinical practice, anisotropic volumetric medical images with low through-plane resolution are commonly used due to short acquisition time and lower storage cost. Nevertheless, the coarse resolution may lead to difficulties in medical diagnosis by either physicians or computer-aided diagnosis algorithms. Deep learning-based volumetric super-resolution (SR) methods are feasible ways to improve resolution, with convolutional neural networks (CNN) at their core. Despite recent progress, these methods are limited by inherent properties of convolution operators, which ignore content relevance and cannot effectively model long-range dependencies. In addition, most of the existing methods use pseudo-paired volumes for training and evaluation, where pseudo low-resolution (LR) volumes are generated by a simple degradation of their high-resolution (HR) counterparts. However, the domain gap between pseudo- and real-LR volumes leads to the poor performance of these methods in practice. In this paper, we build the first public real-paired dataset RPLHR-CT as a benchmark for volumetric SR, and provide baseline results by re-implementing four state-of-the-art CNN-based methods. Considering the inherent shortcoming of CNN, we also propose a transformer volumetric super-resolution network (TVSRN) based on attention mechanisms, dispensing with convolutions entirely. This is the first research to use a pure transformer for CT volumetric SR. The experimental results show that TVSRN significantly outperforms all baselines on both PSNR and SSIM. Moreover, the TVSRN method achieves a better trade-off between the image quality, the number of parameters, and the running time. Data and code are available at https://github.com/smilenaxx/RPLHR-CT." 2014,Contrastive Learning for Unsupervised Domain Adaptation of Time Series,"Unsupervised domain adaptation (UDA) aims at learning a machine learning model using a labeled source domain that performs well on a similar yet different, unlabeled target domain. UDA is important in many applications such as medicine, where it is used to adapt risk scores across different patient cohorts. In this paper, we develop a novel framework for UDA of time series data, called CLUDA. Specifically, we propose a contrastive learning framework to learn domain-invariant semantics in multivariate time series, so that these preserve label information for the prediction task. In our framework, we further capture semantic variation between source and target domain via nearest-neighbor contrastive learning. To the best of our knowledge, ours is the first framework to learn domain-invariant semantic information for UDA of time series data. We evaluate our framework using large-scale, real-world datasets with medical time series (i.e., MIMIC-IV and AmsterdamUMCdb) to demonstrate its effectiveness and show that it achieves state-of-the-art performance for time series UDA." 2015,Evaluating Graph Generative Models with Contrastively Learned Features,"A wide range of models have been proposed for Graph Generative Models, necessitating effective methods to evaluate their quality. So far, most techniques use either traditional metrics based on subgraph counting, or the representations of randomly initialized Graph Neural Networks (GNNs). We propose using representations from contrastively trained GNNs, rather than random GNNs, and show this gives more reliable evaluation metrics. Neither traditional approaches nor GNN-based approaches dominate the other, however: we give examples of graphs that each approach is unable to distinguish. We demonstrate that Graph Substructure Networks (GSNs), which in a way combine both approaches, are better at distinguishing the distances between graph datasets." 2016,Towards Understanding Sharpness-Aware Minimization,"Sharpness-Aware Minimization (SAM) is a recent training method that relies on worst-case weight perturbations which significantly improves generalization in various settings. We argue that the existing justifications for the success of SAM which are based on a PAC-Bayes generalization bound and the idea of convergence to flat minima are incomplete. Moreover, there are no explanations for the success of using $m$-sharpness in SAM which has been shown as essential for generalization. To better understand this aspect of SAM, we theoretically analyze its implicit bias for diagonal linear networks. We prove that SAM always chooses a solution that enjoys better generalization properties than standard gradient descent for a certain class of problems, and this effect is amplified by using $m$-sharpness. We further study the properties of the implicit bias on non-linear networks empirically, where we show that fine-tuning a standard model with SAM can lead to significant generalization improvements. Finally, we provide convergence results of SAM for non-convex objectives when used with stochastic gradients. We illustrate these results empirically for deep networks and discuss their relation to the generalization behavior of SAM. The code of our experiments is available at https://github.com/tml-epfl/understanding-sam." 2017,Transition-based Abstract Meaning Representation Parsing with Contextual Embeddings,"The ability to understand and generate languages sets human cognition apart from other known life forms'. We study a way of combing two of the most successful routes to meaning of language--statistical language models and symbolic semantics formalisms--in the task of semantic parsing. Building on a transition-based, Abstract Meaning Representation (AMR) parser, AmrEager, we explore the utility of incorporating pretrained context-aware word embeddings--such as BERT and RoBERTa--in the problem of AMR parsing, contributing a new parser we dub as AmrBerger. Experiments find these rich lexical features alone are not particularly helpful in improving the parser's overall performance as measured by the SMATCH score when compared to the non-contextual counterpart, while additional concept information empowers the system to outperform the baselines. Through lesion study, we found the use of contextual embeddings helps to make the system more robust against the removal of explicit syntactical features. These findings expose the strength and weakness of the contextual embeddings and the language models in the current form, and motivate deeper understanding thereof." 2018,Convergence for score-based generative modeling with polynomial complexity,"Score-based generative modeling (SGM) is a highly successful approach for learning a probability distribution from data and generating further samples. We prove the first polynomial convergence guarantees for the core mechanic behind SGM: drawing samples from a probability density $p$ given a score estimate (an estimate of $\nabla \ln p$) that is accurate in $L^2(p)$. Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality. Our guarantee works for any smooth distribution and depends polynomially on its log-Sobolev constant. Using our guarantee, we give a theoretical analysis of score-based generative modeling, which transforms white-noise input into samples from a learned data distribution given score estimates at different noise scales. Our analysis gives theoretical grounding to the observation that an annealed procedure is required in practice to generate good samples, as our proof depends essentially on using annealing to obtain a warm start at each step. Moreover, we show that a predictor-corrector algorithm gives better convergence than using either portion alone." 2019,Acceleration of cerebral blood flow and arterial transit time maps estimation from multiple post-labeling delay arterial spin-labeled MRI via deep learning,"Purpose: Arterial spin labeling (ASL) perfusion imaging indicates direct and absolute measurement of cerebral blood flow (CBF). Arterial transit time (ATT) is a related physiological parameter reflecting the duration for the labeled spins to reach the brain region of interest. Multiple post-labeling delay (PLDs) can provide robust measures of both CBF and ATT, allowing for optimization of regional CBF modeling based on ATT. The prolonged acquisition time can potentially reduce the quality and accuracy of the CBF and ATT estimation. We proposed a novel network to significantly reduce the number of PLDs with higher signal-to-noise ratio (SNR). Method: CBF and ATT estimations were performed for one PLD and two PLDs sepa-rately. Each model was trained independently to learn the nonlinear transformation from perfusion weighted image (PWI) to CBF and ATT images. Results: Both one-PLD and two-PLD models outperformed the conventional method visually on CBF and two-PLD model showed more accurate structure on ATT estima-tion. The proposed method significantly reduces the number of PLDs from 6 to 2 on ATT and even to single PLD on CBF without sacrificing the SNR. Conclusion: It is feasible to generate CBF and ATT maps with reduced PLDs using deep learning with high quality." 2020,Predicting conditional probability distributions of redshifts of Active Galactic Nuclei using Hierarchical Correlation Reconstruction,"While there is a general focus on prediction of values, real data often only allows to predict conditional probability distributions, with capabilities bounded by conditional entropy $H(Y|X)$. If additionally estimating uncertainty, we can treat a predicted value as the center of Gaussian of Laplace distribution - idealization which can be far from complex conditional distributions of real data. This article applies Hierarchical Correlation Reconstruction (HCR) approach to inexpensively predict quite complex conditional probability distributions (e.g. multimodal): by independent MSE estimation of multiple moment-like parameters, which allow to reconstruct the conditional distribution. Using linear regression for this purpose, we get interpretable models: with coefficients describing contributions of features to conditional moments. This article extends on the original approach especially by using Canonical Correlation Analysis (CCA) for feature optimization and l1 ""lasso"" regularization, focusing on practical problem of prediction of redshift of Active Galactic Nuclei (AGN) based on Fourth Fermi-LAT Data Release 2 (4LAC) dataset." 2021,AI-based Data Preparation and Data Analytics in Healthcare: The Case of Diabetes,"The Associazione Medici Diabetologi (AMD) collects and manages one of the largest worldwide-available collections of diabetic patient records, also known as the AMD database. This paper presents the initial results of an ongoing project whose focus is the application of Artificial Intelligence and Machine Learning techniques for conceptualizing, cleaning, and analyzing such an important and valuable dataset, with the goal of providing predictive insights to better support diabetologists in their diagnostic and therapeutic choices." 2022,EGRU: Event-based GRU for activity-sparse inference and learning,"The scalability of recurrent neural networks (RNNs) is hindered by the sequential dependence of each time step's computation on the previous time step's output. Therefore, one way to speed up and scale RNNs is to reduce the computation required at each time step independent of model size and task. In this paper, we propose a model that reformulates Gated Recurrent Units (GRU) as an event-based activity-sparse model that we call the Event-based GRU (EGRU), where units compute updates only on receipt of input events (event-based) from other units. When combined with having only a small fraction of the units active at a time (activity-sparse), this model has the potential to be vastly more compute efficient than current RNNs. Notably, activity-sparsity in our model also translates into sparse parameter updates during gradient descent, extending this compute efficiency to the training phase. We show that the EGRU demonstrates competitive performance compared to state-of-the-art recurrent network models in real-world tasks, including language modeling while maintaining high activity sparsity naturally during inference and training. This sets the stage for the next generation of recurrent networks that are scalable and more suitable for novel neuromorphic hardware." 2023,iCITRIS: Causal Representation Learning for Instantaneous Temporal Effects,"Causal representation learning is the task of identifying the underlying causal variables and their relations from high-dimensional observations, such as images. Recent work has shown that one can reconstruct the causal variables from temporal sequences of observations under the assumption that there are no instantaneous causal relations between them. In practical applications, however, our measurement or frame rate might be slower than many of the causal effects. This effectively creates ""instantaneous"" effects and invalidates previous identifiability results. To address this issue, we propose iCITRIS, a causal representation learning method that can handle instantaneous effects in temporal sequences when given perfect interventions with known intervention targets. iCITRIS identifies the causal factors from temporal observations, while simultaneously using a differentiable causal discovery method to learn their causal graph. In experiments on three video datasets, iCITRIS accurately identifies the causal factors and their causal graph." 2024,The Classification of Optical Galaxy Morphology Using Unsupervised Learning Techniques,"The advent of large scale, data intensive astronomical surveys has caused the viability of human-based galaxy morphology classification methods to come into question. Put simply, too much astronomical data is being produced for scientists to visually label. Attempts have been made to crowd-source this work by recruiting volunteers from the general public. However, even these efforts will soon fail to keep up with data produced by modern surveys. Unsupervised learning techniques do not require existing labels to classify data and could pave the way to unplanned discoveries. Therefore, this paper aims to implement unsupervised learning algorithms to classify the Galaxy Zoo DECaLS dataset without human supervision. First, a convolutional autoencoder was implemented as a feature extractor. The extracted features were then clustered via k-means, fuzzy c-means and agglomerative clustering to provide classifications. The results were compared to the volunteer classifications of the Galaxy Zoo DECaLS dataset. Agglomerative clustering generally produced the best results, however, the performance gain over k-means clustering was not significant. With the appropriate optimizations, this approach could be used to provide classifications for the better performing Galaxy Zoo DECaLS decision tree questions. Ultimately, this unsupervised learning approach provided valuable insights and results that were useful to scientists." 2025,SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In Silico Experiments,"Artificial intelligence (AI) now enables automated interpretation of medical images for clinical use. However, AI's potential use for interventional images (versus those involved in triage or diagnosis), such as for guidance during surgery, remains largely untapped. This is because surgical AI systems are currently trained using post hoc analysis of data collected during live surgeries, which has fundamental and practical limitations, including ethical considerations, expense, scalability, data integrity, and a lack of ground truth. Here, we demonstrate that creating realistic simulated images from human models is a viable alternative and complement to large-scale in situ data collection. We show that training AI image analysis models on realistically synthesized data, combined with contemporary domain generalization or adaptation techniques, results in models that on real data perform comparably to models trained on a precisely matched real data training set. Because synthetic generation of training data from human-based models scales easily, we find that our model transfer paradigm for X-ray image analysis, which we refer to as SyntheX, can even outperform real data-trained models due to the effectiveness of training on a larger dataset. We demonstrate the potential of SyntheX on three clinical tasks: Hip image analysis, surgical robotic tool detection, and COVID-19 lung lesion segmentation. SyntheX provides an opportunity to drastically accelerate the conception, design, and evaluation of intelligent systems for X-ray-based medicine. In addition, simulated image environments provide the opportunity to test novel instrumentation, design complementary surgical approaches, and envision novel techniques that improve outcomes, save time, or mitigate human error, freed from the ethical and practical considerations of live human data collection." 2026,Robust Time Series Denoising with Learnable Wavelet Packet Transform,"In many applications, signal denoising is often the first pre-processing step before any subsequent analysis or learning task. In this paper, we propose to apply a deep learning denoising model inspired by a signal processing, a learnable version of wavelet packet transform. The proposed algorithm has signficant learning capabilities with few interpretable parameters and has an intuitive initialisation. We propose a post-learning modification of the parameters to adapt the denoising to different noise levels. We evaluate the performance of the proposed methodology on two case studies and compare it to other state of the art approaches, including wavelet schrinkage denoising, convolutional neural network, autoencoder and U-net deep models. The first case study is based on designed functions that have typically been used to study denoising properties of the algorithms. The second case study is an audio background removal task. We demonstrate how the proposed algorithm relates to the universality of signal processing methods and the learning capabilities of deep learning approaches. In particular, we evaluate the obtained denoising performances on structured noisy signals inside and outside the classes used for training. In addition to having good performance in denoising signals inside and outside to the training class, our method shows to be particularly robust when different noise levels, noise types and artifacts are added." 2027,Markov Decision Processes under Model Uncertainty,"We introduce a general framework for Markov decision problems under model uncertainty in a discrete-time infinite horizon setting. By providing a dynamic programming principle we obtain a local-to-global paradigm, namely solving a local, i.e., a one time-step robust optimization problem leads to an optimizer of the global (i.e. infinite time-steps) robust stochastic optimal control problem, as well as to a corresponding worst-case measure. Moreover, we apply this framework to portfolio optimization involving data of the S&P 500. We present two different types of ambiguity sets; one is fully data-driven given by a Wasserstein-ball around the empirical measure, the second one is described by a parametric set of multivariate normal distributions, where the corresponding uncertainty sets of the parameters are estimated from the data. It turns out that in scenarios where the market is volatile or bearish, the optimal portfolio strategies from the corresponding robust optimization problem outperforms the ones without model uncertainty, showcasing the importance of taking model uncertainty into account." 2028,AR-NeRF: Unsupervised Learning of Depth and Defocus Effects from Natural Images with Aperture Rendering Neural Radiance Fields,"Fully unsupervised 3D representation learning has gained attention owing to its advantages in data collection. A successful approach involves a viewpoint-aware approach that learns an image distribution based on generative models (e.g., generative adversarial networks (GANs)) while generating various view images based on 3D-aware models (e.g., neural radiance fields (NeRFs)). However, they require images with various views for training, and consequently, their application to datasets with few or limited viewpoints remains a challenge. As a complementary approach, an aperture rendering GAN (AR-GAN) that employs a defocus cue was proposed. However, an AR-GAN is a CNN-based model and represents a defocus independently from a viewpoint change despite its high correlation, which is one of the reasons for its performance. As an alternative to an AR-GAN, we propose an aperture rendering NeRF (AR-NeRF), which can utilize viewpoint and defocus cues in a unified manner by representing both factors in a common ray-tracing framework. Moreover, to learn defocus-aware and defocus-independent representations in a disentangled manner, we propose aperture randomized training, for which we learn to generate images while randomizing the aperture size and latent codes independently. During our experiments, we applied AR-NeRF to various natural image datasets, including flower, bird, and face images, the results of which demonstrate the utility of AR-NeRF for unsupervised learning of the depth and defocus effects." 2029,Towards Autonomous Grading In The Real World,"In this work, we aim to tackle the problem of autonomous grading, where a dozer is required to flatten an uneven area. In addition, we explore methods for bridging the gap between a simulated environment and real scenarios. We design both a realistic physical simulation and a scaled real prototype environment mimicking the real dozer dynamics and sensory information. We establish heuristics and learning strategies in order to solve the problem. Through extensive experimentation, we show that although heuristics are capable of tackling the problem in a clean and noise-free simulated environment, they fail catastrophically when facing real world scenarios. As the heuristics are capable of successfully solving the task in the simulated environment, we show they can be leveraged to guide a learning agent which can generalize and solve the task both in simulation and in a scaled prototype environment." 2030,Rank Diminishing in Deep Neural Networks,"The rank of neural networks measures information flowing across layers. It is an instance of a key structural condition that applies across broad domains of machine learning. In particular, the assumption of low-rank feature representations leads to algorithmic developments in many architectures. For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear. To fill this gap, we perform a rigorous study on the behavior of network rank, focusing particularly on the notion of rank deficiency. We theoretically establish a universal monotonic decreasing property of network rank from the basic rules of differential and algebraic composition, and uncover rank deficiency of network blocks and deep function coupling. By virtue of our numerical tools, we provide the first empirical analysis of the per-layer behavior of network rank in practical settings, i.e., ResNets, deep MLPs, and Transformers on ImageNet. These empirical results are in direct accord with our theory. Furthermore, we reveal a novel phenomenon of independence deficit caused by the rank deficiency of deep networks, where classification confidence of a given category can be linearly decided by the confidence of a handful of other categories. The theoretical results of this work, together with the empirical findings, may advance understanding of the inherent principles of deep neural networks." 2031,Energy-Efficient Wake-Up Signalling for Machine-Type Devices Based on Traffic-Aware Long-Short Term Memory Prediction,"Reducing energy consumption is a pressing issue in low-power machine-type communication (MTC) networks. In this regard, the Wake-up Signal (WuS) technology, which aims to minimize the energy consumed by the radio interface of the machine-type devices (MTDs), stands as a promising solution. However, state-of-the-art WuS mechanisms use static operational parameters, so they cannot efficiently adapt to the system dynamics. To overcome this, we design a simple but efficient neural network to predict MTC traffic patterns and configure WuS accordingly. Our proposed forecasting WuS (FWuS) leverages an accurate long-short term memory (LSTM)- based traffic prediction that allows extending the sleep time of MTDs by avoiding frequent page monitoring occasions in idle state. Simulation results show the effectiveness of our approach. The traffic prediction errors are shown to be below 4%, being false alarm and miss-detection probabilities respectively below 8.8% and 1.3%. In terms of energy consumption reduction, FWuS can outperform the best benchmark mechanism in up to 32%. Finally, we certify the ability of FWuS to dynamically adapt to traffic density changes, promoting low-power MTC scalability" 2032,Low-complexity deep learning frameworks for acoustic scene classification,"In this report, we presents low-complexity deep learning frameworks for acoustic scene classification (ASC). The proposed frameworks can be separated into four main steps: Front-end spectrogram extraction, online data augmentation, back-end classification, and late fusion of predicted probabilities. In particular, we initially transform audio recordings into Mel, Gammatone, and CQT spectrograms. Next, data augmentation methods of Random Cropping, Specaugment, and Mixup are then applied to generate augmented spectrograms before being fed into deep learning based classifiers. Finally, to achieve the best performance, we fuse probabilities which obtained from three individual classifiers, which are independently-trained with three type of spectrograms. Our experiments conducted on DCASE 2022 Task 1 Development dataset have fullfiled the requirement of low-complexity and achieved the best classification accuracy of 60.1%, improving DCASE baseline by 17.2%." 2033,Specifying and Testing $k$-Safety Properties for Machine-Learning Models,"Machine-learning models are becoming increasingly prevalent in our lives, for instance assisting in image-classification or decision-making tasks. Consequently, the reliability of these models is of critical importance and has resulted in the development of numerous approaches for validating and verifying their robustness and fairness. However, beyond such specific properties, it is challenging to specify, let alone check, general functional-correctness expectations from models. In this paper, we take inspiration from specifications used in formal methods, expressing functional-correctness properties by reasoning about $k$ different executions, so-called $k$-safety properties. Considering a credit-screening model of a bank, the expected property that ""if a person is denied a loan and their income decreases, they should still be denied the loan"" is a 2-safety property. Here, we show the wide applicability of $k$-safety properties for machine-learning models and present the first specification language for expressing them. We also operationalize the language in a framework for automatically validating such properties using metamorphic testing. Our experiments show that our framework is effective in identifying property violations, and that detected bugs could be used to train better models." 2034,Neuromorphic Wireless Cognition: Event-Driven Semantic Communications for Remote Inference,"Neuromorphic computing is an emerging computing paradigm that moves away from batched processing towards the online, event-driven, processing of streaming data. Neuromorphic chips, when coupled with spike-based sensors, can inherently adapt to the ""semantics"" of the data distribution by consuming energy only when relevant events are recorded in the timing of spikes and by proving a low-latency response to changing conditions in the environment. This paper proposes an end-to-end design for a neuromorphic wireless Internet-of-Things system that integrates spike-based sensing, processing, and communication. In the proposed NeuroComm system, each sensing device is equipped with a neuromorphic sensor, a spiking neural network (SNN), and an impulse radio transmitter with multiple antennas. Transmission takes place over a shared fading channel to a receiver equipped with a multi-antenna impulse radio receiver and with an SNN. In order to enable adaptation of the receiver to the fading channel conditions, we introduce a hypernetwork to control the weights of the decoding SNN using pilots. Pilots, encoding SNNs, decoding SNN, and hypernetwork are jointly trained across multiple channel realizations. The proposed system is shown to significantly improve over conventional frame-based digital solutions, as well as over alternative non-adaptive training methods, in terms of time-to-accuracy and energy consumption metrics." 2035,Automatic Contact Tracing using Bluetooth Low Energy Signals and IMU Sensor Readings,"In this report, we present our solution to the challenge provided by the SFI Centre for Machine Learning (ML-Labs) in which the distance between two phones needs to be estimated. It is a modified version of the NIST Too Close For Too Long (TC4TL) Challenge, as the time aspect is excluded. We propose a feature-based approach based on Bluetooth RSSI and IMU sensory data, that outperforms the previous state of the art by a significant margin, reducing the error down to 0.071. We perform an ablation study of our model that reveals interesting insights about the relationship between the distance and the Bluetooth RSSI readings." 2036,A universal synthetic dataset for machine learning on spectroscopic data,"To assist in the development of machine learning methods for automated classification of spectroscopic data, we have generated a universal synthetic dataset that can be used for model validation. This dataset contains artificial spectra designed to represent experimental measurements from techniques including X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy. The dataset generation process features customizable parameters, such as scan length and peak count, which can be adjusted to fit the problem at hand. As an initial benchmark, we simulated a dataset containing 35,000 spectra based on 500 unique classes. To automate the classification of this data, eight different machine learning architectures were evaluated. From the results, we shed light on which factors are most critical to achieve optimal performance for the classification task. The scripts used to generate synthetic spectra, as well as our benchmark dataset and evaluation routines, are made publicly available to aid in the development of improved machine learning models for spectroscopic analysis." 2037,Mediators: Conversational Agents Explaining NLP Model Behavior,"The human-centric explainable artificial intelligence (HCXAI) community has raised the need for framing the explanation process as a conversation between human and machine. In this position paper, we establish desiderata for Mediators, text-based conversational agents which are capable of explaining the behavior of neural models interactively using natural language. From the perspective of natural language processing (NLP) research, we engineer a blueprint of such a Mediator for the task of sentiment analysis and assess how far along current research is on the path towards dialogue-based explanations." 2038,Machine Learning Training on a Real Processing-in-Memory System,"Training machine learning algorithms is a computationally intensive process, which is frequently memory-bound due to repeatedly accessing large training datasets. As a result, processor-centric systems (e.g., CPU, GPU) suffer from costly data movement between memory units and processing units, which consumes large amounts of energy and execution cycles. Memory-centric computing systems, i.e., computing systems with processing-in-memory (PIM) capabilities, can alleviate this data movement bottleneck. Our goal is to understand the potential of modern general-purpose PIM architectures to accelerate machine learning training. To do so, we (1) implement several representative classic machine learning algorithms (namely, linear regression, logistic regression, decision tree, K-means clustering) on a real-world general-purpose PIM architecture, (2) characterize them in terms of accuracy, performance and scaling, and (3) compare to their counterpart implementations on CPU and GPU. Our experimental evaluation on a memory-centric computing system with more than 2500 PIM cores shows that general-purpose PIM architectures can greatly accelerate memory-bound machine learning workloads, when the necessary operations and datatypes are natively supported by PIM hardware. To our knowledge, our work is the first one to evaluate training of machine learning algorithms on a real-world general-purpose PIM architecture." 2039,No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation,"We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully adversarial environments. We study this problem in the context of variationally stable games (a class of continuous games which includes all convex-concave and monotone games), and when the players only have access to noisy estimates of their individual payoff gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret guarantees; however, if the noise is multiplicative, we show that the learners can, in fact, achieve constant regret. We achieve this faster rate via an optimistic gradient scheme with learning rate separation -- that is, the method's extrapolation and update steps are tuned to different schedules, depending on the noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully adaptive method that smoothly interpolates between worst- and best-case regret guarantees." 2040,Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling,"Despite the extensive studies on Generative Adversarial Networks (GANs), how to reliably sample high-quality images from their latent spaces remains an under-explored topic. In this paper, we propose a novel GAN latent sampling method by exploring and exploiting the hubness priors of GAN latent distributions. Our key insight is that the high dimensionality of the GAN latent space will inevitably lead to the emergence of hub latents that usually have much larger sampling densities than other latents in the latent space. As a result, these hub latents are better trained and thus contribute more to the synthesis of high-quality images. Unlike the a posterior ""cherry-picking"", our method is highly efficient as it is an a priori method that identifies high-quality latents before the synthesis of images. Furthermore, we show that the well-known but purely empirical truncation trick is a naive approximation to the central clustering effect of hub latents, which not only uncovers the rationale of the truncation trick, but also indicates the superiority and fundamentality of our method. Extensive experimental results demonstrate the effectiveness of the proposed method." 2041,Reinforcement Learning-based Placement of Charging Stations in Urban Road Networks,"The transition from conventional mobility to electromobility largely depends on charging infrastructure availability and optimal placement.This paper examines the optimal placement of charging stations in urban areas. We maximise the charging infrastructure supply over the area and minimise waiting, travel, and charging times while setting budget constraints. Moreover, we include the possibility of charging vehicles at home to obtain a more refined estimation of the actual charging demand throughout the urban area. We formulate the Placement of Charging Stations problem as a non-linear integer optimisation problem that seeks the optimal positions for charging stations and the optimal number of charging piles of different charging types. We design a novel Deep Reinforcement Learning approach to solve the charging station placement problem (PCRL). Extensive experiments on real-world datasets show how the PCRL reduces the waiting and travel time while increasing the benefit of the charging plan compared to five baselines. Compared to the existing infrastructure, we can reduce the waiting time by up to 97% and increase the benefit up to 497%." 2042,Relative Policy-Transition Optimization for Fast Policy Transfer,"We consider the problem of policy transfer between two Markov Decision Processes (MDPs). We introduce a lemma based on existing theoretical results in reinforcement learning (RL) to measure the relativity between two arbitrary MDPs, that is the difference between any two cumulative expected returns defined on different policies and environment dynamics. Based on this lemma, we propose two new algorithms referred to as Relative Policy Optimization (RPO) and Relative Transition Optimization (RTO), which can offer fast policy transfer and dynamics modeling, respectively. RPO updates the policy using the relative policy gradient to transfer the policy evaluated in one environment to maximize the return in another, while RTO updates the parameterized dynamics model (if there exists) using the relative transition gradient to reduce the gap between the dynamics of the two environments. Then, integrating the two algorithms offers the complete algorithm Relative Policy-Transition Optimization (RPTO), in which the policy interacts with the two environments simultaneously, such that data collections from two environments, policy and transition updates are completed in one closed loop to form a principled learning framework for policy transfer. We demonstrate the effectiveness of RPTO in OpenAI gym's classic control tasks by creating policy transfer problems via variant dynamics." 2043,Intrinsically motivated option learning: a comparative study of recent methods,"Options represent a framework for reasoning across multiple time scales in reinforcement learning (RL). With the recent active interest in the unsupervised learning paradigm in the RL research community, the option framework was adapted to utilize the concept of empowerment, which corresponds to the amount of influence the agent has on the environment and its ability to perceive this influence, and which can be optimized without any supervision provided by the environment's reward structure. Many recent papers modify this concept in various ways achieving commendable results. Through these various modifications, however, the initial context of empowerment is often lost. In this work we offer a comparative study of such papers through the lens of the original empowerment principle." 2044,A Novel Multi-Layer Modular Approach for Real-Time Gravitational-Wave Detection,"Advanced LIGO and Advanced Virgo ground-based interferometers are poised to probe an unprecedentedly large volume of space, enhancing the discovery power of the observations to even new sources of gravitational wave emitters. In this scenario, the development of highly optimized gravitational wave detection algorithms is crucial. We propose a novel layered framework for real-time detection of gravitational waves inspired by speech processing techniques and, in the present implementation, based on a state-of-the-art machine learning approach involving a hybridization of genetic programming and neural networks. The key aspects of the newly proposed framework are: the well structured, layered approach, and the low computational complexity. The paper describes the basic concepts of the framework and the derivation of the first three layers. Even if, in the present implementation, the layers are based on models derived using a machine learning approach, the proposed layered structure has a universal nature. To train and test the models, we used simulated binary black hole gravitational wave waveforms in synthetic Gaussian noise representative of Advanced LIGO sensitivity design. Compared to more complex approaches, such as convolutional neural networks, our framework, even using the simple ground model described in the paper, has similar performance but with a much lower computational complexity and a higher degree of modularity. Furthermore, the underlying exploitation of short-term features makes the results of the new framework virtually independent against time-position of gravitational wave signals, simplifying its future exploitation in real-time multi-layer pipelines for gravitational-wave detection with second generation interferometers." 2045,GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access,"Non-orthogonal multiple access (NOMA) is an interesting technology that enables massive connectivity as required in future 5G and 6G networks. While purely linear processing already achieves good performance in NOMA systems, in certain scenarios, non-linear processing is mandatory to ensure acceptable performance. In this paper, we propose a neural network architecture that combines the advantages of both linear and non-linear processing. Its real-time detection performance is demonstrated by a highly efficient implementation on a graphics processing unit (GPU). Using real measurements in a laboratory environment, we show the superiority of our approach over conventional methods." 2046,Analysis of function approximation and stability of general DNNs in directed acyclic graphs using un-rectifying analysis,"A general lack of understanding pertaining to deep feedforward neural networks (DNNs) can be attributed partly to a lack of tools with which to analyze the composition of non-linear functions, and partly to a lack of mathematical models applicable to the diversity of DNN architectures. In this paper, we made a number of basic assumptions pertaining to activation functions, non-linear transformations, and DNN architectures in order to use the un-rectifying method to analyze DNNs via directed acyclic graphs (DAGs). DNNs that satisfy these assumptions are referred to as general DNNs. Our construction of an analytic graph was based on an axiomatic method in which DAGs are built from the bottom-up through the application of atomic operations to basic elements in accordance with regulatory rules. This approach allows us to derive the properties of general DNNs via mathematical induction. We show that using the proposed approach, some properties hold true for general DNNs can be derived. This analysis advances our understanding of network functions and could promote further theoretical insights if the host of analytical tools for graphs can be leveraged." 2047,Multi-Agent Neural Rewriter for Vehicle Routing with Limited Disclosure of Costs,"We interpret solving the multi-vehicle routing problem as a team Markov game with partially observable costs. For a given set of customers to serve, the playing agents (vehicles) have the common goal to determine the team-optimal agent routes with minimal total cost. Each agent thereby observes only its own cost. Our multi-agent reinforcement learning approach, the so-called multi-agent Neural Rewriter, builds on the single-agent Neural Rewriter to solve the problem by iteratively rewriting solutions. Parallel agent action execution and partial observability require new rewriting rules for the game. We propose the introduction of a so-called pool in the system which serves as a collection point for unvisited nodes. It enables agents to act simultaneously and exchange nodes in a conflict-free manner. We realize limited disclosure of agent-specific costs by only sharing them during learning. During inference, each agents acts decentrally, solely based on its own cost. First empirical results on small problem sizes demonstrate that we reach a performance close to the employed OR-Tools benchmark which operates in the perfect cost information setting." 2048,High-Dimensional Bayesian Optimization with Constraints: Application to Powder Weighing,"Bayesian optimization works effectively optimizing parameters in black-box problems. However, this method did not work for high-dimensional parameters in limited trials. Parameters can be efficiently explored by nonlinearly embedding them into a low-dimensional space; however, the constraints cannot be considered. We proposed combining parameter decomposition by introducing disentangled representation learning into nonlinear embedding to consider both known equality and unknown inequality constraints in high-dimensional Bayesian optimization. We applied the proposed method to a powder weighing task as a usage scenario. Based on the experimental results, the proposed method considers the constraints and contributes to reducing the number of trials by approximately 66% compared to manual parameter tuning." 2049,Modeling the Machine Learning Multiverse,"Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the Multiverse Analysis. Our framework builds upon the Multiverse Analysis (Steegen et al., 2016) introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the Multiverse Analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility." 2050,Flexible Raman Amplifier Optimization Based on Machine Learning-aided Physical Stimulated Raman Scattering Model,"The problem of Raman amplifier optimization is studied. A differentiable interpolation function is obtained for the Raman gain coefficient using machine learning (ML), which allows for the gradient descent optimization of forward-propagating Raman pumps. Both the frequency and power of an arbitrary number of pumps in a forward pumping configuration are then optimized for an arbitrary data channel load and span length. The forward propagation model is combined with an experimentally-trained ML model of a backward-pumping Raman amplifier to jointly optimize the frequency and power of the forward amplifier's pumps and the powers of the backward amplifier's pumps. The joint forward and backward amplifier optimization is demonstrated for an unrepeatered transmission of 250 km. A gain flatness of $<$ 1~dB over 4 THz is achieved. The optimized amplifiers are validated using a numerical simulator." 2051,Efficient Human-in-the-loop System for Guiding DNNs Attention,"Attention guidance is an approach to addressing dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to the regions specified by users, thereby reducing the influence of co-occurrence bias and improving the transferability and interpretability of a DNN. Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We present a new interactive method to allow users to annotate images with simple clicks, and study a novel active learning strategy to significantly reduce the number of annotations. We conducted both a numerical evaluation and a user study to evaluate the proposed system on multiple datasets. Compared to the existing non-active-learning approach which usually relies on huge amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can save lots of labor and money and obtain a fine-tuned network that works better even when the dataset is biased. The experiment results indicate that the proposed system is efficient, reasonable, and reliable." 2052,Top Two Algorithms Revisited,"Top Two algorithms arose as an adaptation of Thompson sampling to best arm identification in multi-armed bandit models (Russo, 2016), for parametric families of arms. They select the next arm to sample from by randomizing among two candidate arms, a leader and a challenger. Despite their good empirical performance, theoretical guarantees for fixed-confidence best arm identification have only been obtained when the arms are Gaussian with known variances. In this paper, we provide a general analysis of Top Two methods, which identifies desirable properties of the leader, the challenger, and the (possibly non-parametric) distributions of the arms. As a result, we obtain theoretically supported Top Two algorithms for best arm identification with bounded distributions. Our proof method demonstrates in particular that the sampling step used to select the leader inherited from Thompson sampling can be replaced by other choices, like selecting the empirical best arm." 2053,Recommender Transformers with Behavior Pathways,"Sequential recommendation requires the recommender to capture the evolving behavior characteristics from logged user behavior data for accurate recommendations. However, user behavior sequences are viewed as a script with multiple ongoing threads intertwined. We find that only a small set of pivotal behaviors can be evolved into the user's future action. As a result, the future behavior of the user is hard to predict. We conclude this characteristic for sequential behaviors of each user as the Behavior Pathway. Different users have their unique behavior pathways. Among existing sequential models, transformers have shown great capacity in capturing global-dependent characteristics. However, these models mainly provide a dense distribution over all previous behaviors using the self-attention mechanism, making the final predictions overwhelmed by the trivial behaviors not adjusted to each user. In this paper, we build the Recommender Transformer (RETR) with a novel Pathway Attention mechanism. RETR can dynamically plan the behavior pathway specified for each user, and sparingly activate the network through this behavior pathway to effectively capture evolving patterns useful for recommendation. The key design is a learned binary route to prevent the behavior pathway from being overwhelmed by trivial behaviors. We empirically verify the effectiveness of RETR on seven real-world datasets and RETR yields state-of-the-art performance." 2054,Value Function Based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems,"Gradient-based optimization methods for hyperparameter tuning guarantee theoretical convergence to stationary solutions when for fixed upper-level variable values, the lower level of the bilevel program is strongly convex (LLSC) and smooth (LLS). This condition is not satisfied for bilevel programs arising from tuning hyperparameters in many machine learning algorithms. In this work, we develop a sequentially convergent Value Function based Difference-of-Convex Algorithm with inexactness (VF-iDCA). We show that this algorithm achieves stationary solutions without LLSC and LLS assumptions for bilevel programs from a broad class of hyperparameter tuning applications. Our extensive experiments confirm our theoretical findings and show that the proposed VF-iDCA yields superior performance when applied to tune hyperparameters." 2055,Deep Neural Network Based Accelerated Failure Time Models using Rank Loss,"An accelerated failure time (AFT) model assumes a log-linear relationship between failure times and a set of covariates. In contrast to other popular survival models that work on hazard functions, the effects of covariates are directly on failure times, whose interpretation is intuitive. The semiparametric AFT model that does not specify the error distribution is flexible and robust to departures from the distributional assumption. Owing to the desirable features, this class of models has been considered as a promising alternative to the popular Cox model in the analysis of censored failure time data. However, in these AFT models, a linear predictor for the mean is typically assumed. Little research has addressed the nonlinearity of predictors when modeling the mean. Deep neural networks (DNNs) have received a focal attention over the past decades and have achieved remarkable success in a variety of fields. DNNs have a number of notable advantages and have been shown to be particularly useful in addressing the nonlinearity. By taking advantage of this, we propose to apply DNNs in fitting AFT models using a Gehan-type loss, combined with a sub-sampling technique. Finite sample properties of the proposed DNN and rank based AFT model (DeepR-AFT) are investigated via an extensive stimulation study. DeepR-AFT shows a superior performance over its parametric or semiparametric counterparts when the predictor is nonlinear. For linear predictors, DeepR-AFT performs better when the dimensions of covariates are large. The proposed DeepR-AFT is illustrated using two real datasets, which demonstrates its superiority." 2056,EmProx: Neural Network Performance Estimation For Neural Architecture Search,"Common Neural Architecture Search methods generate large amounts of candidate architectures that need training in order to assess their performance and find an optimal architecture. To minimize the search time we use different performance estimation strategies. The effectiveness of such strategies varies in terms of accuracy and fit and query time. This study proposes a new method, EmProx Score (Embedding Proximity Score). Similar to Neural Architecture Optimization (NAO), this method maps candidate architectures to a continuous embedding space using an encoder-decoder framework. The performance of candidates is then estimated using weighted kNN based on the embedding vectors of architectures of which the performance is known. Performance estimations of this method are comparable to the MLP performance predictor used in NAO in terms of accuracy, while being nearly nine times faster to train compared to NAO. Benchmarking against other performance estimation strategies currently used shows similar to better accuracy, while being five up to eighty times faster." 2057,Biologically Inspired Neural Path Finding,"The human brain can be considered to be a graphical structure comprising of tens of billions of biological neurons connected by synapses. It has the remarkable ability to automatically re-route information flow through alternate paths in case some neurons are damaged. Moreover, the brain is capable of retaining information and applying it to similar but completely unseen scenarios. In this paper, we take inspiration from these attributes of the brain, to develop a computational framework to find the optimal low cost path between a source node and a destination node in a generalized graph. We show that our framework is capable of handling unseen graphs at test time. Moreover, it can find alternate optimal paths, when nodes are arbitrarily added or removed during inference, while maintaining a fixed prediction time. Code is available here: https://github.com/hangligit/pathfinding" 2058,GoToNet: Fast Monocular Scene Exposure and Exploration,"Autonomous scene exposure and exploration, especially in localization or communication-denied areas, useful for finding targets in unknown scenes, remains a challenging problem in computer navigation. In this work, we present a novel method for real-time environment exploration, whose only requirements are a visually similar dataset for pre-training, enough lighting in the scene, and an on-board forward-looking RGB camera for environmental sensing. As opposed to existing methods, our method requires only one look (image) to make a good tactical decision, and therefore works at a non-growing, constant time. Two direction predictions, characterized by pixels dubbed the Goto and Lookat pixels, comprise the core of our method. These pixels encode the recommended flight instructions in the following way: the Goto pixel defines the direction in which the agent should move by one distance unit, and the Lookat pixel defines the direction in which the camera should be pointing at in the next step. These flying-instruction pixels are optimized to expose the largest amount of currently unexplored areas. Our method presents a novel deep learning-based navigation approach that is able to solve this problem and demonstrate its ability in an even more complicated setup, i.e., when computational power is limited. In addition, we propose a way to generate a navigation-oriented dataset, enabling efficient training of our method using RGB and depth images. Tests conducted in a simulator evaluating both the sparse pixels' coordinations inferring process, and 2D and 3D test flights aimed to unveil areas and decrease distances to targets achieve promising results. Comparison against a state-of-the-art algorithm shows our method is able to overperform it, that while measuring the new voxels per camera pose, minimum distance to target, percentage of surface voxels seen, and compute time metrics." 2059,PRO-TIP: Phantom for RObust automatic ultrasound calibration by TIP detection,"We propose a novel method to automatically calibrate tracked ultrasound probes. To this end we design a custom phantom consisting of nine cones with different heights. The tips are used as key points to be matched between multiple sweeps. We extract them using a convolutional neural network to segment the cones in every ultrasound frame and then track them across the sweep. The calibration is robustly estimated using RANSAC and later refined employing image based techniques. Our phantom can be 3D-printed and offers many advantages over state-of-the-art methods. The phantom design and algorithm code are freely available online. Since our phantom does not require a tracking target on itself, ease of use is improved over currently used techniques. The fully automatic method generalizes to new probes and different vendors, as shown in our experiments. Our approach produces results comparable to calibrations obtained by a domain expert." 2060,SIXO: Smoothing Inference with Twisted Objectives,"Sequential Monte Carlo (SMC) is an inference algorithm for state space models that approximates the posterior by sampling from a sequence of target distributions. The target distributions are often chosen to be the filtering distributions, but these ignore information from future observations, leading to practical and theoretical limitations in inference and model learning. We introduce SIXO, a method that instead learns targets that approximate the smoothing distributions, incorporating information from all observations. The key idea is to use density ratio estimation to fit functions that warp the filtering distributions into the smoothing distributions. We then use SMC with these learned targets to define a variational objective for model and proposal learning. SIXO yields provably tighter log marginal lower bounds and offers significantly more accurate posterior inferences and parameter estimates in a variety of domains." 2061,Lazy and Fast Greedy MAP Inference for Determinantal Point Process,"The maximum a posteriori (MAP) inference for determinantal point processes (DPPs) is crucial for selecting diverse items in many machine learning applications. Although DPP MAP inference is NP-hard, the greedy algorithm often finds high-quality solutions, and many researchers have studied its efficient implementation. One classical and practical method is the lazy greedy algorithm, which is applicable to general submodular function maximization, while a recent fast greedy algorithm based on the Cholesky factorization is more efficient for DPP MAP inference. This paper presents how to combine the ideas of ""lazy"" and ""fast"", which have been considered incompatible in the literature. Our lazy and fast greedy algorithm achieves almost the same time complexity as the current best one and runs faster in practice. The idea of ""lazy + fast"" is extendable to other greedy-type algorithms. We also give a fast version of the double greedy algorithm for unconstrained DPP MAP inference. Experiments validate the effectiveness of our acceleration ideas." 2062,Private Synthetic Data with Hierarchical Structure,"We study the problem of differentially private synthetic data generation for hierarchical datasets in which individual data points are grouped together (e.g., people within households). In particular, to measure the similarity between the synthetic dataset and the underlying private one, we frame our objective under the problem of private query release, generating a synthetic dataset that preserves answers for some collection of queries (i.e., statistics like mean aggregate counts). However, while the application of private synthetic data to the problem of query release has been well studied, such research is restricted to non-hierarchical data domains, raising the initial question -- what queries are important when considering data of this form? Moreover, it has not yet been established how one can generate synthetic data at both the group and individual-level while capturing such statistics. In light of these challenges, we first formalize the problem of hierarchical query release, in which the goal is to release a collection of statistics for some hierarchical dataset. Specifically, we provide a general set of statistical queries that captures relationships between attributes at both the group and individual-level. Subsequently, we introduce private synthetic data algorithms for hierarchical query release and evaluate them on hierarchical datasets derived from the American Community Survey and Allegheny Family Screening Tool data. Finally, we look to the American Community Survey, whose inherent hierarchical structure gives rise to another set of domain-specific queries that we run experiments with." 2063,Towards Universal Sequence Representation Learning for Recommender Systems,"In order to develop effective sequential recommenders, a series of sequence representation learning (SRL) methods are proposed to model historical user behaviors. Most existing SRL methods rely on explicit item IDs for developing the sequence models to better capture user preference. Though effective to some extent, these methods are difficult to be transferred to new recommendation scenarios, due to the limitation by explicitly modeling item IDs. To tackle this issue, we present a novel universal sequence representation learning approach, named UniSRec. The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios. For learning universal item representations, we design a lightweight item encoding architecture based on parametric whitening and mixture-of-experts enhanced adaptor. For learning universal sequence representations, we introduce two contrastive pre-training tasks by sampling multi-domain negatives. With the pre-trained universal sequence representation model, our approach can be effectively transferred to new recommendation domains or platforms in a parameter-efficient way, under either inductive or transductive settings. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of the proposed approach. Especially, our approach also leads to a performance improvement in a cross-platform setting, showing the strong transferability of the proposed universal SRL method. The code and pre-trained model are available at: https://github.com/RUCAIBox/UniSRec." 2064,Faster Optimization-Based Meta-Learning Adaptation Phase,"Neural networks require a large amount of annotated data to learn. Meta-learning algorithms propose a way to decrease the number of training samples to only a few. One of the most prominent optimization-based meta-learning algorithms is Model-Agnostic Meta-Learning (MAML). However, the key procedure of adaptation to new tasks in MAML is quite slow. In this work we propose an improvement to MAML meta-learning algorithm. We introduce Lambda patterns by which we restrict which weight are updated in the network during the adaptation phase. This makes it possible to skip certain gradient computations. The fastest pattern is selected given an allowed quality degradation threshold parameter. In certain cases, quality improvement is possible by a careful pattern selection. The experiments conducted have shown that via Lambda adaptation pattern selection, it is possible to significantly improve the MAML method in the following areas: adaptation time has been decreased by a factor of 3 with minimal accuracy loss; accuracy for one-step adaptation has been substantially improved." 2065,Compressive Clustering with an Optical Processing Unit,"We explore the use of Optical Processing Units (OPU) to compute random Fourier features for sketching, and adapt the overall compressive clustering pipeline to this setting. We also propose some tools to help tuning a critical hyper-parameter of compressive clustering." 2066,Why Quantization Improves Generalization: NTK of Binary Weight Neural Networks,"Quantized neural networks have drawn a lot of attention as they reduce the space and computational complexity during the inference. Moreover, there has been folklore that quantization acts as an implicit regularizer and thus can improve the generalizability of neural networks, yet no existing work formalizes this interesting folklore. In this paper, we take the binary weights in a neural network as random variables under stochastic rounding, and study the distribution propagation over different layers in the neural network. We propose a quasi neural network to approximate the distribution propagation, which is a neural network with continuous parameters and smooth activation function. We derive the neural tangent kernel (NTK) for this quasi neural network, and show that the eigenvalue of NTK decays at approximately exponential rate, which is comparable to that of Gaussian kernel with randomized scale. This in turn indicates that the Reproducing Kernel Hilbert Space (RKHS) of a binary weight neural network covers a strict subset of functions compared with the one with real value weights. We use experiments to verify that the quasi neural network we proposed can well approximate binary weight neural network. Furthermore, binary weight neural network gives a lower generalization gap compared with real value weight neural network, which is similar to the difference between Gaussian kernel and Laplace kernel." 2067,Safe-FinRL: A Low Bias and Variance Deep Reinforcement Learning Implementation for High-Freq Stock Trading,"In recent years, many practitioners in quantitative finance have attempted to use Deep Reinforcement Learning (DRL) to build better quantitative trading (QT) strategies. Nevertheless, many existing studies fail to address several serious challenges, such as the non-stationary financial environment and the bias and variance trade-off when applying DRL in the real financial market. In this work, we proposed Safe-FinRL, a novel DRL-based high-freq stock trading strategy enhanced by the near-stationary financial environment and low bias and variance estimation. Our main contributions are twofold: firstly, we separate the long financial time series into the near-stationary short environment; secondly, we implement Trace-SAC in the near-stationary financial environment by incorporating the general retrace operator into the Soft Actor-Critic. Extensive experiments on the cryptocurrency market have demonstrated that Safe-FinRL has provided a stable value estimation and a steady policy improvement and reduced bias and variance significantly in the near-stationary financial environment." 2068,Local distance preserving auto-encoders using Continuous k-Nearest Neighbours graphs,"Auto-encoder models that preserve similarities in the data are a popular tool in representation learning. In this paper we introduce several auto-encoder models that preserve local distances when mapping from the data space to the latent space. We use a local distance preserving loss that is based on the continuous k-nearest neighbours graph which is known to capture topological features at all scales simultaneously. To improve training performance, we formulate learning as a constraint optimisation problem with local distance preservation as the main objective and reconstruction accuracy as a constraint. We generalise this approach to hierarchical variational auto-encoders thus learning generative models with geometrically consistent latent and data spaces. Our method provides state-of-the-art performance across several standard datasets and evaluation metrics." 2069,Superiority of GNN over NN in generalizing bandlimited functions,"We constructively show, via rigorous mathematical arguments, that GNN architectures outperform those of NN in approximating bandlimited functions on compact $d$-dimensional Euclidean grids. We show that the former only need $\mathcal{M}$ sampled functional values in order to achieve a uniform approximation error of $O_{d}(2^{-\mathcal{M}^{1/d}})$ and that this error rate is optimal, in the sense that, NNs might achieve worse." 2070,Geometrically Guided Integrated Gradients,"Interpretability methods for deep neural networks mainly focus on the sensitivity of the class score with respect to the original or perturbed input, usually measured using actual or modified gradients. Some methods also use a model-agnostic approach to understanding the rationale behind every prediction. In this paper, we argue and demonstrate that local geometry of the model parameter space relative to the input can also be beneficial for improved post-hoc explanations. To achieve this goal, we introduce an interpretability method called ""geometrically-guided integrated gradients"" that builds on top of the gradient calculation along a linear path as traditionally used in integrated gradient methods. However, instead of integrating gradient information, our method explores the model's dynamic behavior from multiple scaled versions of the input and captures the best possible attribution for each input. We demonstrate through extensive experiments that the proposed approach outperforms vanilla and integrated gradients in subjective and quantitative assessment. We also propose a ""model perturbation"" sanity check to complement the traditionally used ""model randomization"" test." 2071,Provable Benefit of Multitask Representation Learning in Reinforcement Learning,"As representation learning becomes a powerful technique to reduce sample complexity in reinforcement learning (RL) in practice, theoretical understanding of its advantage is still limited. In this paper, we theoretically characterize the benefit of representation learning under the low-rank Markov decision process (MDP) model. We first study multitask low-rank RL (as upstream training), where all tasks share a common representation, and propose a new multitask reward-free algorithm called REFUEL. REFUEL learns both the transition kernel and the near-optimal policy for each task, and outputs a well-learned representation for downstream tasks. Our result demonstrates that multitask representation learning is provably more sample-efficient than learning each task individually, as long as the total number of tasks is above a certain threshold. We then study the downstream RL in both online and offline settings, where the agent is assigned with a new task sharing the same representation as the upstream tasks. For both online and offline settings, we develop a sample-efficient algorithm, and show that it finds a near-optimal policy with the suboptimality gap bounded by the sum of the estimation error of the learned representation in upstream and a vanishing term as the number of downstream samples becomes large. Our downstream results of online and offline RL further capture the benefit of employing the learned representation from upstream as opposed to learning the representation of the low-rank model directly. To the best of our knowledge, this is the first theoretical study that characterizes the benefit of representation learning in exploration-based reward-free multitask RL for both upstream and downstream tasks." 2072,Pixel to Binary Embedding Towards Robustness for CNNs,"There are several problems with the robustness of Convolutional Neural Networks (CNNs). For example, the prediction of CNNs can be changed by adding a small magnitude of noise to an input, and the performances of CNNs are degraded when the distribution of input is shifted by a transformation never seen during training (e.g., the blur effect). There are approaches to replace pixel values with binary embeddings to tackle the problem of adversarial perturbations, which successfully improve robustness. In this work, we propose Pixel to Binary Embedding (P2BE) to improve the robustness of CNNs. P2BE is a learnable binary embedding method as opposed to previous hand-coded binary embedding methods. P2BE outperforms other binary embedding methods in robustness against adversarial perturbations and visual corruptions that are not shown during training." 2073,Latent Diffusion Energy-Based Model for Interpretable Text Modeling,"Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in generative modeling. Fueled by its flexibility in the formulation and strong modeling power of the latent space, recent works built upon it have made interesting attempts aiming at the interpretability of text modeling. However, latent space EBMs also inherit some flaws from EBMs in data space; the degenerate MCMC sampling quality in practice can lead to poor generation quality and instability in training, especially on data with complex latent structures. Inspired by the recent efforts that leverage diffusion recovery likelihood learning as a cure for the sampling issue, we introduce a novel symbiosis between the diffusion models and latent space EBMs in a variational learning framework, coined as the latent diffusion energy-based model. We develop a geometric clustering-based regularization jointly with the information bottleneck to further improve the quality of the learned latent space. Experiments on several challenging tasks demonstrate the superior performance of our model on interpretable text modeling over strong counterparts." 2074,Content Popularity Prediction in Fog-RANs: A Clustered Federated Learning Based Approach,"In this paper, the content popularity prediction problem in fog radio access networks (F-RANs) is investigated. Based on clustered federated learning, we propose a novel mobility-aware popularity prediction policy, which integrates content popularities in terms of local users and mobile users. For local users, the content popularity is predicted by learning the hidden representations of local users and contents. Initial features of local users and contents are generated by incorporating neighbor information with self information. Then, dual-channel neural network (DCNN) model is introduced to learn the hidden representations by producing deep latent features from initial features. For mobile users, the content popularity is predicted via user preference learning. In order to distinguish regional variations of content popularity, clustered federated learning (CFL) is employed, which enables fog access points (F-APs) with similar regional types to benefit from one another and provides a more specialized DCNN model for each F-AP. Simulation results show that our proposed policy achieves significant performance improvement over the traditional policies." 2075,Deploying Convolutional Networks on Untrusted Platforms Using 2D Holographic Reduced Representations,"Due to the computational cost of running inference for a neural network, the need to deploy the inferential steps on a third party's compute environment or hardware is common. If the third party is not fully trusted, it is desirable to obfuscate the nature of the inputs and outputs, so that the third party can not easily determine what specific task is being performed. Provably secure protocols for leveraging an untrusted party exist but are too computational demanding to run in practice. We instead explore a different strategy of fast, heuristic security that we call Connectionist Symbolic Pseudo Secrets. By leveraging Holographic Reduced Representations (HRR), we create a neural network with a pseudo-encryption style defense that empirically shows robustness to attack, even under threat models that unrealistically favor the adversary." 2076,Accelerating Federated Learning via Sampling Anchor Clients with Large Batches,"Using large batches in recent federated learning studies has improved convergence rates, but it requires additional computation overhead compared to using small batches. To overcome this limitation, we propose a unified framework FedAMD, which disjoints the participants into anchor and miner groups based on time-varying probabilities. Each client in the anchor group computes the gradient using a large batch, which is regarded as its bullseye. Clients in the miner group perform multiple local updates using serial mini-batches, and each local update is also indirectly regulated by the global target derived from the average of clients' bullseyes. As a result, the miner group follows a near-optimal update towards the global minimizer, adapted to update the global model. Measured by $\epsilon$-approximation, FedAMD achieves a convergence rate of $O(1/\epsilon)$ under non-convex objectives by sampling an anchor with a constant probability. The theoretical result considerably surpasses the state-of-the-art algorithm BVR-L-SGD at $O(1/\epsilon^{3/2})$, while FedAMD reduces at least $O(1/\epsilon)$ communication overhead. Empirical studies on real-world datasets validate the effectiveness of FedAMD and demonstrate the superiority of our proposed algorithm." 2077,Computation Offloading and Resource Allocation in F-RANs: A Federated Deep Reinforcement Learning Approach,"The fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs). Due to the limited resource of F-APs, it is important to design an efficient task offloading scheme. In this paper, by considering time-varying network environment, a dynamic computation offloading and resource allocation problem in F-RANs is formulated to minimize the task execution delay and energy consumption of MDs. To solve the problem, a federated deep reinforcement learning (DRL) based algorithm is proposed, where the deep deterministic policy gradient (DDPG) algorithm performs computation offloading and resource allocation in each F-AP. Federated learning is exploited to train the DDPG agents in order to decrease the computing complexity of training process and protect the user privacy. Simulation results show that the proposed federated DDPG algorithm can achieve lower task execution delay and energy consumption of MDs more quickly compared with the other existing strategies." 2078,Confident Sinkhorn Allocation for Pseudo-Labeling,"Semi-supervised learning is a critical tool in reducing machine learning's dependence on labeled data. It has, however, been applied primarily to image and language data, by exploiting the inherent spatial and semantic structure therein. These methods do not apply to tabular data because these domain structures are not available. Existing pseudo-labeling (PL) methods can be effective for tabular data but are vulnerable to noise samples and to greedy assignments given a predefined threshold which is unknown. This paper addresses this problem by proposing a Confident Sinkhorn Allocation (CSA), which assigns labels to only samples with high confidence scores and learns the best label allocation via optimal transport. CSA outperforms the current state-of-the-art in this practically important area." 2079,Description and Discussion on DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques,"We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: ""Unsupervised anomalous sound detection (ASD) for machine condition monitoring applying domain generalization techniques"". Domain shifts are a critical problem for the application of ASD systems. Because domain shifts can change the acoustic characteristics of data, a model trained in a source domain performs poorly for a target domain. In DCASE 2021 Challenge Task 2, we organized an ASD task for handling domain shifts. In this task, it was assumed that the occurrences of domain shifts are known. However, in practice, the domain of each sample may not be given, and the domain shifts can occur implicitly. In 2022 Task 2, we focus on domain generalization techniques that detects anomalies regardless of the domain shifts. Specifically, the domain of each sample is not given in the test data and only one threshold is allowed for all domains. We will add challenge results and analysis of the submissions after the challenge submission deadline." 2080,Hybrid Ensemble for Fake News Detection: An attempt,"Fake News Detection has been a challenging problem in the field of Machine Learning. Researchers have approached it via several techniques using old Statistical Classification models and modern Deep Learning. Today, with the growing amount of data, developments in the field of NLP and ML, and an increase in the computation power at disposal, there are infinite permutations and combinations to approach this problem from a different perspective. In this paper, we try different methods to tackle Fake News, and try to build, and propose the possibilities of a Hybrid Ensemble combining the classical Machine Learning techniques with the modern Deep Learning Approaches" 2081,On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms,"Stochastic gradient descent (SGD) algorithm is the method of choice in many machine learning tasks thanks to its scalability and efficiency in dealing with large-scale problems. In this paper, we focus on the shuffling version of SGD which matches the mainstream practical heuristics. We show the convergence to a global solution of shuffling SGD for a class of non-convex functions under over-parameterized settings. Our analysis employs more relaxed non-convex assumptions than previous literature. Nevertheless, we maintain the desired computational complexity as shuffling SGD has achieved in the general convex setting." 2082,X-Risk Analysis for AI Research,"Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities. Current AI research lacks a systematic discussion of how to manage long-tail risks from AI systems, including speculative long-term risks. Keeping in mind the potential benefits of AI, there is some concern that building ever more intelligent and powerful AI systems could eventually result in systems that are more powerful than us; some say this is like playing with fire and speculate that this could create existential risks (x-risks). To add precision and ground these discussions, we provide a guide for how to analyze AI x-risk, which consists of three parts: First, we review how systems can be made safer today, drawing on time-tested concepts from hazard analysis and systems safety that have been designed to steer large processes in safer directions. Next, we discuss strategies for having long-term impacts on the safety of future systems. Finally, we discuss a crucial concept in making AI systems safer by improving the balance between safety and general capabilities. We hope this document and the presented concepts and tools serve as a useful guide for understanding how to analyze AI x-risk." 2083,IGN : Implicit Generative Networks,"In this work, we build recent advances in distributional reinforcement learning to give a state-of-art distributional variant of the model based on the IQN. We achieve this by using the GAN model's generator and discriminator function with the quantile regression to approximate the full quantile value for the state-action return distribution. We demonstrate improved performance on our baseline dataset - 57 Atari 2600 games in the ALE. Also, we use our algorithm to show the state-of-art training performance of risk-sensitive policies in Atari games with the policy optimization and evaluation." 2084,A Directed-Evolution Method for Sparsification and Compression of Neural Networks with Application to Object Identification and Segmentation and considerations of optimal quantization using small number of bits,"This work introduces Directed-Evolution (DE) method for sparsification of neural networks, where the relevance of parameters to the network accuracy is directly assessed and the parameters that produce the least effect on accuracy when tentatively zeroed are indeed zeroed. DE method avoids a potentially combinatorial explosion of all possible candidate sets of parameters to be zeroed in large networks by mimicking evolution in the natural world. DE uses a distillation context [5]. In this context, the original network is the teacher and DE evolves the student neural network to the sparsification goal while maintaining minimal divergence between teacher and student. After the desired sparsification level is reached in each layer of the network by DE, a variety of quantization alternatives are used on the surviving parameters to find the lowest number of bits for their representation with acceptable loss of accuracy. A procedure to find optimal distribution of quantization levels in each sparsified layer is presented. Suitable final lossless encoding of the surviving quantized parameters is used for the final parameter representation. DE was used in sample of representative neural networks using MNIST, FashionMNIST and COCO data sets with progressive larger networks. An 80 classes YOLOv3 with more than 60 million parameters network trained on COCO dataset reached 90% sparsification and correctly identifies and segments all objects identified by the original network with more than 80% confidence using 4bit parameter quantization. Compression between 40x and 80x. It has not escaped the authors that techniques from different methods can be nested. Once the best parameter set for sparsification is identified in a cycle of DE, a decision on zeroing only a sub-set of those parameters can be made using a combination of criteria like parameter magnitude and Hessian approximations." 2085,ChordMixer: A Scalable Neural Attention Model for Sequences with Different Lengths,"Sequential data naturally have different lengths in many domains, with some very long sequences. As an important modeling tool, neural attention should capture long-range interaction in such sequences. However, most existing neural attention models admit only short sequences, or they have to employ chunking or padding to enforce a constant input length. Here we propose a simple neural network building block called ChordMixer which can model the attention for long sequences with variable lengths. Each ChordMixer block consists of a position-wise rotation layer without learnable parameters and an element-wise MLP layer. Repeatedly applying such blocks forms an effective network backbone that mixes the input signals towards the learning targets. We have tested ChordMixer on the synthetic adding problem, long document classification, and DNA sequence-based taxonomy classification. The experiment results show that our method substantially outperforms other neural attention models." 2086,Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Conservative Natural Policy Gradient Primal-Dual Algorithm,"We consider the problem of constrained Markov decision process (CMDP) in continuous state-actions spaces where the goal is to maximize the expected cumulative reward subject to some constraints. We propose a novel Conservative Natural Policy Gradient Primal-Dual Algorithm (C-NPG-PD) to achieve zero constraint violation while achieving state of the art convergence results for the objective value function. For general policy parametrization, we prove convergence of value function to global optimal upto an approximation error due to restricted policy class. We even improve the sample complexity of existing constrained NPG-PD algorithm \cite{Ding2020} from $\mathcal{O}(1/\epsilon^6)$ to $\mathcal{O}(1/\epsilon^4)$. To the best of our knowledge, this is the first work to establish zero constraint violation with Natural policy gradient style algorithms for infinite horizon discounted CMDPs. We demonstrate the merits of proposed algorithm via experimental evaluations." 2087,InBiaseD: Inductive Bias Distillation to Improve Generalization and Robustness through Shape-awareness,"Humans rely less on spurious correlations and trivial cues, such as texture, compared to deep neural networks which lead to better generalization and robustness. It can be attributed to the prior knowledge or the high-level cognitive inductive bias present in the brain. Therefore, introducing meaningful inductive bias to neural networks can help learn more generic and high-level representations and alleviate some of the shortcomings. We propose InBiaseD to distill inductive bias and bring shape-awareness to the neural networks. Our method includes a bias alignment objective that enforces the networks to learn more generic representations that are less vulnerable to unintended cues in the data which results in improved generalization performance. InBiaseD is less susceptible to shortcut learning and also exhibits lower texture bias. The better representations also aid in improving robustness to adversarial attacks and we hence plugin InBiaseD seamlessly into the existing adversarial training schemes to show a better trade-off between generalization and robustness." 2088,GAN based Data Augmentation to Resolve Class Imbalance,"The number of credit card fraud has been growing as technology grows and people can take advantage of it. Therefore, it is very important to implement a robust and effective method to detect such frauds. The machine learning algorithms are appropriate for these tasks since they try to maximize the accuracy of predictions and hence can be relied upon. However, there is an impending flaw where in machine learning models may not perform well due to the presence of an imbalance across classes distribution within the sample set. So, in many related tasks, the datasets have a very small number of observed fraud cases (sometimes around 1 percent positive fraud instances found). Therefore, this imbalance presence may impact any learning model's behavior by predicting all labels as the majority class, hence allowing no scope for generalization in the predictions made by the model. We trained Generative Adversarial Network(GAN) to generate a large number of convincing (and reliable) synthetic examples of the minority class that can be used to alleviate the class imbalance within the training set and hence generalize the learning of the data more effectively." 2089,GLIPv2: Unifying Localization and Vision-Language Understanding,"We present GLIPv2, a grounded VL understanding model, that serves both localization tasks (e.g., object detection, instance segmentation) and Vision-Language (VL) understanding tasks (e.g., VQA, image captioning). GLIPv2 elegantly unifies localization pre-training and Vision-Language Pre-training (VLP) with three pre-training tasks: phrase grounding as a VL reformulation of the detection task, region-word contrastive learning as a novel region-word level contrastive learning task, and the masked language modeling. This unification not only simplifies the previous multi-stage VLP procedure but also achieves mutual benefits between localization and understanding tasks. Experimental results show that a single GLIPv2 model (all model weights are shared) achieves near SoTA performance on various localization and understanding tasks. The model also shows (1) strong zero-shot and few-shot adaption performance on open-vocabulary object detection tasks and (2) superior grounding capability on VL understanding tasks. Code will be released at https://github.com/microsoft/GLIP." 2090,Deep Reinforcement Learning for Optimal Investment and Saving Strategy Selection in Heterogeneous Profiles: Intelligent Agents working towards retirement,"The transition from defined benefit to defined contribution pension plans shifts the responsibility for saving toward retirement from governments and institutions to the individuals. Determining optimal saving and investment strategy for individuals is paramount for stable financial stance and for avoiding poverty during work-life and retirement, and it is a particularly challenging task in a world where form of employment and income trajectory experienced by different occupation groups are highly diversified. We introduce a model in which agents learn optimal portfolio allocation and saving strategies that are suitable for their heterogeneous profiles. We use deep reinforcement learning to train agents. The environment is calibrated with occupation and age dependent income evolution dynamics. The research focuses on heterogeneous income trajectories dependent on agent profiles and incorporates the behavioural parameterisation of agents. The model provides a flexible methodology to estimate lifetime consumption and investment choices for heterogeneous profiles under varying scenarios." 2091,Stochastic Gradient Descent without Full Data Shuffle,"Stochastic gradient descent (SGD) is the cornerstone of modern machine learning (ML) systems. Despite its computational efficiency, SGD requires random data access that is inherently inefficient when implemented in systems that rely on block-addressable secondary storage such as HDD and SSD, e.g., TensorFlow/PyTorch and in-DB ML systems over large files. To address this impedance mismatch, various data shuffling strategies have been proposed to balance the convergence rate of SGD (which favors randomness) and its I/O performance (which favors sequential access). In this paper, we first conduct a systematic empirical study on existing data shuffling strategies, which reveals that all existing strategies have room for improvement -- they all suffer in terms of I/O performance or convergence rate. With this in mind, we propose a simple but novel hierarchical data shuffling strategy, CorgiPile. Compared with existing strategies, CorgiPile avoids a full data shuffle while maintaining comparable convergence rate of SGD as if a full shuffle were performed. We provide a non-trivial theoretical analysis of CorgiPile on its convergence behavior. We further integrate CorgiPile into PyTorch by designing new parallel/distributed shuffle operators inside a new CorgiPileDataSet API. We also integrate CorgiPile into PostgreSQL by introducing three new physical operators with optimizations. Our experimental results show that CorgiPile can achieve comparable convergence rate with the full shuffle based SGD for both deep learning and generalized linear models. For deep learning models on ImageNet dataset, CorgiPile is 1.5X faster than PyTorch with full data shuffle. For in-DB ML with linear models, CorgiPile is 1.6X-12.8X faster than two state-of-the-art in-DB ML systems, Apache MADlib and Bismarck, on both HDD and SSD." 2092,Bounding and Approximating Intersectional Fairness through Marginal Fairness,"Discrimination in machine learning often arises along multiple dimensions (a.k.a. protected attributes); it is then desirable to ensure \emph{intersectional fairness} -- i.e., that no subgroup is discriminated against. It is known that ensuring \emph{marginal fairness} for every dimension independently is not sufficient in general. Due to the exponential number of subgroups, however, directly measuring intersectional fairness from data is impossible. In this paper, our primary goal is to understand in detail the relationship between marginal and intersectional fairness through statistical analysis. We first identify a set of sufficient conditions under which an exact relationship can be obtained. Then, we prove bounds (easily computable through marginal fairness and other meaningful statistical quantities) in high-probability on intersectional fairness in the general case. Beyond their descriptive value, we show that these theoretical bounds can be leveraged to derive a heuristic improving the approximation and bounds of intersectional fairness by choosing, in a relevant manner, protected attributes for which we describe intersectional subgroups. Finally, we test the performance of our approximations and bounds on real and synthetic data-sets." 2093,Case-Based Inverse Reinforcement Learning Using Temporal Coherence,"Providing expert trajectories in the context of Imitation Learning is often expensive and time-consuming. The goal must therefore be to create algorithms which require as little expert data as possible. In this paper we present an algorithm that imitates the higher-level strategy of the expert rather than just imitating the expert on action level, which we hypothesize requires less expert data and makes training more stable. As a prior, we assume that the higher-level strategy is to reach an unknown target state area, which we hypothesize is a valid prior for many domains in Reinforcement Learning. The target state area is unknown, but since the expert has demonstrated how to reach it, the agent tries to reach states similar to the expert. Building on the idea of Temporal Coherence, our algorithm trains a neural network to predict whether two states are similar, in the sense that they may occur close in time. During inference, the agent compares its current state with expert states from a Case Base for similarity. The results show that our approach can still learn a near-optimal policy in settings with very little expert data, where algorithms that try to imitate the expert at the action level can no longer do so." 2094,"A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games","Algorithms designed for single-agent reinforcement learning (RL) generally fail to converge to equilibria in two-player zero-sum (2p0s) games. Conversely, game-theoretic algorithms for approximating Nash and quantal response equilibria (QREs) in 2p0s games are not typically competitive for RL and can be difficult to scale. As a result, algorithms for these two cases are generally developed and evaluated separately. In this work, we show that a single algorithm -- a simple extension to mirror descent with proximal regularization that we call magnetic mirror descent (MMD) -- can produce strong results in both settings, despite their fundamental differences. From a theoretical standpoint, we prove that MMD converges linearly to QREs in extensive-form games -- this is the first time linear convergence has been proven for a first order solver. Moreover, applied as a tabular Nash equilibrium solver via self-play, we show empirically that MMD produces results competitive with CFR in both normal-form and extensive-form games with full feedback (this is the first time that a standard RL algorithm has done so) and also that MMD empirically converges in black-box feedback settings. Furthermore, for single-agent deep RL, on a small collection of Atari and Mujoco games, we show that MMD can produce results competitive with those of PPO. Lastly, for multi-agent deep RL, we show MMD can outperform NFSP in 3x3 Abrupt Dark Hex." 2095,Bayesian NVH metamodels to assess interior cabin noise using measurement databases,"In recent years, a great emphasis has been put on engineering the acoustic signature of vehicles that represents the overall comfort level for passengers. Due to highly uncertain behavior of production cars, probabilistic metamodels or surrogates can be useful to estimate the NVH dispersion and assess different NVH risks. These metamodels follow physical behaviors and shall aid as a design space exploration tool during the early stage design process to support the NVH optimization. The measurement databases constitute different noise paths such as aerodynamic noise (wind-tunnel test), tire-pavement interaction noise (rolling noise), and noise due to electric motors (whining noise). This research work proposes a global NVH metamodeling technique for broadband noises such as aerodynamic and rolling noises exploiting the Bayesian framework that takes into account the prior (domain-expert) knowledge about complex physical mechanisms. Generalized additive models (GAMs) with polynomials and Gaussian basis functions are used to model the dependency of sound pressure level (SPL) on predictor variables. Moreover, parametric bootstrap algorithm based on data-generating mechanism using the point estimates is used to estimate the dispersion in unknown parameters. Probabilistic modelling is carried out using an open-source library PyMC3 that utilizes No-U-Turn sampler (NUTS) and the developed models are validated using Cross-Validation technique." 2096,Science through Machine Learning: Quantification of Poststorm Thermospheric Cooling,"Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the phenomena that can be modeled. In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post-storm cooling in the middle-thermosphere. We find that both NRLMSIS 2.0 and JB2008-ML do not account for post-storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g. the 2003 Halloween storms). Conversely, HASDM-ML and CHAMP-ML do show evidence of post-storm cooling indicating that this phenomenon is present in the original datasets. Results show that density reductions up to 40% can occur 1--3 days post-storm depending on location and the strength of the storm." 2097,An Industry 4.0 example: real-time quality control for steel-based mass production using Machine Learning on non-invasive sensor data,"Insufficient steel quality in mass production can cause extremely costly damage to tooling, production downtimes and low quality products. Automatic, fast and cheap strategies to estimate essential material properties for quality control, risk mitigation and the prediction of faults are highly desirable. In this work we analyse a high throughput production line of steel-based products. Currently, the material quality is checked using manual destructive testing, which is slow, wasteful and covers only a tiny fraction of the material. To achieve complete testing coverage our industrial collaborator developed a contactless, non-invasive, electromagnetic sensor to measure all material during production in real-time. Our contribution is three-fold: 1) We show in a controlled experiment that the sensor can distinguish steel with deliberately altered properties. 2) 48 steel coils were fully measured non-invasively and additional destructive tests were conducted on samples to serve as ground truth. A linear model is fitted to predict from the non-invasive measurements two key material properties (yield strength and tensile strength) that normally are obtained by destructive tests. The performance is evaluated in leave-one-coil-out cross-validation. 3) The resulting model is used to analyse the material properties and the relationship with logged product faults on real production data of ~108 km of processed material measured with the non-invasive sensor. The model achieves an excellent performance (F3-score of 0.95) predicting material running out of specifications for the tensile strength. The combination of model predictions and logged product faults shows that if a significant percentage of estimated yield stress values is out of specification, the risk of product faults is high. Our analysis demonstrates promising directions for real-time quality control, risk monitoring and fault detection." 2098,Analysis of Branch Specialization and its Application in Image Decomposition,"Branched neural networks have been used extensively for a variety of tasks. Branches are sub-parts of the model that perform independent processing followed by aggregation. It is known that this setting induces a phenomenon called Branch Specialization, where different branches become experts in different sub-tasks. Such observations were qualitative by nature. In this work, we present a methodological analysis of Branch Specialization. We explain the role of gradient descent in this phenomenon. We show that branched generative networks naturally decompose animal images to meaningful channels of fur, whiskers and spots and face images to channels such as different illumination components and face parts." 2099,Geometric Policy Iteration for Markov Decision Processes,"Recently discovered polyhedral structures of the value function for finite state-action discounted Markov decision processes (MDP) shed light on understanding the success of reinforcement learning. We investigate the value function polytope in greater detail and characterize the polytope boundary using a hyperplane arrangement. We further show that the value space is a union of finitely many cells of the same hyperplane arrangement and relate it to the polytope of the classical linear programming formulation for MDPs. Inspired by these geometric properties, we propose a new algorithm, Geometric Policy Iteration (GPI), to solve discounted MDPs. GPI updates the policy of a single state by switching to an action that is mapped to the boundary of the value function polytope, followed by an immediate update of the value function. This new update rule aims at a faster value improvement without compromising computational efficiency. Moreover, our algorithm allows asynchronous updates of state values which is more flexible and advantageous compared to traditional policy iteration when the state set is large. We prove that the complexity of GPI achieves the best known bound $\mathcal{O}\left(\frac{|\mathcal{A}|}{1 - \gamma}\log \frac{1}{1-\gamma}\right)$ of policy iteration and empirically demonstrate the strength of GPI on MDPs of various sizes." 2100,Self-critiquing models for assisting human evaluators,"We fine-tune large language models to write natural language critiques (natural language critical comments) using behavioral cloning. On a topic-based summarization task, critiques written by our models help humans find flaws in summaries that they would have otherwise missed. Our models help find naturally occurring flaws in both model and human written summaries, and intentional flaws in summaries written by humans to be deliberately misleading. We study scaling properties of critiquing with both topic-based summarization and synthetic tasks. Larger models write more helpful critiques, and on most tasks, are better at self-critiquing, despite having harder-to-critique outputs. Larger models can also integrate their own self-critiques as feedback, refining their own summaries into better ones. Finally, we motivate and introduce a framework for comparing critiquing ability to generation and discrimination ability. Our measurements suggest that even large models may still have relevant knowledge they cannot or do not articulate as critiques. These results are a proof of concept for using AI-assisted human feedback to scale the supervision of machine learning systems to tasks that are difficult for humans to evaluate directly. We release our training datasets, as well as samples from our critique assistance experiments." 2101,SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks,"We analyze deep ReLU neural networks trained with mini-batch Stochastic Gradient Descent (SGD) and weight decay. We study the source of SGD noise and prove that when training with weight decay, the only solutions of SGD at convergence are zero functions. Furthermore, we show, both theoretically and empirically, that when training a neural network using SGD with weight decay and small batch size, the resulting weight matrices are expected to be of small rank. Our analysis relies on a minimal set of assumptions and the neural networks may be arbitrarily wide or deep, and may include residual connections, as well as batch normalization layers." 2102,Neurotoxin: Durable Backdoors in Federated Learning,"Due to their decentralized nature, federated learning (FL) systems have an inherent vulnerability during their training to adversarial backdoor attacks. In this type of attack, the goal of the attacker is to use poisoned updates to implant so-called backdoors into the learned model such that, at test time, the model's outputs can be fixed to a given target for certain inputs. (As a simple toy example, if a user types ""people from New York"" into a mobile keyboard app that uses a backdoored next word prediction model, then the model could autocomplete the sentence to ""people from New York are rude""). Prior work has shown that backdoors can be inserted into FL models, but these backdoors are often not durable, i.e., they do not remain in the model after the attacker stops uploading poisoned updates. Thus, since training typically continues progressively in production FL systems, an inserted backdoor may not survive until deployment. Here, we propose Neurotoxin, a simple one-line modification to existing backdoor attacks that acts by attacking parameters that are changed less in magnitude during training. We conduct an exhaustive evaluation across ten natural language processing and computer vision tasks, and we find that we can double the durability of state of the art backdoors." 2103,Dual-Stream Transformer with Cross-Attention on Whole-Slide Image Pyramids for Cancer Prognosis,"The cancer prognosis on gigapixel Whole-Slide Images (WSIs) has always been a challenging task. Most existing approaches focus solely on single-resolution images. The multi-resolution schemes, utilizing image pyramids to enhance WSI visual representations, have not yet been paid enough attention to. In order to explore a multi-resolution solution for improving cancer prognosis accuracy, this paper proposes a dual-stream architecture to model WSIs by an image pyramid strategy. This architecture consists of two sub-streams: one for low-resolution WSIs, and the other especially for high-resolution ones. Compared to other approaches, our scheme has three highlights: (i) there exists a one-to-one relation between stream and resolution; (ii) a square pooling layer is added to align the patches from two resolution streams, largely reducing computation cost and enabling a natural stream feature fusion; (iii) a cross-attention-based method is proposed to pool high-resolution patches spatially under the guidance of low-resolution ones. We validate our scheme on three publicly-available datasets with a total number of 3,101 WSIs from 1,911 patients. Experimental results verify that (i) hierarchical dual-stream representation is more effective than single-stream ones for cancer prognosis, gaining an average C-Index rise of 5.0% and 1.8% on a single low-resolution and high-resolution stream, respectively; (ii) our dual-stream scheme could outperform current state-of-the-art ones, by an average C-Index improvement of 5.1%; (iii) the cancer diseases with observable survival differences could have different preferences for model complexity. Our scheme could serve as an alternative tool for further facilitating WSI prognosis research." 2104,Learning-Based Data Storage [Vision] (Technical Report),"Deep neural network (DNN) and its variants have been extensively used for a wide spectrum of real applications such as image classification, face/speech recognition, fraud detection, and so on. In addition to many important machine learning tasks, as artificial networks emulating the way brain cells function, DNNs also show the capability of storing non-linear relationships between input and output data, which exhibits the potential of storing data via DNNs. We envision a new paradigm of data storage, ""DNN-as-a-Database"", where data are encoded in well-trained machine learning models. Compared with conventional data storage that directly records data in raw formats, learning-based structures (e.g., DNN) can implicitly encode data pairs of inputs and outputs and compute/materialize actual output data of different resolutions only if input data are provided. This new paradigm can greatly enhance the data security by allowing flexible data privacy settings on different levels, achieve low space consumption and fast computation with the acceleration of new hardware (e.g., Diffractive Neural Network and AI chips), and can be generalized to distributed DNN-based storage/computing. In this paper, we propose this novel concept of learning-based data storage, which utilizes a learning structure called learning-based memory unit (LMU), to store, organize, and retrieve data. As a case study, we use DNNs as the engine in the LMU, and study the data capacity and accuracy of the DNN-based data storage. Our preliminary experimental results show the feasibility of the learning-based data storage by achieving high (100%) accuracy of the DNN storage. We explore and design effective solutions to utilize the DNN-based data storage to manage and query relational tables. We discuss how to generalize our solutions to other data types (e.g., graphs) and environments such as distributed DNN storage/computing." 2105,The Rough Topology for Numerical Data,"In this paper, we give a generalization of the rough topology and the core to numerical data by classifying objects in terms of the attribute values. New approach to find the core for numerical data is discussed. Then a measurement to find whether an attribute is in the core or not is given. This new method for finding the core is used for attribute reduction. It is tested and compared by using machine learning algorithms. Finally, the algorithms and codes to convert a data to pertinent data and to find core is also provided." 2106,Distributed Differential Privacy in Multi-Armed Bandits,"We consider the standard $K$-armed bandit problem under a distributed trust model of differential privacy (DP), which enables to guarantee privacy without a trustworthy server. Under this trust model, previous work largely focus on achieving privacy using a shuffle protocol, where a batch of users data are randomly permuted before sending to a central server. This protocol achieves ($\epsilon,\delta$) or approximate-DP guarantee by sacrificing an additional additive $O\!\left(\!\frac{K\log T\sqrt{\log(1/\delta)}}{\epsilon}\!\right)\!$ cost in $T$-step cumulative regret. In contrast, the optimal privacy cost for achieving a stronger ($\epsilon,0$) or pure-DP guarantee under the widely used central trust model is only $\Theta\!\left(\!\frac{K\log T}{\epsilon}\!\right)\!$, where, however, a trusted server is required. In this work, we aim to obtain a pure-DP guarantee under distributed trust model while sacrificing no more regret than that under central trust model. We achieve this by designing a generic bandit algorithm based on successive arm elimination, where privacy is guaranteed by corrupting rewards with an equivalent discrete Laplace noise ensured by a secure computation protocol. We also show that our algorithm, when instantiated with Skellam noise and the secure protocol, ensures \emph{R\'{e}nyi differential privacy} -- a stronger notion than approximate DP -- under distributed trust model with a privacy cost of $O\!\left(\!\frac{K\sqrt{\log T}}{\epsilon}\!\right)\!$." 2107,Mining Multi-Label Samples from Single Positive Labels,"Conditional generative adversarial networks (cGANs) have shown superior results in class-conditional generation tasks. In order to simultaneously control multiple conditions, cGANs require multi-label training datasets, where multiple labels can be assigned to each data instance. Nevertheless, the tremendous annotation cost limits the accessibility of multi-label datasets in the real-world scenarios. Hence, we explore the practical setting called single positive setting, where each data instance is annotated by only one positive label with no explicit negative labels. To generate multi-label data in the single positive setting, we propose a novel sampling approach called single-to-multi-label (S2M) sampling, based on the Markov chain Monte Carlo method. As a widely applicable ""add-on"" method, our proposed S2M sampling enables existing unconditional and conditional GANs to draw high-quality multi-label data with a minimal annotation cost. Extensive experiments on real image datasets verify the effectiveness and correctness of our method, even when compared to a model trained with fully annotated datasets." 2108,Consistent Attack: Universal Adversarial Perturbation on Embodied Vision Navigation,"Embodied agents in vision navigation coupled with deep neural networks have attracted increasing attention. However, deep neural networks are vulnerable to malicious adversarial noises, which may potentially cause catastrophic failures in Embodied Vision Navigation. Among these adversarial noises, universal adversarial perturbations (UAP), i.e., the image-agnostic perturbation applied on each frame received by the agent, are more critical for Embodied Vision Navigation since they are computation-efficient and application-practical during the attack. However, existing UAP methods do not consider the system dynamics of Embodied Vision Navigation. For extending UAP in the sequential decision setting, we formulate the disturbed environment under the universal noise $\delta$, as a $\delta$-disturbed Markov Decision Process ($\delta$-MDP). Based on the formulation, we analyze the properties of $\delta$-MDP and propose two novel Consistent Attack methods for attacking Embodied agents, which first consider the dynamic of the MDP by estimating the disturbed Q function and the disturbed distribution. In spite of victim models, our Consistent Attack can cause a significant drop in the performance for the Goalpoint task in habitat. Extensive experimental results indicate that there exist potential risks for applying Embodied Vision Navigation methods to the real world." 2109,Matching options to tasks using Option-Indexed Hierarchical Reinforcement Learning,"The options framework in Hierarchical Reinforcement Learning breaks down overall goals into a combination of options or simpler tasks and associated policies, allowing for abstraction in the action space. Ideally, these options can be reused across different higher-level goals; indeed, such reuse is necessary to realize the vision of a continual learning agent that can effectively leverage its prior experience. Previous approaches have only proposed limited forms of transfer of prelearned options to new task settings. We propose a novel option indexing approach to hierarchical learning (OI-HRL), where we learn an affinity function between options and the items present in the environment. This allows us to effectively reuse a large library of pretrained options, in zero-shot generalization at test time, by restricting goal-directed learning to only those options relevant to the task at hand. We develop a meta-training loop that learns the representations of options and environments over a series of HRL problems, by incorporating feedback about the relevance of retrieved options to the higher-level goal. We evaluate OI-HRL in two simulated settings - the CraftWorld and AI2THOR environments - and show that we achieve performance competitive with oracular baselines, and substantial gains over a baseline that has the entire option pool available for learning the hierarchical policy." 2110,Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms,"Due to the poor generalization performance of traditional empirical risk minimization (ERM) in the case of distributional shift, Out-of-Distribution (OoD) generalization algorithms receive increasing attention. However, OoD generalization algorithms overlook the great variance in the quality of training data, which significantly compromises the accuracy of these methods. In this paper, we theoretically reveal the relationship between training data quality and algorithm performance and analyze the optimal regularization scheme for Lipschitz regularized invariant risk minimization. A novel algorithm is proposed based on the theoretical results to alleviate the influence of low-quality data at both the sample level and the domain level. The experiments on both the regression and classification benchmarks validate the effectiveness of our method with statistical significance." 2111,Learning to Detect with Constant False Alarm Rate,"We consider the use of machine learning for hypothesis testing with an emphasis on target detection. Classical model-based solutions rely on comparing likelihoods. These are sensitive to imperfect models and are often computationally expensive. In contrast, data-driven machine learning is often more robust and yields classifiers with fixed computational complexity. Learned detectors usually provide high accuracy with low complexity but do not have a constant false alarm rate (CFAR) as required in many applications. To close this gap, we propose to add a term to the loss function that promotes similar distributions of the detector under any null hypothesis scenario. Experiments show that our approach leads to near CFAR detectors with similar accuracy as their competitors." 2112,Finite-Time Analysis of Fully Decentralized Single-Timescale Actor-Critic,"Decentralized Actor-Critic (AC) algorithms have been widely utilized for multi-agent reinforcement learning (MARL) and have achieved remarkable success. Apart from its empirical success, the theoretical convergence property of decentralized AC algorithms is largely unexplored. The existing finite-time convergence results are derived based on either double-loop update or two-timescale step sizes rule, which is not often adopted in real implementation. In this work, we introduce a fully decentralized AC algorithm, where actor, critic, and global reward estimator are updated in an alternating manner with step sizes being of the same order, namely, we adopt the \emph{single-timescale} update. Theoretically, using linear approximation for value and reward estimation, we show that our algorithm has sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-2})$ under Markovian sampling, which matches the optimal complexity with double-loop implementation (here, $\tilde{\mathcal{O}}$ hides a log term). The sample complexity can be improved to ${\mathcal{O}}(\epsilon^{-2})$ under the i.i.d. sampling scheme. The central to establishing our complexity results is \emph{the hidden smoothness of the optimal critic variable} we revealed. We also provide a local action privacy-preserving version of our algorithm and its analysis. Finally, we conduct experiments to show the superiority of our algorithm over the existing decentralized AC algorithms." 2113,Darknet Traffic Classification and Adversarial Attacks,"The anonymous nature of darknets is commonly exploited for illegal activities. Previous research has employed machine learning and deep learning techniques to automate the detection of darknet traffic in an attempt to block these criminal activities. This research aims to improve darknet traffic detection by assessing Support Vector Machines (SVM), Random Forest (RF), Convolutional Neural Networks (CNN), and Auxiliary-Classifier Generative Adversarial Networks (AC-GAN) for classification of such traffic and the underlying application types. We find that our RF model outperforms the state-of-the-art machine learning techniques used in prior work with the CIC-Darknet2020 dataset. To evaluate the robustness of our RF classifier, we obfuscate select application type classes to simulate realistic adversarial attack scenarios. We demonstrate that our best-performing classifier can be defeated by such attacks, and we consider ways to deal with such adversarial attacks." 2114,Machine learning based surrogate modeling with SVD enabled training for nonlinear civil structures subject to dynamic loading,"The computationally expensive estimation of engineering demand parameters (EDPs) via finite element (FE) models, while considering earthquake and parameter uncertainty limits the use of the Performance Based Earthquake Engineering framework. Attempts have been made to substitute FE models with surrogate models, however, most of these models are a function of building parameters only. This necessitates re-training for earthquakes not previously seen by the surrogate. In this paper, the authors propose a machine learning based surrogate model framework, which considers both these uncertainties in order to predict for unseen earthquakes. Accordingly,earthquakes are characterized by their projections on an orthonormal basis, computed using SVD of a representative ground motion suite. This enables one to generate large varieties of earthquakes by randomly sampling these weights and multiplying them with the basis. The weights along with the constitutive parameters serve as inputs to a machine learning model with EDPs as the desired output. Four competing machine learning models were tested and it was observed that a deep neural network (DNN) gave the most accurate prediction. The framework is validated by using it to successfully predict the peak response of one-story and three-story buildings represented using stick models, subjected to unseen far-field ground motions." 2115,"Don't ""research fast and break things"": On the ethics of Computational Social Science","This article is concerned with setting up practical guardrails within the research activities and environments of CSS. It aims to provide CSS scholars, as well as policymakers and other stakeholders who apply CSS methods, with the critical and constructive means needed to ensure that their practices are ethical, trustworthy, and responsible. It begins by providing a taxonomy of the ethical challenges faced by researchers in the field of CSS. These are challenges related to (1) the treatment of research subjects, (2) the impacts of CSS research on affected individuals and communities, (3) the quality of CSS research and to its epistemological status, (4) research integrity, and (5) research equity. Taking these challenges as a motivation for cultural transformation, it then argues for the end-to-end incorporation of habits of responsible research and innovation (RRI) into CSS practices, focusing on the role that contextual considerations, anticipatory reflection, impact assessment, public engagement, and justifiable and well-documented action should play across the research lifecycle. In proposing the inclusion of habits of RRI in CSS practices, the chapter lays out several practical steps needed for ethical, trustworthy, and responsible CSS research activities. These include stakeholder engagement processes, research impact assessments, data lifecycle documentation, bias self-assessments, and transparent research reporting protocols." 2116,PAC-Net: A Model Pruning Approach to Inductive Transfer Learning,"Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin." 2117,A Functional Information Perspective on Model Interpretation,"Contemporary predictive models are hard to interpret as their deep nets exploit numerous complex relations between input elements. This work suggests a theoretical framework for model interpretability by measuring the contribution of relevant features to the functional entropy of the network with respect to the input. We rely on the log-Sobolev inequality that bounds the functional entropy by the functional Fisher information with respect to the covariance of the data. This provides a principled way to measure the amount of information contribution of a subset of features to the decision function. Through extensive experiments, we show that our method surpasses existing interpretability sampling-based methods on various data signals such as image, text, and audio." 2118,tBDFS: Temporal Graph Neural Network Leveraging DFS,"Temporal graph neural networks (temporal GNNs) have been widely researched, reaching state-of-the-art results on multiple prediction tasks. A common approach employed by most previous works is to apply a layer that aggregates information from the historical neighbors of a node. Taking a different research direction, in this work, we propose tBDFS -- a novel temporal GNN architecture. tBDFS applies a layer that efficiently aggregates information from temporal paths to a given (target) node in the graph. For each given node, the aggregation is applied in two stages: (1) A single representation is learned for each temporal path ending in that node, and (2) all path representations are aggregated into a final node representation. Overall, our goal is not to add new information to a node, but rather observe the same exact information in a new perspective. This allows our model to directly observe patterns that are path-oriented rather than neighborhood-oriented. This can be thought as a Depth-First Search (DFS) traversal over the temporal graph, compared to the popular Breath-First Search (BFS) traversal that is applied in previous works. We evaluate tBDFS over multiple link prediction tasks and show its favorable performance compared to state-of-the-art baselines. To the best of our knowledge, we are the first to apply a temporal-DFS neural network." 2119,Balancing Bias and Variance for Active Weakly Supervised Learning,"As a widely used weakly supervised learning scheme, modern multiple instance learning (MIL) models achieve competitive performance at the bag level. However, instance-level prediction, which is essential for many important applications, remains largely unsatisfactory. We propose to conduct novel active deep multiple instance learning that samples a small subset of informative instances for annotation, aiming to significantly boost the instance-level prediction. A variance regularized loss function is designed to properly balance the bias and variance of instance-level predictions, aiming to effectively accommodate the highly imbalanced instance distribution in MIL and other fundamental challenges. Instead of directly minimizing the variance regularized loss that is non-convex, we optimize a distributionally robust bag level likelihood as its convex surrogate. The robust bag likelihood provides a good approximation of the variance based MIL loss with a strong theoretical guarantee. It also automatically balances bias and variance, making it effective to identify the potentially positive instances to support active sampling. The robust bag likelihood can be naturally integrated with a deep architecture to support deep model training using mini-batches of positive-negative bag pairs. Finally, a novel P-F sampling function is developed that combines a probability vector and predicted instance scores, obtained by optimizing the robust bag likelihood. By leveraging the key MIL assumption, the sampling function can explore the most challenging bags and effectively detect their positive instances for annotation, which significantly improves the instance-level prediction. Experiments conducted over multiple real-world datasets clearly demonstrate the state-of-the-art instance-level prediction achieved by the proposed model." 2120,A Survey on Uncertainty Reasoning and Quantification for Decision Making: Belief Theory Meets Deep Learning,"An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions." 2121,Universality and approximation bounds for echo state networks with random weights,"We study the uniform approximation of echo state networks with randomly generated internal weights. These models, in which only the readout weights are optimized during training, have made empirical success in learning dynamical systems. We address the representational capacity of these models by showing that they are universal under weak conditions. Our main result gives a sufficient condition for the activation function and a sampling procedure for the internal weights so that echo state networks can approximate any continuous casual time-invariant operators with high probability. In particular, for ReLU activation, we quantify the approximation error of echo state networks for sufficiently regular operators." 2122,Federated Learning on Riemannian Manifolds,"Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated kPCA. We propose a Riemannian federated SVRG (RFedSVRG) method to solve federated optimization over Riemannian manifolds. We analyze its convergence rate under different scenarios. Numerical experiments are conducted to compare RFedSVRG with the Riemannian counterparts of FedAvg and FedProx. We observed from the numerical experiments that the advantages of RFedSVRG are significant." 2123,An Efficient Method for Sample Adversarial Perturbations against Nonlinear Support Vector Machines,"Adversarial perturbations have drawn great attentions in various machine learning models. In this paper, we investigate the sample adversarial perturbations for nonlinear support vector machines (SVMs). Due to the implicit form of the nonlinear functions mapping data to the feature space, it is difficult to obtain the explicit form of the adversarial perturbations. By exploring the special property of nonlinear SVMs, we transform the optimization problem of attacking nonlinear SVMs into a nonlinear KKT system. Such a system can be solved by various numerical methods. Numerical results show that our method is efficient in computing adversarial perturbations." 2124,Variational Bayes Deep Operator Network: A data-driven Bayesian solver for parametric differential equations,"Neural network based data-driven operator learning schemes have shown tremendous potential in computational mechanics. DeepONet is one such neural network architecture which has gained widespread appreciation owing to its excellent prediction capabilities. Having said that, being set in a deterministic framework exposes DeepONet architecture to the risk of overfitting, poor generalization and in its unaltered form, it is incapable of quantifying the uncertainties associated with its predictions. We propose in this paper, a Variational Bayes DeepONet (VB-DeepONet) for operator learning, which can alleviate these limitations of DeepONet architecture to a great extent and give user additional information regarding the associated uncertainty at the prediction stage. The key idea behind neural networks set in Bayesian framework is that, the weights and bias of the neural network are treated as probability distributions instead of point estimates and, Bayesian inference is used to update their prior distribution. Now, to manage the computational cost associated with approximating the posterior distribution, the proposed VB-DeepONet uses \textit{variational inference}. Unlike Markov Chain Monte Carlo schemes, variational inference has the capacity to take into account high dimensional posterior distributions while keeping the associated computational cost low. Different examples covering mechanics problems like diffusion reaction, gravity pendulum, advection diffusion have been shown to illustrate the performance of the proposed VB-DeepONet and comparisons have also been drawn against DeepONet set in deterministic framework." 2125,Dealing with Sparse Rewards in Continuous Control Robotics via Heavy-Tailed Policies,"In this paper, we present a novel Heavy-Tailed Stochastic Policy Gradient (HT-PSG) algorithm to deal with the challenges of sparse rewards in continuous control problems. Sparse reward is common in continuous control robotics tasks such as manipulation and navigation, and makes the learning problem hard due to non-trivial estimation of value functions over the state space. This demands either reward shaping or expert demonstrations for the sparse reward environment. However, obtaining high-quality demonstrations is quite expensive and sometimes even impossible. We propose a heavy-tailed policy parametrization along with a modified momentum-based policy gradient tracking scheme (HT-SPG) to induce a stable exploratory behavior to the algorithm. The proposed algorithm does not require access to expert demonstrations. We test the performance of HT-SPG on various benchmark tasks of continuous control with sparse rewards such as 1D Mario, Pathological Mountain Car, Sparse Pendulum in OpenAI Gym, and Sparse MuJoCo environments (Hopper-v2). We show consistent performance improvement across all tasks in terms of high average cumulative reward. HT-SPG also demonstrates improved convergence speed with minimum samples, thereby emphasizing the sample efficiency of our proposed algorithm." 2126,DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer Learning,"Transfer learning has been widely used in natural language processing through deep pretrained language models, such as Bidirectional Encoder Representations from Transformers and Universal Sentence Encoder. Despite the great success, language models get overfitted when applied to small datasets and are prone to forgetting when fine-tuned with a classifier. To remedy this problem of forgetting in transferring deep pretrained language models from one domain to another domain, existing efforts explore fine-tuning methods to forget less. We propose DeepEmotex an effective sequential transfer learning method to detect emotion in text. To avoid forgetting problem, the fine-tuning step is instrumented by a large amount of emotion-labeled data collected from Twitter. We conduct an experimental study using both curated Twitter data sets and benchmark data sets. DeepEmotex models achieve over 91% accuracy for multi-class emotion classification on test dataset. We evaluate the performance of the fine-tuned DeepEmotex models in classifying emotion in EmoInt and Stimulus benchmark datasets. The models correctly classify emotion in 73% of the instances in the benchmark datasets. The proposed DeepEmotex-BERT model outperforms Bi-LSTM result on the benchmark datasets by 23%. We also study the effect of the size of the fine-tuning dataset on the accuracy of our models. Our evaluation results show that fine-tuning with a large set of emotion-labeled data improves both the robustness and effectiveness of the resulting target task model." 2127,Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks,"Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications. However, accurately quantifying the uncertainty in DNN predictions remains a challenging task. For continuous outcome variables, an even more difficult problem is to estimate the predictive density function, which not only provides a natural quantification of the predictive uncertainty, but also fully captures the random variation in the outcome. In this work, we propose the Bayesian Deep Noise Neural Network (B-DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. The latent random noise equips B-DeepNoise with the flexibility to approximate highly complex predictive distributions and accurately quantify predictive uncertainty. For posterior computation, the unique structure of B-DeepNoise leads to a closed-form Gibbs sampling algorithm that iteratively simulates from the posterior full conditional distributions of the model parameters, circumventing computationally intensive Metropolis-Hastings methods. A theoretical analysis of B-DeepNoise establishes a recursive representation of the predictive distribution and decomposes the predictive variance with respect to the latent parameters. We evaluate B-DeepNoise against existing methods on benchmark regression datasets, demonstrating its superior performance in terms of prediction accuracy, uncertainty quantification accuracy, and uncertainty quantification efficiency. To illustrate our method's usefulness in scientific studies, we apply B-DeepNoise to predict general intelligence from neuroimaging features in the Adolescent Brain Cognitive Development (ABCD) project." 2128,An Unsupervised Deep-Learning Method for Bone Age Assessment,"The bone age, reflecting the degree of development of the bones, can be used to predict the adult height and detect endocrine diseases of children. Both examinations of radiologists and variability of operators have a significant impact on bone age assessment. To decrease human intervention , machine learning algorithms are used to assess the bone age automatically. However, conventional supervised deep-learning methods need pre-labeled data. In this paper, based on the convolutional auto-encoder with constraints (CCAE), an unsupervised deep-learning model proposed in the classification of the fingerprint, we propose this model for the classification of the bone age and baptize it BA-CCAE. In the proposed BA-CCAE model, the key regions of the raw X-ray images of the bone age are encoded, yielding the latent vectors. The K-means clustering algorithm is used to obtain the final classifications by grouping the latent vectors of the bone images. A set of experiments on the Radiological Society of North America pediatric bone age dataset (RSNA) show that the accuracy of classifications at 48-month intervals is 76.15%. Although the accuracy now is lower than most of the existing supervised models, the proposed BA-CCAE model can establish the classification of bone age without any pre-labeled data, and to the best of our knowledge, the proposed BA-CCAE is one of the few trails using the unsupervised deep-learning method for the bone age assessment." 2129,Mathematical Theory of Bayesian Statistics for Unknown Information Source,"In statistical inference, uncertainty is unknown and all models are wrong. A person who makes a statistical model and a prior distribution is simultaneously aware that they are fictional and virtual candidates. In order to study such cases, several statistical measures have been constructed, such as cross validation, information criteria, and marginal likelihood, however, their mathematical properties have not yet been completely clarified when statistical models are under- and over- parametrized. In this paper, we introduce a place of mathematical theory of Bayesian statistics for unknown uncertainty, on which we show general properties of cross validation, information criteria, and marginal likelihood. The derived theory holds even if an unknown uncertainty is unrealizable by a statistical model or even if the posterior distribution cannot be approximated by any normal distribution, hence it gives a helpful standpoint for a person who cannot believe in any specific model and prior. The results are followings. (1) There exists a more precise statistical measure of the generalization loss than leave-one-out cross validation and information criterion based on the mathematical properties of them. (2) There exists a more efficient approximation method of the free energy, which is the minus log marginal likelihood, even if the posterior distribution cannot be approximated by any normal distribution. (3) And the prior distributions optimized by the cross validation and the widely applicable information criterion are asymptotically equivalent to each other, which are different from that by the marginal likelihood." 2130,Physics-driven Deep Learning for PET/MRI,"In this paper, we review physics- and data-driven reconstruction techniques for simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) systems, which have significant advantages for clinical imaging of cancer, neurological disorders, and heart disease. These reconstruction approaches utilize priors, either structural or statistical, together with a physics-based description of the PET system response. However, due to the nested representation of the forward problem, direct PET/MRI reconstruction is a nonlinear problem. We elucidate how a multi-faceted approach accommodates hybrid data- and physics-driven machine learning for reconstruction of 3D PET/MRI, summarizing important deep learning developments made in the last 5 years to address attenuation correction, scattering, low photon counts, and data consistency. We also describe how applications of these multi-modality approaches extend beyond PET/MRI to improving accuracy in radiation therapy planning. We conclude by discussing opportunities for extending the current state-of-the-art following the latest trends in physics- and deep learning-based computational imaging and next-generation detector hardware." 2131,Federated Learning with Research Prototypes for Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology,"Early prostate cancer detection and staging from MRI are extremely challenging tasks for both radiologists and deep learning algorithms, but the potential to learn from large and diverse datasets remains a promising avenue to increase their generalization capability both within- and across clinics. To enable this for prototype-stage algorithms, where the majority of existing research remains, in this paper we introduce a flexible federated learning framework for cross-site training, validation, and evaluation of deep prostate cancer detection algorithms. Our approach utilizes an abstracted representation of the model architecture and data, which allows unpolished prototype deep learning models to be trained without modification using the NVFlare federated learning framework. Our results show increases in prostate cancer detection and classification accuracy using a specialized neural network model and diverse prostate biopsy data collected at two University of California research hospitals, demonstrating the efficacy of our approach in adapting to different datasets and improving MR-biomarker discovery. We open-source our FLtools system, which can be easily adapted to other deep learning projects for medical imaging." 2132,Machine learning approaches for COVID-19 detection from chest X-ray imaging: A Systematic Review,"There is a necessity to develop affordable, and reliable diagnostic tools, which allow containing the COVID-19 spreading. Machine Learning (ML) algorithms have been proposed to design support decision-making systems to assess chest X-ray images, which have proven to be useful to detect and evaluate disease progression. Many research articles are published around this subject, which makes it difficult to identify the best approaches for future work. This paper presents a systematic review of ML applied to COVID-19 detection using chest X-ray images, aiming to offer a baseline for researchers in terms of methods, architectures, databases, and current limitations." 2133,Gradient Boosting Performs Low-Rank Gaussian Process Inference,"This paper shows that gradient boosting based on symmetric decision trees can be equivalently reformulated as a kernel method that converges to the solution of a certain Kernel Ridgeless Regression problem. Thus, for low-rank kernels, we obtain the convergence to a Gaussian Process' posterior mean, which, in turn, allows us to easily transform gradient boosting into a sampler from the posterior to provide better knowledge uncertainty estimates through Monte-Carlo estimation of the posterior variance. We show that the proposed sampler allows for better knowledge uncertainty estimates leading to improved out-of-domain detection." 2134,A Theoretical Understanding of Neural Network Compression from Sparse Linear Approximation,"The goal of model compression is to reduce the size of a large neural network while retaining a comparable performance. As a result, computation and memory costs in resource-limited applications may be significantly reduced by dropping redundant weights, neurons, or layers. There have been many model compression algorithms proposed that provide impressive empirical success. However, a theoretical understanding of model compression is still limited. One problem is understanding if a network is more compressible than another of the same structure. Another problem is quantifying how much one can prune a network with theoretically guaranteed accuracy degradation. In this work, we propose to use the sparsity-sensitive $\ell_q$-norm ($0