--- license: mit tags: - binding-affinity - biology - chemistry pretty_name: Binding Affinity configs: - config_name: default data_files: - split: train path: "affinity-data-combined.parquet" - split: davis path: "davis.parquet" - split: davis_filtered path: "davis-filtered.parquet" - split: kiba path: "kiba.parquet" - split: pdbbind_2020_combined path: "pdbbind-2020-combined.parquet" - split: pdbbind_2020_refined path: "pdbbind-2020-refined.parquet" - split: bindingdb_ic50 path: "bindingdb-ic50.parquet" - split: bindingdb_ki path: "bindingdb-ki.parquet" - split: bindingdb_kd_filtered path: "bindingdb-kd-filtered.parquet" - split: bindingdb_kd path: "bindingdb-kd.parquet" - split: glaser path: "glaser.parquet" --- # Binding Affinity Dataset ## Overview This dataset is a comprehensive collection of protein-ligand binding affinity data, compiled from multiple sources. The dataset is structured with multiple splits, each corresponding to a specific source: - BindingDB IC50 Split - BindingDB Kd Split - BindingDB Kd Filtered Split - BindingDB Ki Split - Davis Split - Davis Filtered Split - KIBA Split - PDBBind 2020 Combined Split - PDBBind 2020 Refined Split - Glaser Split In addition to these source-specific splits, a main training split is provided that combines and aggregates data from all these sources. ## Training Dataset Composition The training split is a comprehensive aggregation of multiple molecular binding datasets: - Davis-filtered dataset - PDBBind 2020 Combined dataset - BindingDB IC50 dataset - BindingDB Ki dataset - BindingDB Kd Filtered dataset - Glaser dataset ## Preprocessing Steps 1. **Dataset Merging**: All specified datasets were combined into a single dataset. 2. **Duplicate Removal**: Duplicate entries were dropped to ensure data uniqueness. 3. **Binding Affinity Normalization**: - Entries with a binding affinity of 5 were reduced - For duplicate protein-ligand pairs, the mean binding affinity was calculated ## Data Sources | Dataset | Source | Notes | |---------|--------|-------| | bindingdb_ic50.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons | | bindingdb_kd.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons | | bindingdb_kd_filtered.parquet | Manually Filtered | See `standardize_data.ipynb` | | bindingdb_ki.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons | | davis.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons | | davis_filtered.parquet | [Kaggle Dataset](https://www.kaggle.com/datasets/christang0002/davis-and-kiba) | Filtered Davis dataset | | kiba.parquet | [TDC Python Package](https://tdcommons.ai/) | Therapeutic Data Commons | | pdbbind_2020_combined.parquet | [PDBBind](https://www.pdbbind.org.cn/) | Combined PDBBind 2020 dataset | | pdbbind_2020_refined.parquet | [PDBBind](https://www.pdbbind.org.cn/) | Refined PDBBind 2020 dataset | | glaser.parquet | [HuggingFace Dataset](https://huggingface.co/datasets/jglaser/binding_affinity) | Glaser binding affinity dataset | ## Dataset Columns | Column | Description | |--------|-------------| | `seq` | Protein sequence | | `smiles_can` | Canonical SMILES representation of the ligand | | `affinity_uM` | Binding affinity in micromolar (µM) concentration | | `neg_log10_affinityM` | Negative logarithm (base 10) of the affinity in molar concentration | | `affinity_norm` | Normalized binding affinity | | `affinity_mean` | Mean binding affinity for duplicate protein-ligand pairs | | `affinity_std` | Standard deviation of binding affinity for duplicate protein-ligand pairs |