[ { "id": "Biology_576", "problem": "已知某雌雄同株植物的宽叶/窄叶由等位基因 $\\mathrm{A} / \\mathrm{a}$ 控制, 高茎/矮茎由等位基因 $\\mathrm{B} / \\mathrm{b}$控制。研究人员利用射线处理该植物, 从中选择出甲、乙、丙、丁四株个体分别进行相关实验, 结果如下表所示。下列说法正确的是 ( )\n\n| $\\mathrm{P}$ | $\\mathrm{F}_{1}$ |\n| :--- | :--- |\n\n\n| 甲: 宽叶矮茎 | 宽叶矮茎: 窄叶矮茎=2:1 |\n| :--- | :--- |\n| 乙: 窄叶高茎 | 窄叶高茎: 窄叶矮茎=2: 1 |\n| 丙: 宽叶矮茎 $\\times$ 丁: 窄叶高茎 | 宽叶矮茎: 宽叶高茎: 窄叶高茎: 窄叶矮茎=1: 1: $1:$ |\nA: 上述两对基因位于非同源染色体上, 遵循自由组合定律\nB: 通过自交结果可推断, A 或 B 基因存在纯合致死现象\nC: 将 $\\mathrm{F}_{1}$ 中宽叶高茎的个体自交, 后代植株中宽叶高茎所占比例为 $4 / 9$\nD: 亲代宽叶矮茎和窄叶高茎的基因型分别是 $A a b b$ 和 $a a B b$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n已知某雌雄同株植物的宽叶/窄叶由等位基因 $\\mathrm{A} / \\mathrm{a}$ 控制, 高茎/矮茎由等位基因 $\\mathrm{B} / \\mathrm{b}$控制。研究人员利用射线处理该植物, 从中选择出甲、乙、丙、丁四株个体分别进行相关实验, 结果如下表所示。下列说法正确的是 ( )\n\n| $\\mathrm{P}$ | $\\mathrm{F}_{1}$ |\n| :--- | :--- |\n\n\n| 甲: 宽叶矮茎 | 宽叶矮茎: 窄叶矮茎=2:1 |\n| :--- | :--- |\n| 乙: 窄叶高茎 | 窄叶高茎: 窄叶矮茎=2: 1 |\n| 丙: 宽叶矮茎 $\\times$ 丁: 窄叶高茎 | 宽叶矮茎: 宽叶高茎: 窄叶高茎: 窄叶矮茎=1: 1: $1:$ |\n\nA: 上述两对基因位于非同源染色体上, 遵循自由组合定律\nB: 通过自交结果可推断, A 或 B 基因存在纯合致死现象\nC: 将 $\\mathrm{F}_{1}$ 中宽叶高茎的个体自交, 后代植株中宽叶高茎所占比例为 $4 / 9$\nD: 亲代宽叶矮茎和窄叶高茎的基因型分别是 $A a b b$ 和 $a a B b$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "【分析】分析题表: 由甲乙实验可知, 宽叶、高茎为显性; 实验甲: 宽叶矮茎植株自交,子代中宽叶矮茎: 窄叶矮茎 $=2: 1$, 亲本为 $A a b b$, 子代中原本为 $A A: A a: a a=1: 2: 1$,因此推测 AA 致死; 实验乙: 窄叶高茎植株自交, 子代中窄叶高茎: 窄叶矮茎 $=2: 1$,亲本为 $a a B b$, 子代原本为 $B B: B b: b b=1: 2: 1$, 因此推测 $B B$ 致死。无论等位基因 $\\mathrm{A} / \\mathrm{a} 、 \\mathrm{~B} / \\mathrm{b}$ 位于一对同源条染色体上, 还是位于两对非同源条染色体上, Aabb 会产生 $A b 、 a b$ 两种配子, $a a B b$ 会产生 $a b 、 a B$ 两种配子, 宽叶矮茎 $x$ 窄叶高茎, $F_{1}$ 均为宽叶矮茎: 宽叶高茎: 窄叶高茎: 窄叶矮茎 $=1: 1: 1: 1$, 故无法判断上述两对等位基因位于非同源染色体上,无法确定是否遵循自由组合定律。\n\n【详解】A、每对性状分别研究: 甲组亲本宽叶自交, 后代 $F_{1}$ 有宽有窄, 且宽: 窄 $=2$ : 1 , 说明亲本宽叶基因型为 $\\mathrm{Aa}$, 宽叶为显性, 窄叶为隐性基因型为 aa, $\\mathrm{F}_{1}$ 中 AA 纯合致死; 乙组亲本高茎自交, 后代 $F_{1}$ 有高有矮, 且高: 矮 $=2: 1$, 说明亲本高茎基因型为 $\\mathrm{Bb}$, 高茎为显性, 矮茎为隐性基因型为 $\\mathrm{bb}, \\mathrm{F}_{1}$ 中 $\\mathrm{BB}$ 纯合致死; 由此可知甲亲本宽叶矮茎基因型为 $A a b b$, 乙亲本窄叶高茎基因型为 $a a B b$; 无论等位基因 $\\mathrm{A} / \\mathrm{a} 、 \\mathrm{~B} / \\mathrm{b}$ 位于一对同源条染色体上, 还是位于两对非同源条染色体上, $A a b b$ 会产生 $A b 、 a b$ 两种配子, $a a B b$会产生 $a b 、 a B$ 两种配子, 宽叶矮茎 $x$ 窄叶高茎, $F_{1}$ 均为宽叶矮茎: 宽叶高茎: 窄叶高茎:窄叶矮茎 $=1: 1: 1: 1$, 故无法判断上述两对等位基因位于非同源染色体上, 无法确定是否遵循自由组合定律, $\\mathrm{A}$ 错误;\n\n$\\mathrm{B} 、$ 根据 $\\mathrm{A}$ 项分析结果, $\\mathrm{AA}$ 和 $\\mathrm{BB}$ 基因均存在纯合致死现象, B 错误;\n\nC、宽叶和高茎为显性, 故宽叶高茎的基因型为 $\\mathrm{A}_{-} \\mathrm{B}_{-}$, 若由于 AA 和 BB 致死, $\\mathrm{F}_{1}$ 宽叶高茎的基因型为 $\\mathrm{AaBb}$, 若两对等位基因分别位于两对同源染色体上, $\\mathrm{AaBb}$ 自交后代,子代原本的 9: 3: 3: 1 剩下 $4: 2: 2: 1$, 后代植株中宽叶高茎所占比例为 $4 / 9$; 假设上述两对基因位于一对同源染色体上, 则 $\\mathrm{AaBb}$ 会产生 $\\mathrm{Ab} 、 \\mathrm{aB}$ 两种配子,由于 $\\mathrm{AA}$ 和\n$\\mathrm{BB}$ 致死,子代基因型为 $\\mathrm{AaBb}$ ,均表现为宽叶高茎, $\\mathrm{C}$ 错误;\n\nD、根据 A 项分析结果可知, 亲代宽叶矮茎和窄叶高茎的基因型分别是 $\\mathrm{Aabb}$ 和 $\\mathrm{aaBb}$, D 正确。故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_245", "problem": "With the advancement of DNA research, various technologies have been developed, and it has become important to select appropriate research methods according to one's research purpose. Among the research methods M1 to M7, mark (T) if it is appropriate as the method that provides the most direct information on the following research purpose $\\mathrm{A}-\\mathrm{D}$, and mark $(\\mathrm{F})$ if it is inappropriate.\n\n## Research methods\n\n(M1) DNA microarray\n\n(M2) Quantitative RT-PCR\n\n(M3) CRISPR-Cas9 method\n\n(M4) In situ hybridization\n\n(M5) Reproductive cloning\n\n(M6) Construction of iPS cell\n\n(M7) Metagenome analysis\nA: To examine the site where a specific gene is expressed in a mouse tissue, it is appropriate to perform (M4).\nB: To analyze the expression level of a specific gene in maple leaves, it is appropriate to perform (M2).\nC: To search the Bacillus subtilis genome for genes the expression of which is induced when the nitrogen source is depleted. (M1)\nD: To identify microbial species from microbial communities thriving in compost. (M7)\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nWith the advancement of DNA research, various technologies have been developed, and it has become important to select appropriate research methods according to one's research purpose. Among the research methods M1 to M7, mark (T) if it is appropriate as the method that provides the most direct information on the following research purpose $\\mathrm{A}-\\mathrm{D}$, and mark $(\\mathrm{F})$ if it is inappropriate.\n\n## Research methods\n\n(M1) DNA microarray\n\n(M2) Quantitative RT-PCR\n\n(M3) CRISPR-Cas9 method\n\n(M4) In situ hybridization\n\n(M5) Reproductive cloning\n\n(M6) Construction of iPS cell\n\n(M7) Metagenome analysis\n\nA: To examine the site where a specific gene is expressed in a mouse tissue, it is appropriate to perform (M4).\nB: To analyze the expression level of a specific gene in maple leaves, it is appropriate to perform (M2).\nC: To search the Bacillus subtilis genome for genes the expression of which is induced when the nitrogen source is depleted. (M1)\nD: To identify microbial species from microbial communities thriving in compost. (M7)\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": null, "answer": [ "A", "B", "C", "D" ], "solution": "A. True. In situ hybridization is used to examine mRNA expression and localization in tissues.\n\nB. True. Quantitative RT-PCR can quantitatively analyze the expression levels of specific genes.\n\nC. True. Bacillus subtilis cultured in media with different concentrations of nitrogen sources can be screened for genes with altered expression level using the DNA microarray, which can comprehensively measure the expression levels of the entire genome.\n\nD. True. Metagenome analysis is a technology for sequencing genomic DNA extracted from microbial groups in compost for comprehensive analysis of the microbial species.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_613", "problem": "甲病 $(\\mathrm{A} / \\mathrm{a})$ 和乙病 $(\\mathrm{B} / \\mathrm{b})$ 都是单基因遗传病, 图 1 为两个家庭关于这两种遗传病的系谱图。研究人员对部分家庭成员 (I-1、I-2 和II-1) 甲病的相关基因进行检测, 结果如图 2 所示 (注: 受检测者的 DNA 与相应探针杂交, 若受检者的 DNA 中有相应基因,则表现为阳性, 否则为阴性。不考虑突变)。下列相关叙述错误的是( )\n\n[图1]\n\n图1\n\n[图2]\n\n图2\nA: 人群中甲病的致病基因频率等于男性群体中的发病率\nB: II- 2 个体与正常男性结婚, 生育不患甲病男孩的概率为 $1 / 2$\nC: II-5 的次级卵母细胞中致病基因的个数为 0 或 2 或 4\nD: II-5、II-6 再生一个正常男孩的概率是 3/16\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n甲病 $(\\mathrm{A} / \\mathrm{a})$ 和乙病 $(\\mathrm{B} / \\mathrm{b})$ 都是单基因遗传病, 图 1 为两个家庭关于这两种遗传病的系谱图。研究人员对部分家庭成员 (I-1、I-2 和II-1) 甲病的相关基因进行检测, 结果如图 2 所示 (注: 受检测者的 DNA 与相应探针杂交, 若受检者的 DNA 中有相应基因,则表现为阳性, 否则为阴性。不考虑突变)。下列相关叙述错误的是( )\n\n[图1]\n\n图1\n\n[图2]\n\n图2\n\nA: 人群中甲病的致病基因频率等于男性群体中的发病率\nB: II- 2 个体与正常男性结婚, 生育不患甲病男孩的概率为 $1 / 2$\nC: II-5 的次级卵母细胞中致病基因的个数为 0 或 2 或 4\nD: II-5、II-6 再生一个正常男孩的概率是 3/16\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-28.jpg?height=268&width=1014&top_left_y=1071&top_left_x=612", "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-28.jpg?height=214&width=1464&top_left_y=1412&top_left_x=336" ], "answer": [ "B" ], "solution": "图 1 中, I-3 和I-4 均正常, 但他们的女儿II-4 患乙病, 说明乙病为常染色体隐性遗传病。 I-1 和I-2 都正常, 他们的儿子II-1 患甲病, 说明甲病为隐性遗传病。由图 2 的检测结果可知, I-1 不含甲病的致病基因, 可进一步推知甲病为伴 X 染色体隐性遗传病。\n\n【详解】A、图 1 显示: I-1 和I-2 都正常, 他们的儿子II-1 患甲病, 说明甲病为隐性遗传病, 由图 2 的检测结果可知, I-1 不含甲病的致病基因, I-2 为甲病的致病基因携带者,据此可进一步推知: 甲病为伴 X 染色体隐性遗传病。可见,人群中甲病的致病基因频率等于男性群体中的发病率, A 正确;\n\nB、只研究甲病, 结合对 A 选项的分析可知: I-1 和I-2 的基因型分别为 $X^{A} Y$ 和 $X^{A} X^{a}$,进而推知II-2 的基因型为 $1 / 2 X^{A} X^{A} 、 1 / 2 X^{A} X^{a}$, II- 2 与基因型为 $X^{A} Y$ 的正常男性结婚,生育不患甲病男孩的概率为 $3 / 8, \\mathrm{~B}$ 错误;\n\nC、III-3 的基因型为 $b X^{\\mathrm{a}} \\mathrm{Y}$ ,据此可推知:II-5 的基因型为 $\\mathrm{BbX}^{\\mathrm{A}} \\mathrm{X}^{\\mathrm{a}}, \\mathrm{II}-5$ 经过减数第一次分裂所形成的次级卵母细胞中,致病基因的个数为 0 (不含基因 $\\mathrm{a}$ 和 $\\mathrm{b}$ )或 2 (含 2 个基因 $\\mathrm{a}$ 或含 2 个基因 $\\mathrm{b}$ )或 4 (含 2 个基因 $\\mathrm{a}$ 和含 2 个基因 $\\mathrm{b}$ , $\\mathrm{C}$ 正确; D、III-3 的基因型为 $b b X^{a} Y$, 据此可推知: II-5 和II-6 的基因型分别为 $B b X^{A} X^{a}$ 和 $B b X^{A} Y$, 二者再生一个正常男孩的概率是 $3 / 4 B_{-} \\times 1 / 4 X^{A} Y=3 / 16, D$ 正确。故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_443", "problem": "放射性心脏损伤是由电离辐射诱导的大量心肌细胞凋亡产生的心脏疾病。一项新的研究表明, circRNA 可以通过 miRNA 调控 P 基因表达进而影响细胞凋亡,调控机制见下图。miRNA 是细胞内一种单链小分子 RNA, 可与 mRNA 靶向结合并使其降解。 circRNA 是细胞内一种闭合环状 RNA, 可靶向结合 miRNA 使其不能与 mRNA 结合,从而提高 mRNA 的翻译水平。下列说法错误的是( )\n\n[图1]\nA: 前体 mRNA 是通过 RNA 聚合酶以 DNA 的一条链为模板合成的, 可被剪切成 circRNA 等多种 RNA\nB: circRNA 和 mRNA 在细胞质中通过对 miRNA 的竞争性结合, 调节基因表达\nC: 若降低细胞内 circRNA 的含量, 可提高 $\\mathrm{P}$ 基因的表达量, 抑制细胞凋亡\nD: miRNA 表达量升高可影响细胞调亡, 其可能的原因是 miRNA 表达量升高, 与 P 基因的 mRNA 结合并将其降解的概率上升\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n放射性心脏损伤是由电离辐射诱导的大量心肌细胞凋亡产生的心脏疾病。一项新的研究表明, circRNA 可以通过 miRNA 调控 P 基因表达进而影响细胞凋亡,调控机制见下图。miRNA 是细胞内一种单链小分子 RNA, 可与 mRNA 靶向结合并使其降解。 circRNA 是细胞内一种闭合环状 RNA, 可靶向结合 miRNA 使其不能与 mRNA 结合,从而提高 mRNA 的翻译水平。下列说法错误的是( )\n\n[图1]\n\nA: 前体 mRNA 是通过 RNA 聚合酶以 DNA 的一条链为模板合成的, 可被剪切成 circRNA 等多种 RNA\nB: circRNA 和 mRNA 在细胞质中通过对 miRNA 的竞争性结合, 调节基因表达\nC: 若降低细胞内 circRNA 的含量, 可提高 $\\mathrm{P}$ 基因的表达量, 抑制细胞凋亡\nD: miRNA 表达量升高可影响细胞调亡, 其可能的原因是 miRNA 表达量升高, 与 P 基因的 mRNA 结合并将其降解的概率上升\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-061.jpg?height=491&width=1468&top_left_y=557&top_left_x=320" ], "answer": [ "C" ], "solution": "【分析】结合题意分析题图可知, miRNA 能与 mRNA 结合, 使其降解, 降低 mRNA 的翻译水平。当 miRNA 与 circRNA 结合时, 就不能与 mRNA 结合, 从而提高 mRNA 的翻译水平。\n\n【详解】A、前体 mRNA 是通过 RNA 聚合酶以 DNA 的一条链为模板合成的, 可被剪切成 circRNA、mRNA 等多种 RNA, A 正确;\n\nB、 miRNA 既可以与 mRNA 结合, 也可以与 circRN 结合, 说明 circRNA 和 mRNA 在细胞质中通过对 miRNA 的竞争性结合,调节基因表达,B 正确;\n\nC、circRNA 是细胞内一种闭合环状 RNA, 可靶向结合 miRNA 使其不能与 mRNA 结合,从而提高 mRNA 的翻译水平, 则提高细胞内 circRNA 的含量, 可提高 P 基因的表达量,抑制细胞凋亡,C 错误;\n\nD、miRNA 表达量升高可影响细胞凋亡,其可能的原因是 miRNA 表达量升高,与 $\\mathrm{P}$ 基因的 mRNA 结合并将其降解的概率上升, $\\mathrm{P}$ 蛋白的含量下降, 则不能抑制细胞凋亡, $\\mathrm{D}$正确。\n故选 C。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_915", "problem": "某种自花传粉植物染色体上存在控制花色和叶形的基因, 分别记作 $\\mathrm{A} / \\mathrm{a}$ 和 $\\mathrm{B} / \\mathrm{b}$. 现选取两株亲本杂交得 $F_{1}, F_{1}$ 在自然状态下种植得 $F_{2}$, 结果如下表所示。下列说法正确的是 ( )\n\n| 亲本类型 | $F_{1}$ 表型及比例 | $F_{2}$ 表型及比例 |\n| :--- | :--- | :--- |\n| 红花椭圆形 | 红花披针形叶: 红花椭圆形叶: 白 | 红花披针形叶: 红花椭圆形叶: 白 |\n| 叶×白花披针 | 花披针形叶: 白花粗圆形叶=1:1: | 花披针形叶: 白花椭圆形叶=9: 15: |\n| 形叶 | $1: 1$ | $15: 25$ |\n\n注:不考虑同源染色体间的交换、不考虑致死。\nA: 红花对白花为显性, 粗圆形叶对披针形叶为显性\nB: 根据 $\\mathrm{F}_{1}$ 的表型及比例可判断 $\\mathrm{A} / \\mathrm{a}$ 和 $\\mathrm{B} / \\mathrm{b}$ 位于非同源染色体上\nC: 理论上 $F_{1}$ 产生的配子种类及比例为 $A B: A b: a B: a b=1: 3: 3: 9$\nD: 理论上 $F_{2}$ 红花粗圆形叶植株中纯合子占 $1 / 5$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某种自花传粉植物染色体上存在控制花色和叶形的基因, 分别记作 $\\mathrm{A} / \\mathrm{a}$ 和 $\\mathrm{B} / \\mathrm{b}$. 现选取两株亲本杂交得 $F_{1}, F_{1}$ 在自然状态下种植得 $F_{2}$, 结果如下表所示。下列说法正确的是 ( )\n\n| 亲本类型 | $F_{1}$ 表型及比例 | $F_{2}$ 表型及比例 |\n| :--- | :--- | :--- |\n| 红花椭圆形 | 红花披针形叶: 红花椭圆形叶: 白 | 红花披针形叶: 红花椭圆形叶: 白 |\n| 叶×白花披针 | 花披针形叶: 白花粗圆形叶=1:1: | 花披针形叶: 白花椭圆形叶=9: 15: |\n| 形叶 | $1: 1$ | $15: 25$ |\n\n注:不考虑同源染色体间的交换、不考虑致死。\n\nA: 红花对白花为显性, 粗圆形叶对披针形叶为显性\nB: 根据 $\\mathrm{F}_{1}$ 的表型及比例可判断 $\\mathrm{A} / \\mathrm{a}$ 和 $\\mathrm{B} / \\mathrm{b}$ 位于非同源染色体上\nC: 理论上 $F_{1}$ 产生的配子种类及比例为 $A B: A b: a B: a b=1: 3: 3: 9$\nD: 理论上 $F_{2}$ 红花粗圆形叶植株中纯合子占 $1 / 5$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "C" ], "solution": "【分析】由题意可知, 该植物自花传粉, 说明自然情况下只能自交, 由表可知, 红花椭圆形叶 $\\times$ 白花披针形叶, $F_{1}$ 红花披针形叶: 红花椭圆形叶: 白花披针形叶: 白花粗圆形叶=1: 1: 1: 1, 相当于两对测交, $F_{1}$ 中 $A a: a a=1: 1, B b: b b=1: 1, F_{2}$ 红花: 白花 $=3: 5=1 / 2 \\times 3 / 4:(1 / 2 \\times 1 / 4+1 / 2)$, 披针形叶: 椭圆形叶 $=3: 5=1 / 2 \\times 3 / 4:(1 / 2 \\times 1 / 4+1 / 2)$,说明红花、披针形叶为显性。\n【详解】A、由题意可知, 该植物自花传粉, 说明自然情况下只能自交, 由表可知, 红花椭圆形叶 $\\times$ 白花披针形叶, $F_{1}$ 红花披针形叶:红花椭圆形叶:白花披针形叶:白花椭圆形叶=1: 1: 1: 1, 相当于两对测交, $F_{1}$ 中 Aa: aa=1: $1, B b: b b=1: 1, F_{2}$ 红花:白花=3: $5=1 / 2 \\times 3 / 4:(1 / 2 \\times 1 / 4+1 / 2)$, 披针形叶:椭圆形叶=3: $5=1 / 2 \\times 3 / 4$ : $(1 / 2 \\times 1 / 4+1 / 2)$, 说明红花、披针形叶为显性, A 错误;\n\n$\\mathrm{B}$ 、由 $\\mathrm{A}$ 可知亲本的基因型为 $\\mathrm{Aabb}$ 和 $\\mathrm{aaBb}$, 不论 $\\mathrm{A} / \\mathrm{a}$ 和 $\\mathrm{B} / \\mathrm{b}$ 是否位于非同源染色体上, $F_{1}$ 的表型均为比例 1: 1: 1: 1, B 错误;\n\n$C 、 F_{2}$ 红花: 白花 $=3: 5$, 披针形叶: 籿圆形叶 $=3: 5$, 整体为红花披针形叶: 红花椭圆形叶: 白花披针形叶: 白花椭圆形叶 $=(3: 5) \\times(3: 5)=9: 15: 15: 25$, 说明两对等位基因遵循自由组合定律, $F_{1}$ 为 $A a B b: A a b b: a a B b: a a b b=1: 1: 1: 1$, 则 $F_{1}$ 产生配子种类及比例为 $\\mathrm{AB}: \\mathrm{Ab}: \\mathrm{aB}: \\mathrm{ab}=1: 3: 3: 9, \\mathrm{C}$ 正确;\n\nD、 $F_{2}$ 代红花椭圆形叶植株的基因型为 A_bb,纯合子约占 $1 / 3 , D$ 错误。故选 C。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_126", "problem": "When tomato leaves are wounded, the expression of protease inhibitor genes is induced and protease inhibitor proteins accumulate in the leaves. This response contributes to defense against insect herbivory as the protease inhibitor proteins suppress the digestive function of insects. Since this response occurs not only in damaged leaves but also in undamaged leaves, it is assumed that some mobile molecules transmit wound signals over long distances.\n\nJasmonate and systemin, a signaling peptide composed of 18 amino acids, are involved in wound-induced expression of protease inhibitor genes. Indeed, neither systemin-insensitive mutant (sprl), jasmonate biosynthesis-deficient mutant (spr2), nor jasmonate-insensitive mutant (jail) show expression of protease inhibitor genes after wounding.\n\nTo investigate the roles of jasmonate and systemin in the long-distance signaling, experiments with grafts between wild-type and mutant plants were conducted. Leaves of the stock were subjected to wounding and then the expression of protease inhibitor genes were assayed, both in damaged leaves of the stock and in undamaged leaves of the scion (Figure 1). The results are summarized in Table 1.\n\n[figure1]\n\nFigure 1. Schematic illustration of graft experiments\n\nTable 1\n\n| Genotype | | Expression of protease inhibitor genes | |\n| :---: | :---: | :---: | :---: |\n| stock | scion | stock | scion |\n| wild type | sprl | + | + |\n| spr1 | wild type | - | - |\n| wild type | spr 2 | + | + |\n| spr2 | wild type | - | - |\n| wild type | jail | + | - |\n| jai1 | wild type | - | + |\nA: Perception of systemin in the proximity of the wound site is required for the expression of protease inhibitor genes in leaves distant from the wound site.\nB: Jasmonate synthesis required for protease inhibitor gene expression takes place in the proximity of the wound site.\nC: Perception of jasmonate in the proximity of the wound site is required for the expression of protease inhibitor genes in leaves distant from the wound site.\nD: Systemin is likely to be the mobile signaling molecule responsible for long-distance wound signaling.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nWhen tomato leaves are wounded, the expression of protease inhibitor genes is induced and protease inhibitor proteins accumulate in the leaves. This response contributes to defense against insect herbivory as the protease inhibitor proteins suppress the digestive function of insects. Since this response occurs not only in damaged leaves but also in undamaged leaves, it is assumed that some mobile molecules transmit wound signals over long distances.\n\nJasmonate and systemin, a signaling peptide composed of 18 amino acids, are involved in wound-induced expression of protease inhibitor genes. Indeed, neither systemin-insensitive mutant (sprl), jasmonate biosynthesis-deficient mutant (spr2), nor jasmonate-insensitive mutant (jail) show expression of protease inhibitor genes after wounding.\n\nTo investigate the roles of jasmonate and systemin in the long-distance signaling, experiments with grafts between wild-type and mutant plants were conducted. Leaves of the stock were subjected to wounding and then the expression of protease inhibitor genes were assayed, both in damaged leaves of the stock and in undamaged leaves of the scion (Figure 1). The results are summarized in Table 1.\n\n[figure1]\n\nFigure 1. Schematic illustration of graft experiments\n\nTable 1\n\n| Genotype | | Expression of protease inhibitor genes | |\n| :---: | :---: | :---: | :---: |\n| stock | scion | stock | scion |\n| wild type | sprl | + | + |\n| spr1 | wild type | - | - |\n| wild type | spr 2 | + | + |\n| spr2 | wild type | - | - |\n| wild type | jail | + | - |\n| jai1 | wild type | - | + |\n\nA: Perception of systemin in the proximity of the wound site is required for the expression of protease inhibitor genes in leaves distant from the wound site.\nB: Jasmonate synthesis required for protease inhibitor gene expression takes place in the proximity of the wound site.\nC: Perception of jasmonate in the proximity of the wound site is required for the expression of protease inhibitor genes in leaves distant from the wound site.\nD: Systemin is likely to be the mobile signaling molecule responsible for long-distance wound signaling.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_285df5ea8616a0714b70g-41.jpg?height=545&width=850&top_left_y=1595&top_left_x=543" ], "answer": [ "A", "B" ], "solution": "A. True. Protease inhibitor gene expression is not induced in the wild-type scion grafted to the spr 1 stock, which cannot perceive systemin in the proximity of the wound site.\n\nB. True. Protease inhibitor gene expression is not induced in the wild-type scion grafted to the spr 2 stock, which cannot synthesize jasmonates in the proximity of the wound site, while it is normally induced in the $s p r 2$ scion grafted to the wildtype stock.\n\nC. False. Protease inhibitor gene expression is induced in the wild-type scion grafted to the jail stock, which cannot perceive jasmonates in the proximity of the wound site.\n\nD. False. Protease inhibitor gene expression is induced in the $\\operatorname{spr} 1$ scion grafted to the wild-type stock, while it is not induced in the wild-type scion grafted to the sprl stock, suggesting that protease inhibitor gene expression is induced only when systemin is perceived in the proximity of the wound site. Therefore, systemin is not likely to be the mobile signaling molecule responsible for long-distance wound signaling.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_685", "problem": "线粒体与糖尿病的发病密切相关, 线粒体功能障碍所致的胰岛素抵抗是糖尿病最重要的病理机制, 线粒体基因突变是遗传性糖尿病的一种最常见的形式, 下列说法错误的是 ( )\nA: 线粒体能产生 $[\\mathrm{H}]$, 也能消耗 $[\\mathrm{H}]$, 能产生 ATP,也能消耗 ATP\nB: 线粒体是真核细胞进行有氧呼吸的主要场所\nC: 人吸入 ${ }^{18} \\mathrm{O}_{2}$ 后, 在线粒体中可以产生 $\\mathrm{C}^{18} \\mathrm{O}_{2}$ 和 $\\mathrm{H}_{2}{ }^{18} \\mathrm{O}$\nD: 基因突变可能导致线粒体膜上葡萄糖转运载体结构异常,从而引发糖尿病\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n线粒体与糖尿病的发病密切相关, 线粒体功能障碍所致的胰岛素抵抗是糖尿病最重要的病理机制, 线粒体基因突变是遗传性糖尿病的一种最常见的形式, 下列说法错误的是 ( )\n\nA: 线粒体能产生 $[\\mathrm{H}]$, 也能消耗 $[\\mathrm{H}]$, 能产生 ATP,也能消耗 ATP\nB: 线粒体是真核细胞进行有氧呼吸的主要场所\nC: 人吸入 ${ }^{18} \\mathrm{O}_{2}$ 后, 在线粒体中可以产生 $\\mathrm{C}^{18} \\mathrm{O}_{2}$ 和 $\\mathrm{H}_{2}{ }^{18} \\mathrm{O}$\nD: 基因突变可能导致线粒体膜上葡萄糖转运载体结构异常,从而引发糖尿病\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "【分析】线粒体:真核细胞主要细胞器(动植物都有), 机能旺盛的含量多。呈粒状、棒状,具有双膜结构, 内膜向内突起形成 \"嵴' 内膜和基质中有与有氧呼吸有关的酶, 是有氧呼吸第二、三阶段的场所, 生命体 $95 \\%$ 的能量来自线粒体, 又叫”动力工厂”。\n\n【详解】A、线粒体是有氧呼吸第二、三阶段的场所, 有氧呼吸第二阶段能产生 $[\\mathrm{H}]$, 有氧呼吸第三阶段能消耗 $[\\mathrm{H}]$; 有氧呼吸第二、三阶段都能产生 ATP, 线粒体内物质的合成消耗 ATP,A 正确;\n\nB、真核细胞的生命活动 $95 \\%$ 的能量来自线粒体,线粒体是真核细胞进行有氧呼吸的主要场所, B 正确;\n\nC、人吸入 ${ }^{18} \\mathrm{O}_{2}$ 后, 在有氧呼吸的第三阶段, 在线粒体中的内膜上可以产生 $\\mathrm{H}_{2}{ }^{18} \\mathrm{O}, \\mathrm{H}_{2}{ }^{18} \\mathrm{O}$可参与有氧呼吸的第二阶段, 会产生 $\\mathrm{C}^{18} \\mathrm{O}_{2}, \\mathrm{C}$ 正确;\n\nD、线粒体不能转运葡萄糖, 没有葡萄糖转运载体, 所以基因突变不可能导致线粒体膜上葡萄糖转运载体结构异常, $\\mathrm{D}$ 错误。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_560", "problem": "某二倍体动物 $(2 n=4)$ 的基因型为 $\\mathrm{AaDDEe}$, 将其精巢中一个精原细胞染色体上的 DNA 双链用放射性同位素 ${ }^{32} \\mathrm{P}$ 标记后, 放入只含 ${ }^{31} \\mathrm{P}$ 的培养基中培养, 分裂过程中产生的一个子细胞中染色体及其基因位置关系如图所示。不考虑染色体畸变, 下列相关叙述错误的是 ( )\n\n[图1]\nA: 若图中细胞只有 $1 、 2$ 号染色体有放射性, 说明图中 $1 、 2$ 号染色体上分别为 A、 $\\mathrm{a}$ 基因的原因是发生了基因重组\nB: 若图中细胞只有 1 条染色体有放射性, 说明该精原细胞 DNA 至少经过 3 次复制\nC: 若图中细胞只有 2 条染色体有放射性, 该精原细胞形成图中细胞的过程中至少经历了两次胞质分裂\nD: 若图中细胞的 4 条染色体均有放射性, 该精原细胞也可能进行了有丝分裂\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某二倍体动物 $(2 n=4)$ 的基因型为 $\\mathrm{AaDDEe}$, 将其精巢中一个精原细胞染色体上的 DNA 双链用放射性同位素 ${ }^{32} \\mathrm{P}$ 标记后, 放入只含 ${ }^{31} \\mathrm{P}$ 的培养基中培养, 分裂过程中产生的一个子细胞中染色体及其基因位置关系如图所示。不考虑染色体畸变, 下列相关叙述错误的是 ( )\n\n[图1]\n\nA: 若图中细胞只有 $1 、 2$ 号染色体有放射性, 说明图中 $1 、 2$ 号染色体上分别为 A、 $\\mathrm{a}$ 基因的原因是发生了基因重组\nB: 若图中细胞只有 1 条染色体有放射性, 说明该精原细胞 DNA 至少经过 3 次复制\nC: 若图中细胞只有 2 条染色体有放射性, 该精原细胞形成图中细胞的过程中至少经历了两次胞质分裂\nD: 若图中细胞的 4 条染色体均有放射性, 该精原细胞也可能进行了有丝分裂\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-80.jpg?height=325&width=254&top_left_y=1862&top_left_x=336" ], "answer": [ "D" ], "solution": "分析】1、减数分裂过程:\n\n(1)减数第一次分裂间期:染色体的复制;\n\n(2)减数第一次分裂: (1)前期: 联会,同源染色体上的非姐妹染色单体(交叉)互换;\n\n(2)中期: 同源染色体成对的排列在赤道板上; (3)后期: 同源染色体分离, 非同源染色体自由组合;(4)末期:细胞质分裂;\n\n(3)减数第二次分裂过程: (1)前期: 核膜、核仁逐渐解体消失,出现纺锤体和染色体; (2)中期: 染色体形态固定、数目清晰; (3)后期: 着丝点分裂, 姐妹染色单体分开成为染色体,并均匀地移向两极;(4末期:核膜、核仁重建、纺锤体和染色体消失;\n\n2、DNA 分子复制方式为半保留复制;\n\n3、由于 DNA 分子复制方式为半保留复制,如果图示细胞是由精原细胞直接分裂而来,则 4 条染色体 DNA 都应该含有 ${ }^{32} \\mathrm{P}$, 而图中细胞只有 2 条染色体 DNA 含有 ${ }^{32} \\mathrm{P}$, 说明精原细胞先进行了有丝分裂,再进行减数分裂。\n\n【详解】A、若细胞只有 $1 、 2$ 号染色体有放射性, 而 3、4 无放射性, 说明 DNA 分子已至少复制三次,应该只有一个染色体有放射性,而图中的 $1 、 3$ 处于减数第二次分裂,且存在等位基因, 在减数第一次分裂的前期发生了互换,即发生了基因重组,A 正确; B、因为细胞中共 4 条染色体,在第一次复制时子代 DNA 都具有放射性,第二次复制时, 一半的 DNA 分子具有放射性, 位于同一条染色体上的姐妹染色单体, 一条有放射性, 一条无放射性。而图中 DNA 分子只有一个有放射性, 因此在进行减数分裂之前细胞已进行至少两次有丝分裂, 第二次有丝分裂时, 在有丝分裂的后期姐妹染色体单体分开后随机移向细胞的两极, 所以在细胞中具有放射性的染色体有可能是 0 条、 1 条、2 条、 3 条、 4 条,所以 DNA 分子第三次复制就可能出现只有 1 条染色体具有放射性, B 正确;\n\nC、若图中细胞只有 2 条染色体有放射性,在第一次复制时子代 DNA 都具有放射性,第二次复制时, 一半的 DNA 分子具有放射性, 位于同一条染色体上的姐妹染色单体,一条有放射性,一条无放射性所以至少经历了两次胞质分裂,C 正确;\n\nD、若 4 条染色体均有放射性, 说明 DNA 分子只复制了一次,而且已经处于减数第二次分裂的后期, 说明形成该细胞时只进行了减数分裂, D 错误。故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_667", "problem": "噬菌体感染细菌后, 细菌毒素-抗毒素系统可以“感应”筮菌体的衣壳蛋白, 进而修饰细菌细胞的 tRNA 以抵抗噬菌体感染,具体过程如图。下列叙述错误的是()\n\n[图1]\nA: 细菌毒素-抗毒素系统识别的应是噬菌体中序列保守且必需的衣壳蛋白\nB: 用 ${ }^{35} \\mathrm{~S}$ 标记筮菌体的衣壳蛋白能追踪该系统的“感应”过程\nC: CRI 蛋白与衣壳蛋白结合后能阻止 tRNA 的 3'端携带氨基酸\nD: 该系统中存在的负反馈调节有利于避免对细菌自身生命活动产生不利影响\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n噬菌体感染细菌后, 细菌毒素-抗毒素系统可以“感应”筮菌体的衣壳蛋白, 进而修饰细菌细胞的 tRNA 以抵抗噬菌体感染,具体过程如图。下列叙述错误的是()\n\n[图1]\n\nA: 细菌毒素-抗毒素系统识别的应是噬菌体中序列保守且必需的衣壳蛋白\nB: 用 ${ }^{35} \\mathrm{~S}$ 标记筮菌体的衣壳蛋白能追踪该系统的“感应”过程\nC: CRI 蛋白与衣壳蛋白结合后能阻止 tRNA 的 3'端携带氨基酸\nD: 该系统中存在的负反馈调节有利于避免对细菌自身生命活动产生不利影响\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_a4a53182e6105aab5ff8g-57.jpg?height=409&width=559&top_left_y=1783&top_left_x=340" ], "answer": [ "B" ], "solution": "【分析】噬菌体是一种专门侵染细菌的病毒, 其结构由蛋白质外壳和内部的 DNA 组成。\n\n【详解】A、细菌毒素-抗毒素系统识别的应是噬菌体中序列保守且必需的衣壳蛋白, 这试卷第 57 页,共 88 页\n样可以更加准确的识别, A 正确;\n\nB、噬菌体的蛋白质外壳不进入细菌, 用 ${ }^{35} \\mathrm{~S}$ 标记噬菌体的衣壳蛋白不能追踪该系统的感应”过程, B 错误;\n\nC、CRI 蛋白与衣壳蛋白结合后能阻止 tRNA 的 3'端携带氨基酸, C 正确;\n\nD、该系统中存在的负反馈调节有利于避免对细菌自身生命活动产生不利影响, D 正确。故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_588", "problem": "5 -溴尿嘧啶脱氧核苷 (BrdU) 可代替胸腺嘧啶脱氧核苷参与 DNA 复制, 细胞在含 $\\mathrm{BrdU}$ 的培养液中培养若干细胞周期, 经染色可观察到不同染色体的染色结果, 如下表所示。SCEs 是指两条姐妹染色单体之间的同源片段的互换。在某细胞周期,经染色后发现了如下图所示的色差染色体。\n\n[图1]\n\n色差染色体\n\n| 1 个 DNA 分子中 BrdU 的掺
入情况 | \\| |未末掺入 | \\| $\\mid$ 只有 1 条掺
入 | 112 条均掺
入 |\n| :---: | :---: | :---: | :---: |\n| 染色结果 | 深蓝色 | 深蓝色 | 浅蓝色 |\n| 注: \\|表分 | JA 单链; | 含 BrdU | NA 单链 |\n\n注: 1 表示不含 BrdU 的 DNA 单链; 表示含 BrdU 的 DNA 单链\n\n下列关于该色差染色体的成因分析,错误的是()\nA: 第 1 个细胞周期中无浅蓝色染色体, 但之后的细胞周期总能观察到深蓝色染色单体\nB: 第 2 个细胞周期的每条染色体的两条染色单体着色都不同\nC: 第 3 个细胞周期的某细胞中可能全为浅蓝色染色体\nD: 若第 1 个细胞周期发生交换, 第 1 个细胞周期能观察到 SCEs 现象\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n5 -溴尿嘧啶脱氧核苷 (BrdU) 可代替胸腺嘧啶脱氧核苷参与 DNA 复制, 细胞在含 $\\mathrm{BrdU}$ 的培养液中培养若干细胞周期, 经染色可观察到不同染色体的染色结果, 如下表所示。SCEs 是指两条姐妹染色单体之间的同源片段的互换。在某细胞周期,经染色后发现了如下图所示的色差染色体。\n\n[图1]\n\n色差染色体\n\n| 1 个 DNA 分子中 BrdU 的掺
入情况 | \\| |未末掺入 | \\| $\\mid$ 只有 1 条掺
入 | 112 条均掺
入 |\n| :---: | :---: | :---: | :---: |\n| 染色结果 | 深蓝色 | 深蓝色 | 浅蓝色 |\n| 注: \\|表分 | JA 单链; | 含 BrdU | NA 单链 |\n\n注: 1 表示不含 BrdU 的 DNA 单链; 表示含 BrdU 的 DNA 单链\n\n下列关于该色差染色体的成因分析,错误的是()\n\nA: 第 1 个细胞周期中无浅蓝色染色体, 但之后的细胞周期总能观察到深蓝色染色单体\nB: 第 2 个细胞周期的每条染色体的两条染色单体着色都不同\nC: 第 3 个细胞周期的某细胞中可能全为浅蓝色染色体\nD: 若第 1 个细胞周期发生交换, 第 1 个细胞周期能观察到 SCEs 现象\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-044.jpg?height=428&width=194&top_left_y=146&top_left_x=383" ], "answer": [ "D" ], "solution": "【分析】分析题意可知, 由于 DNA 的复制为半保留复制, 当 DNA 复制一次时, 每个 DNA 都有 1 条模板母链和 1 条新合成的子链 (含有 $\\mathrm{BrdU}$ ), 得到的每个子细胞的每个染色体都含有一条链有 BrdU 的 DNA 链; 复制二次时, 产生的每条染色体中, 一条染色单体含有 1 条模板母链和 1 条新合成的子链 (含有 BrdU), 另一染色单体含两条新合成的子链 (含有 $\\mathrm{BrdU}$ ), 当姐妹单体分离时, 两条子染色的移动方向是随机的, 故得到的子细胞可能得到双链都是含有 $\\mathrm{BrdU}$ 的染色体, 也可能随机含有几条只有一条链含有 $\\mathrm{BrdU}$的染色体; 继续复制和分裂下去, 每个细胞中染色体的染色单体中含有 BrdU 的染色单体就无法确定。分析题图可知, 两条染色单体中, 一条含有两条链含有 BrdU 的 DNA,另一条染色单体含有 1 条模板母链和 1 条新合成的子链 (含有 BrdU); 该染色体中染色单体有色差, 说明发生了交叉互换, 即 SCEs 现象。\n\n【详解】A、根据 DNA 半保留复制的特点, 第 1 个细胞周期的每条染色体的染色单体都只有一条链含有 BrdU, 所有染色单体染色都为深蓝色, 但由于最初模板链存在, 所\n以之后总会观察到深蓝色, A 正确;\n\nB、第二个细胞周期的每条染色体复制之后,每条染色体上的两条染色单体均为一条单体双链都含有 BrdU 呈浅蓝色, 一条单体只有一条链含有 BrdU 呈深蓝色, 故着色都不同, $\\mathrm{B}$ 正确;\n\nC、由于染色体着丝粒分裂后, 姐妹染色单体随机移向两极,因此第二个细胞周期结束后,如果某细胞的每条染色体中,都是两条单链含 BrdU 的染色单体分到了同一个子细胞,那这个细胞中的染色体可能全为浅蓝色,C 正确;\n\nD、第一个细胞周期发生交换, 染色单体全为深蓝色, 无色差, 观察不到 SCEs 现象, D 错误。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_620", "problem": "图 1 表示图 2 中甲种病遗传病 $\\mathrm{I}_{1} 、 \\mathrm{I}_{2}$ 和 $\\mathrm{II}_{3}$ 的相关基因电泳图谱, 图 2 表示某家族中两种遗传病的患病情况, 已知甲病在人群中的发病率为 $1 / 100$, 下列相关叙述错误的是\n\n[图1]\n\n甲家族电泳图谱 M表示标准图1\n\nI DNA片段\n\n[图2]\n\n图2\nA: 甲病为常染色体隐性遗传病, 乙病不是显性遗传病\nB: $\\mathrm{II}_{2}$ 与 $\\mathrm{II}_{3}$ 甲病相关基因型一致的概率为 100\\%\nC: 若 $\\mathrm{III}_{4}$ 不携带乙病的致病基因, $\\mathrm{IV}_{3}$ 染色体组成为 $\\mathrm{XXY}$, 则 $\\mathrm{III}_{3}$ 在减数分裂 $\\mathrm{II}$ 后期出错\nD: 若 $\\mathrm{II}_{3}$ 与不患甲病的女子婚配,子代患甲病的概率是 9/200\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n图 1 表示图 2 中甲种病遗传病 $\\mathrm{I}_{1} 、 \\mathrm{I}_{2}$ 和 $\\mathrm{II}_{3}$ 的相关基因电泳图谱, 图 2 表示某家族中两种遗传病的患病情况, 已知甲病在人群中的发病率为 $1 / 100$, 下列相关叙述错误的是\n\n[图1]\n\n甲家族电泳图谱 M表示标准图1\n\nI DNA片段\n\n[图2]\n\n图2\n\nA: 甲病为常染色体隐性遗传病, 乙病不是显性遗传病\nB: $\\mathrm{II}_{2}$ 与 $\\mathrm{II}_{3}$ 甲病相关基因型一致的概率为 100\\%\nC: 若 $\\mathrm{III}_{4}$ 不携带乙病的致病基因, $\\mathrm{IV}_{3}$ 染色体组成为 $\\mathrm{XXY}$, 则 $\\mathrm{III}_{3}$ 在减数分裂 $\\mathrm{II}$ 后期出错\nD: 若 $\\mathrm{II}_{3}$ 与不患甲病的女子婚配,子代患甲病的概率是 9/200\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-097.jpg?height=277&width=380&top_left_y=1069&top_left_x=338", "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-097.jpg?height=432&width=518&top_left_y=1000&top_left_x=802" ], "answer": [ "D" ], "solution": "分析】遗传系谱图中遗传病的遗传方式判断:(1) 确定是否为伴 Y 染色体遗传:若系谱图中患者全为男性, 而且患者后代中男性全为患者, 则为伴 $\\mathrm{Y}$ 遗传病; 若系谱图中, 患者有男有女, 则不是伴 $\\mathrm{Y}$ 遗传; (2)确定图谱中遗传病是显性遗传还是隐性遗传: “无中生有”为隐性(无病的双亲, 所生的孩子中有患者), “有中生无”为显性有病的双亲, 所生的孩子中有正常的);(3)确定致病基因位于常染色体上还是位于 X 染色体上: 若子女正常双亲病, 且满足父病女必病, 子病母必病, 则大概率为伴 X 染色体显性遗传; 若子女正常双亲病, 父病女不病或者子病母不病, 则一定为常染色体显性遗传;若双亲正常子女病, 且满足母病子必病, 女病父必病, 则大概率为伴 X 染色体隐性溃传; 若双亲正常子女病, 且满足母病子不病或女病父不病, 则一定是常染色体隐性遗传。\n【详解】A、图 2 中 $\\mathrm{III}_{2}$ 患甲病, 双亲不患甲病, 说明甲病为隐性病。又根据甲家族的电泳图谱儿子 $\\mathrm{II}_{3}$ 有两种基因即杂合子,若为伴 X 遗传,男性不会出现杂合子,故甲病为常染色体隐性遗传病, $\\mathrm{III}_{3}$ 与 $\\mathrm{III}_{4}$ 均不患乙病, 但后代患乙病, 故乙病不是显性遗传病, A 正确;\n\n$B$ 、甲病为常染色体隐性遗传, 则患病母亲 $I_{1}$ 为隐性纯合子, 父亲 $I_{2}$ 为显性纯合子, 则后代 $\\mathrm{II}_{2}$ 与 $\\mathrm{II}_{3}$ 甲病相关基因型一致的概率为 100\\%,B 正确;\n\nC、若 $\\mathrm{III}_{4}$ 不携带乙病的致病基因,则乙病为伴 X染色体隐性遗传, $\\mathrm{IV}_{3}$ 染色体组成为 XXY,因其生病, 则基因型为 $X^{b} X^{b} Y$, 其父母为 $X^{B} X^{b}$ 和 $X^{B} Y$, 其生病原因为母亲 $\\mathrm{III}_{3}$ 在减数第二次分裂后期含 $\\mathrm{X}^{\\mathrm{b}}$ 的姐妹染色单体未分离, C 正确;\n\nD、记控制甲病的基因为 $\\mathrm{A} / \\mathrm{a}$, 已知甲病在人群中的发病率为 $1 / 100$, 即 aa 频率为 $1 / 100, \\mathrm{a}$ 频率为 $1 / 10, \\mathrm{~A}$ 频率为 $9 / 10, \\mathrm{Aa}$ 频率为 $18 / 100, \\mathrm{AA}$ 频率为 $81 / 100$, 因此不患甲病的女子基因型为 $2 / 11 \\mathrm{Aa} 、 9 / 11 \\mathrm{AA}, \\mathrm{II}_{3}$ 基因型为 $\\mathrm{Aa}$, 因此后代患甲病的概率是 $2 / 11 \\times 1 / 4=1 / 22$, D 错误。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_801", "problem": "某二倍体雌雄同株的植物, 紫花对白花为显性(分别由基因 $\\mathrm{A}$ 和 a 控制), 现用纯合紫花和白花杂交, 子代中出现了甲、乙两株基因型为 AAa 的可育紫花植株。研究人员让甲与白花植株杂交, 让乙自交, 后代紫花与白花的分离比均为 3: 1。甲、乙两植株产生过程中所发生的变异类型分别是( )\nA: 个别染色体数量变异, 染色体片段易位\nB: 染色体片段易位,染色体片段重复\nC: 个别染色体数量变异, 染色体片段重复\nD: 染色体片段易位, 个别染色体数量变异\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某二倍体雌雄同株的植物, 紫花对白花为显性(分别由基因 $\\mathrm{A}$ 和 a 控制), 现用纯合紫花和白花杂交, 子代中出现了甲、乙两株基因型为 AAa 的可育紫花植株。研究人员让甲与白花植株杂交, 让乙自交, 后代紫花与白花的分离比均为 3: 1。甲、乙两植株产生过程中所发生的变异类型分别是( )\n\nA: 个别染色体数量变异, 染色体片段易位\nB: 染色体片段易位,染色体片段重复\nC: 个别染色体数量变异, 染色体片段重复\nD: 染色体片段易位, 个别染色体数量变异\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "B" ], "solution": "【分析】染色体变异包括染色体结构变异和染色体数目变异。染色体结构变异包括缺失、重复、颠倒、易位。\n\n【详解】如果是个别染色体数量变异导致的, 则 AAa 产生 A、Aa、AA、a 四种配子的比例为 2: 2: 1: 1, 若与白花植株杂交, 后代紫花与白花的比例为 5: 1, 若自交, 后代紫花与白花的比例为 35: 1。如果是染色体片段重复, 则 AAa 产生 AA、a 两种配子的比例为 1: 1, 若与白花植株杂交, 后代紫花与白花的比例为 1: 1, 若自交, 后代紫花与白花的比例为 3: 1。如果是染色体片段易位, 则 $\\mathrm{AAa}$ 产生 $\\mathrm{A} 、 \\mathrm{Aa} 、 \\mathrm{AA} 、 \\mathrm{a}$ 四种配子的比例为 1: 1: 1: 1, 若与白花植株杂交, 后代紫花与白花的比例为 3: 1, 若自交,后代紫花与白花的比例为 15 : 1 。甲与白花 $\\mathrm{dd}$ 植株杂交, 后代紫花与白花的分离比为 3: 1, 甲植株产生过程发生的变异类型为染色体片段易位; 乙自交后代紫花与白花的分离比为 3: 1, 乙植株产生过程中的变异类型为染色体片段重复, B 正确, ACD 错误。故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_931", "problem": "某二倍体植物的性别有 3 种,由基因 $\\mathrm{T} 、 \\mathrm{~T}^{\\mathrm{R}} 、 \\mathrm{~T}^{\\mathrm{D}}$ 决定。只要含有 $\\mathrm{T}^{\\mathrm{D}}$ 基因就表现为雌性, $\\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}$ 表现为雄性, $\\mathrm{TT}$ 和 $\\mathrm{T}^{\\mathrm{R}}$ 表现为雌雄同体。不考虑突变, 下列说法正确的是\nA: 数量相等的 $\\mathrm{T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{R}} 、 \\mathrm{TT}^{\\mathrm{R}}$ 的个体自由交配, $\\mathrm{F}_{1}$ 中雌性:雄性:雌雄同体 $=2: 1: 1$\nB: 雌雄同体的杂合子自体受精获得 $F_{1}, F_{1}$ 自体受精得到的 $F_{2}$ 雌雄同体中纯合子占比为 $3 / 5$\nC: 通过杂交的方法能获得纯合二倍体雌性植株\nD: 利用花药离体培养可直接获得纯合二倍体雌性植株\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某二倍体植物的性别有 3 种,由基因 $\\mathrm{T} 、 \\mathrm{~T}^{\\mathrm{R}} 、 \\mathrm{~T}^{\\mathrm{D}}$ 决定。只要含有 $\\mathrm{T}^{\\mathrm{D}}$ 基因就表现为雌性, $\\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}$ 表现为雄性, $\\mathrm{TT}$ 和 $\\mathrm{T}^{\\mathrm{R}}$ 表现为雌雄同体。不考虑突变, 下列说法正确的是\n\nA: 数量相等的 $\\mathrm{T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{R}} 、 \\mathrm{TT}^{\\mathrm{R}}$ 的个体自由交配, $\\mathrm{F}_{1}$ 中雌性:雄性:雌雄同体 $=2: 1: 1$\nB: 雌雄同体的杂合子自体受精获得 $F_{1}, F_{1}$ 自体受精得到的 $F_{2}$ 雌雄同体中纯合子占比为 $3 / 5$\nC: 通过杂交的方法能获得纯合二倍体雌性植株\nD: 利用花药离体培养可直接获得纯合二倍体雌性植株\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "B" ], "solution": "【分析】由题意分析可知:雌性动物的基因型有 $\\mathrm{T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{D}} 、 \\mathrm{~T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{R}} 、 \\mathrm{~T}^{\\mathrm{D}}$ 共 3 种; 雄性动物的基因型有 $\\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}$; 雌雄同体的基因型有 $\\mathrm{TT}$ 和 $\\mathrm{TT}^{\\mathrm{R}}$ 两种。\n\n【详解】 $\\mathrm{A} 、$ 数量相等的 $\\mathrm{T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{R}} 、 \\mathrm{TT}^{\\mathrm{R}}$ 的个体自由交配, $\\mathrm{F}_{1}$ 的基因型及比例为 $\\mathrm{TT}^{\\mathrm{D}}$ : $\\mathrm{T}^{\\mathrm{D}} \\mathrm{T}^{\\mathrm{R}}: \\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}: \\mathrm{TT}^{\\mathrm{R}}: \\mathrm{TT}: \\mathrm{TT}^{\\mathrm{R}}=1: 1: 2: 2: 1: 1, \\mathrm{~F}_{1}$ 中雌性:雄性:雌雄同体=1:1:2, $\\mathrm{A}$错误;\n\n$B$ 、雌雄同体的杂合子自体受精获得 $\\mathrm{F}_{1}$ 的基因型及比例为 $\\mathrm{TT}: \\mathrm{TT}^{\\mathrm{R}}: \\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}=1: 2: 1, \\mathrm{~F}_{1}$中的 TT、 $\\mathrm{TT}^{\\mathrm{R}}$ 为雌雄同体,可以进行自体受精。则得到的 $\\mathrm{F}_{2}$ 的基因型及比例为 $\\mathrm{TT}$ : $\\mathrm{TT}^{\\mathrm{R}}: \\mathrm{T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}=3: 2: 1, \\mathrm{~T}^{\\mathrm{R}} \\mathrm{T}^{\\mathrm{R}}$ 为雄性, 因此 $\\mathrm{F}_{2}$ 雌雄同体中纯合子占比为 $3 / 5, \\mathrm{~B}$ 正确; $\\mathrm{C}$ 、只有雌性个体中含有 $\\mathrm{T}^{\\mathrm{D}}$ 基因, 要获得纯合的二倍体雌性植株, 需要含有两个含有 $\\mathrm{T}^{\\mathrm{D}}$基因的亲本进行杂交,但含有 $\\mathrm{T}^{\\mathrm{D}}$ 基因的都是雌性,不能进行杂交, $\\mathrm{C}$ 错误;\n\n$\\mathrm{D}$ 、只有雌性个体中含有 $\\mathrm{T}^{\\mathrm{D}}$ 基因, 因此不能利用花药离体培养, 花药是雄性个体产生的, $\\mathrm{D}$ 错误。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_400", "problem": "染色体数目不稳定是肿瘤标志性特征之一。为探究 KLF14 基因在肿瘤形成中的作用, 科学家检测了正常小鼠和 KLF14 基因敲除小鼠体内不同染色体数的细胞占有丝分裂细胞的比例, 结果如图所示。下列说法错误的是( )\n\n[图1]\n\n每个细胞中的染色体数\nA: KLF14 基因对肿瘤形成起促进作用\nB: 正常小鼠的一个染色体组包含 20 条染色体\nC: KLF14 基因缺失可能会引起染色体不均等进入子细胞\nD: KLF14 基因表达蛋白可能参与检测和纠正细胞中的 DNA 异常\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n染色体数目不稳定是肿瘤标志性特征之一。为探究 KLF14 基因在肿瘤形成中的作用, 科学家检测了正常小鼠和 KLF14 基因敲除小鼠体内不同染色体数的细胞占有丝分裂细胞的比例, 结果如图所示。下列说法错误的是( )\n\n[图1]\n\n每个细胞中的染色体数\n\nA: KLF14 基因对肿瘤形成起促进作用\nB: 正常小鼠的一个染色体组包含 20 条染色体\nC: KLF14 基因缺失可能会引起染色体不均等进入子细胞\nD: KLF14 基因表达蛋白可能参与检测和纠正细胞中的 DNA 异常\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-67.jpg?height=343&width=582&top_left_y=151&top_left_x=340" ], "answer": [ "A" ], "solution": "分析图示可知, 染色体数为 39-41 的细胞占有丝分裂细胞的比例最大, 根据细胞分裂的间期时间最长,可推测该部分细胞可能处于细胞分裂的间期,细胞中染色体数与体细胞相同。且由图可知, 该部分细胞含 KLF14 基因的和不含 KLF14 基因的细胞间差异显著。染色体数在 42-50 之间的细胞含 KLF14 基因的和不含 KLF14 基因的细胞间差异极显著, 说明 KLF14 基因缺失可能会引起染色体不均等进入子细胞。\n\n【详解】A、KLF14 基因敲除后,染色体异常的细胞比例增加,故推测该基因对肿瘤形成起抑制作用, A 错误;\n\nB、间期时间长, 细胞数量多, 由图可知, 处于有丝分裂的细胞中染色体数目大多在 40 左右, 故推测正常体细胞小鼠染色体的数目是 40 条, 正常小鼠的一个染色体组包含 20 条染色体,B 正确;\n\nC、KLF14 基因缺失可能会引起染色体不均等进入子细胞, 容易引起染色体异常, C 正确;\n\nD、染色体数在 42-50 之间的细胞含 KLF14 基因的和不含 KLF14 基因的细胞间差异极显著, 说明 KLF14 基因缺失可能会引起染色体不均等进入子细胞; 可见 KLF14 基因表达蛋白可能参与检测和纠正细胞中的 DNA 异常, D 正确。\n\n故选 A。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_296", "problem": "Sucrose is produced in leaves and translocated short and long distance through veins to non-photosynthetic tissues such as roots, stems, flowers and fruits. Two principal pathways include symplast and apoplast by which sucrose molecules are transported in phloems of leaves as shown in Fig.Q14.\n\n[figure1]\n\nFig.Q14. Diagram of the whole plant phloem network. M - Mesophyll, BS - Bundle sheath, MS - Mestome sheath, PP - Phloem parenchyma, VP - Vascular parenchyma, CC - Companion cell, TST - Thick walled sieve element, ST - Sieve element.\nA: Carbon dioxide is synthesized into sucrose in leaves and transported long distance through phloems to sinks under hydrostatic pressure gradient.\nB: Loading sucrose in apoplasmic pathway requires energy in several steps due to the movement across secondary wall of living cells.\nC: In the symplamic pathway, sucrose molecules are movement as passive loading through plasmodemata.\nD: Unloading sucrose molecules at the sinks are always no requirement of energy because of movement down gradient concentration of sucrose.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nSucrose is produced in leaves and translocated short and long distance through veins to non-photosynthetic tissues such as roots, stems, flowers and fruits. Two principal pathways include symplast and apoplast by which sucrose molecules are transported in phloems of leaves as shown in Fig.Q14.\n\n[figure1]\n\nFig.Q14. Diagram of the whole plant phloem network. M - Mesophyll, BS - Bundle sheath, MS - Mestome sheath, PP - Phloem parenchyma, VP - Vascular parenchyma, CC - Companion cell, TST - Thick walled sieve element, ST - Sieve element.\n\nA: Carbon dioxide is synthesized into sucrose in leaves and transported long distance through phloems to sinks under hydrostatic pressure gradient.\nB: Loading sucrose in apoplasmic pathway requires energy in several steps due to the movement across secondary wall of living cells.\nC: In the symplamic pathway, sucrose molecules are movement as passive loading through plasmodemata.\nD: Unloading sucrose molecules at the sinks are always no requirement of energy because of movement down gradient concentration of sucrose.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-032.jpg?height=873&width=1537&top_left_y=676&top_left_x=264" ], "answer": [ "A", "C" ], "solution": "A. True. Sucrose entry into phloem increases the solute concentration that draws water from adjacent xylem. This creates hydrostatic pressure in the phloem to transport sucrose from source to sink over the long distances in plants.\n\nB. False. In the apoplasmic phloem loading, sucrose molecules are transported via plasmodeamata (PD) from mesophyll cells (M) to the phlorm parenchyma cells (PP). Sucrose molesules are subsequently imported across the plasma membrane of the companion cells (CC) against their concentration gradient.\n\nC. True. Sucrose molecules are present at high concentrations in mesophyll cells (M) and move down a concentration gradient to enter thick walled sieve element (TST). This mechanism does not require energy for sucrose to enter TST.\n\nD. False. As with phloem loading process, phloem unloading occurs through both symplast and apoplast depending on the type of sinks. Sucrose unloading is typically symplastic in growing and respiring organs such as meristematic tissues, young leaves. In storage organs, sucrose unloading is known to occur through apoplast and require energy for several steps.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_493", "problem": "某种植物的 4 号染色体上的 A 基因可以指导植酸合成, 不能合成植酸的该种植物会死亡。现有 $\\mathrm{A}^{3-}$ 和 $\\mathrm{A}^{25}$-两种分别由 $\\mathrm{A}$ 基因缺失 3 个和 25 个碱基对产生的基因, 已知前者能合成植酸, 后者不具有合成植酸的功能。将一个 $\\mathrm{A}$ 基因导入基因型为 $\\mathrm{A}^{3-} \\mathrm{A}^{25-\\text { 的 }}$植株的 6 号染色体,构成基因型为 $\\mathrm{A}^{3-} \\mathrm{A}^{25-} \\mathrm{A}$ 的植株。不考虑子代植株细胞中 DNA 的\n\n[图1]\nA: $1 / 3$\nB: $1 / 5$\nC: $2 / 5$\nD: $3 / 8$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某种植物的 4 号染色体上的 A 基因可以指导植酸合成, 不能合成植酸的该种植物会死亡。现有 $\\mathrm{A}^{3-}$ 和 $\\mathrm{A}^{25}$-两种分别由 $\\mathrm{A}$ 基因缺失 3 个和 25 个碱基对产生的基因, 已知前者能合成植酸, 后者不具有合成植酸的功能。将一个 $\\mathrm{A}$ 基因导入基因型为 $\\mathrm{A}^{3-} \\mathrm{A}^{25-\\text { 的 }}$植株的 6 号染色体,构成基因型为 $\\mathrm{A}^{3-} \\mathrm{A}^{25-} \\mathrm{A}$ 的植株。不考虑子代植株细胞中 DNA 的\n\n[图1]\n\nA: $1 / 3$\nB: $1 / 5$\nC: $2 / 5$\nD: $3 / 8$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_a4a53182e6105aab5ff8g-27.jpg?height=54&width=1005&top_left_y=493&top_left_x=340", "https://cdn.mathpix.com/cropped/2024_03_31_a4a53182e6105aab5ff8g-27.jpg?height=51&width=1071&top_left_y=1225&top_left_x=338", "https://cdn.mathpix.com/cropped/2024_03_31_a4a53182e6105aab5ff8g-27.jpg?height=54&width=1334&top_left_y=1304&top_left_x=338" ], "answer": [ "B" ], "solution": "【分析】已知基因 $\\mathrm{A}^{3}$-和 $\\mathrm{A}^{25}$-都在 4 号染色体上, 再导入一个 $\\mathrm{A}$ 基因至 6 号染色体上,由于它们位于不同对染色体上, 故该植物在减数分裂产生配子时, 遵循基因自由组合定律。\n\n【详解】由分析可知, $\\mathrm{A}^{3-} \\mathrm{A}^{25-} \\mathrm{A}$ 植物在减数分裂产生配子时, 遵循基因自由组合定律,产生配子的基因型为 $\\mathrm{A}^{3-} \\mathrm{A} 、 \\mathrm{~A}^{25-} \\mathrm{A} 、 \\mathrm{~A}^{3-} 、 \\mathrm{~A}^{25-}$ ,比例各自占 1/4; 该植物自交后代中基因型为 $\\mathrm{A}^{25-} \\mathrm{A}^{25-}=1 / 4 \\times 1 / 4=1 / 16$ 的个体死亡, 存活个体占 $1-1 / 16=15 / 16$, 含有 $\\mathrm{A}^{25-} \\mathrm{A}^{25-\\text { 的 }}$\n\n[图2]\n\n[图3]\n$3 / 16 \\div 15 / 16=1 / 5$, B 正确。故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_626", "problem": "直翅果蝇经紫外线照射后出现一种突变体, 表现型为翻翅, 已知直翅和翻翅这对相对性状完全显性, 其控制基因位于常染色体上,且翻翅基因纯合致死(胚胎期)。选择翻翅个体进行交配, $\\mathrm{F}_{1}$ 中翻翅和直翅个体的数量比为 $2: 1$ 。下列有关叙述错误的是\nA: 紫外线照射使果蝇的直翅基因结构发生了改变\nB: 果蝇的翻翅对直翅为显性\nC: $F_{1}$ 中翻翅基因频率为 $1 / 3$\nD: $F_{1}$ 果蝇自由交配, $F_{2}$ 中直翅个体所占比例为 $4 / 9$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n直翅果蝇经紫外线照射后出现一种突变体, 表现型为翻翅, 已知直翅和翻翅这对相对性状完全显性, 其控制基因位于常染色体上,且翻翅基因纯合致死(胚胎期)。选择翻翅个体进行交配, $\\mathrm{F}_{1}$ 中翻翅和直翅个体的数量比为 $2: 1$ 。下列有关叙述错误的是\n\nA: 紫外线照射使果蝇的直翅基因结构发生了改变\nB: 果蝇的翻翅对直翅为显性\nC: $F_{1}$ 中翻翅基因频率为 $1 / 3$\nD: $F_{1}$ 果蝇自由交配, $F_{2}$ 中直翅个体所占比例为 $4 / 9$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "A、紫外线照射使果蝇基因基构发生了改变,产生了新的等位基因,A 正确;\n\nB、由分析知,翻翅为显性基因,B 正确;\n\nC、 $F_{1}$ 中 $A a$ 占 $2 / 3$, aa 占 $1 / 3, A$ 的基因频率为: $\\frac{\\frac{2}{3}}{\\frac{2}{3} \\times 2+\\frac{1}{3} \\times 2}=\\frac{1}{3}$, C 正确;\n\nD、 $F_{1}$ 中 $A a$ 占 $2 / 3$, aa 占 $1 / 3$, 则产生 $A$ 配子的概率为 $2 / 3 \\times 1 / 2=1 / 3$, a 配子概率为 $2 / 3, \\quad F_{2}$ 中 aa 为: $2 / 3 \\times 2 / 3=4 / 9$, $\\mathrm{Aa}$ 为: $1 / 3 \\times 2 / 3 \\times 2=4 / 9, \\mathrm{AA}$ 为: $1 / 3 \\times 1 / 3=1 / 9$ (死亡), 因此直翅所占比例为 $1 / 2, \\mathrm{D}$ 错误。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_42", "problem": "An experiment was carried out on sorghum (Sorghum bicolor) and soybean (Glycine $\\max )$ plants in response to low temperature. Plants were grown at $25^{\\circ} \\mathrm{C}$ for several weeks and then at $10^{\\circ} \\mathrm{C}$ for three days, while day length and light intensity and ambient carbon dioxide concentration were kept constant throughout the experiment. The net photosynthesis of both plant species are shown in Fig.Q12 below.\n\n| Plant | Carbon dioxide uptake per leaf dry mass $\\left(\\mathbf{m g ~} \\mathrm{CO}_{2} \\mathbf{g}^{-1}\\right.$ ) | | | | |\n| :--- | :---: | :---: | :---: | :---: | :---: |\n| | at $25^{\\circ} \\mathrm{C}$
(before
cooling) | at $10^{\\circ} \\mathrm{C}$ (cooling) | | | at $25^{\\circ} \\mathrm{C}$, days 4 to 10
(after cooling) |\n| | 48.2 | 5.5 | 2.9 | 1.2 | |\n| Sorghum | 23.2 | 5.2 | 3.1 | 1.6 | 6.4 |\n| Soybean | 2.2 | day 2 | | | |\n\n[figure1]\nA: In $35^{\\circ} \\mathrm{C}$ condition, photosynthesis rate of soybean may decrease and that of sorghum may not change.\nB: In cool condition, the biomass of sorghum increases faster than that of soybean.\nC: Soybean plants are likely to have smaller photosynthetic water use efficiency than sorghum.\nD: The reduction of the carbon dioxide uptake in sorghum is mainly due to the decrease of enzyme activity in low temperature.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nAn experiment was carried out on sorghum (Sorghum bicolor) and soybean (Glycine $\\max )$ plants in response to low temperature. Plants were grown at $25^{\\circ} \\mathrm{C}$ for several weeks and then at $10^{\\circ} \\mathrm{C}$ for three days, while day length and light intensity and ambient carbon dioxide concentration were kept constant throughout the experiment. The net photosynthesis of both plant species are shown in Fig.Q12 below.\n\n| Plant | Carbon dioxide uptake per leaf dry mass $\\left(\\mathbf{m g ~} \\mathrm{CO}_{2} \\mathbf{g}^{-1}\\right.$ ) | | | | |\n| :--- | :---: | :---: | :---: | :---: | :---: |\n| | at $25^{\\circ} \\mathrm{C}$
(before
cooling) | at $10^{\\circ} \\mathrm{C}$ (cooling) | | | at $25^{\\circ} \\mathrm{C}$, days 4 to 10
(after cooling) |\n| | 48.2 | 5.5 | 2.9 | 1.2 | |\n| Sorghum | 23.2 | 5.2 | 3.1 | 1.6 | 6.4 |\n| Soybean | 2.2 | day 2 | | | |\n\n[figure1]\n\nA: In $35^{\\circ} \\mathrm{C}$ condition, photosynthesis rate of soybean may decrease and that of sorghum may not change.\nB: In cool condition, the biomass of sorghum increases faster than that of soybean.\nC: Soybean plants are likely to have smaller photosynthetic water use efficiency than sorghum.\nD: The reduction of the carbon dioxide uptake in sorghum is mainly due to the decrease of enzyme activity in low temperature.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-028.jpg?height=638&width=1061&top_left_y=1368&top_left_x=470" ], "answer": [ "A", "C" ], "solution": "A. True. As shown in Fig.Q12 and in data table, sorghum shows stable and high photosynthesis rate in high ambient $\\mathrm{CO}_{2}$ concentration compared to soybean, indicating that soybean is $\\mathrm{C}_{3}$ plant and sorghum is $\\mathrm{C}_{4}$ plant. In $35^{\\circ} \\mathrm{C}$ condition, the photosynthesis rate of soybean reduces while that of sorghum does not change.\n\nB. False. In cooling condition, photosynthesis rate of sorghum decreases faster than soybean, decreasing plant growth rate which results in low biomass increment.\n\nC. True. Water usage in plant species depends on water absorption through roots and transpiration via opening stomata. In general, sorghum $\\left(\\mathrm{C}_{4}\\right.$ plant $)$ has higher water use efficiency than soybean $\\left(\\mathrm{C}_{3}\\right.$ plant $)$.\n\nD. False. When returned to a temperature of $25^{\\circ} \\mathrm{C}$ for seven days, the carbon dioxide uptake by sorghum ( $\\mathrm{C}_{4}$ plant) was not increasing. So the low temperature is not the main reason for reducing the carbon dioxide uptake.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_263", "problem": "Both eukaryotes and prokaryotes have a common feature that mRNA starts translation at the AUG codon. Eukaryotic mRNA is usually a monocistron that encodes only one protein, whereas prokaryotic mRNA is often a polycistron that encodes multiple proteins. The following experiments were performed to investigate the mechanism of the AUG codon that initiates translation. Post-translation decomposition need not be considered.\n\n(1) For several operons of Escherichia coli, the promoter was replaced with a yeast promoter and introduced into yeast cells. Although all full-length mRNAs were transcribed for all operons, some operons translated only the first gene correctly, while other operons did not translate any genes.\n\n(2) The promoters derived from E. coli were ligated to cDNAs obtained by removing introns from several yeast genes and introduced into the $E$. coli host. Full-length mRNA was transcribed for all operon genes, but there was little translation of any genes.\n\nFrom these experiments, it is considered that the AUG codon that initiates the translation of Escherichia coli and yeast is determined through the following mechanism.\nA: In E. coli, the translation starts with the first AUG codon of the mRNA as the start codon.\nB: In yeast, translation starts with the first AUG codon of the mRNA as the start codon.\nC: In E. coli, translation starts with the AUG codon designated by the specific sequence in the mRNA as the start codon. 35\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nBoth eukaryotes and prokaryotes have a common feature that mRNA starts translation at the AUG codon. Eukaryotic mRNA is usually a monocistron that encodes only one protein, whereas prokaryotic mRNA is often a polycistron that encodes multiple proteins. The following experiments were performed to investigate the mechanism of the AUG codon that initiates translation. Post-translation decomposition need not be considered.\n\n(1) For several operons of Escherichia coli, the promoter was replaced with a yeast promoter and introduced into yeast cells. Although all full-length mRNAs were transcribed for all operons, some operons translated only the first gene correctly, while other operons did not translate any genes.\n\n(2) The promoters derived from E. coli were ligated to cDNAs obtained by removing introns from several yeast genes and introduced into the $E$. coli host. Full-length mRNA was transcribed for all operon genes, but there was little translation of any genes.\n\nFrom these experiments, it is considered that the AUG codon that initiates the translation of Escherichia coli and yeast is determined through the following mechanism.\n\nA: In E. coli, the translation starts with the first AUG codon of the mRNA as the start codon.\nB: In yeast, translation starts with the first AUG codon of the mRNA as the start codon.\nC: In E. coli, translation starts with the AUG codon designated by the specific sequence in the mRNA as the start codon. 35\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C].", "figure_urls": null, "answer": [ "B", "C" ], "solution": "Experiment (1) shows that only the first AUG codon of mRNA may be translated in yeast. From Experiment (2), it is presumed that some condition exists in the AUG codon that functions as the translation initiation in $E$. coli.\n\nIn eukaryotes, ribosome binds to the 5 ' terminal of mRNA, scans the nucleotide sequence, and starts translation from the first AUG codon.\n\nIn prokaryotes, translation begins at the AUG codon located approximately 10 bases downstream of the SD sequence which is complementary to the 3 ' terminal sequence of 16S ribosomal RNA (-CCUCCUA) in the mRNA sequence.\n\nA. False. In E. coli, the second and subsequent AUG codons in mRNA can also serve as translation initiation codons.\n\nB. True. In yeast mRNA, the first AUG codon is the translation initiation codon.\n\nC. True. In E. coli mRNA, translation begins at the AUG codon linked to the SD sequence.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_116", "problem": "F.D. Enfield selected for increased body size in the flour beetle Tribolium castaneum. He started with a population of beetles that had a mean weight of $2.4 \\mathrm{~g}$ and variance of $4.0 \\mathrm{~g}^{2}$. For each generation, the selection differential (S) was $0.022 \\mathrm{~g}$. The initial value of $h^{2}$ (heritability in narrow sense- $h^{2}$ is the ratio of the additive variance to the total phenotypic variance) for body size in the original population was 0.3 , so the response to selection (R) was $0.0066 \\mathrm{~g}$. For the first 50 generations, the mean weight of the selected population increased steadily, showing a response to selection close to the predicted 0.0066 . After 125 generations of selection, the mean weight had increased to $5.8 \\mathrm{~g}$, more than twice the original mean, and additional selection did not result in a further increase in size. The lightest individuals in the selected population were heavier than the heaviest individuals in the original population. Enfield determined $\\mathrm{h}^{2}$ for the selected population after 125 generations and discovered that it was only slightly less than for the original population.\nA: The failure of the population to respond to further selection was because the population genetic variation is exhausted.\nB: The reason why the mean of the population could be shifted to a value outside the original range of the population is that the selection for the increased the body size is a selection favoring heterozygotes.\nC: After 125 generations of selection, additional selection can result in a further increase in size if we increase the selection differential (higher than $0.022 \\mathrm{~g}$ ).\nD: If selection was stopped after 125 generations of selection then the body size would decrease.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (only one correct answer).\n\nproblem:\nF.D. Enfield selected for increased body size in the flour beetle Tribolium castaneum. He started with a population of beetles that had a mean weight of $2.4 \\mathrm{~g}$ and variance of $4.0 \\mathrm{~g}^{2}$. For each generation, the selection differential (S) was $0.022 \\mathrm{~g}$. The initial value of $h^{2}$ (heritability in narrow sense- $h^{2}$ is the ratio of the additive variance to the total phenotypic variance) for body size in the original population was 0.3 , so the response to selection (R) was $0.0066 \\mathrm{~g}$. For the first 50 generations, the mean weight of the selected population increased steadily, showing a response to selection close to the predicted 0.0066 . After 125 generations of selection, the mean weight had increased to $5.8 \\mathrm{~g}$, more than twice the original mean, and additional selection did not result in a further increase in size. The lightest individuals in the selected population were heavier than the heaviest individuals in the original population. Enfield determined $\\mathrm{h}^{2}$ for the selected population after 125 generations and discovered that it was only slightly less than for the original population.\n\nA: The failure of the population to respond to further selection was because the population genetic variation is exhausted.\nB: The reason why the mean of the population could be shifted to a value outside the original range of the population is that the selection for the increased the body size is a selection favoring heterozygotes.\nC: After 125 generations of selection, additional selection can result in a further increase in size if we increase the selection differential (higher than $0.022 \\mathrm{~g}$ ).\nD: If selection was stopped after 125 generations of selection then the body size would decrease.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be one of the options: [A, B, C, D].", "figure_urls": null, "answer": [ "D" ], "solution": "A. False. The $h^{2}$ after 125 generations of selection only slightly less than $h^{2}$ in the original population means that the population still contained a great deal of additive genetic variance for the body size.\n\nB. False. The reason why the mean of the population could be shifted to a value outside the original range of the population is that additive alleles have both positive and negative effects on body size, and the mean weight of the original population represented a balance between alleles that increased body size and alleles that decreased it. During the selection experiment, these additive alleles segregated, producing some progeny with fewer negative alleles and more positive alleles than any individuals in the original population. Consequently, these individuals were larger than any individuals in the original population.\n\nC. False. Increasing the selection differential do not work in this case because the selected population reached the point where no combinations of the alleles in that population could give larger beetles that were also fertile.\n\nD. True. If selection was stopped after 125 generations of selection then the body size would be dropped, and fertility increased.", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_384", "problem": "下列关于研究材料、方法及结论的叙述,错误的是( )\nA: 孟德尔以晼豆为研究材料,采用人工杂交的方法,发现了基因分离与自由组合定律\nB: 摩尔根等人以果蝇为研究材料,通过统计后代雌雄个体眼色性状分离比,认同了基因位于染色体上的理论\nC: 赫尔希与蔡斯以噬菌体和细菌为研究材料,通过同位素示踪技术区分蛋白质与 DNA,证明了 DNA 是遗传物质\nD: 沃森和克里克以 DNA 大分子为研究材料,采用 X 射线衍射的方法,破译了全部密码子\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n下列关于研究材料、方法及结论的叙述,错误的是( )\n\nA: 孟德尔以晼豆为研究材料,采用人工杂交的方法,发现了基因分离与自由组合定律\nB: 摩尔根等人以果蝇为研究材料,通过统计后代雌雄个体眼色性状分离比,认同了基因位于染色体上的理论\nC: 赫尔希与蔡斯以噬菌体和细菌为研究材料,通过同位素示踪技术区分蛋白质与 DNA,证明了 DNA 是遗传物质\nD: 沃森和克里克以 DNA 大分子为研究材料,采用 X 射线衍射的方法,破译了全部密码子\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "A、孟德尔以踠豆作为实验材料, 采用人工杂交的方法,利用假说演绎法,发现了基因分离和自由组合定律,A 正确;\n\nB、摩尔根等人以果蝇作为材料, 通过研究其眼色的遗传, 认同了基因位于染色体上的理论, B 正确;\n\nC、赫尔希和蔡斯以噬菌体和细菌为实验材料, 利用同位素示踪技术,证明了 DNA 是遗传物质,C 正确;\n\nD、沃森和克里克提出 DNA 分子的双螺旋结构, 尼伦伯格破译了第一个密码子, 后来科学家陆续破译了全部密码子, D 错误。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_2", "problem": "Imagine you are studying a membrane protein represented in the diagram below. You prepared artificial vesicles containing this protein only in the membrane. The vesicles were then treated with a protease cleaving close to the membrane (2) or permeabilised before protease treatment (3). Resulting peptides were subsequently separated using SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis).\n\n[figure1]\n\nFig.Q.5. Membrane protein (a, b, c, d, e: domains) and the SDS PAGE gel (1. untreated control, 2. peptides after protease cleavage. 3. peptides after permeabilisation and protease cleavage. The arrow indicates the direction of migration).\nA: The bigger fragments in lane 3 are hydrophilic.\nB: The smaller fragments in lane 2 represent protein domains protruding outside the membrane.\nC: Domain a is rich in leucine or isoleucine.\nD: Domains $\\mathrm{a}, \\mathrm{c}$ and e protrude into the lumen of vesicles.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (only one correct answer).\n\nproblem:\nImagine you are studying a membrane protein represented in the diagram below. You prepared artificial vesicles containing this protein only in the membrane. The vesicles were then treated with a protease cleaving close to the membrane (2) or permeabilised before protease treatment (3). Resulting peptides were subsequently separated using SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis).\n\n[figure1]\n\nFig.Q.5. Membrane protein (a, b, c, d, e: domains) and the SDS PAGE gel (1. untreated control, 2. peptides after protease cleavage. 3. peptides after permeabilisation and protease cleavage. The arrow indicates the direction of migration).\n\nA: The bigger fragments in lane 3 are hydrophilic.\nB: The smaller fragments in lane 2 represent protein domains protruding outside the membrane.\nC: Domain a is rich in leucine or isoleucine.\nD: Domains $\\mathrm{a}, \\mathrm{c}$ and e protrude into the lumen of vesicles.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be one of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-013.jpg?height=839&width=1598&top_left_y=804&top_left_x=248" ], "answer": [ "B" ], "solution": "The idea of the question is to test understanding of membrane protein and phospholipid bilayer properties.\n\nA. False. The bigger fragments, which are not cleaved by protease, are the transmission parts of the protein. The transmission parts usually are hydrophobic.\n\nB. True. The smaller fragments in lane 2 represent protein domains protruding outside the membrane. Because protein domains protruding outside the membrane are cleaved into small fragments by protease.\n\nC. False. It is the transmission part not the outside membrane part is rich in leucine or isoleucine. Domain a binds to phosphate areas of the phospholipid, therefore it should be rich in lysine.\n\nD. False. Protease is too large to penetrate the membrane of vesicles. Those parts of the membrane's proteins that are situated on the external side of the lipid bilayer are subjected to digestion by protease, but those parts within the bilayer or lumen face of the membrane are not affected. Under the condition of treatment with permeabilisation and protease, the membrane no longer acts as a barrier to the penetration of the protease, so that the lumen portions of the protein are also subjected to digestion. Under this condition (Lane 3), there were 4 bigger fragments, indicating that domains a, b, c and $d$ were cleaved by protease. Under the condition of treating with protease only, protease could not enter the lumen, and only 2 bigger fragments were, therefore, observed on the gel. This means that it was domain a, $\\mathrm{c}$, and e but not domains b and $\\mathrm{d}$ were cleaved. Therefore domains $\\mathrm{a}, \\mathrm{c}$ and $\\mathrm{e}$ are situated on the external side of the membrane.", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_463", "problem": "某家系甲病 $(A / a)$ 和乙病 (B/b) 的系谱图如图 1 所示。已知两病独立遗传, 且基因不位于 Y 染色体上。已知甲病的致病基因与正常基因用同一种限制酶切割后会形成\n\n[图1]\n\n图1\n\n[图2]\n\n未知性别及性状\n\n[图3]\n\n条带表示特定长度的酶切片段 $\\mathrm{kb}$ 表示碱基对数目\n\n图2\nA: 甲病是显性遗传病, 乙病是隐性遗传病\nB: 根据图 2 分析, $1670 \\mathrm{~kb}$ 的条带为甲病的致病基因酶切后的产物\nC: 若II-1 与人群中正常女性婚配, 所生的女儿同时患两病的概率是 $1 / 82$\nD: 若III -1 的电泳结果只有 $1403 \\mathrm{~kb}$ 和 $207 \\mathrm{~kb}$ 的条带, 则可确定其为男性\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某家系甲病 $(A / a)$ 和乙病 (B/b) 的系谱图如图 1 所示。已知两病独立遗传, 且基因不位于 Y 染色体上。已知甲病的致病基因与正常基因用同一种限制酶切割后会形成\n\n[图1]\n\n图1\n\n[图2]\n\n未知性别及性状\n\n[图3]\n\n条带表示特定长度的酶切片段 $\\mathrm{kb}$ 表示碱基对数目\n\n图2\n\nA: 甲病是显性遗传病, 乙病是隐性遗传病\nB: 根据图 2 分析, $1670 \\mathrm{~kb}$ 的条带为甲病的致病基因酶切后的产物\nC: 若II-1 与人群中正常女性婚配, 所生的女儿同时患两病的概率是 $1 / 82$\nD: 若III -1 的电泳结果只有 $1403 \\mathrm{~kb}$ 和 $207 \\mathrm{~kb}$ 的条带, 则可确定其为男性\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-90.jpg?height=300&width=506&top_left_y=381&top_left_x=341", "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-90.jpg?height=206&width=266&top_left_y=385&top_left_x=838", "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-90.jpg?height=337&width=625&top_left_y=337&top_left_x=1161" ], "answer": [ "D" ], "solution": "【分析】分析图 1 乙病, 正常夫妇I-3 和I-4 生了患病的女儿, 则乙病为隐性病, 若乙病为伴 $\\mathrm{X}$ 染色体上的隐性遗传病, 则其父亲I-3 一定患病, 这与题图不符, 故乙病是常染色体上的隐性遗传病。分析甲病, 第一代和第二代均有患者, 可能属于显性遗传病, 若常染色体上的显性遗传病, 则II-1 和II-2 基因型相同, 分析图 2 可知, II-1 和II-2 的电泳结果不同, 则II-1 和II-2 基因型不同, 则甲病不可能是常染色显性遗传病; 且I-1 不患甲病含有甲病的正常基因, I-2、II-1、II-2 均患甲病而电泳结果不同, 通过电泳图比较可知, II-2 属于杂合子, 既含有正常基因又含有致病基因,可知甲病属于显性遗传病。而故甲病属于伴 X 染色体显性遗传病。\n\n【详解】A、分析图 1 乙病, 正常夫妇I-3 和I-4 生了患病的女儿, 则乙病为隐性病, 分析甲病, 第一代和第二代均有患者, 可能属于显性遗传病, 若常染色体上的显性遗传病,则II-1 和II-2 基因型相同, 分析图 2 可知, II-1 和II-2 的电泳结果不同, 则II-1 和II-2 基因型不同, 则甲病不可能是常染色显性遗传病; 且 I-1 不患甲病含有甲病的正常基因, I-2、II-1、II-2 均患甲病而电泳结果不同, 通过电泳图比较可知, II-2 属于杂合子, 既含有正常基因又含有致病基因,可知甲病属于显性遗传病。而故甲病属于伴 X 染色体显性遗传病, A 正确;\n\nB、分析图 2, I-2、II-1、II-2 均患甲病, 且都含有 $1670 \\mathrm{~kb}$ 的条带, I-1 不患甲病, 不含 1670kb 的条带, 故 1670kb 的条带为甲病的致病基因酶切后的产物, B 正确;\n\nC、根据分析可知乙病为常染色体上的隐性遗传病, 甲病为伴 X 显性遗传病, 则II-1 的基因型为 $\\mathrm{BbX}^{\\mathrm{A}} \\mathrm{Y}$, 乙病在人群中的发病率为 $1 / 1600, \\mathrm{~b}$ 的基因频率为 $\\sqrt{1600}=1 / 40$,\n$\\mathrm{B}=39 / 40$, 人群中 $\\mathrm{BB}=\\frac{39 \\times 39}{40 \\times 40}, \\mathrm{Bb}=\\frac{39 \\times 2}{40 \\times 40}, \\mathrm{bb}=\\frac{1}{1600}$ 正常人群中 $\\mathrm{BB}=39 / 41$,\n\n$\\mathrm{Bb}=2 / 41$, 则正常女性的基因型为 $39 / 41 \\mathrm{BBX} X^{\\mathrm{a}} \\mathrm{X}, 2 / 41 \\mathrm{Bb} X^{\\mathrm{a}} \\mathrm{X}^{\\mathrm{a}}$, 所生女儿患甲病的概率为 1 , 患乙病的概率为 $2 / 41 \\times 1 / 4=1 / 82$, 同时患两种病的概率为 $1 / 82, C$ 正确;\n\nD、若III-1 的电泳结果只有 $1403 \\mathrm{~kb}$ 和 $207 \\mathrm{~kb}$ 的条带, 说明不携带甲病致病基因, 根据分析可知甲病为伴 $X$ 显性, III-1 为 $X^{a} X^{a}, X^{a} Y$ 都不符合题意, D 错误。故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_25", "problem": "In Escherichia coli. the rutA - $G$ gene cluster activates when pyrimidine is decomposed and used as a nitrogen source. The rutA - $G$ genes constitute a single rut operon, and a single $P_{\\text {rut }}$ promoter regulates the expression. The expression of the $P_{\\text {rut }}$ promoter is regulated by a RutR repressor using uracil as an inducer.\nA: As the concentration of uracil increases, the expression level of the rut operon decreases.\nB: When a mutation occurs in the RutR repressor and the affinity for uracil is reduced, the expression level of the rut operon is reduced.\nC: If a mutation occurs in the DNA binding domain of the RutR repressor and the affinity for the DNA sequence decreases, the expression level of the rut operon increases.\nD: When a mutation occurs in the nucleotide sequence of the operator to which the RutR repressor in the $P_{\\text {rut }}$ promoter binds, the expression level of the rut operon always becomes high.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nIn Escherichia coli. the rutA - $G$ gene cluster activates when pyrimidine is decomposed and used as a nitrogen source. The rutA - $G$ genes constitute a single rut operon, and a single $P_{\\text {rut }}$ promoter regulates the expression. The expression of the $P_{\\text {rut }}$ promoter is regulated by a RutR repressor using uracil as an inducer.\n\nA: As the concentration of uracil increases, the expression level of the rut operon decreases.\nB: When a mutation occurs in the RutR repressor and the affinity for uracil is reduced, the expression level of the rut operon is reduced.\nC: If a mutation occurs in the DNA binding domain of the RutR repressor and the affinity for the DNA sequence decreases, the expression level of the rut operon increases.\nD: When a mutation occurs in the nucleotide sequence of the operator to which the RutR repressor in the $P_{\\text {rut }}$ promoter binds, the expression level of the rut operon always becomes high.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": null, "answer": [ "B", "C" ], "solution": "A. False. Uracil is an inducer for RutR repressor, and RutR becomes inactive in the presence of uracil. Since the repression by the RutR repressor is derepressed by increasing the concentration of uracil, the expression level of the rut operon increases.\n\nB. True. When the affinity between the RutR repressor and uracil decreases, the sensitivity of the RutR to uracil also decreases. Therefore, the RutR repressor is less likely to be in inactive form. As a result, the repression of the rut operon is enhanced, and the expression level of the rut operon is reduced.\n\nC. True. When the DNA binding affinity of the RutR repressor decreases, repression by the RutR repressor is reduced. As a result, the expression level of the rut operon increases.\n\nD. False. When a change occurs in the RutR repressor binding sequence of the $P_{\\text {rut }}$ promoter, the affinity to the RutR repressor may decrease or increase. Therefore, it cannot be concluded that the expression level always increases.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_150", "problem": "The following figure is a phylogenetic tree of $E C P$ and $E D N$ genes in primates. EDN shows strong ribonuclease activity. By contrast, ECP shows strong anti-bacterial function, although its ribonuclease activity is weak.\n\n[figure1]\n\nFigure 1. A molecular phylogenetic tree of $E C P$ and $E D N$ genes in primates based on amino-acid sequences. The numerator and denominator along each branch show the numbers of nonsynonymous and synonymous nucleotide substitutions (substitutions that cause and do not cause amino-acid changes), respectively. Branch length is not proportional to sequence divergence nor time.\nA: The most recent common ancestor of these primate species only had the $E D N$ gene.\nB: It is likely that the Human, Chimpanzee, Gorilla, Orangutan, and Macaque independently obtained the ECP gene by gene duplication.\nC: The number of synonymous substitutions in branches between common ancestor $\\mathrm{X}$ and human $E C P$ is smaller than that between $\\mathrm{X}$ and human $E D N$.\nD: During the early evolution of the $E C P$ gene, positive selection likely operated on mutations that enhance anti-bacterial activity.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nThe following figure is a phylogenetic tree of $E C P$ and $E D N$ genes in primates. EDN shows strong ribonuclease activity. By contrast, ECP shows strong anti-bacterial function, although its ribonuclease activity is weak.\n\n[figure1]\n\nFigure 1. A molecular phylogenetic tree of $E C P$ and $E D N$ genes in primates based on amino-acid sequences. The numerator and denominator along each branch show the numbers of nonsynonymous and synonymous nucleotide substitutions (substitutions that cause and do not cause amino-acid changes), respectively. Branch length is not proportional to sequence divergence nor time.\n\nA: The most recent common ancestor of these primate species only had the $E D N$ gene.\nB: It is likely that the Human, Chimpanzee, Gorilla, Orangutan, and Macaque independently obtained the ECP gene by gene duplication.\nC: The number of synonymous substitutions in branches between common ancestor $\\mathrm{X}$ and human $E C P$ is smaller than that between $\\mathrm{X}$ and human $E D N$.\nD: During the early evolution of the $E C P$ gene, positive selection likely operated on mutations that enhance anti-bacterial activity.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_285df5ea8616a0714b70g-50.jpg?height=908&width=1471&top_left_y=674&top_left_x=264" ], "answer": [ "A", "C", "D" ], "solution": "This figure was modified from Zhang et al. 1998 PNAS\n\nA. True. Tamarin has only the $E D N$ gene. In addition, Tamarin $E D N$ has a sisterrelationship with both of $E C P$ and $E D N$ genes of all Old World monkeys. That suggests that there is only $E D N$ in the common ancestor of primates.\n\nB. False. $E C P$ genes of human, chimpanzee, gorilla, orangutan, and macaque were derived from only one gene duplication from $E D N$ in the common ancestor of them and split into each species according to the speciation.\n\nC. True. X to human $E C P$ gene: $3+2+0+0+0=5$, $\\mathrm{X}$ to human $E D N$ gene: $3+5+3+0+2=13$.\n\nNumber of synonymous substitutions on the branches from $\\mathrm{X}$ to human $E C P$ is smaller than $E D N$.\n\nD. True. So many non-synonymous substitutions occurred on the branch of the common ancestor of $E C P(33)$ although the number of synonymous substitutions seems to be comparable to the other branches, implying the operation of positive selection.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_803", "problem": "正常的水稻体细胞染色体数为 $2 \\mathrm{n}=24$ 。现有一种三体水稻, 细胞中 7 号染色体有三\n\n条。该水稻细胞及其产生的配子类型如图所示(6、7 为染色体标号; A 为抗病基因, a 为易感病基因; (1) (4)为四种配子类型)。已知染色体数异常的配子(1)(3))中雄配子不能参与受精作用, 雌配子能参与受精作用。(不考虑突变或互换) 以下说法正确的是 ( )\n\n[图1]\n\n三体细胞\n\n[图2]\n\n(1)\n\n[图3]\n\n(2)\n\n[图4]\n\n(3)\n\n[图5]\n\n(4)\nA: 形成图中配子的次级精母细胞中染色体数为 13 或 12\nB: 配子(2)与(4)可由同一个初级精母细胞分裂而来\nC: 以该三体抗病水稻作父本, 与易感病水稻(aa)杂交,子代中抗病:易感病 $=5$ : 1\nD: 以该三体抗病水稻作母本, 与易感病水稻(aa)杂交, 子代抗病个体中三体植株占 $3 / 5$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n正常的水稻体细胞染色体数为 $2 \\mathrm{n}=24$ 。现有一种三体水稻, 细胞中 7 号染色体有三\n\n条。该水稻细胞及其产生的配子类型如图所示(6、7 为染色体标号; A 为抗病基因, a 为易感病基因; (1) (4)为四种配子类型)。已知染色体数异常的配子(1)(3))中雄配子不能参与受精作用, 雌配子能参与受精作用。(不考虑突变或互换) 以下说法正确的是 ( )\n\n[图1]\n\n三体细胞\n\n[图2]\n\n(1)\n\n[图3]\n\n(2)\n\n[图4]\n\n(3)\n\n[图5]\n\n(4)\n\nA: 形成图中配子的次级精母细胞中染色体数为 13 或 12\nB: 配子(2)与(4)可由同一个初级精母细胞分裂而来\nC: 以该三体抗病水稻作父本, 与易感病水稻(aa)杂交,子代中抗病:易感病 $=5$ : 1\nD: 以该三体抗病水稻作母本, 与易感病水稻(aa)杂交, 子代抗病个体中三体植株占 $3 / 5$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-57.jpg?height=223&width=277&top_left_y=1439&top_left_x=341", "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-57.jpg?height=231&width=322&top_left_y=1438&top_left_x=747", "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-57.jpg?height=223&width=211&top_left_y=1439&top_left_x=1091", "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-57.jpg?height=225&width=206&top_left_y=1435&top_left_x=1325", "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-57.jpg?height=225&width=228&top_left_y=1435&top_left_x=1551" ], "answer": [ "D" ], "solution": "【分析】染色体变异是指染色体结构和数目的改变。染色体结构的变异主要有缺失、重复、倒位、易位四种类型; 染色体数目的变异有染色体组成倍增加或减少和染色体个别数目的增加或减少。\n\n【详解】A、在减数分裂中, 形成配子(1) (3)的是次级精母细胞, 该次级精母细胞中染色\n体数为 13 或者 26 (减数第二次分裂后期), 形成配子(2)(4)的是次级精母细胞, 该次级精母细胞中染色体数为 12 或者 24 (减数第二次分裂后期), A 错误;\n\nB、正常情况下, 该个体产生的配子种类有: A、Aa、AA、a 共四种, 配子(4)含有的基因应为 A,与此同时产生的另外一种配子的基因型是 Aa; 配子(2)同时产生的配子的基因型为 AA,二者不能由同一个初级精母细胞分裂而来, B 错误;\n\nC、该三体抗病水稻作父本, 与感病水稻(aa)杂交, 由于染色体数异常的配子\n\n(1)(3) 中雄配子不能参与受精作用, 三体抗病水稻产生的雄配子及比例为 $\\mathrm{A}: \\mathrm{a}=2$ :\n\n1 , 子代中抗病: 感病=2: $1, \\mathrm{C}$ 错误;\n\nD、该三体抗病水稻作母本, 与感病水稻(aa)杂交, 由于染色体数异常的雌配子能参与受精作用, 而该三体产生的雌配子及比例为 A: Aa: AA: $\\mathrm{a}=2: 2: 1: 1$, 子代抗病个体中三体植株占 $3 / 5, \\mathrm{D}$ 正确。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_324", "problem": "苂光标记染色体上的着丝粒可研究染色体的行为和数量变化。取一个正在分裂的果蝇细胞用不同颜色的苂光标记其中两条染色体的看丝粒(分别用“-”和“○”表示),在苂光显微镜下观察到它们的移动路径如图甲箭头所示; 图乙是该细胞分裂过程中染色体数与核 DNA 数之比的变化曲线。下列相关叙述正确的是( )\n[图1]\nA: 若该细胞中有 5 种不同形态的染色体, 则该果蝇是雌果蝇\nB: 该细胞分裂后形成的子细胞中有 4 条染色体, 8 个核 DNA 分子\nC: 当苂光点移动到(3)所示位置时, 该细胞处于减数分裂I末期\nD: 图甲所示过程中染色体数与核 DNA 数之比对应图乙的 EF 段\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n苂光标记染色体上的着丝粒可研究染色体的行为和数量变化。取一个正在分裂的果蝇细胞用不同颜色的苂光标记其中两条染色体的看丝粒(分别用“-”和“○”表示),在苂光显微镜下观察到它们的移动路径如图甲箭头所示; 图乙是该细胞分裂过程中染色体数与核 DNA 数之比的变化曲线。下列相关叙述正确的是( )\n[图1]\n\nA: 若该细胞中有 5 种不同形态的染色体, 则该果蝇是雌果蝇\nB: 该细胞分裂后形成的子细胞中有 4 条染色体, 8 个核 DNA 分子\nC: 当苂光点移动到(3)所示位置时, 该细胞处于减数分裂I末期\nD: 图甲所示过程中染色体数与核 DNA 数之比对应图乙的 EF 段\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_6094917e73c20e0852feg-53.jpg?height=1012&width=1016&top_left_y=152&top_left_x=337" ], "answer": [ "B" ], "solution": "【分析】减数第一次分裂:(1)前期:联会,同源染色体上的非姐妹染色单体交叉互换;\n\n(2)中期: 同源染色体成对的排列在赤道板上; (3)后期: 同源染色体分离, 非同源染色体自由组合;(4)末期:细胞质分裂。\n\n【详解】A、果蝇为 XY 性别决定型生物, 体细胞中含有 3 对常染色体和 1 对性染色体,常染色体的形态两两相同, 性染色体 $\\mathrm{X}$ 和 $\\mathrm{Y}$ 形态不同, 若该细胞中有 5 种不同形态的染色体,说明该果蝇为雄果蝇,A 错误;\n\nB、果蝇有 8 条染色体,减数分裂 I 末期时细胞一分为二,产生的子细胞中染色体数目减半,含有 4 条染色体, 8 条染色单体, 8 个核 DNA 分子, B 正确;\n\nC、当荧光点移动到(3)赤道板所示位置时, 两条染色体的着丝粒整齐地排列在赤道板的两侧,所以可以判断该时期为减数分裂 I 中期,C 错误;\n\nD、图甲所示过程为减数分裂 I 过程, 该过程中染色体数与 DNA 数之比对应图乙的 CD 段, D 错误。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_827", "problem": "某遗传病受等位基因 $\\mathrm{B} 、 \\mathrm{~b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 控制,且只要有一个显性基因就不患该病。 $\\mathrm{B} 、$\n\n$\\mathrm{b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 位于一对同源染色体上, 已知同源染色体的非姐妹染色单体之间互换形成重组型配子的比例小于非重组型配子。现以单个精子的 DNA 为模板进行 PCR, 研究 B、 $\\mathrm{b}$ 等 4 对等位基因在染色体上的相对位置关系。某志愿者的 12 个精子检测结果如表所示。以下选项中错误的是()\n\n| 等位基因 | | A | $a$ | $B$ | $b$ | $D$ | $d$ | $E$ | $e$ |\n| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\n| | 1 | | + | + | | | + | | |\n| | 2 | | + | + | | | + | | + |\n| 单个精 | 4 | | + | + | | | + | | + |\n| | 3 | | + | + | | | + | | |\n\n\n| 8 | + | | | + | | + | | + |\n| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\n| 9 | + | | | + | + | | | |\n| 10 | + | | | + | + | | | + |\n| 11 | + | | | + | + | | | |\n\n注: “十”表示有,空白表示无\nA: 等位基因 $A 、 a$ 和 $B 、 b$ 的遗传不遵循自由组合定律\nB: 等位基因 E、e 位于 $\\mathrm{X}$ 染色体非同源区段上\nC: 若某女性与志愿者婚配生一个正常孩子概率为 $17 / 18$, 则该女性产生 bd 配子概率为 $1 / 3$\nD: 若某精子同时检测到 $A 、 a , B 、 b$ 和 $D 、 d$ 基因,则原因为减I后期同源染色体未分离\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n某遗传病受等位基因 $\\mathrm{B} 、 \\mathrm{~b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 控制,且只要有一个显性基因就不患该病。 $\\mathrm{B} 、$\n\n$\\mathrm{b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 位于一对同源染色体上, 已知同源染色体的非姐妹染色单体之间互换形成重组型配子的比例小于非重组型配子。现以单个精子的 DNA 为模板进行 PCR, 研究 B、 $\\mathrm{b}$ 等 4 对等位基因在染色体上的相对位置关系。某志愿者的 12 个精子检测结果如表所示。以下选项中错误的是()\n\n| 等位基因 | | A | $a$ | $B$ | $b$ | $D$ | $d$ | $E$ | $e$ |\n| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\n| | 1 | | + | + | | | + | | |\n| | 2 | | + | + | | | + | | + |\n| 单个精 | 4 | | + | + | | | + | | + |\n| | 3 | | + | + | | | + | | |\n\n\n| 8 | + | | | + | | + | | + |\n| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\n| 9 | + | | | + | + | | | |\n| 10 | + | | | + | + | | | + |\n| 11 | + | | | + | + | | | |\n\n注: “十”表示有,空白表示无\n\nA: 等位基因 $A 、 a$ 和 $B 、 b$ 的遗传不遵循自由组合定律\nB: 等位基因 E、e 位于 $\\mathrm{X}$ 染色体非同源区段上\nC: 若某女性与志愿者婚配生一个正常孩子概率为 $17 / 18$, 则该女性产生 bd 配子概率为 $1 / 3$\nD: 若某精子同时检测到 $A 、 a , B 、 b$ 和 $D 、 d$ 基因,则原因为减I后期同源染色体未分离\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "B" ], "solution": "【分析】从表中可以看出有 $\\mathrm{A}$ 时一定有 $\\mathrm{b}$,有 $\\mathrm{a}$ 时一定有 $\\mathrm{B}$, 说明两对基因在一对同源染色体上, 且 $\\mathrm{A}$ 和 $\\mathrm{b}$ 连锁, $\\mathrm{a}$ 和 $\\mathrm{B}$ 连锁; $\\mathrm{B} / \\mathrm{b}$ 和 $\\mathrm{D} / \\mathrm{d}$ 则不能判断,可能位于两对同源染色体上或位于一对同源染色体上,但发生了染色体的互换;e 基因应 X 或者 Y 染色体上。\n\n【详解】 $\\mathrm{A} 、$ 根据表中表中信息可以看出只有 $\\mathrm{aB}$ 和 $\\mathrm{Ab}$ 两种配子,说明等位基因 $\\mathrm{A} 、 \\mathrm{a}$和 B、 $\\mathrm{b}$ 位于同一条染色体上,的遗传不遵循自由组合定律,A 正确;\n\n$B$ 、据表分析,含有 $\\mathrm{e}$ 的配子和不含 $\\mathrm{e}$ 的配子比例为 1 : 1 , 推测 $\\mathrm{e}$ 基因位于 $\\mathrm{X}$ 或 $\\mathrm{Y}$ 染色体上, B 错误;\n\nC、某遗传病受等位基因 $B 、 b$ 和 $D 、 d$ 控制,且只要有 1 个显性基因就不患该病。该志愿者与某女性婚配,预期生一个正常孩子的概率为 $17 / 18$, 则生一个患病的孩子的概率为 $1 / 18$, 表中显示丈夫产生的 bd 精子的概率为 $1 / 6$, 所以妻子产生 bd 卵细胞的概率为 1/3,C 正确;\n\n$\\mathrm{D} 、 \\mathrm{~A} 、 \\mathrm{a}, \\mathrm{B} 、 \\mathrm{~b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 基因三对等位基因位于同源染色体上,若某精子同时检测到 $\\mathrm{A} 、 \\mathrm{a}, \\mathrm{B} 、 \\mathrm{~b}$ 和 $\\mathrm{D} 、 \\mathrm{~d}$ 基因,则原因为减 I后期同源染色体未分离,D 正确。故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_642", "problem": "遗传印记是因亲本来源不同而导致等位基因表达差异的一种遗传现象,DNA 甲基化是遗传印记重要的方式之一, 印记是在配子发生过程中获得的, 在个体发育过程中得以维持, 在下一代配子形成时印记重建。如图为遗传印记对转基因鼠的 lgf2 基因 (存在有功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$ 两种基因)表达和传递影响的示意图,被甲基化的基因不能表达。\n\n[图1]\n 在上述配子形成过程中, 下列叙述错误的是 ( )\nA: DNA 甲基化属于表观遗传\nB: 雄配子中印记重建后, A 基因碱基序 列改变\nC: 雌配子中印记重建去甲基化\nD: 亲代雌鼠的 A 基因来自它的父方\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n遗传印记是因亲本来源不同而导致等位基因表达差异的一种遗传现象,DNA 甲基化是遗传印记重要的方式之一, 印记是在配子发生过程中获得的, 在个体发育过程中得以维持, 在下一代配子形成时印记重建。如图为遗传印记对转基因鼠的 lgf2 基因 (存在有功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$ 两种基因)表达和传递影响的示意图,被甲基化的基因不能表达。\n\n[图1]\n 在上述配子形成过程中, 下列叙述错误的是 ( )\n\nA: DNA 甲基化属于表观遗传\nB: 雄配子中印记重建后, A 基因碱基序 列改变\nC: 雌配子中印记重建去甲基化\nD: 亲代雌鼠的 A 基因来自它的父方\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-077.jpg?height=542&width=985&top_left_y=640&top_left_x=336" ], "answer": [ "B" ], "solution": "1、表观遗传: 指 DNA 序列不发生变化, 但基因的表达却发生了可遗传的改变,即基因型未发生变化而表现型却发生了改变,如 DNA 的甲基化。DNA 的甲基化: 生物基因的碱基序列没有变化, 但部分碱基发生了甲基化修饰, 抑制了基因的表达, 进而对表型产生影响。这种 DNA 甲基化修饰可以遗传给后代, 使后代出现同样的表型。\n\n2、据图分析可知, 雄配子中印记重建去甲基化, 雌配子中印记重建甲基化。设甲基化分别用 $A^{\\prime} 、 a^{\\prime}$ 表示。功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$, 即显性有功能, 隐性无功能。 A、表观遗传是指 DNA 序列不发生变化, 但基因的表达却发生了可遗传的改变,\n即基因型未发生变化而表现型却发生了改变,如 DNA 的甲基化,A 正确;\n\nB、DNA 的甲基化不会改变基因的碱基序列,雄配子中印记重建后,A 基因碱基序列没有改变,B 错误;\n\nC、雌配子中印记重建去甲基化,雄配子中印记重建甲基化,C 正确;\n\nD、由图中配子形成过程中印记发生的机制可知,雄配子中印记重建去甲基化,雌配子中印记重建甲基化,雌鼠的 A 基因发生甲基化,可以断定亲代雌鼠的 A 基因来自它父方, D 正确。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_266", "problem": "Figure Q.30A shows an insulin secretion and the mechanism by which insulin stimulates glucose absorption into cell. The mechanism includes four steps depicted by the four circled digits 1 to 4 .\n\n[figure1]\n\nFigure Q.30A.\n\nFour patients (E, F, G and $\\mathrm{H}$ ) had a defect each in a single step of the above mechanism. Patients E, F, G and $\\mathrm{H}$ had defect in steps 1, 2, 3 and 4, respectively. These patients were given two tests:\n\n- Test 1: Muscle cells from each patient were isolated and the percentage of cells in different concentrations of insulin was determined (Figure Q.30B).\n- Test 2: Each patient was injected with same insulin quantity related to their body mass and their plasma glucose concentrations were then measured at various times after injection (Figure Q.30C).\n\n[figure2]\n\nFigure Q.30B.\n\n[figure3]\n\nFigure Q.30C.\nA: The result of Test 1 of Patient $G$ could be shown in Line 1.\nB: Lines 2 and 3 show the results of Tests 1 and 2, respectively, of Patient F.\nC: Line 3 shows the tested result of Patient E.\nD: Lines 1 and 4 show the results of Tests 1 and 2, respectively, of Patient $H$.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nFigure Q.30A shows an insulin secretion and the mechanism by which insulin stimulates glucose absorption into cell. The mechanism includes four steps depicted by the four circled digits 1 to 4 .\n\n[figure1]\n\nFigure Q.30A.\n\nFour patients (E, F, G and $\\mathrm{H}$ ) had a defect each in a single step of the above mechanism. Patients E, F, G and $\\mathrm{H}$ had defect in steps 1, 2, 3 and 4, respectively. These patients were given two tests:\n\n- Test 1: Muscle cells from each patient were isolated and the percentage of cells in different concentrations of insulin was determined (Figure Q.30B).\n- Test 2: Each patient was injected with same insulin quantity related to their body mass and their plasma glucose concentrations were then measured at various times after injection (Figure Q.30C).\n\n[figure2]\n\nFigure Q.30B.\n\n[figure3]\n\nFigure Q.30C.\n\nA: The result of Test 1 of Patient $G$ could be shown in Line 1.\nB: Lines 2 and 3 show the results of Tests 1 and 2, respectively, of Patient F.\nC: Line 3 shows the tested result of Patient E.\nD: Lines 1 and 4 show the results of Tests 1 and 2, respectively, of Patient $H$.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-067.jpg?height=589&width=1393&top_left_y=657&top_left_x=340", "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-067.jpg?height=516&width=758&top_left_y=2004&top_left_x=199", "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-067.jpg?height=524&width=755&top_left_y=2003&top_left_x=1018" ], "answer": [ "A", "B" ], "solution": "A. True. The binding between insulin and its receptor was normal in Patient G. Therefore, the percentage of insulin-binding cells increased rapidly when the insulin concentration increased. However, the percentage did not elevate later even though the insulin concentration increased since most of the receptors were already bound to insulin (Line 1).\n\nB. True. The binding between insulin and its receptor was defective in Patient F. Therefore, the percentage of insulin-binding cells was lower than normal as the same insulin concentration (Line 2). Thus, insulin failed to decrease plasma glucose in this patient (Line 3).\n\nC. False. The insulin secretion was defective in Patient E. Hence, the plasma glucose level should have reduced after insulin was injected. This means that Line 3 is not the tested result of Patient $\\mathrm{E}$.\n\nD. False. The binding between insulin and its receptor was normal in Patient $\\mathrm{H}$ (Line 1). The glucose transportation into the cells was defective in Patient $\\mathrm{H}$. Therefore, plasma glucose level should not have reduced markedly after insulin was injected. That means Line 4 is not the tested result of Patient $\\mathrm{H}$.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_778", "problem": "18. 植物在干旱等不良环境下细胞会出现 PR - 5 蛋白, 研究人员从干旱胁迫与恢复水供应 (复水) 后的番茄植株的根茎叶细胞中提取的总 RNA, 测定细胞中 PR - 5 蛋白基因的转录 情况如下表. 正确的说法是\n\n| | 娈䴃 | 夏水 $2 \\mathrm{~h}$ | 夏水 $4 \\mathrm{~h}$ | 夏水 $\\mathrm{Bh}$ | 夏水 $24 \\mathrm{~h}$ | 对照 |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| 根 | - | +++ | +++ | +++ | +++ | ++ |\n| 芜 | - | + | + | + | + | - |\n| 叶 | - | - | - | + | - | - |\n\n注: “+”表示检出; “-”表示未检出, “+”越多表示相对含量越多.()\nA: 干旱导致萎萫的植株 PR - 5 基因被破坏\nB: 对照组说明在叶分化过程中 PR - 5 基因丢失\nC: 复水后根比茎叶产生了更多的 PR - 5 基因\nD: 干旱后复水促进了 PR - 5 基因的表达\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n18. 植物在干旱等不良环境下细胞会出现 PR - 5 蛋白, 研究人员从干旱胁迫与恢复水供应 (复水) 后的番茄植株的根茎叶细胞中提取的总 RNA, 测定细胞中 PR - 5 蛋白基因的转录 情况如下表. 正确的说法是\n\n| | 娈䴃 | 夏水 $2 \\mathrm{~h}$ | 夏水 $4 \\mathrm{~h}$ | 夏水 $\\mathrm{Bh}$ | 夏水 $24 \\mathrm{~h}$ | 对照 |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| 根 | - | +++ | +++ | +++ | +++ | ++ |\n| 芜 | - | + | + | + | + | - |\n| 叶 | - | - | - | + | - | - |\n\n注: “+”表示检出; “-”表示未检出, “+”越多表示相对含量越多.()\n\nA: 干旱导致萎萫的植株 PR - 5 基因被破坏\nB: 对照组说明在叶分化过程中 PR - 5 基因丢失\nC: 复水后根比茎叶产生了更多的 PR - 5 基因\nD: 干旱后复水促进了 PR - 5 基因的表达\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "【详解】试题分析: 1、基因表达的过程是包括转录和翻译过程, 通过转录, 基因中的脱氧核苷酸序列决定了 mRNA 中的核糖核苷酸序列, 通过翻译过程, mRNA 上的核糖核苷酸序列决定了蛋白质中的氨基酸序列.\n\n2、与对照组相比, 干旱胁迫根的 PR - 5 蛋白基因的转录降低, 复水 PR - 5 蛋白基因的转录升高, 说明干旱后复水进了根 PR - 5 基因的表达; 与对照组相比, 茎、叶干旱复水 PR - 5 蛋白基因的转录升高, 说明干旱后复水可以促进茎、叶 PR - 5 基因的表达.解: A、由表格信息可知, 干旱后复水, PR - 5 基因能进行转录细胞 RNA, 因此干旱并没有破坏 PR - 5 蛋白基因的结构和功能, A 错误;\n\nB、叶在干旱复水 $8 \\mathrm{~h}, \\mathrm{PR}-5$ 蛋白基因进行转录形成相应的 RNA, 因此叶分化过程中 PR - 5 基因没有丢失, B 错误;\n\nC、复水后 PR - 5 基因转录形成了更多的 RNA, 但是基因没有增多, 只是转录过程加速, C 错误;\n\nD、由分析可知, 干旱后复水促进了 PR - 5 基因的表达, D 正确.\n\n故选 D.\n\n考点:基因与性状的关系.", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_772", "problem": "甲病和乙病均为单基因遗传病, 如图为某家族有关甲病、乙病的遗传家系图, 乙病在人群中的发病率为 $1 / 10000$. 下列说法正确的是 (不考虑 X、Y 染色体同源区段遗传) ( )\n\n[图1]\nA: 甲病为常染色体显性遗传, 该病在女性中的发病率等于该病致病基因的基因频率\nB: 乙病为常染色体隐性遗传,可通过遗传咨询有效检测和治疗\nC: 7 号和 10 号基因型相同的概率为 $2 / 5$\nD: 9 号与正常女性婚配, 所生孩子不患病的概率是 50/101\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n甲病和乙病均为单基因遗传病, 如图为某家族有关甲病、乙病的遗传家系图, 乙病在人群中的发病率为 $1 / 10000$. 下列说法正确的是 (不考虑 X、Y 染色体同源区段遗传) ( )\n\n[图1]\n\nA: 甲病为常染色体显性遗传, 该病在女性中的发病率等于该病致病基因的基因频率\nB: 乙病为常染色体隐性遗传,可通过遗传咨询有效检测和治疗\nC: 7 号和 10 号基因型相同的概率为 $2 / 5$\nD: 9 号与正常女性婚配, 所生孩子不患病的概率是 50/101\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-031.jpg?height=369&width=649&top_left_y=158&top_left_x=338" ], "answer": [ "D" ], "solution": "【分析】分析遗传系谱图, 由于 5 号正常, 其双亲均患甲病, 故甲病为显性遗传病, 若致病基因位于 X 染色体上, 则 1 号患甲病, 5 号必患甲病, 因此甲病为常染色体显性遗传病, 3 号和 4 号正常, 8 号为患者, 则乙病是隐性遗传病, 由 8 号患者是女性, 若乙病是伴 X 隐性遗传病, 则 3 号必患病, 这与题图不符, 因此乙病是常染色体隐性遗传。\n\n【详解】A、由于 5 号正常, 其双亲均患甲病, 故甲病为显性遗传病, 若致病基因位于 $\\mathrm{X}$ 染色体上, 则 1 号患甲病, 5 号必患甲病, 因此甲病为常染色体显性遗传病, 该病在男性中和女性中的发病率相等,都等于该病致病基因的基因频率的平方,A 错误; B、 3 号和 4 号正常, 8 号为患者, 则乙病是隐性遗传病, 由 8 号患者是女性, 若乙病是伴 X 隐性遗传病, 则 3 号必患病, 这与题图不符, 因此乙病是常染色体隐性遗传, 通过遗传咨询可有效预防遗传病的产生,但不能治疗遗传病,B 错误;\n\nC、 6 号和 7 号均不患乙病, 但生出了患乙病的孩子, 因此 6 号和 7 号为乙病致病基因携带者, 则 10 号为乙病致病基因携带者的概率为 $2 / 3,7$ 号和 10 号都不患甲病, 甲病基因都为隐性纯合子, 故 7 号和 10 号基因型相同的概率为 $2 / 3, \\mathrm{C}$ 错误;\n\nD、假设甲病基因用 $\\mathrm{A} / \\mathrm{a}$ 表示,乙病基因用 $\\mathrm{B} / \\mathrm{b}$ 表示,则 9 号基因型为 $A a b b$ ,乙病在人群中的发病率为 $1 / 10000$, 即 $\\mathrm{b}=1 / 100, \\mathrm{~B}=99 / 100$, 正常人群中 $\\mathrm{Bb}$ 占比 $=$\n\n$(2 \\times 1 / 100 \\times 99 / 100) /(1-1 / 100 \\times 1 / 100)=2 / 101$, 即正常女性基因型为 $2 / 101 \\mathrm{aaBb}$,\n\n99/101aaBB, 9 号 (Aabb)与正常女性婚配,所生孩子患甲病的概率是 $1 / 2$, 不患甲病的概率是 $1 / 2$, 患乙病的概率是 $2 / 101 \\times 1 / 2=1 / 101$, 不患乙病的概率是 $100 / 101$, 所生孩子不患病的概率 $=1 / 2 \\times 100 / 101=50 / 101, D$ 正确。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_765", "problem": "中国是传统的水稻种植大国, 有一半以上人口以稻米为主食。在培育水稻优良品种的过程中, 发现某野生型水稻叶片为绿色,由基因 C 控制,突变型水稻叶片为黄色,由\n基因 $\\mathrm{C}_{1}$ 控制, 且 $\\mathrm{C}_{1}$ 纯合致死, 该变异导致其多肽链 242 位氨基酸由谷氨酸转变为天冬氨酸。下列叙述正确的是()\nA: DNA 上碱基对的改变一定会导致个体性状改变\nB: 基因 $\\mathrm{C}_{1}$ 表达时, 翻译过程最多涉及 64 种遗传密码\nC: 突变体水稻 $\\mathrm{CC}_{1}$ 连续自交 2 代, $\\mathrm{F}_{2}$ 成年植株中黄色叶植株占 $2 / 5$\nD: 基因 $\\mathrm{C}$ 的另一突变基因 $\\mathrm{C}_{2}$ 也导致了水稻叶片变黄, 体现了基因突变的普遍性\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n中国是传统的水稻种植大国, 有一半以上人口以稻米为主食。在培育水稻优良品种的过程中, 发现某野生型水稻叶片为绿色,由基因 C 控制,突变型水稻叶片为黄色,由\n基因 $\\mathrm{C}_{1}$ 控制, 且 $\\mathrm{C}_{1}$ 纯合致死, 该变异导致其多肽链 242 位氨基酸由谷氨酸转变为天冬氨酸。下列叙述正确的是()\n\nA: DNA 上碱基对的改变一定会导致个体性状改变\nB: 基因 $\\mathrm{C}_{1}$ 表达时, 翻译过程最多涉及 64 种遗传密码\nC: 突变体水稻 $\\mathrm{CC}_{1}$ 连续自交 2 代, $\\mathrm{F}_{2}$ 成年植株中黄色叶植株占 $2 / 5$\nD: 基因 $\\mathrm{C}$ 的另一突变基因 $\\mathrm{C}_{2}$ 也导致了水稻叶片变黄, 体现了基因突变的普遍性\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "C" ], "solution": "【分析】基因突变是指 DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。基因突变是新基因产生的途径, 是生物变异的根本来源, 是生物进化的原始材料。自然发生的突变叫做自然突变 (自发突变), 这种突变发生的频率极低, 由外界因素因素诱发而导致的突变叫做诱发突变。基因突变的特点: 普遍性、随机性、不定向性、低频性、多害少利性。基因突变的普遍性是指低等生物、高等动植物以及人都会发生。随机性是指基因突变可以发生在生物个体发育的任何时期, 细胞内不同的 DNA 分子上, 同一DNA 分子的不同部位。\n\n【详解】A、DNA 上碱基对改变后, mRNA 上相应碱基改变, 由于密码子的简并性,不一定会导致个体性状改变,A 错误;\n\nB、基因 $C_{1}$ 表达时, 翻译过程最多涉及到 62 种密码子,包括 61 种编码氨基酸的密码子和 1 种终止密码子, B 错误;\n\nC、突变体水稻 $\\mathrm{CC}_{1}$ 连续自交 2 代, $\\mathrm{F}_{1}$ 的基因型是 $1 / 3 \\mathrm{CC} 、 2 / 3 \\mathrm{CC}_{1}, \\mathrm{~F}_{1}$ 自交, $\\mathrm{F}_{2}$ 的基因型是 $1 / 3 \\mathrm{CC} 、 2 / 3\\left(1 / 4 \\mathrm{CC} 、 1 / 2 \\mathrm{CC}_{1} 、 1 / 4 \\mathrm{C}_{1} \\mathrm{C}_{1}\\right)$ ,由于 $\\mathrm{C}_{1}$ 纯合致死, $\\mathrm{F}_{2}$ 的基因型是 $3 / 5 \\mathrm{CC} 、 2 / 5 \\mathrm{CC}_{1}, \\mathrm{~F}_{2}$ 成年植株中黄色叶植株占 $2 / 5, \\mathrm{C}$ 正确;\n\nD、基因 $\\mathrm{C}$ 的另一突变基因 $\\mathrm{C}_{2}$ 也导致了水稻叶片变黄, 体现了基因突变的不定向性, $\\mathrm{D}$错误。\n\n故选 C。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_694", "problem": "人类的 $A B O$ 血型由 $\\mathrm{I}^{\\mathrm{A}} 、 \\mathrm{I}^{\\mathrm{B}}$ 和 $\\mathrm{i}$ 三个基因决定 $\\left(\\mathrm{I}^{\\mathrm{A}} 、 \\mathrm{I}^{\\mathrm{B}}\\right.$ 对 $\\mathrm{i}$ 为显性, $\\mathrm{I}^{\\mathrm{A}}$ 和 $\\mathrm{I}^{\\mathrm{B}}$ 为共显\n\n性),指甲髌骨综合征是一种单基因遗传病(自然人群中发病率为 199/10000),相关基因用 $\\mathrm{D}(\\mathrm{d})$ 表示。现有一个指甲髌骨综合征的家系,该病的遗传系谱图如图甲所示; 图乙表示对II-2 精子细胞相关基因的电泳结果。若不考虑突变, 下列说法正确的是( )\n\n[图1]\nA: 指甲髌骨综合征的遗传方式为常染色体隐性遗传\nB: III-1 体细胞中最多含有 23 条来自I-2 的染色体\nC: 第三代子女中性状有所不同, 说明 $\\mathrm{ABO}$ 血型基因和 D(d)基因独立遗传\nD: III-5 与当地某一女性患者婚配,所生后代中正常男孩的概率为 $99 / 398$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n人类的 $A B O$ 血型由 $\\mathrm{I}^{\\mathrm{A}} 、 \\mathrm{I}^{\\mathrm{B}}$ 和 $\\mathrm{i}$ 三个基因决定 $\\left(\\mathrm{I}^{\\mathrm{A}} 、 \\mathrm{I}^{\\mathrm{B}}\\right.$ 对 $\\mathrm{i}$ 为显性, $\\mathrm{I}^{\\mathrm{A}}$ 和 $\\mathrm{I}^{\\mathrm{B}}$ 为共显\n\n性),指甲髌骨综合征是一种单基因遗传病(自然人群中发病率为 199/10000),相关基因用 $\\mathrm{D}(\\mathrm{d})$ 表示。现有一个指甲髌骨综合征的家系,该病的遗传系谱图如图甲所示; 图乙表示对II-2 精子细胞相关基因的电泳结果。若不考虑突变, 下列说法正确的是( )\n\n[图1]\n\nA: 指甲髌骨综合征的遗传方式为常染色体隐性遗传\nB: III-1 体细胞中最多含有 23 条来自I-2 的染色体\nC: 第三代子女中性状有所不同, 说明 $\\mathrm{ABO}$ 血型基因和 D(d)基因独立遗传\nD: III-5 与当地某一女性患者婚配,所生后代中正常男孩的概率为 $99 / 398$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-43.jpg?height=220&width=894&top_left_y=2043&top_left_x=341" ], "answer": [ "D" ], "solution": "【分析】指甲髌骨综合征是一种单基因遗传病, 根据图中父亲患病, 女儿存在正常个体,试卷第 43 页,共 93 页\n说明不是伴 X 显性遗传, 根据母亲患病, 儿子中有正常个体, 可排除伴 X 隐性遗传。可通过假设其为常染色体显性遗传或常染色体隐性遗传进行推理。\n\n【详解】A、根据系谱图, II-2 患病, III-6 正常, 可排除伴 X 显性遗传, 根据I-2 患病, II-1 正常, 可排除伴 X 隐性遗传。若该病为常染色体隐性遗传, 则II-2 的基因型是 $\\mathrm{ddI}^{\\mathrm{A}} \\mathrm{I}^{\\mathrm{B}}$, 在不考虑突变的情况下, 该个体只能产生 2 种类型的精子, 与图乙的电泳结果不符; 若该病为常染色体显性遗传, 则II-2 的基因型是 $\\mathrm{DdI}^{\\mathrm{A}} \\mathrm{I}^{\\mathrm{B}}$, 该个体可以产生 4 种类型的精子, 与图乙的电泳结果相符合, $\\mathrm{A}$ 错误;\n\nB、 III- 1 的基因型是 $\\mathrm{DdI}^{\\mathrm{A}} \\mathrm{i}$, 无论基因是否连锁, III-1 体细胞中有 23 条染色体来自II-2, I-2 的基因型是 DdI ${ }^{A}-$, II-2 体细胞中有 23 条染色体(22+X)来自I-2, 不能提供 Y 染色体,所以III-1 体细胞中最多含有 22 条来自I-2 的染色体, B 错误;\n\nC、若 $\\mathrm{ABO}$ 血型基因与 $\\mathrm{D}(\\mathrm{d})$ 基因遵循基因的自由组合定律, 则 $\\mathrm{DdI}^{\\mathrm{A}} \\mathrm{I}^{\\mathrm{B}}(\\mathrm{II}-2) \\times \\operatorname{ddi}(\\mathrm{II}-3$ )所生后代中, 无论 $\\mathrm{A}$ 血型还是 B 血型都有可能患病; 若 $\\mathrm{ABO}$ 血型基因与 $\\mathrm{D}(\\mathrm{d}$ )基因不遵循基因的自由组合定律(A、D 基因连锁, $\\mathrm{B} 、 \\mathrm{~d}$ 基因连锁), 但发生了基因重组,则 $\\mathrm{DdI}^{\\mathrm{A}} \\mathrm{I}^{\\mathrm{B}}$ (II-2)×ddii(II-3)所生后代中, 无论 A 血型还是 B 血型都有可能患病, C 错误; D、III-5 基因型为 $\\mathrm{dd}$, 根据题意, 自然人群中发病率为 199/10000, 则 $\\mathrm{dd}$ 占 $9801 / 10000$, 由遗传平衡定律可知, $d$ 占 99/100, D 占 $1 / 100$, 所以当地患病人群中 $\\mathrm{Dd}=$ $(2 \\times 99 / 100 \\times 1 / 100) \\div 199 / 10000=198 / 199$, 所生后代中正常男孩的概率为 $1 / 2 \\times$ $198 / 199 \\times 1 / 2 \\widehat{O}=99 / 398, D$ 正确。故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_786", "problem": "噬菌体侵染细菌的实验证明了 DNA 是遗传物质。下列关于该实验的叙述,正确的( )\nA: 噬菌体内可以合成 mRNA\nB: 傥拌的目的是使噬菌体与细菌充分混合\nC: 噬菌体与细菌混合培养的时间越长, 实验效果越好\nD: 噬菌体侵染细菌后,产生许多遗传信息相同的子代噬菌体\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n噬菌体侵染细菌的实验证明了 DNA 是遗传物质。下列关于该实验的叙述,正确的( )\n\nA: 噬菌体内可以合成 mRNA\nB: 傥拌的目的是使噬菌体与细菌充分混合\nC: 噬菌体与细菌混合培养的时间越长, 实验效果越好\nD: 噬菌体侵染细菌后,产生许多遗传信息相同的子代噬菌体\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "A. 噬菌体是病毒, 没有细胞结构, 不能独立生存, 其合成 mRNA 的过程发生在宿主细胞中, A 错误;\n\nB. 搅拌的目的是使噬菌体与细菌充分分离, $\\mathrm{B}$ 错误;\n\nC. 若标记噬菌体的 DNA, 噬菌体与细菌混合培养的时间过长, 大肠杆菌裂解会导致沉淀物放射性降低、上清液放射性增加, C 错误;\n\nD. 噬菌体侵染细菌后,产生许多遗传信息相同的子代噬菌体, D 正确。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_658", "problem": "已知小麦无芒(A)与有芒(a)为一对相对性状, 用适宜的诱变方式处理花药可导致基因突变。为了确定基因 A 是否突变为基因 $\\mathrm{a}$ ,有人设计了以下 4 个杂交组合,杂交前对每个组合中父本的花药进行诱变处理,然后与未经处理的母本进行杂交。若要通过对杂交子一代表现型的分析来确定该基因是否发生突变,则最佳的杂交组合是( )\nA: $\\widehat{0}$ 无芒 $\\times$ 有芒 $(\\widehat{O} A \\mathrm{AA} \\times$ a aa)\nB: $\\hat{0}$ 无芒 $\\times$ 有芒 $(\\hat{O} \\mathrm{Aa} \\times q \\mathrm{aa})$\nC: $\\widehat{0}$ 无芒 $\\times q$ 无芒 $(\\widehat{O} \\mathrm{Aa} \\times \\phi \\mathrm{Aa})$\nD: $\\bigcap$ 无芒 $\\times \\varphi$ 无芒 $(\\widehat{A A} \\times \\phi \\mathrm{Aa})$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n已知小麦无芒(A)与有芒(a)为一对相对性状, 用适宜的诱变方式处理花药可导致基因突变。为了确定基因 A 是否突变为基因 $\\mathrm{a}$ ,有人设计了以下 4 个杂交组合,杂交前对每个组合中父本的花药进行诱变处理,然后与未经处理的母本进行杂交。若要通过对杂交子一代表现型的分析来确定该基因是否发生突变,则最佳的杂交组合是( )\n\nA: $\\widehat{0}$ 无芒 $\\times$ 有芒 $(\\widehat{O} A \\mathrm{AA} \\times$ a aa)\nB: $\\hat{0}$ 无芒 $\\times$ 有芒 $(\\hat{O} \\mathrm{Aa} \\times q \\mathrm{aa})$\nC: $\\widehat{0}$ 无芒 $\\times q$ 无芒 $(\\widehat{O} \\mathrm{Aa} \\times \\phi \\mathrm{Aa})$\nD: $\\bigcap$ 无芒 $\\times \\varphi$ 无芒 $(\\widehat{A A} \\times \\phi \\mathrm{Aa})$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "A" ], "solution": "如果 A 基因发生突变而变为 $\\mathrm{a}$ 基因,这时无芒的纯合子父本 AA 产生含 $\\mathrm{a}$ 的配子,当遇 $\\mathrm{a}$ 的雌配子时, 形成受精卵 aa,将来发育的植株表现出隐性性状,所以最佳的杂交组合为父本为显性纯合子,母本为隐性纯合子组。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_222", "problem": "Scientists constructed gibberellic acid (GA)-deficient and GA-insensitive transgenic lines of poplar plants. They measured concentration of phytohormones, including GA1 and GA4 and IAA, in the leaves and roots of transgenic and wildtype plants (Table Q67). They also measured the growth of plants in greenhouse and in vitro conditions (Fig.Q67-1 and Fig.Q67-2).\n\nTable Q67. Phytohormone concentrations ( $\\mathrm{ng} / \\mathrm{g}$ dry weight) in leaves and roots of the wild type and the two transgenic [figure1]\n[figure2]\n\nGA-insensitive\n\nFig.Q67-1. Root and shoot biomass under greenhouse conditions. Top panel shows the fresh biomass of shoots and roots in GA-deficient (A) and GA-insensitive (B) transgenics. Bottom is the shoot/root ratio in GA-deficient (C) and GA-insensitive (D) transgenics. * and ** indicate significant differences.\n[figure3]\n\n[figure4]\n\nGA-deficient\nF\n\nF\n\n[figure5]\n\nGA-insensitive\n\nFig.Q67-2. Root development in GA-deficient and GA-insensitive transgenic lines grown in vitro. LR - Lateral root; PR - Primary root. ** indicates significant differences compared to wild-type plants (WT).\nA: Greenhouse-grown dwarf and semidwarf plants of both transgenic types display a significant reduction in aerial biomass and an increase in belowground biomass, leading to a significant reduction in the shoot-to-root ratio relative to the wild-type control.\nB: The most severely dwarfed plants have more, as well as longer, lateral roots than the wild-type control.\nC: The degree of dwarfism in both GA-insensitive and GA-deficient lines is positively correlated with the extent of primary and lateral root formation and elongation.\nD: In poplar plants, gibberellins negatively affect lateral root formation, and there may be an interaction between gibberellins and auxin that regulates lateral root formation.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nScientists constructed gibberellic acid (GA)-deficient and GA-insensitive transgenic lines of poplar plants. They measured concentration of phytohormones, including GA1 and GA4 and IAA, in the leaves and roots of transgenic and wildtype plants (Table Q67). They also measured the growth of plants in greenhouse and in vitro conditions (Fig.Q67-1 and Fig.Q67-2).\n\nTable Q67. Phytohormone concentrations ( $\\mathrm{ng} / \\mathrm{g}$ dry weight) in leaves and roots of the wild type and the two transgenic [figure1]\n[figure2]\n\nGA-insensitive\n\nFig.Q67-1. Root and shoot biomass under greenhouse conditions. Top panel shows the fresh biomass of shoots and roots in GA-deficient (A) and GA-insensitive (B) transgenics. Bottom is the shoot/root ratio in GA-deficient (C) and GA-insensitive (D) transgenics. * and ** indicate significant differences.\n[figure3]\n\n[figure4]\n\nGA-deficient\nF\n\nF\n\n[figure5]\n\nGA-insensitive\n\nFig.Q67-2. Root development in GA-deficient and GA-insensitive transgenic lines grown in vitro. LR - Lateral root; PR - Primary root. ** indicates significant differences compared to wild-type plants (WT).\n\nA: Greenhouse-grown dwarf and semidwarf plants of both transgenic types display a significant reduction in aerial biomass and an increase in belowground biomass, leading to a significant reduction in the shoot-to-root ratio relative to the wild-type control.\nB: The most severely dwarfed plants have more, as well as longer, lateral roots than the wild-type control.\nC: The degree of dwarfism in both GA-insensitive and GA-deficient lines is positively correlated with the extent of primary and lateral root formation and elongation.\nD: In poplar plants, gibberellins negatively affect lateral root formation, and there may be an interaction between gibberellins and auxin that regulates lateral root formation.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://i.postimg.cc/FKfCXytN/image.png", "https://cdn.mathpix.com/cropped/2024_03_14_1923091db797f33574ddg-042.jpg?height=1124&width=1168&top_left_y=161&top_left_x=433", "https://cdn.mathpix.com/cropped/2024_03_14_1923091db797f33574ddg-043.jpg?height=890&width=1162&top_left_y=182&top_left_x=456", "https://cdn.mathpix.com/cropped/2024_03_14_1923091db797f33574ddg-043.jpg?height=584&width=621&top_left_y=1098&top_left_x=473", "https://cdn.mathpix.com/cropped/2024_03_14_1923091db797f33574ddg-043.jpg?height=481&width=473&top_left_y=1138&top_left_x=1148" ], "answer": [ "A", "B", "D" ], "solution": "A. True. A reduction of aerial biomass, an increase in belowground biomass, and a reduction in the shoot-to-root ratio are obtained in dwarf and semidwarf transgenic plants (Fig.Q67-1).\n\nB. True. The most severely dwarfed events have two to three times more, as well as longer, lateral roots than the wild-type control (Fig.Q67-2).\n\nC. False. The degree of dwarfism is not positively correlated to primary root elongation (Fig.Q67-2).\n\nD. True. In both GA-insensitive and GA-deficient transgenic lines, lateral root formation is increased compared to wild-type, indicating that GAs inhibit lateral root formation. The increase of lateral root formation in transgenic plant is associated with the increase of IAA concentration, indicating that it promotes root formation. Taken together, GAs may interact with auxin (IAA) to regulate lateral root formation.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_137", "problem": "Most taxonomists today believe that biological classification systems should reflect the evolutionary relationships of organisms and taxonomic groups should be monophyletic. However, the classification used today still contains many polyphyletic and paraphyletic taxonomic groups.\nA: Polyphyletic taxonomic groups exist in many life trees because all species in the groups are associated by a similar phenotype although their common ancestral characters cannot be identified.\nB: Paraphyletic taxonomic groups exist in many life trees because the classification systems are mainly based on the degree of phenotypically similarity among organisms.\nC: Taxa in the paraphyletic taxonomic group evolved more slowly than some of their descendants not included in the group.\nD: Gymnosperms are a monophyletic taxon.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nMost taxonomists today believe that biological classification systems should reflect the evolutionary relationships of organisms and taxonomic groups should be monophyletic. However, the classification used today still contains many polyphyletic and paraphyletic taxonomic groups.\n\nA: Polyphyletic taxonomic groups exist in many life trees because all species in the groups are associated by a similar phenotype although their common ancestral characters cannot be identified.\nB: Paraphyletic taxonomic groups exist in many life trees because the classification systems are mainly based on the degree of phenotypically similarity among organisms.\nC: Taxa in the paraphyletic taxonomic group evolved more slowly than some of their descendants not included in the group.\nD: Gymnosperms are a monophyletic taxon.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": null, "answer": [ "A", "B", "C" ], "solution": "A. True. A polyphyletic group is a collection of distantly related OTUs (operational taxonomic units) that are associated by a similar phenotype, but are not directly descended from a common ancestor.\n\nB. True. A paraphyletic group excludes some of its descendants (for example all mammals, except the Marsupialia taxa). All taxa in the paraphyletic group share many characteristics.\n\nC. True. Some of their descendants are excluded from the paraphyletic group because they evolved rapidly and have many different characteristics.\n\nD. False. Gymnosperms contain Cycadophyta, Ginkgophyta, Coniferophyta and Gnetophyta. The relationships of these four phyla to each other are uncertain.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_526", "problem": "遗传印记是因亲本来源不同而导致等位基因表达差异的一种遗传现象,DNA 甲基化是遗传印记重要的方式之一, 印记是在配子发生过程中获得的, 在个体发育过程中得以维持, 在下一代配子形成时印记重建。如图为遗传印记对转基因鼠的 lgf2 基因 (存在有功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$ 两种基因)表达和传递影响的示意图,被甲基化的基因不能表达。\n\n[图1]\n上图中亲代雌、雄鼠的基因型均为 Aa, 下列相关叙述错误的是( )\nA: 亲本雌雄鼠表型不同\nB: 亲本雌雄鼠体细胞里甲基化的等位基因不同\nC: 甲基化的基因不能表达\nD: 亲本雌雄鼠杂交, 子代生长正常鼠: 生长缺陷鼠=3: 1\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n遗传印记是因亲本来源不同而导致等位基因表达差异的一种遗传现象,DNA 甲基化是遗传印记重要的方式之一, 印记是在配子发生过程中获得的, 在个体发育过程中得以维持, 在下一代配子形成时印记重建。如图为遗传印记对转基因鼠的 lgf2 基因 (存在有功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$ 两种基因)表达和传递影响的示意图,被甲基化的基因不能表达。\n\n[图1]\n上图中亲代雌、雄鼠的基因型均为 Aa, 下列相关叙述错误的是( )\n\nA: 亲本雌雄鼠表型不同\nB: 亲本雌雄鼠体细胞里甲基化的等位基因不同\nC: 甲基化的基因不能表达\nD: 亲本雌雄鼠杂交, 子代生长正常鼠: 生长缺陷鼠=3: 1\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_dc6560f05174c0bbda68g-077.jpg?height=542&width=985&top_left_y=640&top_left_x=336" ], "answer": [ "D" ], "solution": "1、表观遗传: 指 DNA 序列不发生变化, 但基因的表达却发生了可遗传的改变,即基因型未发生变化而表现型却发生了改变,如 DNA 的甲基化。DNA 的甲基化: 生物基因的碱基序列没有变化, 但部分碱基发生了甲基化修饰, 抑制了基因的表达, 进而对表型产生影响。这种 DNA 甲基化修饰可以遗传给后代, 使后代出现同样的表型。\n\n2、据图分析可知, 雄配子中印记重建去甲基化, 雌配子中印记重建甲基化。设甲基化分别用 $A^{\\prime} 、 a^{\\prime}$ 表示。功能型 $\\mathrm{A}$ 和无功能型 $\\mathrm{a}$, 即显性有功能, 隐性无功能。\n. $\\mathrm{AB}$ 、亲代雌、雄鼠的基因型均为 $\\mathrm{Aa}$, 但表型不同, 原因是亲本雌雄体细胞里发生甲基化的等位基因不同,且甲基化的基因不能表达,AB 正确;\n\nC、虽然生物基因的碱基序列没有变化,但部分碱基发生了甲基化修饰,抑制了基因的表达,故甲基化的基因不能表达,C 正确;\n\nD、雌鼠产生的 A 雌配子、 $\\mathrm{a}$ 雌配子中的 A 基因、 $\\mathrm{a}$ 基因均未被甲基化,都能表达,而雄鼠产生的雄配子中 $\\mathrm{A}$ 基因、a 基因都发生了甲基化,都不能表达,故该雌鼠与雄鼠杂交, 子代小鼠的表型比例为生长正常鼠: 生长缺陷鼠=1:1, D 错误。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_534", "problem": "果蝇眼色色素产生必需有显性基因 A, 无 A 时眼色白色; B 存在时眼色为紫色,无 B 时眼色为红色。2 个纯系果蝇杂交结果如下表, 下列叙述错误的是()\n\n| 亲本 | $\\mathrm{F}_{1}$ | $\\mathrm{F}_{2}$ | | | | | |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| 白眼 $Q \\times$ 红眼 | 紫眼 | 统计数 | 紫眼 | 紫眼 | 白眼 | 白眼 | 红眼 |\n| o | 후 | 量 | 甲284 | ô144 | †98 | ว̄ 94 | ฤิ 148 |\nA: 果蝇因其易饲养、繁殖快、子代多而成为常用的遗传学实验材料\nB: A 基因位于常染色体上, B 基因位于 $\\mathrm{X}$ 染色体上\nC: 可在 2 个纯系中选用红眼早和白眼O杂交检验 B 选项的推论\nD: $F_{2}$ 中紫眼 ${ }^{3}$ 的比例是 $3 / 16$, 紫眼早的基因型有 6 种\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n果蝇眼色色素产生必需有显性基因 A, 无 A 时眼色白色; B 存在时眼色为紫色,无 B 时眼色为红色。2 个纯系果蝇杂交结果如下表, 下列叙述错误的是()\n\n| 亲本 | $\\mathrm{F}_{1}$ | $\\mathrm{F}_{2}$ | | | | | |\n| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n| 白眼 $Q \\times$ 红眼 | 紫眼 | 统计数 | 紫眼 | 紫眼 | 白眼 | 白眼 | 红眼 |\n| o | 후 | 量 | 甲284 | ô144 | †98 | ว̄ 94 | ฤิ 148 |\n\nA: 果蝇因其易饲养、繁殖快、子代多而成为常用的遗传学实验材料\nB: A 基因位于常染色体上, B 基因位于 $\\mathrm{X}$ 染色体上\nC: 可在 2 个纯系中选用红眼早和白眼O杂交检验 B 选项的推论\nD: $F_{2}$ 中紫眼 ${ }^{3}$ 的比例是 $3 / 16$, 紫眼早的基因型有 6 种\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "【分析】根据题意可知, 果蝇的眼色由两对基因控制, 果蝇眼色色素产生必需有显性基因 $\\mathrm{A}$, 果蝇无 $\\mathrm{A}$ 时眼色为白色; 果蝇含 $\\mathrm{A}$ 和 $\\mathrm{B}$ 基因时眼色为紫色; 当果蝇含 $\\mathrm{A}$ 和 无 $\\mathrm{B}$时眼色为红色。\n\n【详解】A、果蝇是常用的遗传学实验材料具有易饲养、繁殖快、子代多等优点, A 正确;\n\nB、 $F_{2}$ 中有五种表现型之比为 $6: 3: 2: 2: 3$, 为 $9: 3: 3: 1$ 变式, 说明两对基因符合自由组合定律, $\\mathrm{F}_{2}$ 中有色眼雌: 有色眼雄 $\\approx 1: 1$, 白色眼雌: 白色眼雄 $\\approx 1: 1$, 色素产生与性别无关, 说明 $\\mathrm{A}$ 基因位于常染色体上, 紫眼雌: 紫眼雄 $\\approx 2: 1$, 红眼个体都为雄性,眼色受性别影响, 说明 B 基因位于 X 染色体上, B 正确;\n\nC、若 B 选项推论正确, 2 个纯系红眼 $甲\\left(A A X^{b} X^{b}\\right)$ 和白眼 $O^{\\lambda}\\left(a a X^{B} Y\\right.$ 或 $\\left.a X^{b} Y\\right)$ 杂交,则 $F_{1}$ 中雌性为紫眼 $\\left(A a X^{B} X^{b}\\right)$ 或红眼 $\\left(A a X^{b} X^{b}\\right)$, 雄性为红眼 $\\left(A A X^{b} Y\\right)$, 故可在 2 个纯系中选用红眼古和白眼入杂交检验 B 选项的推论, C 正确;\n\nD、 $\\mathrm{F}_{2}$ 中紫眼 ${ }^{3}$ 的比例是 $144 /(284+144+98+94+148)=3 / 16$, 由 B 可知紫眼呈的基因型有 $A A X^{B} X^{B} 、 \\mathrm{AAX}^{B} X^{b} 、 \\mathrm{Aa}^{\\mathrm{B}} X^{\\mathrm{B}} 、 \\mathrm{Aa}^{\\mathrm{B}} X^{\\mathrm{b}} 4$ 种, $\\mathrm{D}$ 错误。故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_738", "problem": "玉米的高秆(H)对矮秆(h)为显性。现有若干 $\\mathrm{H}$ 基因频率不同的玉米群体,在群体足够大且没有其他因素干扰时, 每个群体内随机交配一代后获得 $F_{1}$ 。各 $F_{1}$ 中基因型频率与 $\\mathrm{H}$ 基因频率(p)的关系如图。下列分析错误的是( )\n\n[图1]\nA: $0$ Weel kinase is active if it is not phosphorylated.\n\nB. False. The protein kinases and phosphatases that control phosphorylation of Weel kinase and Cdc25 phosphatase must be specific for serine/threonine side chains because they are affected by okadaic acid, which inhibits only serine/threonine phosphatases.\n\nC. False. Okadaic indirectly affect the activation of Cdk1 by controlling Wee1 kinase and Cdc25 phosphatase. Okadaic acid has no direct effect on Cdk1 phosphorylation because it is phosphorylated on a tyrosine side chain. Tyrosine phosphatases are unaffected by okadaic acid.\n\nD. True. Some active M-Cdk phosphorylate Weel kinase and Cdc25 phosphatase, inactivating the kinase and activating the phosphatase. The resulted decrease in Weel kinase activity and increase in Cdc25 phosphatase activity would lead to dephosphorylation (and activation) of more M-Cdk.\n\nReference: Molecular Biolog of the cell. B. Alberts et al", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_227", "problem": "In the gills of freshwater teleost fishes, the blood plasma is separated from the freshwater by a thin epithelium so that the blood plasma tends to lose ions such as $\\mathrm{Na}^{+}$and $\\mathrm{Cl}^{-}$to the ambient water across the gill epithelium and $\\mathrm{H}_{2} \\mathrm{O}$ tends to enter the plasma from the ambient water across the gill epithelium. There are transport mechanisms by which inorganic ions and water cross the gill epithelium and they help to maintain the difference in the ion composition between the plasma and the ambient water. Figure Q. 25 shows the transportation of four ions across the gill epithelium.\n\n[figure1]\n\nFigure Q. 25\nA: Inhibition of the $\\mathrm{Cl}^{-}$pump leads to an increase in blood $\\mathrm{pH}$.\nB: An increase in $\\mathrm{CO}_{2}$ produced by catabolism leads to an increase in $\\mathrm{Na}^{+}$and $\\mathrm{Cl}^{-}$ transports across the epithelium cell.\nC: A substance blocking the electron transport chain causes a decrease of $\\mathrm{Na}^{+}$ influx, but does not affect $\\mathrm{HCO}_{3}{ }^{-}$outflux at the gill epitellium.\nD: During alkalosis, the epithelial cell increases the synthesis of a key $\\mathrm{Cl}^{-} / \\mathrm{HCO}_{3}{ }^{-}$ countertransport protein.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nIn the gills of freshwater teleost fishes, the blood plasma is separated from the freshwater by a thin epithelium so that the blood plasma tends to lose ions such as $\\mathrm{Na}^{+}$and $\\mathrm{Cl}^{-}$to the ambient water across the gill epithelium and $\\mathrm{H}_{2} \\mathrm{O}$ tends to enter the plasma from the ambient water across the gill epithelium. There are transport mechanisms by which inorganic ions and water cross the gill epithelium and they help to maintain the difference in the ion composition between the plasma and the ambient water. Figure Q. 25 shows the transportation of four ions across the gill epithelium.\n\n[figure1]\n\nFigure Q. 25\n\nA: Inhibition of the $\\mathrm{Cl}^{-}$pump leads to an increase in blood $\\mathrm{pH}$.\nB: An increase in $\\mathrm{CO}_{2}$ produced by catabolism leads to an increase in $\\mathrm{Na}^{+}$and $\\mathrm{Cl}^{-}$ transports across the epithelium cell.\nC: A substance blocking the electron transport chain causes a decrease of $\\mathrm{Na}^{+}$ influx, but does not affect $\\mathrm{HCO}_{3}{ }^{-}$outflux at the gill epitellium.\nD: During alkalosis, the epithelial cell increases the synthesis of a key $\\mathrm{Cl}^{-} / \\mathrm{HCO}_{3}{ }^{-}$ countertransport protein.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_6a13c4c20bb973e2d313g-057.jpg?height=766&width=670&top_left_y=1053&top_left_x=662" ], "answer": [ "A", "B", "D" ], "solution": "A. True. Inhibition of the $\\mathrm{Cl}^{-}$pump causes an increase of $\\mathrm{HCO}_{3}{ }^{-}$in the blood, leading to increased blood $\\mathrm{pH}$.\n\nB. True. $\\mathrm{HCO}_{3}{ }^{-}$and $\\mathrm{H}^{+}$ions are generated by reaction of metabolically produced $\\mathrm{CO}_{2}$ with $\\mathrm{H}_{2} \\mathrm{O}$. An increase in $\\mathrm{CO}_{2}$ will lead to an increase in countertransports of $\\mathrm{H}^{+} / \\mathrm{Na}^{+}$and $\\mathrm{HCO}_{3} / \\mathrm{Cl}^{-}$across the gill epithelium.\n\nC. False. When the electron transport chain is blocked, ATP production is decreased causing a decrease of $\\mathrm{Na}^{+}$influx and $\\mathrm{HCO}_{3}{ }^{-}$outflux, because both $\\mathrm{Na}^{+} / \\mathrm{H}^{+}$ and $\\mathrm{HCO}_{3}^{-} / \\mathrm{Cl}^{-}$pumps use ATP.\n\nD. True. During alkalosis, the epithelial cell increases the synthesis of a key $\\mathrm{Cl}^{-}$ $/ \\mathrm{HCO}_{3}{ }^{\\circ}$ countertransport protein that exports $\\mathrm{HCO}_{3}{ }^{-}$from the body fluids in exchange for $\\mathrm{Cl}^{-}$.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_447", "problem": "下图是某二倍体动物(性染色体组成为 $\\mathrm{ZW}$ )分裂过程中的染色体数和核 DNA 数关系,\n\n(1) (5)为不同细胞。下列说法正确的是 ( )\n\n[图1]\nA: (1)细胞可能处于减数分裂 II 中期, 含有 W 染色体\nB: (2)细胞中已没有完整的染色体组\nC: (1)细胞若是(3)细胞的子细胞, 则该分裂过程是不均等分裂\nD: 图中同源染色体对数最多的细胞是 (5)\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n下图是某二倍体动物(性染色体组成为 $\\mathrm{ZW}$ )分裂过程中的染色体数和核 DNA 数关系,\n\n(1) (5)为不同细胞。下列说法正确的是 ( )\n\n[图1]\n\nA: (1)细胞可能处于减数分裂 II 中期, 含有 W 染色体\nB: (2)细胞中已没有完整的染色体组\nC: (1)细胞若是(3)细胞的子细胞, 则该分裂过程是不均等分裂\nD: 图中同源染色体对数最多的细胞是 (5)\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_a4a53182e6105aab5ff8g-37.jpg?height=622&width=903&top_left_y=140&top_left_x=331" ], "answer": [ "D" ], "solution": "【分析】减数第一次分裂前期同源染色体配对形成四分体; 染色体若含有姐妹染色单体则染色体与核 DNA 的数量之比为 $1: 2$, 染色体若不含有姐妹染色单体则染色体与核 DNA 的数量之比为 $1: 1$ 。\n\n【详解】A、(1)细胞染色体若不含有姐妹染色单体, 染色体与核 DNA 的数量之比为 $1: 1$, 且染色体是体细胞的一半, 因此(1)减数分裂形成的子细胞, 不可能处于减数分裂 II 中期,A 错误;\n\nB、(2)细胞可能处于减数分裂 II 中期,有一个完整的染色体组,B 错误;\n\nC、该二倍体动物性染色体组成为 $\\mathrm{ZW}$, 题目无法判断该动物的性别, 因此(1)细胞若是(3)细胞的子细胞, 则该分裂过程可能是均等分裂, 也可能不是, $\\mathrm{C}$ 错误;\n\nD、图中同源染色体对数最多的细胞是 (5), (5)处于有丝分裂的后期, 有四个染色体组, D 正确。\n\n故选 D。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_159", "problem": "In a simple way, respiratory disorders can be classified as obstructive or restrictive disorders. Obstructive disorders are characterized by a reduction in the airflow rate in the respiratory tracts. Restrictive disorders are characterized by a reduction of lung volume.\n\nFigure Q. 75 shows the shapes of the flow-volume loops measured during forced inspiration and forced expiration in healthy people with normal respiratory function and in four patients suffering from four common types of respiratory disorders.\n[figure1]\nA: The blood $\\mathrm{pH}$ of patient with Type I is higher than that of healthy people.\nB: The time of the forced inhalation of patient with Type 2 is shorter than that of healthy people.\nC: A patient with Type 3 displays higher breathing rate than healthy people.\nD: Residual volume in a patient with Type 4 is higher than that of healthy people.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nIn a simple way, respiratory disorders can be classified as obstructive or restrictive disorders. Obstructive disorders are characterized by a reduction in the airflow rate in the respiratory tracts. Restrictive disorders are characterized by a reduction of lung volume.\n\nFigure Q. 75 shows the shapes of the flow-volume loops measured during forced inspiration and forced expiration in healthy people with normal respiratory function and in four patients suffering from four common types of respiratory disorders.\n[figure1]\n\nA: The blood $\\mathrm{pH}$ of patient with Type I is higher than that of healthy people.\nB: The time of the forced inhalation of patient with Type 2 is shorter than that of healthy people.\nC: A patient with Type 3 displays higher breathing rate than healthy people.\nD: Residual volume in a patient with Type 4 is higher than that of healthy people.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_14_1923091db797f33574ddg-059.jpg?height=930&width=1712&top_left_y=866&top_left_x=174" ], "answer": [ "C", "D" ], "solution": "A. False. Because of the decreased forced expiratory flow in Type 1, leading to increased $\\mathrm{CO}_{2}$ accumulation in the lungs. This results in decreased blood $\\mathrm{pH}$.\n\nB. False. Owing to lowered inspiratory flow in Type 2, the time of forced inhalation is longer.\n\nC. True. Type 3 displays decrease in airflow and lung volume. These result in increase in breathing rate.\n\nD. True. Type 4 shows limitation of airflow in both inspiration and expiration so that the residual volume is increased.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "multi-modal" }, { "id": "Biology_399", "problem": "果蝇的灰身和黑身、长翅和残翅分别由位于常染色体上的等位基因 $\\mathrm{B} / \\mathrm{b} 、 \\mathrm{D} / \\mathrm{d}$ 控制。基因型为 $\\mathrm{BbDd}$ 的灰身长翅雌果蝇减数分裂产生卵细胞的种类及比例是\n\n$\\mathrm{Bd}: \\mathrm{BD}: \\mathrm{bd}: \\mathrm{bD}=5: 1: 1: 5$, 基因型为 $\\mathrm{BbDd}$ 的雄果䗉减数分裂产生精子的种类及比例是\n\n$\\mathrm{Bd}: \\mathrm{bD}=1: 1$ 。下列说法错误的是 ( )\nA: 雌雄果蝇配子种类和比例不同的原因是初级卵母细胞的非姐妹染色单体之间发生了片段交换\nB: 基因型为 $\\mathrm{BbDd}$ 的雌雄果蝇杂交, 后代灰身长翅:灰身残翅: 黑身长翅 $=2: 1: 1$\nC: 基因型为 $\\mathrm{Bb}$ 的雌雄果蝇杂交, 之后每代的灰身个体随机交配, $\\mathrm{F}_{3}$ 中 $\\mathrm{Bb}$ 个体占 $1 / 8$\nD: 若雌果蝇减数分裂产生的卵细胞中 BD 和 bd 类型共占 $n \\%$, 则初级卵母细胞中发生互换的比例为 $2 \\mathrm{n} \\%$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n果蝇的灰身和黑身、长翅和残翅分别由位于常染色体上的等位基因 $\\mathrm{B} / \\mathrm{b} 、 \\mathrm{D} / \\mathrm{d}$ 控制。基因型为 $\\mathrm{BbDd}$ 的灰身长翅雌果蝇减数分裂产生卵细胞的种类及比例是\n\n$\\mathrm{Bd}: \\mathrm{BD}: \\mathrm{bd}: \\mathrm{bD}=5: 1: 1: 5$, 基因型为 $\\mathrm{BbDd}$ 的雄果䗉减数分裂产生精子的种类及比例是\n\n$\\mathrm{Bd}: \\mathrm{bD}=1: 1$ 。下列说法错误的是 ( )\n\nA: 雌雄果蝇配子种类和比例不同的原因是初级卵母细胞的非姐妹染色单体之间发生了片段交换\nB: 基因型为 $\\mathrm{BbDd}$ 的雌雄果蝇杂交, 后代灰身长翅:灰身残翅: 黑身长翅 $=2: 1: 1$\nC: 基因型为 $\\mathrm{Bb}$ 的雌雄果蝇杂交, 之后每代的灰身个体随机交配, $\\mathrm{F}_{3}$ 中 $\\mathrm{Bb}$ 个体占 $1 / 8$\nD: 若雌果蝇减数分裂产生的卵细胞中 BD 和 bd 类型共占 $n \\%$, 则初级卵母细胞中发生互换的比例为 $2 \\mathrm{n} \\%$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "C" ], "solution": "在减数分裂形成四分体时, 四分体的非姐妹染色单体之间经常发生缠绕, 并交\n换相应的片段, 导致产生的配子类型改变。基因型为 BbDd 的灰身长翅雌果蝇减数分裂产生卵细胞的种类及比例是 $\\mathrm{Bd}: \\mathrm{BD}: \\mathrm{bd}: \\mathrm{bD}=5: 1: 1: 5$, 由于互换只是少数的, 故 $\\mathrm{Bd}$ 位于一条染色体上, $\\mathrm{bD}$ 位于另一条染色体上, 出现配子 $\\mathrm{BD} 、 \\mathrm{bd}$, 是因为初级卵母细胞的非姐妹染色单体之间发生了片段交换。基因型为 $\\mathrm{BbDd}$ 的雄果蝇减数分裂产生精子的种类及比例是 $\\mathrm{Bd}: \\mathrm{bD}=1: 1$, 是因为初级精母细胞的非姐妹染色单体之间未发生了片段交换, 且 $\\mathrm{Bd}$ 位于一条染色体上, $\\mathrm{bD}$ 位于另一条染色体上。\n\n【详解】A、基因型为 $\\mathrm{BbDd}$ 的灰身长翅雌果蝇减数分裂产生卵细胞的种类及比例是 $\\mathrm{Bd}: \\mathrm{BD}: \\mathrm{bd}: \\mathrm{bD}=5: 1: 1: 5$, 基因型为 BbDd 的雄果蝇减数分裂产生精子的种类及比例是\n\n$\\mathrm{Bd}: \\mathrm{bD}=1: 1$, 雌雄果蝇配子种类和比例不同的原因是初级卵母细胞的非姐妹染色单体之间发生了片段交换,A 正确;\n\nB、基因型为 $\\mathrm{BbDd}$ 的雌雄果蝇杂交, 基因型为 $\\mathrm{BbDd}$ 的灰身长翅雌果蝇减数分裂产生卵细胞的种类及比例是 $\\mathrm{Bd}: \\mathrm{BD}: \\mathrm{bd}: \\mathrm{bD}=5: 1: 1: 5$, 基因型为 $\\mathrm{BbDd}$ 的雄果蝇减数分裂产生精子的种类及比例是 $\\mathrm{Bd}: \\mathrm{bD}=1: 1$, 由棋盘法可知\n\n| | $5 \\mathrm{Bd}$ | $1 \\mathrm{BD}$ | $1 \\mathrm{bd}$ | $5 \\mathrm{bD}$ |\n| :--- | :--- | :--- | :--- | :--- |\n| $1 \\mathrm{Bd}$ | $5 \\mathrm{BBdd}$ | $1 \\mathrm{BBDd}$ | $1 \\mathrm{Bbdd}$ | $5 \\mathrm{BbDd}$ |\n| $1 \\mathrm{bD}$ | $5 \\mathrm{BbDd}$ | $1 \\mathrm{BbDD}$ | $1 \\mathrm{bbDd}$ | $5 \\mathrm{bbDD}$ |\n\n后代灰身长翅:灰身残翅: 黑身长翅 $=(1+5+5+1):(5+1):(5+1)=2: 1: 1, \\mathrm{~B}$ 正确;\n\nC、基因型为 $\\mathrm{Bb}$ 的雌雄果蝇杂交, $\\mathrm{F}_{1}$ 中灰身的基因型及比例为 $\\mathrm{BB}: \\mathrm{Bb}=1: 2, \\mathrm{~F}_{1}$ 中产生配子的种类及比例为 $B: b=2: 1$, 故 $F_{1}$ 中灰身的基因型及比例为 $B B: B b=1: 1, F_{2}$ 中产生配子的种类及比例为 $B: b=3: 1, F_{3}$ 中基因型及比例为 $B B: B b: b b=9: 6: 1$, 故 $F_{3}$中 $\\mathrm{Bb}$ 个体占 $3 / 8, \\mathrm{C}$ 错误;\n\n$D$ 、 交换值 $=F_{1}$ 重组型配子数 $/ F_{1}$ 总配子数 $\\times 100 \\%=1 / 2$ 发生交换的卵母细胞的百分比,故雌果蝇减数分裂产生的卵细胞中 BD 和 bd 类型共占 $\\mathrm{n} \\%$, 则初级卵母细胞中发生互换的比例为 $2 \\mathrm{n} \\%, \\mathrm{D}$ 正确。\n\n故选 C。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_836", "problem": "下列生命活动中比值可能为“ 3 ”的是 ( )\nA: ${ }^{15} \\mathrm{~N}$ 标记的 DNA 在 ${ }^{14} \\mathrm{~N}$ 培养液中复制 2 次, 含 ${ }^{14} \\mathrm{~N}$ 与含 ${ }^{15} \\mathrm{~N}$ 的 DNA 数目之比\nB: 遵循基因自由组合定律的基因型为 $\\mathrm{AaBb}$ 的某种群连续自由交配两代后, $\\mathrm{F}_{2}$ 中杂合子、纯合子数量之比\nC: 果蝇精原细胞分裂过程中核 DNA 与染色体数目之比\nD: 骨骼肌细胞分别进行无氧和有氧呼吸时产生等量 $\\mathrm{CO}_{2}$ 时消耗葡萄糖的比值\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n下列生命活动中比值可能为“ 3 ”的是 ( )\n\nA: ${ }^{15} \\mathrm{~N}$ 标记的 DNA 在 ${ }^{14} \\mathrm{~N}$ 培养液中复制 2 次, 含 ${ }^{14} \\mathrm{~N}$ 与含 ${ }^{15} \\mathrm{~N}$ 的 DNA 数目之比\nB: 遵循基因自由组合定律的基因型为 $\\mathrm{AaBb}$ 的某种群连续自由交配两代后, $\\mathrm{F}_{2}$ 中杂合子、纯合子数量之比\nC: 果蝇精原细胞分裂过程中核 DNA 与染色体数目之比\nD: 骨骼肌细胞分别进行无氧和有氧呼吸时产生等量 $\\mathrm{CO}_{2}$ 时消耗葡萄糖的比值\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "B" ], "solution": "【分析】DNA 复制的有关计算: DNA 复制为半保留复制, 若将亲代 DNA 分子复制 $n$代, 其结果分析如下: (1)子代 DNA 分子数为 $2^{\\mathrm{n}}$ 个。(1)含有亲代链的 DNA 分子数为 2 个。(2)不含亲代链的 DNA 分子数为 $\\left(2^{\\mathrm{n}-2}\\right)$ 个。(3)含子代链的 DNA 有 $2^{\\mathrm{n}}$ 个。(2)子代脱氧核苷酸链数为 $2^{\\mathrm{n}+1}$ 条。(1)亲代脱氧核苷酸链数为 2 条。(2)新合成的脱氧核苷酸链数为 $\\left(2^{\\mathrm{n}+1}-2\\right)$ 条。\n\n【详解】 $\\mathrm{A} 、 \\mathrm{DNA}$ 复制为半保留复制, ${ }^{15} \\mathrm{~N}$ 标记的 DNA 在 ${ }^{14} \\mathrm{~N}$ 培养液中复制 2 次, 子代中共得到 4 个 DNA 分子, 其中两个 DNA 的两条链中一条链含 ${ }^{15} \\mathrm{~N}$, 另一条链含 ${ }^{14} \\mathrm{~N}$,其余两个 DNA 的两条链均含 ${ }^{14} \\mathrm{~N}$, 因此含 ${ }^{14} \\mathrm{~N}$ (4 个) 与含 ${ }^{15} \\mathrm{~N}$ 的 DNA 数(2 个)之比为 $2, \\mathrm{~A}$ 错误;\n\nB、遵循基因自由组合定律的基因型为 $\\mathrm{AaBb}$ 的某种群连续自由交配 1 代后, $\\mathrm{F}_{1}$ 中 $\\mathrm{AA}$ : Aa: $a a=1: 2: 1, B B: B b: b b=1: 2: 1, F_{1}$ 自由交配时产生的配子 $A=1 / 2, a=1 / 2$, $\\mathrm{B}=1 / 2, \\mathrm{~b}=1 / 2$, 同理计算出连续自由交配 2 代后, $\\mathrm{F}_{2}$ 中 $\\mathrm{AA}=1 / 4, \\mathrm{Aa}=1 / 2, \\mathrm{aa}=1 / 4$, $\\mathrm{BB}=1 / 4, \\mathrm{Bb}=1 / 2, \\mathrm{bb}=1 / 4, \\mathrm{~F}_{2}$ 中杂合子 ( $\\mathrm{Aa}$ ) 与纯合子 ( $\\left.\\mathrm{AA} 、 \\mathrm{aa}\\right)$ 之比为 $1: 1$, 杂合子 $(\\mathrm{Bb})$ 与纯合子 $(\\mathrm{BB} 、 \\mathrm{bb})$ 之比为 $1: 1$, 两对合在一起, 杂合子的基因型为 $1 \\mathrm{AaBb} 、 1$ $(\\mathrm{AaBB} 、 \\mathrm{Aabb}) 、 1(\\mathrm{AABb} 、 \\mathrm{aaBb})$ ,纯合子的基因型为 1 (AABB、AAbb、aaBB、\n$a a b b)$, 则 $F_{2}$ 中杂合子与纯合子数量之比为 $3: 1, B$ 正确;\n\nC、果蝇精原细胞分裂过程中, DNA 没复制前核 DNA 与染色体数目之比为 $1: 1$, DNA 复制后核 DNA 与染色体数目之比为 $2: 1$ 或 1: $1, \\mathrm{C}$ 错误;\n\nD、骨骼肌细胞无氧呼吸不产生 $\\mathrm{CO}_{2}, \\mathrm{D}$ 错误。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_507", "problem": "山茶花有红色花和白色花, 花的颜色受两对等位基因 $A 、 a$ 与 $B 、 b$ 控制, 每一对基因 中至少有一个显性基因(A_B_)时,表现为红色花,其他的基因组合均表现为白色花。下表是两组纯合植株杂交实验的统计结果,下列分析正确的是\n\n| 亲本组合 | $F_{1}$ 植株性状及比例 | | $F_{1}$ 自交得 $F_{2}$ 植株的性状及比例 | |\n| :--- | :--- | :--- | :--- | :--- |\n| | 红色花 | 白色花 | 红色花 | 白色花 |\n| 1白色花×白
色花 | 89 | 0 | 273 | 212 |\n| (2)色花×白
色花 | 86 | 0 | 241 | 80 |\nA: 基因控制的花瓣颜色性状的遗传遵循分离定律, 不遵循自由组合定律\nB: 亲本组合(1)的 $F_{2}$ 红色花植株中杂合子所占比值为 $3 / 4$\nC: 亲本组合(2)的 $F_{1}$ 中一株红色花植株进行测交,后代中白色花植株占 $1 / 4$\nD: 若让亲本组合(2)中的 $F_{2}$ 红色花植株自交, 则 $F_{3}$ 中红色花:白色花 $=5: 1$\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n山茶花有红色花和白色花, 花的颜色受两对等位基因 $A 、 a$ 与 $B 、 b$ 控制, 每一对基因 中至少有一个显性基因(A_B_)时,表现为红色花,其他的基因组合均表现为白色花。下表是两组纯合植株杂交实验的统计结果,下列分析正确的是\n\n| 亲本组合 | $F_{1}$ 植株性状及比例 | | $F_{1}$ 自交得 $F_{2}$ 植株的性状及比例 | |\n| :--- | :--- | :--- | :--- | :--- |\n| | 红色花 | 白色花 | 红色花 | 白色花 |\n| 1白色花×白
色花 | 89 | 0 | 273 | 212 |\n| (2)色花×白
色花 | 86 | 0 | 241 | 80 |\n\nA: 基因控制的花瓣颜色性状的遗传遵循分离定律, 不遵循自由组合定律\nB: 亲本组合(1)的 $F_{2}$ 红色花植株中杂合子所占比值为 $3 / 4$\nC: 亲本组合(2)的 $F_{1}$ 中一株红色花植株进行测交,后代中白色花植株占 $1 / 4$\nD: 若让亲本组合(2)中的 $F_{2}$ 红色花植株自交, 则 $F_{3}$ 中红色花:白色花 $=5: 1$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "D" ], "solution": "【详解】在亲本组合(1)的 $F_{2}$ 中, 红色花: 白色花 $\\approx 9: 7$, 说明基因控制花瓣颜色性状的遗传遵循自由组合定律,进而推知 $\\mathrm{F}_{1}$ 的基因型为 $\\mathrm{AaBb}, \\mathrm{F}_{2}$ 红色花植株的基因型及其比例为 $A A B B: A a B B: A A B b: A a B b=1: 2: 2: 4$, 所以 $F_{2}$ 红色花植株中杂合子所占比值为 $8 / 9$, $A 、 B$ 项错误; 在亲本组合(2)的 $F_{2}$ 中,红色花: 白色花 $\\approx 3: 1$, 说明 $F_{1}$ 的基因型为 $A a B B$或 $A A B b, F_{1}$ 中一株红色花植株与基因型为 aabb 的个体进行测交,后代中白色花植株占 $1 / 2, C$ 项错误; 亲本组合(2)中的 $F_{2}$ 红色花植株的基因型为 $1 / 3 A A B B 、 2 / 3 A a B B$ 或 $1 / 3 \\mathrm{AABB} 、 2 / 3 \\mathrm{AABb}, 1 / 3 \\mathrm{AABB}$ 或 $1 / 3 \\mathrm{AABB}$ 自交后代为 $1 / 3$ 红色花, $2 / 3 \\mathrm{AaBB}$ 或 $2 / 3 \\mathrm{AABb}$自交后代为 $2 / 3 \\times 3 / 4$ 红色花、 $2 / 3 \\times 1 / 4$ 白色花, 所以 $F_{3}$ 中红色花:白色花 $=(1 / 3+$ $2 / 3 \\times 3 / 4): 2 / 3 \\times 1 / 4=5: 1$, D 项正确。\n\n【点睛】表中的 $\\mathrm{F}_{1}$ 只有一种表现型, 说明双亲均为纯合子。运用统计学的方法, 分析表中 $F_{2}$ 的相对性状的数量关系, 发现第(1)组 $F_{2}$ 中的红色花:白色花 $\\approx 9: 7$, 为 9:3:3:1 的变式, 说明该花色的遗传遵循基因的自由组合定律, 据此结合题意、各选项的问题情境和表中信息,进行分析作答。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_118", "problem": "Centrifugation is one of the most important biochemical techniques in the separation and purification of biomolecules and organelles. The sedimentation speed $(v)$ of specimens during centrifugal operation is proportional to the applied acceleration rate $\\left(g_{c}\\right)$, as shown in equation (1).\n\n$$\nv=S \\times g_{c} .\n$$\n\n$S$ in the equation is called the sedimentation coefficient and is determined by the ratio between the centrifugal force applied to the object in the solvent (numerator) versus a parameter reflecting the magnitude of viscous resistance against sedimentation (denominator), as shown in equation (2).\n\n$$\nS=\\frac{V_{m}\\left(\\rho-\\rho_{0}\\right) / N_{A}}{6 \\pi \\eta r}\n$$\n\nVm : the molar volume of a sedimenting specimen\n\n$\\rho:$ the densities of the specimen\n\n$\\rho_{0}:$ the densities of the solvent\n\n$r$ : the radius of the specimen when it is assumed to be spherical\n\n$\\eta$ : the viscosity coefficient of the solvent\n\n$N_{A}$ : the Avogadro constant, $6.02 \\times 10^{23}$.\nA: For organelles of the same size and shape, $S$ can be used to estimate differences in organelle density.\nB: Since many protein molecules have densities between 1.3 and $1.4(\\mathrm{~g} / \\mathrm{mL})$, we can use $S$ to distinguish sizes of spherical protein molecules.\nC: Assuming that two ribosomal subunits of similar size are combined to form a large complex, $S$ is approximately doubled.\nD: Since it is commonly expected that the viscosity of a solvent will increase at low temperatures, $S$ also decreases when chilled.\n", "prompt": "You are participating in an international Biology competition and need to solve the following question.\nThis is a multiple choice question (more than one correct answer).\n\nproblem:\nCentrifugation is one of the most important biochemical techniques in the separation and purification of biomolecules and organelles. The sedimentation speed $(v)$ of specimens during centrifugal operation is proportional to the applied acceleration rate $\\left(g_{c}\\right)$, as shown in equation (1).\n\n$$\nv=S \\times g_{c} .\n$$\n\n$S$ in the equation is called the sedimentation coefficient and is determined by the ratio between the centrifugal force applied to the object in the solvent (numerator) versus a parameter reflecting the magnitude of viscous resistance against sedimentation (denominator), as shown in equation (2).\n\n$$\nS=\\frac{V_{m}\\left(\\rho-\\rho_{0}\\right) / N_{A}}{6 \\pi \\eta r}\n$$\n\nVm : the molar volume of a sedimenting specimen\n\n$\\rho:$ the densities of the specimen\n\n$\\rho_{0}:$ the densities of the solvent\n\n$r$ : the radius of the specimen when it is assumed to be spherical\n\n$\\eta$ : the viscosity coefficient of the solvent\n\n$N_{A}$ : the Avogadro constant, $6.02 \\times 10^{23}$.\n\nA: For organelles of the same size and shape, $S$ can be used to estimate differences in organelle density.\nB: Since many protein molecules have densities between 1.3 and $1.4(\\mathrm{~g} / \\mathrm{mL})$, we can use $S$ to distinguish sizes of spherical protein molecules.\nC: Assuming that two ribosomal subunits of similar size are combined to form a large complex, $S$ is approximately doubled.\nD: Since it is commonly expected that the viscosity of a solvent will increase at low temperatures, $S$ also decreases when chilled.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be two or more of the options: [A, B, C, D].", "figure_urls": null, "answer": [ "A", "B", "D" ], "solution": "The questions are related to the sedimentation coefficient of specimens. The S-value, which indicates the rate of specimen sedimentation during centrifugation, is a parameter that appears in every textbook of biochemistry, but is simply described to be corresponding to specimen size or density. This question is intended to allow the students to gain more detailed insight into how the S-value is a number that changes under other experimental conditions, such as temperature, viscosity, and specimen shape.", "answer_type": "MC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "EN", "modality": "text-only" }, { "id": "Biology_542", "problem": "关于 DNA 合成原料的来源, 科学家曾提出三种假说: (1)细胞内自主合成(2)从培养基中摄取(3)二者都有。为验证三种假说,设计如下实验: 将大肠杆菌在含 ${ }^{15} \\mathrm{~N}$ 标记的脱氧核苷酸培养基中培养一代, 然后对提取的 DNA 进行离心,记录离心后试管中 DNA 的位置。图甲、乙、丙表示 DNA 在离心管中的可能位置。下列叙述正确的是( )\n\n[图1]\n\n[图2]\n\n乙\n\n[图3]\n\n丙\nA: 大肠杆菌的拟核 DNA 含有两个游离的磷酸基团\nB: 离心后离心管不同位置的 DNA 放射性强度不同\nC: 若支持观点 1 , 则实验结果应为图丙所示结果\nD: 若支持观点(2), 则实验结果应为图乙所示结果\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n关于 DNA 合成原料的来源, 科学家曾提出三种假说: (1)细胞内自主合成(2)从培养基中摄取(3)二者都有。为验证三种假说,设计如下实验: 将大肠杆菌在含 ${ }^{15} \\mathrm{~N}$ 标记的脱氧核苷酸培养基中培养一代, 然后对提取的 DNA 进行离心,记录离心后试管中 DNA 的位置。图甲、乙、丙表示 DNA 在离心管中的可能位置。下列叙述正确的是( )\n\n[图1]\n\n[图2]\n\n乙\n\n[图3]\n\n丙\n\nA: 大肠杆菌的拟核 DNA 含有两个游离的磷酸基团\nB: 离心后离心管不同位置的 DNA 放射性强度不同\nC: 若支持观点 1 , 则实验结果应为图丙所示结果\nD: 若支持观点(2), 则实验结果应为图乙所示结果\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_9fd5dd4d4b2128719128g-45.jpg?height=388&width=445&top_left_y=1231&top_left_x=340", "https://cdn.mathpix.com/cropped/2024_03_31_9fd5dd4d4b2128719128g-45.jpg?height=363&width=437&top_left_y=1235&top_left_x=821", "https://cdn.mathpix.com/cropped/2024_03_31_9fd5dd4d4b2128719128g-45.jpg?height=340&width=505&top_left_y=1235&top_left_x=1278" ], "answer": [ "C" ], "solution": "【分析】DNA 在复制的时候, 在 DNA 解旋酶的作用下, 双链首先解开, 形成了复制叉,而复制叉的形成则是由多种蛋白质和酶参与的较复杂的复制过程。特点: 全保留复制模型中, DNA 分子解旋形成两条模板链, 模板链复制形成子链, 然后两条模扳链 DNA 彼此结合, 恢复原状, 新合成的两条子链彼此互补结合形成一条新的双链 DNA 分子。半保留复制模型中, DNA 分子解旋形成两条模板链, 模板链复制形成子链, 然后两条模板链分别与新合成的子链组成子代 DNA 分子。最终, 科学家证明 DNA 复制的方式为半保留复制。\n\n【详解】A、大肠杆菌的拟核 DNA 为环状 DNA, 不含游离的磷酸基团, A 错误;\n\nB、 ${ }^{15} \\mathrm{~N}$ 没有放射性, B 错误;\n$\\mathrm{CD}$ 、将大肠杆菌在 ${ }^{15} \\mathrm{~N}$ 标记的脱氧核苷酸培养基中培养一代的时间, 然后利用密度梯度离心分离提取的 DNA, 若合成 DNA 的原料是细胞内自主合成, 则合成的 DNA 没有 ${ }^{15} \\mathrm{~N}$ 标记, 离心后 DNA 均为 ${ }^{14} \\mathrm{~N}$, 位于顶部, 对应图丙; 若合成 DNA 的原料是从培养基中摄取,则得到的子代 DNA 分子一条链是 ${ }^{15} \\mathrm{~N}$ ,一条链是 ${ }^{14} \\mathrm{~N}$ ,离心后位于中部,对应图甲, C 正确, D 错误。\n\n故选 C。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" }, { "id": "Biology_721", "problem": "研究人员在线虫细胞中发现了一种只由 21 个核苷酸组成的 RNA, 命名为 $\\operatorname{lin} 4, \\operatorname{lin} 4$本身不能指导蛋白质的合成,但是可以结合在 $\\mathrm{M}$ 基因转录出的 $\\mathrm{mRNA}$ 上, 抑制 $\\mathrm{M}$ 蛋白的合成。下列相关叙述正确的是( )\nA: $\\operatorname{lin} 4$ 中碱基的数量关系满足 $\\mathrm{A}+\\mathrm{G}=\\mathrm{C}+\\mathrm{U}$\nB: lin4 与 $\\mathrm{M}$ 基因的 mRNA 存在碱基互补的序列\nC: lin4 可以改变线虫的遗传物质和相关性状\nD: 若 $\\operatorname{lin} 4$ 发生突变, 则细胞中 $\\mathrm{M}$ 蛋白的含量将会下降\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n研究人员在线虫细胞中发现了一种只由 21 个核苷酸组成的 RNA, 命名为 $\\operatorname{lin} 4, \\operatorname{lin} 4$本身不能指导蛋白质的合成,但是可以结合在 $\\mathrm{M}$ 基因转录出的 $\\mathrm{mRNA}$ 上, 抑制 $\\mathrm{M}$ 蛋白的合成。下列相关叙述正确的是( )\n\nA: $\\operatorname{lin} 4$ 中碱基的数量关系满足 $\\mathrm{A}+\\mathrm{G}=\\mathrm{C}+\\mathrm{U}$\nB: lin4 与 $\\mathrm{M}$ 基因的 mRNA 存在碱基互补的序列\nC: lin4 可以改变线虫的遗传物质和相关性状\nD: 若 $\\operatorname{lin} 4$ 发生突变, 则细胞中 $\\mathrm{M}$ 蛋白的含量将会下降\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": null, "answer": [ "B" ], "solution": "【分析】 lin4 能与 $\\mathrm{M}$ 基因转录出的 mRNA 结合,抑制 $\\mathrm{M}$ 蛋白的合成,说明二者存在碱基互补配对序列,通过影响 M 基因的翻译的过程影响 M 蛋白的合成。\n\n【详解】 $\\mathrm{A} 、 \\operatorname{lin} 4$ 是单链 RNA, 单链中不一定满足 $\\mathrm{A}+\\mathrm{G}=\\mathrm{C}+\\mathrm{U}, \\mathrm{A}$ 错误;\n\n$\\mathrm{B} 、 \\operatorname{lin} 4$ 能与 $\\mathrm{M}$ 基因转录出的 mRNA 结合,说明二者存在碱基互补配对序列, B 正确;\n\nC、 lin4 通过抑制 $\\mathrm{M}$ 基因的翻译过程,进而抑制 $\\mathrm{M}$ 蛋白的合成,不改变线虫的遗传物\n质,但是改变了相关性状,C 错误;\n\nD、若 lin4 的基因发生突变, 可能会导致该基因与 $\\mathrm{M}$ 基因转录出的 mRNA 不能结合,减少对 $\\mathrm{M}$ 蛋白合成的抑制作用, $\\mathrm{M}$ 蛋白的含量可能上升, D 错误。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "text-only" }, { "id": "Biology_582", "problem": "恶性高热是一种潜在致命性单基因遗传病, 患者一般无症状, 但当接触麻醉剂后,会诱发患者出现高热等症状, 死亡率极高。某家庭的母亲和女儿皆患有恶性高热, 母亲因该病去世,女儿经及时抢救而康复。科研人员对该家庭成员进行了基因检测。控制该性状的某一基因可在限制酶的作用下切割成两条不同长度的 DNA 片段, 用凝胶电泳法分离后可显示出不同的带谱如图所示(控制该性状的基因为完全显性,且不位于 XY 染色体的同源区段)。下列说法错误的是()\n\n[图1]\nA: 该遗传病属于常染色体上显性遗传病\nB: 结合 3、4 可推断 2 号不患病的概率是 $100 \\%$\nC: 该致病基因是由正常基因碱基的替换形成\nD: 4 号与无麻醉剂接触史的女子结婚, 后代的基因型最多有 3 种\n", "prompt": "你正在参加一个国际生物竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n恶性高热是一种潜在致命性单基因遗传病, 患者一般无症状, 但当接触麻醉剂后,会诱发患者出现高热等症状, 死亡率极高。某家庭的母亲和女儿皆患有恶性高热, 母亲因该病去世,女儿经及时抢救而康复。科研人员对该家庭成员进行了基因检测。控制该性状的某一基因可在限制酶的作用下切割成两条不同长度的 DNA 片段, 用凝胶电泳法分离后可显示出不同的带谱如图所示(控制该性状的基因为完全显性,且不位于 XY 染色体的同源区段)。下列说法错误的是()\n\n[图1]\n\nA: 该遗传病属于常染色体上显性遗传病\nB: 结合 3、4 可推断 2 号不患病的概率是 $100 \\%$\nC: 该致病基因是由正常基因碱基的替换形成\nD: 4 号与无麻醉剂接触史的女子结婚, 后代的基因型最多有 3 种\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]", "figure_urls": [ "https://cdn.mathpix.com/cropped/2024_03_31_457e30042f7c293ebe80g-10.jpg?height=457&width=596&top_left_y=1873&top_left_x=336" ], "answer": [ "B" ], "solution": "由一对等位基因控制的遗传病叫单基因遗传病。分析题图可知, 500bp 和 $800 \\mathrm{bp}$片段是控制该性状的某一基因(可能是治病基因也可能是正常基因)被限制酶切割成的两条不同长度的 DNA 片段, 该家庭儿子相关致病基因检测结果与女儿相同, 因此儿子也患恶性高热; 父亲只有 $500 \\mathrm{bp}$ 和 $800 \\mathrm{bp}$ 的片段, 说明父亲是纯合子; 女儿和儿子既含 $1300 \\mathrm{bp}$ 片段, 也含 $500 \\mathrm{bp}$ 和 $800 \\mathrm{bp}$ 的片段, 说明女儿和儿子都是既含致病基因, 又含正常基因,是杂合子。\n\n【详解】A、父亲只有 $500 \\mathrm{bp}$ 和 $800 \\mathrm{bp}$ 的片段, 女儿和儿子既含 $1300 \\mathrm{bp}$ 片段, 也含 $500 \\mathrm{bp}$和 800bp 的片段, 说明儿子和女儿都是既含致病基因, 又含正常基因, 因此该病是显性遗传病。若是该致病基因在 X 染色体上,且不位于 XY 染色体的同源区段,儿子就不会同时含有致病基因和正常基因,因此判断该病为常染色体显性基因控制的遗传病,A 正确;\n\nB、父亲只有 $500 b p$ 和 $800 \\mathrm{bp}$ 片段, 说明父亲是纯合子,根据题意, “控制该性状的某一基因可在限制酶的作用下切割成两条不同长度的 DNA 片段”,若是致病基因被切割成两条不同长度的 DNA 片段,父亲有可能是患者,B 错误;\n\nC、据题图可知,某限制酶作用于相应基因后,正常基因和致病基因的碱基对的总长度不变(都是 1300bp),因此推测该致病基因是由正常基因碱基的替换形成,C 正确; D、该病为常染色体显性遗传病,用 $\\mathrm{A} / \\mathrm{a}$ 表示相关基因。无麻醉剂接触史的女子的基因型有三种可能: AA 或 Aa 或 aa, 4 号是杂合子, 4 号与无麻醉剂接触史的女子结婚, 后代的基因型为 $\\mathrm{AA}$ 和 $\\mathrm{Aa}$ ,或 $\\mathrm{AA} 、 \\mathrm{Aa} 、 \\mathrm{aa}$ ,或 $\\mathrm{Aa}$ 和 $\\mathrm{aa}$ ,子代能出现的基因型种类可能有 2 种、 3 种、 2 种,后代的基因型最多,D 正确。\n\n故选 B。", "answer_type": "SC", "unit": null, "answer_sequence": null, "type_sequence": null, "test_cases": null, "subject": "Biology", "language": "ZH", "modality": "multi-modal" } ]