_id
stringlengths
4
9
title
stringlengths
2
300
text
stringlengths
174
10k
502797
Chemical approaches to stem cell biology and therapeutics.
Small molecules that modulate stem cell fate and function offer significant opportunities that will allow the full realization of the therapeutic potential of stem cells. Rational design and screening for small molecules have identified useful compounds to probe fundamental mechanisms of stem cell self-renewal, differentiation, and reprogramming and have facilitated the development of cell-based therapies and therapeutic drugs targeting endogenous stem and progenitor cells for repair and regeneration. Here, we will discuss recent scientific and therapeutic progress, as well as new perspectives and future challenges for using chemical approaches in stem cell biology and regenerative medicine.
503050
Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations.
515489
Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2.
UNLABELLED Many protein-coding oncofetal genes are highly expressed in murine and human fetal liver and silenced in adult liver. The protein products of these hepatic oncofetal genes have been used as clinical markers for the recurrence of hepatocellular carcinoma (HCC) and as therapeutic targets for HCC. Herein we examined the expression profiles of long noncoding RNAs (lncRNAs) found in fetal and adult liver in mice. Many fetal hepatic lncRNAs were identified; one of these, lncRNA-mPvt1, is an oncofetal RNA that was found to promote cell proliferation, cell cycling, and the expression of stem cell-like properties of murine cells. Interestingly, we found that human lncRNA-hPVT1 was up-regulated in HCC tissues and that patients with higher lncRNA-hPVT1 expression had a poor clinical prognosis. The protumorigenic effects of lncRNA-hPVT1 on cell proliferation, cell cycling, and stem cell-like properties of HCC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Moreover, mRNA expression profile data showed that lncRNA-hPVT1 up-regulated a series of cell cycle genes in SMMC-7721 cells. By RNA pulldown and mass spectrum experiments, we identified NOP2 as an RNA-binding protein that binds to lncRNA-hPVT1. We confirmed that lncRNA-hPVT1 up-regulated NOP2 by enhancing the stability of NOP2 proteins and that lncRNA-hPVT1 function depends on the presence of NOP2. CONCLUSION Our study demonstrates that the expression of many lncRNAs is up-regulated in early liver development and that the fetal liver can be used to search for new diagnostic markers for HCC. LncRNA-hPVT1 promotes cell proliferation, cell cycling, and the acquisition of stem cell-like properties in HCC cells by stabilizing NOP2 protein. Regulation of the lncRNA-hPVT1/NOP2 pathway may have beneficial effects on the treatment of HCC.
516867
Candida albicans, a distinctive fungal model for cellular aging study
The unicellular eukaryotic organisms represent the popular model systems to understand aging in eukaryotes. Candida albicans, a polymorphic fungus, appears to be another distinctive unicellular aging model in addition to the budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. The two types of Candida cells, yeast (blastospore) form and hyphal (filamentous) form, have similar replicative lifespan. Taking the advantage of morphologic changes, we are able to obtain cells of different ages. Old Candida cells tend to accumulate glycogen and oxidatively damaged proteins. Deletion of the SIR2 gene causes a decrease of lifespan, while insertion of an extra copy of SIR2 extends lifespan, indicating that like in S. cerevisiae, Sir2 regulates cellular aging in C. albicans. Interestingly, Sir2 deletion does not result in the accumulation of extra-chromosomal rDNA molecules, but influences the retention of oxidized proteins in mother cells, suggesting that the extra-chromosomal rDNA molecules may not be associated with cellular aging in C. albicans. This novel aging model, which allows efficient large-scale isolation of old cells, may facilitate biochemical characterizations and genomics/proteomics studies of cellular aging, and help to verify the aging pathways observed in other organisms including S. cerevisiae.
519974
ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures
Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
520579
Plasma vitamin D metabolites and risk of colorectal cancer in women.
OBJECTIVE Experimental evidence suggests that 1,25-dihydroxyvitamin D and its precursor, 25-hydroxyvitamin D [25(OH)D], may aid in the prevention of colorectal cancer. We therefore examined risk in relation to plasma concentrations of these vitamin D metabolites. METHODS In a nested case-control study among women in the Nurses' Health Study, we identified 193 colorectal cancer cases, ages 46 to 78 years, diagnosed up to 11 years after blood collection. Two controls were matched per case on year of birth and month of blood draw. Odds ratios (OR) for risk of colorectal cancer were calculated using conditional logistic regression adjusted for body mass index, physical activity, smoking, family history, use of hormone replacement therapy, aspirin use, and dietary intakes. RESULTS We found a significant inverse linear association between plasma 25(OH)D and risk of colorectal cancer (P = 0.02). Among women in the highest quintile, the OR (95% confidence interval) was 0.53 (0.27-1.04). This inverse association remained strong when limited to women > or =60 years at blood collection (P = 0.006) but was not apparent among the younger women (P = 0.70). Benefit from higher 25(OH)D concentrations was observed for cancers at the distal colon and rectum (P = 0.02) but was not evident for those at the proximal colon (P = 0.81). In contrast to 25(OH)D, we did not observe an association between 1,25-dihydroxyvitamin D and colorectal cancer, although risk was elevated among the women in the highest quintile if they were also in the lower half of the 25(OH)D distribution (OR, 2.52; 95% confidence interval, 1.04-6.11). CONCLUSION From these results and supporting evidence from previous studies, we conclude that higher plasma levels of 25(OH)D are associated with a lower risk of colorectal cancer in older women, particularly for cancers at the distal colon and rectum.
544971
DNA Deamination Mediates Innate Immunity to Retroviral Infection
CEM15/APOBEC3G is a cellular protein required for resistance to infection by virion infectivity factor (Vif)-deficient human immunodeficiency virus (HIV). Here, using a murine leukemia virus (MLV)-based system, we provide evidence that CEM15/APOBEC3G is a DNA deaminase that is incorporated into virions during viral production and subsequently triggers massive deamination of deoxycytidine to deoxyuridine within the retroviral minus (first)-strand cDNA, thus providing a probable trigger for viral destruction. Furthermore, HIV Vif can protect MLV from this CEM15/APOBEC3G-dependent restriction. These findings imply that targeted DNA deamination is a major strategy of innate immunity to retroviruses and likely also contributes to the sequence variation observed in many viruses (including HIV).
581832
Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015
BACKGROUND Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. METHODS We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. FINDINGS Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. INTERPRETATION Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. FUNDING Bill & Melinda Gates Foundation.
583260
Adverse drug events: database construction and in silico prediction.
Adverse drug events (ADEs) are the harms associated with uses of given medications at normal dosages, which are crucial for a drug to be approved in clinical use or continue to stay on the market. Many ADEs are not identified in trials until the drug is approved for clinical use, which results in adverse morbidity and mortality. To date, millions of ADEs have been reported around the world. Methods to avoid or reduce ADEs are an important issue for drug discovery and development. Here, we reported a comprehensive database of adverse drug events (namely MetaADEDB), which included more than 520,000 drug-ADE associations among 3059 unique compounds (including 1330 drugs) and 13,200 ADE items by data integration and text mining. All compounds and ADEs were annotated with the most commonly used concepts defined in Medical Subject Headings (MeSH). Meanwhile, a computational method, namely the phenotypic network inference model (PNIM), was developed for prediction of potential ADEs based on the database. The area under the receive operating characteristic curve (AUC) is more than 0.9 by 10-fold cross validation, while the AUC value was 0.912 for an external validation set extracted from the US-FDA Adverse Events Reporting System, which indicated that the prediction capability of the method was reliable. MetaADEDB is accessible free of charge at http://www.lmmd.org/online_services/metaadedb/. The database and the method provide us a useful tool to search for known side effects or predict potential side effects for a given drug or compound.
596817
Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago
From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles.
597790
Deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice
Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders.
599582
Familial aphasic episodes: another variant of partial epilepsy with simple inheritance?
We report on a family having partial epilepsy with simple inheritance. The affected members commonly have aphasic episodes with secondary generalization; onset occurred either in adolescence or adulthood. Patients' response to medication has varied greatly. No neurological defects or decline in intelligence were found. The case represents another variety of rare familial partial epilepsy with neocortical epilepsy features.
600437
Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P
VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.
600808
Anaphase-Promoting Complex/Cyclosome–Dependent Proteolysis of Human Cyclin a Starts at the Beginning of Mitosis and Is Not Subject to the Spindle Assembly Checkpoint
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The “destruction box” (D-box) of cyclin A is 10–20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.
601033
Human T Cell Leukemia Virus Reactivation with Progression of Adult T-Cell Leukemia-Lymphoma
BACKGROUND Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL) has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis. METHODS AND FINDINGS We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH) given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RNA expression increased (median 190-fold), and virus replication occurred, coincident with development of disease progression. CONCLUSIONS EPOCH chemotherapy followed by antiretroviral therapy is an active therapeutic regimen for adult T-cell leukemia-lymphoma, but viral reactivation during induction chemotherapy may contribute to treatment failure. Alternative therapies are sorely needed in this disease that simultaneously prevent virus expression, and are cytocidal for malignant cells.
602760
Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial.
OBJECTIVES To assess the effect of montelukast versus salmeterol added to inhaled fluticasone propionate on asthma exacerbation in patients whose symptoms are inadequately controlled with fluticasone alone. Design and setting A 52 week, two period, double blind, multicentre trial during which patients whose symptoms remained uncontrolled by inhaled corticosteroids were randomised to add montelukast or salmeterol. PARTICIPANTS Patients (15-72 years; n = 1490) had a clinical history of chronic asthma for > or = 1 year, a baseline forced expiratory volume in one second (FEV1) value 50-90% predicted, and a beta agonist improvement of > or = 12% in FEV1. MAIN OUTCOME MEASURES The primary end point was the percentage of patients with at least one asthma exacerbation. RESULTS 20.1% of the patients in the group receiving montelukast and fluticasone had an asthma exacerbation compared with 19.1% in the group receiving salmeterol and fluticasone; the difference was 1% (95% confidence interval -3.1% to 5.0%). With a risk ratio (montelukast-fluticasone/salmeterol-fluticasone) of 1.05 (0.86 to 1.29), treatment with montelukast and fluticasone was shown to be non-inferior to treatment with salmeterol and fluticasone. Salmeterol and fluticasone significantly increased FEV1 before a beta agonist was used and morning peak expiratory flow compared with montelukast and fluticasone (P < or = 0.001), whereas FEV1 after a beta agonist was used and improvements in asthma specific quality of life and nocturnal awakenings were similar between the groups. Montelukast and fluticasone significantly (P = 0.011) reduced peripheral blood eosinophil counts compared with salmeterol and fluticasone. Both treatments were generally well tolerated. CONCLUSION The addition of montelukast in patients whose symptoms remain uncontrolled by inhaled fluticasone could provide equivalent clinical control to salmeterol.
612002
Control of assembly and function of glutamate receptors by the amino-terminal domain.
The extracellular amino-terminal domains (ATDs) of the ionotropic glutamate receptor subunits form a semiautonomous component of all glutamate receptors that resides distal to the membrane and controls a surprisingly diverse set of receptor functions. These functions include subunit assembly, receptor trafficking, channel gating, agonist potency, and allosteric modulation. The many divergent features of the different ionotropic glutamate receptor classes and different subunits within a class may stem from differential regulation by the amino-terminal domains. The emerging knowledge of the structure and function of the amino-terminal domains reviewed here may enable targeting of this region for the therapeutic modulation of glutamatergic signaling. Toward this end, NMDA receptor antagonists that interact with the GluN2B ATD show promise in animal models of ischemia, neuropathic pain, and Parkinson's disease.
615047
Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes.
In the past years, simple organisms such as yeasts and worms have contributed a great deal to aging research. Studies pioneered in Saccharomyces cerevisiae were useful to elucidate a significant number of molecular mechanisms underlying cellular aging and to discover novel longevity genes. Importantly, these genes proved many times to be conserved in multicellular eukaryotes. Consequently, such discovery approaches are being extended to other yeast models, such as Schizosaccharomyces pombe, Candida albicans, Kluyveromyces lactis, and Cryptococcus neoformans. In fission yeast, researchers have found links between asymmetrical cell division and nutrient signaling pathways with aging. In this review, we discuss the state of knowledge on the mechanisms controlling both replicative and chronological aging in S pombe and the other emergent yeast models.
623486
Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes.
Centrifugal elutriation was used further to isolate human peripheral blood monocytes (HPBM) from mononuclear-enriched cells harvested as a secondary component following platelet concentration collection samples. HPBM were recovered in either one or two populations consisting of either total HPBM or small (SM) and large monocytes (LM). The elutriation was carried out at 3,500 +/- 5 rpm for the separation of lymphocytes and HPBM in Ca++- and Mg++-free PBS without EDTA. An average of 5.05 +/- 1.50 X 10(8) HPBM were recovered in the total HPBM with a purity of 95% +/- 3%. The SM and LM were obtained by splitting the total HPBM into two equal populations with an HPBM purity of 92% +/- 3% and 93% +/- 3, respectively, by nonspecific esterase staining. The elutriation media were shown to have no effect on viability by trypan blue exclusion. All three HPBM populations were shown to be histochemically (lack of reactivity to leu-1 and leu-7) and functionally (depletion of NK cell activity) purified from the lymphocyte population. The HPBM populations were enriched in HLA-Dr, OKM-1, OKM-5, MY-8, and leu M-3 monoclonal antibody marker staining. There were no differences in percent positive cells between SM and LM populations for any of the monocyte-specific monoclonal antibodies. All three monocyte populations mediated antibody-dependent cell-mediated cytotoxicity to human red blood cells, with LM mediating more lysis (27.0% +/- 5%) than SM (7% +/- 3%).(ABSTRACT TRUNCATED AT 250 WORDS)
641459
Asthma in United States Olympic athletes who participated in the 1996 Summer Games.
BACKGROUND Asthma prevalence appears to be increasing in the general population. We sought to determine whether asthma prevalence has also increased in highly competitive athletes. OBJECTIVE Our aim was to determine how many United States Olympic athletes who were chosen to participate in the 1996 Summer Olympic Games had a past history of asthma or symptoms that suggested asthma or took asthma medications. METHODS We analyzed responses to questions that asked about allergic and respiratory diseases on the United States Olympic Committee (USOC) Medical History Questionnaire that was completed by all athletes who were chosen to represent the US at the 1996 Summer Olympic Games in Atlanta. RESULTS Of the 699 athletes who completed the questionnaire, 107 (15.3%) had a previous diagnosis of asthma, and 97 (13.9%) recorded use of an asthma medication at some time in the past. One hundred seventeen (16.7%) reported use of an asthma medication, a diagnosis of asthma, or both (which was our basis for the diagnosis of asthma). Seventy-three (10. 4%) of the athletes were currently taking an asthma medication at the time that they were processed in Atlanta or noted that they took asthma medications on a permanent or semipermanent basis and were considered to have active asthma. Athletes who participated in cycling and mountain biking had the highest prevalence of having been told that they had asthma or had taken an asthma medication in the past (50%). Frequency of active asthma varied from 45% of cyclists and emountain bikers to none of the divers and weight lifters. Only about 11% of the athletes who participated in the 1984 Summer Olympic Games were reported to have had exercise-induced asthma on the basis of other criteria that may have been less restrictive. On the basis of these less restrictive criteria, more than 20% of the athletes who participated in the 1996 Olympic Games might have been considered to have had asthma. CONCLUSIONS Asthma appeared to have been more prevalent in athletes who participated in the 1996 Summer Games than in the general population or in those who participated in the 1984 Summer Games. This study also suggests that asthma may influence the sport that an athlete chooses.
641786
Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia
Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.
643765
Relationship between Sloan-Kettering virus expression and mouse follicular development
Sloan-Kettering virus gene product (Ski) is an unique nuclear pro-oncoprotein and belongs to the ski/sno proto-oncogene family. Ski plays multiple roles in a variety of cell types, it can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Ski/SnoN are important transcription regulators of the transforming growth factor-β (TGF-β) superfamily and function mainly through heterodimers. Since TGF-β superfamily are key regulators of follicle development and it has been previously shown that SnoN is also vital to follicle development, this research was conducted to clarify the relationship between Ski expression and mouse follicular development, in ovaries of neonatal and gonadotropin-induced immature mice by immunohistochemical and real-time PCR techniques. In postnatal mice, positive staining for Ski was highly detected in oocyte nuclei at postnatal day 1. With follicular development, the localization moved gradually from oocyte nuclei to perinuclear space and the total levels decreased. During the estrous cycle, Ski expression was apparent at proestrus and estrus, faint at metestrus, highest at diestrus. After injection of gonadotropin, Ski was found in perinuclear space and weak in oocyte nuclei. Following the initiation of luteinization, the expression of Ski was found in corpus luteum. Real-time PCR results also showed that Ski mRNA expression was opposite to ovulation-related genes during the cumulus expansion, with the development of the follicles, its expression level decreased. Ski is expressed in a specific manner during follicle development, ovulation and luteinization. So Ski might play essential roles in these processes especially during early follicular development.
649951
Involvement of CB1 cannabinoid receptors in emotional behaviour
Rationale: Endogenous and exogenous cannabinoids acting through the CB1 cannabinoid receptors are implicated in the control of a variety of behavioural and neuroendocrine functions, including emotional responses, and learning and memory processes. Recently, knockout mice deficient in the CB1 cannabinoid receptor have been generated, and these animals result in an excellent tool to evaluate the neurophysiology of the endogenous cannabinoid system. Objectives: To establish the role of the CB1 cannabinoid receptor in several emotional-related behavioural responses, including aggressiveness, anxiety, depression and learning models, using CB1 knockout mice. Methods: We evaluated the spontaneous responses of CB1 knockout mice and wild-type controls under different behavioural paradigms, including the light/dark box, the chronic unpredictable mild stress, the resident–intruder test and the active avoidance paradigm. Results: Our findings showed that CB1 knockout mice presented an increase in the aggressive response measured in the resident–intruder test and an anxiogenic-like response in the light/dark box. Furthermore, a higher sensitivity to exhibit depressive-like responses in the chronic unpredictable mild stress procedure was observed in CB1 knockout mice, suggesting an increased susceptibility to develop an anhedonic state in these animals. Finally, CB1 knockout mice showed a significant increase in the conditioned responses produced in the active avoidance model, suggesting an improvement of learning and memory processes. Conclusions: Taken together these findings demonstrate that endogenous cannabinoids through the activation of CB1 receptors are implicated in the control of emotional behaviour and participate in the physiological processes of learning and memory.
654735
Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients
Glioma is a most common type of primary brain tumors. Extracellular vesicles, in the form of exosomes, are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we examined the cerebrospinal fluid (CSF) from patients with recurrent glioma for the levels of cancer-related miRNAs, and evaluated the values for prognosis by comparing the measures of CSF-, serum-, and exosome-contained miR-21 levels. Samples from seventy glioma patients following surgery were compared with those from brain trauma patients as a non-tumor control group. Exosomal miR-21 levels in the CSF of glioma patients were found significantly higher than in the controls; whereas no difference was detected in serum-derived exosomal miR-21 expression. The CSF-derived exosomal miR-21 levels correlated with tumor spinal/ventricle metastasis and the recurrence with anatomical site preference. From additional 198 glioma tissue samples, we verified that miR-21 levels associated with tumor grade of diagnosis and negatively correlated with the median values of patient overall survival time. We further used a lentiviral inhibitor to suppress miR-21 expression in U251 cells. The results showed that the levels of miR-21 target genes of PTEN, RECK and PDCD4 were up-regulated at protein levels. Therefore, we concluded that the exosomal miR-21 levels could be demonstrated as a promising indicator for glioma diagnosis and prognosis, particularly with values to predict tumor recurrence or metastasis.
663464
Age‐associated microRNA expression in human peripheral blood is associated with all‐cause mortality and age‐related traits
Recent studies provide evidence of correlations of DNA methylation and expression of protein-coding genes with human aging. The relations of microRNA expression with age and age-related clinical outcomes have not been characterized thoroughly. We explored associations of age with whole-blood microRNA expression in 5221 adults and identified 127 microRNAs that were differentially expressed by age at P < 3.3 × 10-4 (Bonferroni-corrected). Most microRNAs were underexpressed in older individuals. Integrative analysis of microRNA and mRNA expression revealed changes in age-associated mRNA expression possibly driven by age-associated microRNAs in pathways that involve RNA processing, translation, and immune function. We fitted a linear model to predict 'microRNA age' that incorporated expression levels of 80 microRNAs. MicroRNA age correlated modestly with predicted age from DNA methylation (r = 0.3) and mRNA expression (r = 0.2), suggesting that microRNA age may complement mRNA and epigenetic age prediction models. We used the difference between microRNA age and chronological age as a biomarker of accelerated aging (Δage) and found that Δage was associated with all-cause mortality (hazards ratio 1.1 per year difference, P = 4.2 × 10-5 adjusted for sex and chronological age). Additionally, Δage was associated with coronary heart disease, hypertension, blood pressure, and glucose levels. In conclusion, we constructed a microRNA age prediction model based on whole-blood microRNA expression profiling. Age-associated microRNAs and their targets have potential utility to detect accelerated aging and to predict risks for age-related diseases.
665817
Histone deacetylases (HDACs) in frontotemporal lobar degeneration.
AIMS Frontotemporal lobar degeneration (FTLD) is clinically and pathologically heterogeneous. Although associated with variations in MAPT, GRN and C9ORF72, the pathogenesis of these, and of other nongenetic, forms of FTLD, remains unknown. Epigenetic factors such as histone regulation by histone deacetylases (HDAC) may play a role in the dysregulation of transcriptional activity, thought to underpin the neurodegenerative process. METHODS The distribution and intensity of HDACs 4, 5 and 6 was assessed semi-quantitatively in immunostained sections of temporal cortex with hippocampus, and cerebellum, from 33 pathologically confirmed cases of FTLD and 27 controls. RESULTS We found a significantly greater intensity of cytoplasmic immunostaining for HDAC4 and HDAC6 in granule cells of the dentate gyrus in cases of FTLD overall compared with controls, and specifically in cases of FTLD tau-Picks compared with FTLD tau-MAPT and controls. No differences were noted between FTLD-TDP subtypes, or between the different genetic and nongenetic forms of FTLD. No changes were seen in HDAC5 in any FTLD or control cases. CONCLUSIONS Dysregulation of HDAC4 and/or HDAC6 could play a role in the pathogenesis of FTLD-tau associated with Pick bodies, although their lack of immunostaining implies that such changes do not contribute directly to the formation of Pick bodies.
667451
Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia
Clonal evolution is a key feature of cancer progression and relapse. We studied intratumoral heterogeneity in 149 chronic lymphocytic leukemia (CLL) cases by integrating whole-exome sequence and copy number to measure the fraction of cancer cells harboring each somatic mutation. We identified driver mutations as predominantly clonal (e.g., MYD88, trisomy 12, and del(13q)) or subclonal (e.g., SF3B1 and TP53), corresponding to earlier and later events in CLL evolution. We sampled leukemia cells from 18 patients at two time points. Ten of twelve CLL cases treated with chemotherapy (but only one of six without treatment) underwent clonal evolution, predominantly involving subclones with driver mutations (e.g., SF3B1 and TP53) that expanded over time. Furthermore, presence of a subclonal driver mutation was an independent risk factor for rapid disease progression. Our study thus uncovers patterns of clonal evolution in CLL, providing insights into its stepwise transformation, and links the presence of subclones with adverse clinical outcomes.
680949
The transcriptional program of sporulation in budding yeast
Diploid cells of budding yeast produce haploid cells through the developmental program of sporulation, which consists of meiosis and spore morphogenesis. DNA microarrays containing nearly every yeast gene were used to assay changes in gene expression during sporulation. At least seven distinct temporal patterns of induction were observed. The transcription factor Ndt80 appeared to be important for induction of a large group of genes at the end of meiotic prophase. Consensus sequences known or proposed to be responsible for temporal regulation could be identified solely from analysis of sequences of coordinately expressed genes. The temporal expression pattern provided clues to potential functions of hundreds of previously uncharacterized genes, some of which have vertebrate homologs that may function during gametogenesis.
695938
Grass plants bind, retain, uptake, and transport infectious prions.
Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.
696006
Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity
Patients with asthma, a major public health problem, are at high risk for serious disease from influenza virus infection, but the pathogenic mechanisms by which influenza A causes airway disease and asthma are not fully known. We show here in a mouse model that influenza infection acutely induced airway hyper-reactivity (AHR), a cardinal feature of asthma, independently of T helper type 2 (TH2) cells and adaptive immunity. Instead, influenza infection induced AHR through a previously unknown pathway that required the interleukin 13 (IL-13)–IL-33 axis and cells of the non-T cell, non-B cell innate lymphoid type called 'natural helper cells'. Infection with influenza A virus, which activates the NLRP3 inflammasome, resulted in much more production of IL-33 by alveolar macrophages, which in turn activated natural helper cells producing substantial IL-13.
704526
The behaviour change wheel: A new method for characterising and designing behaviour change interventions
BACKGROUND Improving the design and implementation of evidence-based practice depends on successful behaviour change interventions. This requires an appropriate method for characterising interventions and linking them to an analysis of the targeted behaviour. There exists a plethora of frameworks of behaviour change interventions, but it is not clear how well they serve this purpose. This paper evaluates these frameworks, and develops and evaluates a new framework aimed at overcoming their limitations. METHODS A systematic search of electronic databases and consultation with behaviour change experts were used to identify frameworks of behaviour change interventions. These were evaluated according to three criteria: comprehensiveness, coherence, and a clear link to an overarching model of behaviour. A new framework was developed to meet these criteria. The reliability with which it could be applied was examined in two domains of behaviour change: tobacco control and obesity. RESULTS Nineteen frameworks were identified covering nine intervention functions and seven policy categories that could enable those interventions. None of the frameworks reviewed covered the full range of intervention functions or policies, and only a minority met the criteria of coherence or linkage to a model of behaviour. At the centre of a proposed new framework is a 'behaviour system' involving three essential conditions: capability, opportunity, and motivation (what we term the 'COM-B system'). This forms the hub of a 'behaviour change wheel' (BCW) around which are positioned the nine intervention functions aimed at addressing deficits in one or more of these conditions; around this are placed seven categories of policy that could enable those interventions to occur. The BCW was used reliably to characterise interventions within the English Department of Health's 2010 tobacco control strategy and the National Institute of Health and Clinical Excellence's guidance on reducing obesity. CONCLUSIONS Interventions and policies to change behaviour can be usefully characterised by means of a BCW comprising: a 'behaviour system' at the hub, encircled by intervention functions and then by policy categories. Research is needed to establish how far the BCW can lead to more efficient design of effective interventions.
708425
Intermittent prophylaxis with oral truvada protects macaques from rectal SHIV infection.
HIV continues to spread globally, mainly through sexual contact. Despite advances in treatment and care, preventing transmission with vaccines or microbicides has proven difficult. A promising strategy to avoid transmission is prophylactic treatment with antiretroviral drugs before exposure to HIV. Clinical trials evaluating the efficacy of daily treatment with the reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) or Truvada (TDF plus emtricitabine) are under way. We hypothesized that intermittent prophylactic treatment with long-acting antiviral drugs would be as effective as daily dosing in blocking the earliest stages of viral replication and preventing mucosal transmission. We tested this hypothesis by intermittently giving prophylactic Truvada to macaque monkeys and then exposing them rectally to simian-human immunodeficiency virus (SHIV) once a week for 14 weeks. A simple regimen with an oral dose of Truvada given 1, 3, or 7 days before exposure followed by a second dose 2 hours after exposure was as protective as daily drug administration, possibly because of the long intracellular persistence of the drugs. In addition, a two-dose regimen initiated 2 hours before or after virus exposure was effective, and full protection was obtained by doubling the Truvada concentration in both doses. We saw no protection if the first dose was delayed until 24 hours after exposure, underscoring the importance of blocking initial replication in the mucosa. Our results show that intermittent prophylactic treatment with an antiviral drug can be highly effective in preventing SHIV infection, with a wide window of protection. They strengthen the possibility of developing feasible, cost-effective strategies to prevent HIV transmission in humans.
711256
RNA is favourable for analysing EGFR mutations in malignant pleural effusion of lung cancer.
Malignant pleural effusion (MPE) is a useful specimen allowing for the evaluation of EGFR status in nonsmall cell lung cancer (NSCLC). However, direct sequencing of genomic DNA from MPE samples was found not to be sensitive for EGFR mutation detection. To test whether EGFR analysis from RNA is less prone to interference from nontumour cells that have no or lower EGFR expression, we compared three methods (sequencing from cell-derived RNA versus sequencing and mass-spectrometric analysis from genomic DNA), in parallel, for EGFR mutation detection from MPE samples in 150 lung adenocarcinoma patients receiving first-line tyrosine kinase inhibitors (TKIs). Among these MPE samples, EGFR mutations were much more frequently identified by sequencing using RNA than by sequencing and mass-spectrometric analysis from genomic DNA (for all mutations, 67.3 versus 44.7 and 46.7%; for L858R or exon 19 deletions, 61.3 versus 41.3 and 46.7%, respectively). The better mutation detection yield of sequencing from RNA was coupled with the superior prediction of clinical efficacy of first-line TKIs. In patients with acquired resistance, EGFR sequencing from RNA provided satisfactory detection of T790M (54.2%). These results demonstrated that EGFR sequencing using RNA as template greatly improves sensitivity for EGFR mutation detection from samples of MPE, highlighting RNA as the favourable source for analysing EGFR mutations from heterogeneous MPE specimens in NSCLC.
712078
Pharmacological correction of a defect in PPARγ signaling ameliorates disease severity in Cftr-deficient mice
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.
712320
Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope.
We have developed a mass microscope (mass spectrometry imager with spatial resolution higher than the naked eye) equipped with an atmospheric pressure ion-source chamber for laser desorption/ionization (AP-LDI) and a quadrupole ion trap time-of-flight (QIT-TOF) analyzer. The optical microscope combined with the mass spectrometer permitted us to precisely determine the relevant tissue region prior to performing imaging mass spectrometry (IMS). An ultraviolet laser tightly focused with a triplet lens was used to achieve high spatial resolution. An atmospheric pressure ion-source chamber enables us to analyze fresh samples with minimal loss of intrinsic water or volatile compounds. Mass-microscopic AP-LDI imaging of freshly cut ginger rhizome sections revealed that 6-gingerol ([M + K](+)at m/z 333.15, positive mode; [M - H](-) at m/z 293.17, negative mode) and the monoterpene ([M + K](+) at m/z 191.09), which are the compounds related to pungency and flavor, respectively, were localized in oil drop-containing organelles. AP-LDI-tandem MS/MS analyses were applied to compare authentic signals from freshly cut ginger directly with the standard reagent. Thus, our atmosphere-imaging mass spectrometer enabled us to monitor a quality of plants at the organelle level.
718601
Coding of Sweet, Bitter, and Umami Tastes Different Receptor Cells Sharing Similar Signaling Pathways
Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.
719812
Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques
Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.
735130
Myosin Light Chain–activating Phosphorylation Sites Are Required for Oogenesis in Drosophila
The Drosophila spaghetti squash ( sqh ) gene encodes the regulatory myosin light chain (RMLC) of nonmuscle myosin II. Biochemical analysis of vertebrate nonmuscle and smooth muscle myosin II has established that phosphorylation of certain amino acids of the RMLC greatly increases the actin-dependent myosin ATPase and motor activity of myosin in vitro. We have assessed the in vivo importance of these sites, which in Drosophila correspond to serine-21 and threonine-20, by creating a series of transgenes in which these specific amino acids were altered. The phenotypes of the transgenes were examined in an otherwise null mutant background during oocyte development in Drosophila females. Germ line cystoblasts entirely lacking a functional sqh gene show severe defects in proliferation and cytokinesis. The ring canals, cytoplasmic bridges linking the oocyte to the nurse cells in the egg chamber, are abnormal, suggesting a role of myosin II in their establishment or maintenance. In addition, numerous aggregates of myosin heavy chain accumulate in the sqh null cells. Mutant sqh transgene sqh -A20, A21 in which both serine-21 and threonine-20 have been replaced by alanines behaves in most respects identically to the null allele in this system, with the exception that no heavy chain aggregates are found. In contrast, expression of sqh -A21, in which only the primary phosphorylation target serine-21 site is altered, partially restores functionality to germ line myosin II, allowing cystoblast division and oocyte development, albeit with some cytokinesis failure, defects in the rapid cytoplasmic transport from nurse cells to cytoplasm characteristic of late stage oogenesis, and some damaged ring canals. Substituting a glutamate for the serine-21 (mutant sqh -E21) allows oogenesis to be completed with minimal defects, producing eggs that can develop normally to produce fertile adults. Flies expressing sqh -A20, in which only the secondary phosphorylation site is absent, appear to be entirely wild type. Taken together, this genetic evidence argues that phosphorylation at serine-21 is critical to RMLC function in activating myosin II in vivo, but that the function can be partially provided by phosphorylation at threonine-20.
739734
Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years.
Two thousand three hundred and thirty two nonselected brains from 1- to 100-year-old individuals were examined using immunocytochemistry (AT8) and Gallyas silver staining for abnormal tau; immunocytochemistry (4G8) and Campbell-Switzer staining were used for the detection ofβ-amyloid. A total of 342 cases was negative in the Gallyas stain but when restaged for AT8 only 10 were immunonegative. Fifty-eight cases had subcortical tau predominantly in the locus coeruleus, but there was no abnormal cortical tau (subcortical Stages a-c). Cortical involvement (abnormal tau in neurites) was identified first in the transentorhinal region (Stage 1a, 38 cases). Transentorhinal pyramidal cells displayed pretangle material (Stage 1b, 236 cases). Pretangles gradually became argyrophilic neurofibrillary tangles (NFTs) that progressed in parallel with NFT Stages I to VI. Pretangles restricted to subcortical sites were seen chiefly at younger ages. Of the total cases, 1,031 (44.2%) had β-amyloid plaques. The first plaques occurred in the neocortex after the onset of tauopathy in the brainstem. Plaques generally developed in the 40s in 4% of all cases, culminating in their tenth decade (75%). β-amyloid plaques and NFTs were significantly correlated (p < 0.0001). These data suggest that tauopathy associated with sporadic Alzheimer disease may begin earlier than previously thought and possibly in the lower brainstem rather than in the transentorhinal region.
750781
Coronary bypass graft patency in patients with diabetes in the Bypass Angioplasty Revascularization Investigation (BARI).
BACKGROUND Few studies have compared long-term status of bypass grafts between patients with and without diabetes, and uncertainty exists as to whether diabetes independently predicts poor clinical outcome after CABG. METHODS AND RESULTS Among 1526 patients in BARI who underwent CABG as initial revascularization, 99 of 292 (34%) with treated diabetes mellitus (TDM) (those on insulin or oral hypoglycemic agents) and 469 of 1234 (38%) without TDM had follow-up angiography. Angiograms with the longest interval from initial surgery and before any percutaneous graft intervention (mean 3.9 years) were reviewed. An average of 3.0 grafts were placed at initial CABG for patients with TDM (n=297; internal mammary artery [IMA], 33%) and 2.9 grafts for patients without TDM (n=1347; IMA, 34%). Patients with TDM were more likely than those without to have small (<1.5 mm) grafted distal vessels (29% versus 22%) and vessels of poor quality (9% versus 6%). On follow-up angiography, 89% of IMA grafts were free of stenoses > or =50% among patients with TDM versus 85% among patients without TDM (P=0.23). For vein grafts, the corresponding percentages were 71% versus 75% (P=0.40). After statistical adjustment, TDM was unrelated to having a graft stenosis > or =50% (adjusted odds ratio, 0.87; 95% CI, 0.58 to 1.32). CONCLUSIONS Despite diabetic patients' having smaller distal vessels and vessels judged to be of poorer quality, diabetes does not appear to adversely affect patency of IMA or vein grafts over an average of 4-year follow-up. Previously observed differences in survival between CABG-treated patients with and without diabetes may be largely a result of differential risk of mortality from noncardiac causes.
751192
A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63
BACKGROUND Open chromatin regions are correlated with active regulatory elements in development and are dysregulated in diseases. The BAF (SWI/SNF) complex is essential for development, and has been demonstrated to remodel reconstituted chromatin in vitro and to control the accessibility of a few individual regions in vivo. However, it remains unclear where and how BAF controls the open chromatin landscape to regulate developmental processes, such as human epidermal differentiation. RESULTS Using a novel "on-plate" ATAC-sequencing approach for profiling open chromatin landscapes with a low number of adherent cells, we demonstrate that the BAF complex is essential for maintaining 11.6 % of open chromatin regions in epidermal differentiation. These BAF-dependent open chromatin regions are highly cell-type-specific and are strongly enriched for binding sites for p63, a master epidermal transcription factor. The DNA sequences of p63 binding sites intrinsically favor nucleosome formation and are inaccessible in other cell types without p63 to prevent ectopic activation. In epidermal cells, BAF and p63 mutually recruit each other to maintain 14,853 open chromatin regions. We further demonstrate that BAF and p63 cooperatively position nucleosomes away from p63 binding sites and recruit transcriptional machinery to control tissue differentiation. CONCLUSIONS BAF displays high specificity in controlling the open chromatin landscape during epidermal differentiation by cooperating with the master transcription factor p63 to maintain lineage-specific open chromatin regions.
752423
Aging, habitual exercise, and dynamic arterial compliance.
BACKGROUND A reduction in compliance of the large-sized cardiothoracic (central) arteries is an independent risk factor for the development of cardiovascular disease with advancing age. METHODS AND RESULTS We determined the role of habitual exercise on the age-related decrease in central arterial compliance by using both cross-sectional and interventional approaches. First, we studied 151 healthy men aged 18 to 77 years: 54 were sedentary, 45 were recreationally active, and 53 were endurance exercise-trained. Central arterial compliance (simultaneous B-mode ultrasound and arterial applanation tonometry on the common carotid artery) was lower (P:<0.05) in middle-aged and older men than in young men in all 3 groups. There were no significant differences between sedentary and recreationally active men at any age. However, arterial compliance in the endurance-trained middle-aged and older men was 20% to 35% higher than in the 2 less active groups (P:<0.01). As such, age-related differences in central arterial compliance were smaller in the endurance-trained men than in the sedentary and recreationally active men. Second, we studied 20 middle-aged and older (53+/-2 years) sedentary healthy men before and after a 3-month aerobic exercise intervention (primarily walking). Regular exercise increased central arterial compliance (P:<0.01) to levels similar to those of the middle-aged and older endurance-trained men. These effects were independent of changes in body mass, adiposity, arterial blood pressure, or maximal oxygen consumption. CONCLUSIONS Regular aerobic-endurance exercise attenuates age-related reductions in central arterial compliance and restores levels in previously sedentary healthy middle-aged and older men. This may be one mechanism by which habitual exercise lowers the risk of cardiovascular disease in this population.
756887
A comparison of cancer screening practices in cancer survivors and in the general population: the Korean national health and nutrition examination survey (KNHANES) 2001–2007
This study aimed to describe cancer screening rates for second primary cancer among cancer survivors in Korea, and to compare these rates with those of two control groups: individuals without a history of cancer but with other chronic diseases, and individuals without a history of cancer and without other chronic diseases. The study is a cross-sectional analysis of 15,556 adults ≥30 years old who participated in the 2001, 2005, and 2007 Korean National Health and Nutrition Examination Surveys (KNHANES). The prevalence of breast, cervical, gastric, and colorectal cancer screening examinations according to national guidelines was assessed and compared to two control groups. Screening rates among cancer survivors were 48.5, 54.7, 34.7, and 28.6% for breast, cervical, gastric, and colorectal cancer screening, respectively. Cancer survivors showed higher screening rates for all four cancer sites compared with both control groups, but breast cancer screening was only statistically significant after adjusting gender, age, marital status, education, income, working status, health insurance, smoking and drinking status, and self-reported health status. Cancer survivors were more likely than individuals without a cancer history to obtain screening examinations according to recommended guidelines. Still, screening rates even among survivors were suboptimal, emphasizing the need for a more systematic approach to second primary cancer screening and prevention.
778436
Negative effect of the transcriptional activator GAL4
The yeast transcriptional activator GAL4 binds specific sites on DNA to activate transcription of adjacent genes1–5. The distinct activating regions of GAL4 are rich in acidic residues and it has been suggested that these regions interact with another protein component of the transcriptional machinery (such as the TATA-binding protein or RNA polymerase II) while the DNA-binding region serves to position the activating region near the gene6,7,8. Here we show that various GAL4 derivatives, when expressed at high levels in yeast, inhibit transcription of certain genes lacking GAL4 binding sites, that more efficient activators inhibit more strongly and that inhibition does not depend on the DNA-binding domain. We suggest that this inhibition, which we call squelching, reflects titration of a transcription factor by the activating region of GAL4.
790598
The Bayh–Dole Act and university research and development
This paper examines the relationship between university research and development (R&D) activities and the Bayh-Dole Act. This act made it much easier for universities to obtain patents from research funded by the federal government and may have provided universities with an incentive to alter their R&D activities. The Act may provide an incentive to reduce basic research (which does not generate licensing fees) and increase applied research (which does generate patents and licensing fees). In addition, industry might be more willing to fund university R&D projects since the results would now be easier to patent. This paper differs from the existing literature which uses patent data (a measure of research output) by using research and development data (a measure of inventive input) to examine the effect of the Act.
791050
The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study
OBJECTIVE To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. DESIGN Observational cohort study. SETTING Nurses' Health Study. PARTICIPANTS 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. MAIN OUTCOME MEASURES Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. RESULTS The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. CONCLUSIONS Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted.
797114
A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology☆
A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.
798152
Isolation from African Sykes' monkeys (Cercopithecus mitis) of a lentivirus related to human and simian immunodeficiency viruses.
Analysis of serum samples from 100 wild-caught or colony-born Sykes' monkeys (Cercopithecus mitis) in Kenya revealed that 59 animals had antibodies cross-reactive to human immunodeficiency virus type 2 (HIV-2) and to simian immunodeficiency viruses (SIVs). A lentivirus, designated SIVsyk, was isolated from five of six seropositive asymptomatic Sykes' monkeys, but in four cases isolation was possible only after depletion of CD8+ lymphocytes and cocultivation of the CD4(+)-enriched cell population with peripheral blood mononuclear cells from seronegative Sykes' monkeys. SIVsyk resembled other SIVs and HIVs morphologically, had an Mg2(+)-dependent reverse transcriptase enzyme, and replicated in and was cytopathic for CEMx174 and Sup-T1 cells. SIVsyk differred substantially from other SIVs, however, in that it failed to replicate in normal human, mangabey, and macaque peripheral blood mononuclear cells and serum from seropositive Sykes' monkeys immunoprecipitated env antigens from HIV-1 as well as from HIV-2, SIVsmm, and SIVagm. These data demonstrate a high prevalence of natural infection in Sykes' monkeys in Kenya with a lentivirus that appears to be unique with respect to its host range and antigenic cross-reactivity.
799586
Role of the Single-Stranded DNA–Binding Protein SsbB in Pneumococcal Transformation: Maintenance of a Reservoir for Genetic Plasticity
Bacteria encode a single-stranded DNA (ssDNA) binding protein (SSB) crucial for genome maintenance. In Bacillus subtilis and Streptococcus pneumoniae, an alternative SSB, SsbB, is expressed uniquely during competence for genetic transformation, but its precise role has been disappointingly obscure. Here, we report our investigations involving comparison of a null mutant (ssbB(-)) and a C-ter truncation (ssbBΔ7) of SsbB of S. pneumoniae, the latter constructed because SSBs' acidic tail has emerged as a key site for interactions with partner proteins. We provide evidence that SsbB directly protects internalized ssDNA. We show that SsbB is highly abundant, potentially allowing the binding of ~1.15 Mb ssDNA (half a genome equivalent); that it participates in the processing of ssDNA into recombinants; and that, at high DNA concentration, it is of crucial importance for chromosomal transformation whilst antagonizing plasmid transformation. While the latter observation explains a long-standing observation that plasmid transformation is very inefficient in S. pneumoniae (compared to chromosomal transformation), the former supports our previous suggestion that SsbB creates a reservoir of ssDNA, allowing successive recombination cycles. SsbBΔ7 fulfils the reservoir function, suggesting that SsbB C-ter is not necessary for processing protein(s) to access stored ssDNA. We propose that the evolutionary raison d'être of SsbB and its abundance is maintenance of this reservoir, which contributes to the genetic plasticity of S. pneumoniae by increasing the likelihood of multiple transformation events in the same cell.
803312
Cerebral organoids model human brain development and microcephaly
The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.
810480
Localization of a gene for partial epilepsy to chromosome 10q
There is strong evidence for a genetic contribution to epilepsy, but it is commonly assumed that this genetic contribution is limited to ‘generalized’ epilepsies, and that most forms of ‘partial’ epilepsy are nongenetic. In a linkage analysis of a single family containing 11 affected individuals, we obtained strong evidence for localization of a gene for partial epilepsy. This susceptibility gene maps to chromosome 10q, with a maximum two–point lod score for D10S192 of 3.99 at θ=0.0. All affected individuals share a single haplotype for seven tightly linked contiguous markers; the maximum lod score for this haplotype is 4.83 at θ=0.0. Key recombinants place the susceptibility locus within a 10 centimorgan interval.
825728
Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1.
The epithelial-mesenchymal transition (EMT) is required in the embryo for the formation of tissues for which cells originate far from their final destination. Carcinoma cells hijack this program for tumor dissemination. The relevance of the EMT in cancer is still debated because it is unclear how these migratory cells colonize distant tissues to form macrometastases. We show that the homeobox factor Prrx1 is an EMT inducer conferring migratory and invasive properties. The loss of Prrx1 is required for cancer cells to metastasize in vivo, which revert to the epithelial phenotype concomitant with the acquisition of stem cell properties. Thus, unlike the classical EMT transcription factors, Prrx1 uncouples EMT and stemness, and is a biomarker associated with patient survival and lack of metastasis.
829646
A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection.
BACKGROUND Human papillomavirus (HPV) has been associated with cervical intraepithelial neoplasia, but the temporal relation between the infection and the neoplasia remains unclear, as does the relative importance of the specific type of HPV, other sexually transmitted diseases, and other risk factors. METHODS We studied prospectively a cohort of 241 women who presented for evaluation of sexually transmitted disease and had negative cervical cytologic tests. The women were followed every four months with cytologic and colposcopic examinations of the uterine cervix and tests for HPV DNA and other sexually transmitted diseases. RESULTS Cervical intraepithelial neoplasia grade 2 or 3 was confirmed by biopsy in 28 women. On the basis of survival analysis, the cumulative incidence of cervical intraepithelial neoplasia at two years was 28 percent among women with a positive test for HPV and 3 percent among those without detectable HPV DNA: The risk was highest among those with HPV type 16 or 18 infection (adjusted relative risk as compared with that in women without HPV infection, 11; 95 percent confidence interval, 4.6 to 26; attributable risk, 52 percent). All 24 cases of cervical intraepithelial neoplasia grade 2 or 3 among HPV-positive women were detected within 24 months after the first positive test for HPV. After adjustment for the presence of HPV infection, the development of cervical intraepithelial neoplasia was also associated with younger age at first intercourse, the presence of serum antibodies to Chlamydia trachomatis, the presence of serum antibodies to cytomegalovirus, and cervical infection with Neisseria gonorrhoeae. CONCLUSIONS Cervical intraepithelial neoplasia is a common and apparently early manifestation of cervical infection by HPV, particularly types 16 and 18.
831167
Investigating survival prognosis of glioblastoma using evolutional properties of gene networks
In recent years, there has been widespread interest and a large number of publications on the application of graph theory techniques into constructing and analyzing biologically-informed gene networks from cancer cell line data sets. Current research efforts have predominantly looked at an overall static, topological, representation of the network, and have not investigated the application of graph theoretical techniques to evolutionary investigations of cancer. A number of these studies have used graph theory metrics, such as degree, betweenness, and closeness centrality, to identify important hub genes in these networks. However, these have not fully investigated the importance of genes across the different stages of the disease. Previous human glioblastoma publications have identified four subtypes of glioblastoma in adults, based on signature genes. In one such publication, Verhaak et al. found that the subtypes correspond to a narrow median survival range, from 11.3 months for the most aggressive subtype, to 13.1 months for the least aggressive one. In this work, we present an evolutionary graph theory study of glioblastoma based on survival data categorization, confirming genes associated with different survival times identified using established graph theory metrics. The work is extending the application of graph theory approaches to evolutionary studies of cancer cell line data.
834336
Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype.
Hutchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging.1–3 Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis of the clavicles and distal phalanges. The mean age of death is at age 13 years, most commonly due to atherosclerosis. HGPS is mainly sporadic in occurrence, but a genetic cause has now been implicated following the identification of de novo heterozygous mutations in the LMNA gene in the majority of HGPS patients.4,5 A single family showing autosomal recessive inheritance of homozygous LMNA mutations has also been reported.6 LMNA encodes lamins A and C, components of the nuclear lamina, a meshwork underlying the nuclear envelope that serves as a structural support and is also thought to contribute to chromatin organisation and the regulation of gene expression.7,8 Interestingly, mutations in LMNA have recently been associated with at least eight inherited disorders, known as laminopathies, with differential dystrophic effects on a variety of tissues including muscle, neurones, skin, bone, and adipose tissue (reviewed in Mounkes et al 9). However, the realisation that these disorders share common genetic defects has led to clinical re-evaluation, with emerging evidence of significant phenotypic overlap.10 Hence the laminopathies might reasonably be considered as a spectrum of related diseases. HGPS has phenotypic similarities to several other laminopathies, in particular the atypical Werner’s syndrome11 and mandibuloacral dysplasia (MAD; OMIM 248370 and 608612).12 These diseases are associated with lipodystrophy,3,13 which is the most prominent feature of another laminopathy, familial partial lipodystrophy of the Dunnigan variety (OMIM 151660).14 MAD has been further classified as two …
841371
Reliability of patient responses in pay for performance schemes: analysis of national General Practitioner Patient Survey data in England
OBJECTIVE To assess the robustness of patient responses to a new national survey of patient experience as a basis for providing financial incentives to doctors. DESIGN Analysis of the representativeness of the respondents to the GP Patient Survey compared with those who were sampled (5.5 million patients registered with 8273 general practices in England in January 2009) and with the general population. Analysis of non-response bias looked at the relation between practice response rates and scores on the survey. Analysis of the reliability of the survey estimated the proportion of the variance of practice scores attributable to true differences between practices. RESULTS The overall response rate was 38.2% (2.2 million responses), which is comparable to that in surveys using similar methodology in the UK. Men, young adults, and people living in deprived areas were under-represented among respondents. However, for questions related to pay for performance, there was no systematic association between response rates and questionnaire scores. Two questions which triggered payments to general practitioners were reliable measures of practice performance, with average practice-level reliability coefficients of 93.2% and 95.0%. Less than 3% and 0.5% of practices had fewer than the number of responses required to achieve conventional reliability levels of 90% and 70%. A change to the payment formula in 2009 resulted in an increase in the average impact of random variation in patient scores on payments to general practitioners compared with payments made in 2007 and 2008. CONCLUSIONS There is little evidence to support the concern of some general practitioners that low response rates and selective non-response bias have led to systematic unfairness in payments attached to questionnaire scores. The study raises issues relating to the validity and reliability of payments based on patient surveys and provides lessons for the UK and for other countries considering the use of patient experience as part of pay for performance schemes.
849771
Impact of low alcohol verbal descriptors on perceived strength: An experimental study
OBJECTIVES Low alcohol labels are a set of labels that carry descriptors such as 'low' or 'lighter' to denote alcohol content in beverages. There is growing interest from policymakers and producers in lower strength alcohol products. However, there is a lack of evidence on how the general population perceives verbal descriptors of strength. The present research examines consumers' perceptions of strength (% ABV) and appeal of alcohol products using low or high alcohol verbal descriptors. DESIGN A within-subjects experimental study in which participants rated the strength and appeal of 18 terms denoting low (nine terms), high (eight terms) and regular (one term) strengths for either (1) wine or (2) beer according to drinking preference. METHODS Thousand six hundred adults (796 wine and 804 beer drinkers) sampled from a nationally representative UK panel. RESULTS Low, Lower, Light, Lighter, and Reduced formed a cluster and were rated as denoting lower strength products than Regular, but higher strength than the cluster with intensifiers consisting of Extra Low, Super Low, Extra Light, and Super Light. Similar clustering in perceived strength was observed amongst the high verbal descriptors. Regular was the most appealing strength descriptor, with the low and high verbal descriptors using intensifiers rated least appealing. CONCLUSIONS The perceived strength and appeal of alcohol products diminished the more the verbal descriptors implied a deviation from Regular. The implications of these findings are discussed in terms of policy implications for lower strength alcohol labelling and associated public health outcomes. Statement of contribution What is already known about this subject? Current UK and EU legislation limits the number of low strength verbal descriptors and the associated alcohol by volume (ABV) to 1.2% ABV and lower. There is growing interest from policymakers and producers to extend the range of lower strength alcohol products above the current cap of 1.2% ABV set out in national legislation. There is a lack of evidence on how the general population perceives verbal descriptors of alcohol product strength (both low and high). What does this study add? Verbal descriptors of lower strength wine and beer form two clusters and effectively communicate reduced alcohol content. Low, Lower, Light, Lighter, and Reduced were considered lower in strength than Regular (average % ABV). Descriptors using intensifiers (Extra Low, Super Low, Extra Light, and Super Light) were considered lowest in strength. Similar clustering in perceived strength was observed amongst the high verbal descriptors. The appeal of alcohol products reduced the more the verbal descriptors implied a deviation from Regular.
854417
Transgenic Interleukin 10 Prevents Induction of Experimental Autoimmune Encephalomyelitis
The effectiveness of interleukin 10 (IL-10) in the treatment of autoimmune-mediated central nervous system inflammation is controversial. Studies of the model system, experimental autoimmune encephalomyelitis (EAE), using various routes, regimens, and delivery methods of IL-10 suggest that these variables may affect its immunoregulatory function. To study the influence of these factors on IL-10 regulation of EAE pathogenesis, we have analyzed transgenic mice expressing human IL-10 (hIL-10) transgene under the control of a class II major histocompatibility complex (MHC) promoter. The hIL-10 transgenic mice are highly resistant to EAE induced by active immunization, and this resistance appears to be mediated by suppression of autoreactive T cell function. Myelin-reactive T helper 1 cells are induced but nonpathogenic in the IL-10 transgenic mice. Antibody depletion confirmed that EAE resistance is dependent on the presence of the transgenic IL-10. Mice expressing the hIL-10 transgene but not the endogenous murine IL-10 gene demonstrated that transgenic IL-10 from MHC class II–expressing cells is sufficient to block induction of EAE. This study demonstrates that IL-10 can prevent EAE completely if present at appropriate levels and times during disease induction.
857189
Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations
The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.
864491
Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts.
PD 0332991 is a highly specific inhibitor of cyclin-dependent kinase 4 (Cdk4) (IC50, 0.011 micromol/L) and Cdk6 (IC50, 0.016 micromol/L), having no activity against a panel of 36 additional protein kinases. It is a potent antiproliferative agent against retinoblastoma (Rb)-positive tumor cells in vitro, inducing an exclusive G1 arrest, with a concomitant reduction of phospho-Ser780/Ser795 on the Rb protein. Oral administration of PD 0332991 to mice bearing the Colo-205 human colon carcinoma produces marked tumor regression. Therapeutic doses of PD 0332991 cause elimination of phospho-Rb and the proliferative marker Ki-67 in tumor tissue and down-regulation of genes under the transcriptional control of E2F. The results indicate that inhibition of Cdk4/6 alone is sufficient to cause tumor regression and a net reduction in tumor burden in some tumors.
878526
Neutrophils support lung colonization of metastasis-initiating breast cancer cells
Despite progress in the development of drugs that efficiently target cancer cells, treatments for metastatic tumours are often ineffective. The now well-established dependency of cancer cells on their microenvironment suggests that targeting the non-cancer-cell component of the tumour might form a basis for the development of novel therapeutic approaches. However, the as-yet poorly characterized contribution of host responses during tumour growth and metastatic progression represents a limitation to exploiting this approach. Here we identify neutrophils as the main component and driver of metastatic establishment within the (pre-)metastatic lung microenvironment in mouse breast cancer models. Neutrophils have a fundamental role in inflammatory responses and their contribution to tumorigenesis is still controversial. Using various strategies to block neutrophil recruitment to the pre-metastatic site, we demonstrate that neutrophils specifically support metastatic initiation. Importantly, we find that neutrophil-derived leukotrienes aid the colonization of distant tissues by selectively expanding the sub-pool of cancer cells that retain high tumorigenic potential. Genetic or pharmacological inhibition of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) abrogates neutrophil pro-metastatic activity and consequently reduces metastasis. Our results reveal the efficacy of using targeted therapy against a specific tumour microenvironment component and indicate that neutrophil Alox5 inhibition may limit metastatic progression.
881332
Effect of Previous Miscarriage on Depressive Symptoms During Subsequent Pregnancy and Postpartum in the First Baby Study
Our objective was to test the hypothesis that nulliparous women with a history of miscarriage have an increased risk of depression during late pregnancy, and at 1, 6, and 12 months postpartum compared to women without a history of miscarriage. We conducted secondary analysis of a longitudinal cohort study, the First Baby Study, and compared 448 pregnant women with a history of miscarriage to 2,343 pregnant women without a history of miscarriage on risk of probable depression (score >12 on the Edinburgh Postnatal Depression Scale). Logistic regression models were used to estimate odds ratios at each time point and generalized estimating equations were used to obtain estimates in longitudinal analysis. Women with a history of miscarriage were not more likely than woman without a history of miscarriage to score in the probable depression range during the third trimester or at 6 or 12 months postpartum but were more likely at 1 month postpartum, after adjustment for sociodemographic factors (OR 1.66, 95 % CI 1.03–2.69). Women with a history of miscarriage may be more vulnerable to depression during the first month postpartum than women without prior miscarriage, but this effect does not appear to persist beyond this time period. We support the promotion of awareness surrounding this issue and recommend that research is planned to identify risk factors that may position a woman with a history of miscarriage to be at higher risk for depression.
883747
IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs
Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.
885056
Summary
Steroid receptor RNA activator (SRA), the only known RNA coactivator, augments transactivation by nuclear receptors (NRs). We identified SLIRP (SRA stem-loop interacting RNA binding protein) binding to a functional substructure of SRA, STR7. SLIRP is expressed in normal and tumor tissues, contains an RNA recognition motif (RRM), represses NR transactivation in a SRA- and RRM-dependent manner, augments the effect of Tamoxifen, and modulates association of SRC-1 with SRA. SHARP, a RRM-containing corepressor, also binds STR7, augmenting repression with SLIRP. SLIRP colocalizes with SKIP (Chr14q24.3), another NR coregulator, and reduces SKIP-potentiated NR signaling. SLIRP is recruited to endogenous promoters (pS2 and metallothionein), the latter in a SRA-dependent manner, while NCoR promoter recruitment is dependent on SLIRP. The majority of the endogenous SLIRP resides in the mitochondria. Our data demonstrate that SLIRP modulates NR transactivation, suggest it may regulate mitochondrial function, and provide mechanistic insight into interactions between SRA, SLIRP, SRC-1, and NCoR.
888896
Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-kappaB activity in a murine model of asthma.
Naringenin, a flavonoid, has antiinflammatory and immunomodulatory properties. We investigated whether naringenin could attenuate allergen-induced airway inflammation and its possible mechanism in a murine model of asthma. Mice were sensitized and challenged with ovalbumin. Some mice were administered with naringenin before ovalbumin challenge. We evaluated the development of airway inflammation and airway reactivity. Interleukin (IL)4, IL13, chemokine (C-C motif) ligand (CCL)5, and CCL11 in bronchoalveolar lavage fluid and serum total IgE were detected by ELISA. IkappaBalpha degradation and inducible nitric oxide synthase (iNOS) in lungs were measured by Western blot. We also tested NF-kappaB binding activity by electrophoretic mobility shift assay. The mRNA levels of iNOS, CCL5, and CCL11 were detected by real-time PCR. Naringenin attenuated ovalbumin-induced airway inflammation and airway reactivity in experimental mice. The naringenin-treated mice had lower levels of IL4 and IL13 in the bronchoalveolar lavage fluid and lower serum total IgE. Furthermore, naringenin inhibited pulmonary IkappaBalpha degradation and NF-kappaB DNA-binding activity. The levels of CCL5, CCL11, and iNOS were also significantly reduced. The results indicated that naringenin may play protective roles in the asthma process. The inhibition of NF-kappaB and the decreased expression of its target genes may account for this phenomenon.
919007
The evolution of Fox genes and their role in development and disease
The forkhead box (Fox) family of transcription factors, which originated in unicellular eukaryotes, has expanded over time through multiple duplication events, and sometimes through gene loss, to over 40 members in mammals. Fox genes have evolved to acquire a specialized function in many key biological processes. Mutations in Fox genes have a profound effect on human disease, causing phenotypes as varied as cancer, glaucoma and language disorders. We summarize the salient features of the evolution of the Fox gene family and highlight the diverse contribution of various Fox subfamilies to developmental processes, from organogenesis to speech acquisition.
927561
Emergent structures and dynamics of cell colonies by contact inhibition of locomotion
Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. The interplay between cell softness, cell-cell adhesion, and contact inhibition of locomotion (CIL) yields structures and collective dynamics observed in several existing tissue phenotypes. These include regular distributions of cells, dynamic cell clusters, gel-like networks, collectively migrating monolayers, and 3D aggregates. We give analytical predictions for transitions between noncohesive, cohesive, and 3D cell arrangements. We explicitly show how CIL yields an effective repulsion that promotes cell dispersal, thereby hindering the formation of cohesive tissues. Yet, in continuous monolayers, CIL leads to collective cell motion, ensures tensile intercellular stresses, and opposes cell extrusion. Thus, our work highlights the prominent role of CIL in determining the emergent structures and dynamics of cell colonies.
928281
Failure of cell cleavage induces senescence in tetraploid primary cells
Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen-transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.
935034
Cell death: the significance of apoptosis.
Publisher Summary The classification of cell death can be based on morphological or biochemical criteria or on the circumstances of its occurrence. Currently, irreversible structural alteration provides the only unequivocal evidence of death; biochemical indicators of cell death that are universally applicable have to be precisely defined and studies of cell function or of reproductive capacity do not necessarily differentiate between death and dormant states from which recovery may be possible. It has also proved feasible to categorize most if not all dying cells into one or the other of two discrete and distinctive patterns of morphological change, which have, generally, been found to occur under disparate but individually characteristic circumstances. One of these patterns is the swelling proceeding to rupture of plasma and organelle membranes and dissolution of organized structure—termed “coagulative necrosis. ” It results from injury by agents, such as toxins and ischemia, affects cells in groups rather than singly, and evokes exudative inflammation when it develops in vivo. The other morphological pattern is characterized by condensation of the cell with maintenance of organelle integrity and the formation of surface protuberances that separate as membrane-bounded globules; in tissues, these are phagocytosed and digested by resident cells, there being no associated inflammation.
935538
The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression.
RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences. RNAi-mediated knockdown of GRSF1 leads to alterations in mitochondrial RNA stability, abnormal loading of mRNAs and lncRNAs on the mitochondrial ribosome, and impaired ribosome assembly. This results in a specific protein synthesis defect and a failure to assemble normal amounts of the oxidative phosphorylation complexes. These data implicate GRSF1 as a key regulator of posttranscriptional mitochondrial gene expression.
946756
Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns.
A protein of molecular size 62,000 daltons (p62) was detected in HeLa cell nuclear extracts by UV cross-linking to mRNA precursors. p62 binds specifically to the polypyrimidine tract of the 3' splice site region of introns. p62 purified to homogeneity binds the polypyrimidine tract of pre-mRNAs. This binding does not require the AG dinucleotide at the 3' splice site. Alterations in the polypyrimidine tract that reduce the binding of p62 yield a corresponding reduction in the efficiency of formation of a U2 snRNP/pre-mRNA complex and splicing. The p62 protein is retained in the spliceosome, where it remains bound to the pre-mRNA. This polypyrimidine tract binding protein (pPTB) is proposed to be a critical component in recognition of the 3' splice site during splicing.
947631
Capsule endoscopy in acute upper gastrointestinal hemorrhage: a prospective cohort study.
BACKGROUND AND STUDY AIMS Capsule endoscopy may play a role in the evaluation of patients presenting with acute upper gastrointestinal hemorrhage in the emergency department. PATIENTS AND METHODS We evaluated adults with acute upper gastrointestinal hemorrhage presenting to the emergency departments of two academic centers. Patients ingested a wireless video capsule, which was followed immediately by a nasogastric tube aspiration and later by esophagogastroduodenoscopy (EGD). We compared capsule endoscopy with nasogastric tube aspiration for determination of the presence of blood, and with EGD for discrimination of the source of bleeding, identification of peptic/inflammatory lesions, safety, and patient satisfaction. RESULTS The study enrolled 49 patients (32 men, 17 women; mean age 58.3 ± 19 years), but three patients did not complete the capsule endoscopy and five were intolerant of the nasogastric tube. Blood was detected in the upper gastrointestinal tract significantly more often by capsule endoscopy (15 /18 [83.3 %]) than by nasogastric tube aspiration (6 /18 [33.3 %]; P = 0.035). There was no significant difference in the identification of peptic/inflammatory lesions between capsule endoscopy (27 /40 [67.5 %]) and EGD (35 /40 [87.5 %]; P = 0.10, OR 0.39 95 %CI 0.11 - 1.15). Capsule endoscopy reached the duodenum in 45 /46 patients (98 %). One patient (2.2 %) had self-limited shortness of breath and one (2.2 %) had coughing on capsule ingestion. CONCLUSIONS In an emergency department setting, capsule endoscopy appears feasible and safe in people presenting with acute upper gastrointestinal hemorrhage. Capsule endoscopy identifies gross blood in the upper gastrointestinal tract, including the duodenum, significantly more often than nasogastric tube aspiration and identifies inflammatory lesions, as well as EGD. Capsule endoscopy may facilitate patient triage and earlier endoscopy, but should not be considered a substitute for EGD.
949309
Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse.
The CRISPR/Cas9 system is a powerful tool for elucidating the roles of genes in a wide variety of organisms including mice. To obtain genetically modified embryos or mice by this method, Cas9 mRNA and sgRNA are usually introduced into zygotes by microinjection or electroporation. However, most mutants generated with this method are genetically mosaic, composed of several types of cells carrying different mutations, which complicates phenotype analysis in founder embryos or mice. To simplify the analysis and to elucidate the roles of genes involved in developmental processes, a method for producing non-mosaic mutants is needed. Here, we established a method for generating non-mosaic mouse mutant embryos. We introduced Cas9 protein and sgRNA into in vitro fertilized (IVF) zygotes by electroporation, which enabled the genome editing to occur before the first replication of the mouse genome. As a result, all of the cells in the mutant carried the same set of mutations. This method solves the problem of mosaicism/allele complexity in founder mutant embryos or mice generated by the CRIPSR/Cas9 system.
950306
Molecular Basis for Target RNA Recognition and Cleavage by Human RISC
The RNA-Induced Silencing Complex (RISC) is a ribonucleoprotein particle composed of a single-stranded short interfering RNA (siRNA) and an endonucleolytically active Argonaute protein, capable of cleaving mRNAs complementary to the siRNA. The mechanism by which RISC cleaves a target RNA is well understood, however it remains enigmatic how RISC finds its target RNA. Here, we show, both in vitro and in vivo, that the accessibility of the target site correlates directly with the efficiency of cleavage, demonstrating that RISC is unable to unfold structured RNA. In the course of target recognition, RISC transiently contacts single-stranded RNA nonspecifically and promotes siRNA-target RNA annealing. Furthermore, the 5' part of the siRNA within RISC creates a thermodynamic threshold that determines the stable association of RISC and the target RNA. We therefore provide mechanistic insights by revealing features of RISC and target RNAs that are crucial to achieve efficiency and specificity in RNA interference.
952111
Cancer associated fibroblasts (CAFs) in tumor microenvironment.
Cancer associated fibroblasts (CAFs) is one of the most crucial components of the tumor microenvironment which promotes the growth and invasion of cancer cells by various mechanisms. CAFs demonstrate a high degree of heterogeneity due to their various origins; however, many distinct morphological features and physiological functions of CAFs have been identified. It is becoming clear that the crosstalk between the cancer cells and the CAFs plays a key role in the progression of cancer, and understanding this mutual relationship would eventually enable us to treat cancer patients by targeting CAFs. In this review, we will discuss the latest findings on the role of CAFs in tumorigenesis and metastasis as well as potential therapeutic implication of CAFs.
970012
Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis
Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks.
980008
Mild overexpression of MeCP2 causes a progressive neurological disorder in mice.
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2), encoding a transcriptional repressor, cause Rett syndrome and a variety of related neurodevelopmental disorders. The vast majority of mutations associated with human disease are loss-of-function mutations, but precisely what aspect of MeCP2 function is responsible for these phenotypes remains unknown. We overexpressed wild-type human protein in transgenic mice using a large genomic clone containing the entire human MECP2 locus. Detailed neurobehavioral and electrophysiological studies in transgenic line MeCP2(Tg1), which expresses MeCP2 at approximately 2-fold wild-type levels, demonstrated onset of phenotypes around 10 weeks of age. Surprisingly, these mice displayed enhanced motor and contextual learning and enhanced synaptic plasticity in the hippocampus. After 20 weeks of age, however, these mice developed seizures, became hypoactive and approximately 30% of them died by 1 year of age. These data demonstrate that MeCP2 levels must be tightly regulated in vivo, and that even mild overexpression of this protein is detrimental. Furthermore, these results support the possibility that duplications or gain-of-function mutations in MECP2 might underlie some cases of X-linked delayed-onset neurobehavioral disorders.
980196
Alcohol Sales and Risk of Serious Assault
BACKGROUND Alcohol is a contributing cause of unintentional injuries, such as motor vehicle crashes. Prior research on the association between alcohol use and violent injury was limited to survey-based data, and the inclusion of cases from a single trauma centre, without adequate controls. Beyond these limitations was the inability of prior researchers to comprehensively capture most alcohol sales. In Ontario, most alcohol is sold through retail outlets run by the provincial government, and hospitals are financed under a provincial health care system. We assessed the risk of being hospitalized due to assault in association with retail alcohol sales across Ontario. METHODS AND FINDINGS We performed a population-based case-crossover analysis of all persons aged 13 years and older hospitalized for assault in Ontario from 1 April 2002 to 1 December 2004. On the day prior to each assault case's hospitalization, the volume of alcohol sold at the store in closest proximity to the victim's home was compared to the volume of alcohol sold at the same store 7 d earlier. Conditional logistic regression analysis was used to determine the associated relative risk (RR) of assault per 1,000 l higher daily sales of alcohol. Of the 3,212 persons admitted to hospital for assault, nearly 25% were between the ages of 13 and 20 y, and 83% were male. A total of 1,150 assaults (36%) involved the use of a sharp or blunt weapon, and 1,532 (48%) arose during an unarmed brawl or fight. For every 1,000 l more of alcohol sold per store per day, the relative risk of being hospitalized for assault was 1.13 (95% confidence interval [CI] 1.02-1.26). The risk was accentuated for males (1.18, 95% CI 1.05-1.33), youth aged 13 to 20 y (1.21, 95% CI 0.99-1.46), and those in urban areas (1.19, 95% CI 1.06-1.35). CONCLUSIONS The risk of being a victim of serious assault increases with alcohol sales, especially among young urban men. Akin to reducing the risk of driving while impaired, consideration should be given to novel methods of preventing alcohol-related violence.
982650
miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions.
BACKGROUND & AIMS Tumor cells survive hypoxic conditions by inducing autophagy. We investigated the roles of microRNAs (miRNAs) in regulating autophagy of hepatocellular carcinoma (HCC) cells under hypoxic conditions. METHODS We used gain- and loss-of-function methods to evaluate the effect of miRNAs on autophagy in human HCC cell lines (Huh7 and Hep3B) under hypoxic conditions. Autophagy was quantified by immunoblot, immunofluoresence, and transmission electron microscopy analyses, and after incubation of cells with bafilomycin A1. We used a luciferase reporter assay to confirm associations between miRNAs and their targets. We analyzed growth of HCC xenograft tumors in nude mice. RESULTS miR-375 was down-regulated in HCC cells and tissues; it inhibited autophagy under hypoxic conditions by suppressing the conversion of LC3I to LC3II and thereby autophagic flux. The ability of miR-375 to inhibit autophagy was independent of its ability to regulate 3'-phosphoinositide-dependent protein kinase-1-AKT-mammalian target of rapamycin signaling, but instead involved suppression of ATG7, an autophagy-associated gene. miR-375 bound directly to a predicted site in the 3' untranslated region of ATG7. Up-regulating miR-375 or down-regulating ATG7 inhibited mitochondrial autophagy of HCC cells, reduced the elimination of damaged mitochondria under hypoxia, increased release of mitochondrial apoptotic proteins, and reduced viability of HCC cells. In mice, xenograft tumors that expressed miR-375 had fewer autophagic cells, larger areas of necrosis, and grew more slowly than tumors from HCC cells that expressed lower levels of miR-375. CONCLUSIONS miR-375 inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice. miRNAs that inhibit autophagy of cancer cells might be developed as therapeutics.
984825
Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.
991137
The descent of memory T-cell subsets
The immune system has evolved by continuously increasing its complexity to provide the host with an advantage over infectious agents. The development of immunological memory engenders long-lasting protection and lengthens the lifespan of the host. The generation of subsets of memory T cells with distinct homing and functional properties increases our defensive capabilities. However, the developmental relationship of memory T-cell subsets is a matter of debate. In this Opinion article, in light of recent developments, we suggest that it is probable that two distinct lineages comprise the memory CD8+ T-cell population generated in response to infection.
991139
Differential distribution of IL28B.rs12979860 single-nucleotide polymorphism among Egyptian healthcare workers with and without a hepatitis C virus-specific cellular immune response
The CC genotype of the interleukin (IL)-28B.rs12979860 gene has been associated with spontaneous hepatitis C virus (HCV) clearance and treatment response. The distribution and correlation of an IL28B.rs12979860 single-nucleotide polymorphism (SNP) with HCV-specific cell-mediated immune (CMI) responses among Egyptian healthcare workers (HCWs) is not known. We determined this relationship in 402 HCWs who serve a patient cohort with ~85 % HCV prevalence. We enrolled 402 HCWs in four groups: group 1 (n = 258), seronegative aviremic subjects; group 2 (n = 25), seronegative viremic subjects; group 3 (n = 41), subjects with spontaneously resolved HCV infection; and group 4 (n = 78), chronic HCV patients. All subjects were tested for an HCV-specific CMI response using an ex-vivo interferon-gamma (IFNγ) ELISpot assay with nine HCV genotype-4a overlapping 15-mer peptide pools corresponding to all of the HCV proteins. All subjects were tested for IL28B.rs12979860 SNP by real-time PCR. An HCV-specific CMI was demonstrated in ~27 % of the seronegative aviremic HCWs (group 1), suggesting clearance of infection after low-level exposure to HCV. The frequency of IL28B.rs12979860 C allele homozygosity in the four groups was 49 %, 48 %, 49 %, and 23 %, while that of the T allele was 14 %, 16 %, 12 and 19 %, respectively, suggesting differential distributions among subjects with different HCV status. As reported, IL28B.rs12979860 predicted the outcome of HCV infection (p < 0.05), but we did not find any relationship between the IL28B genotypes and the outcome of HCV-specific CMI responses in the four groups (p > 0.05). The data show differential IL28B.rs12979860 genotype distribution among Egyptian HCWs with different HCV status and could not predict the outcome of HCV-specific CMI responses.
994800
TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo
T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3(+) (Foxp3(+)) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR-peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3(+) T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.
997143
Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment.
CONTEXT Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never been reported. OBJECTIVE To assess and classify incidents of EMI by RFID on critical care equipment. DESIGN AND SETTING Without a patient being connected, EMI by 2 RFID systems (active 125 kHz and passive 868 MHz) was assessed under controlled conditions during May 2006, in the proximity of 41 medical devices (in 17 categories, 22 different manufacturers) at the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Assessment took place according to an international test protocol. Incidents of EMI were classified according to a critical care adverse events scale as hazardous, significant, or light. RESULTS In 123 EMI tests (3 per medical device), RFID induced 34 EMI incidents: 22 were classified as hazardous, 2 as significant, and 10 as light. The passive 868-MHz RFID signal induced a higher number of incidents (26 incidents in 41 EMI tests; 63%) compared with the active 125-kHz RFID signal (8 incidents in 41 EMI tests; 20%); difference 44% (95% confidence interval, 27%-53%; P < .001). The passive 868-MHz RFID signal induced EMI in 26 medical devices, including 8 that were also affected by the active 125-kHz RFID signal (26 in 41 devices; 63%). The median distance between the RFID reader and the medical device in all EMI incidents was 30 cm (range, 0.1-600 cm). CONCLUSIONS In a controlled nonclinical setting, RFID induced potentially hazardous incidents in medical devices. Implementation of RFID in the critical care environment should require on-site EMI tests and updates of international standards.
1006165
Potent RNAi by short RNA triggers.
RNA interference (RNAi) is a gene-silencing mechanism by which a ribonucleoprotein complex, the RNA-induced silencing complex (RISC) and a double-stranded (ds) short-interfering RNA (siRNA), targets a complementary mRNA for site-specific cleavage and subsequent degradation. While longer dsRNA are endogenously processed into 21- to 24-nucleotide (nt) siRNAs or miRNAs to induce gene silencing, RNAi studies in human cells typically use synthetic 19- to 20-nt siRNA duplexes with 2-nt overhangs at the 3'-end of both strands. Here, we report that systematic synthesis and analysis of siRNAs with deletions at the passenger and/or guide strand revealed a short RNAi trigger, 16-nt siRNA, which induces potent RNAi in human cells. Our results indicate that the minimal requirement for dsRNA to trigger RNAi is an approximately 42 A A-form helix with approximately 1.5 helical turns. The 16-nt siRNA more effectively knocked down mRNA and protein levels than 19-nt siRNA when targeting the endogenous CDK9 gene, suggesting that 16-nt siRNA is a more potent RNAi trigger. In vitro kinetic analysis of RNA-induced silencing complex (RISC) programmed in HeLa cells indicates that 16-nt siRNA has a higher RISC-loading capacity than 19-nt siRNA. These results suggest that RISC assembly and activation during RNAi does not necessarily require a 19-nt duplex siRNA and that 16-nt duplexes can be designed as more potent triggers to induce RNAi.
1022115
IL-23–responsive innate lymphoid cells are increased in inflammatory bowel disease
Results of experimental and genetic studies have highlighted the role of the IL-23/IL-17 axis in the pathogenesis of inflammatory bowel disease (IBD). IL-23-driven inflammation has been primarily linked to Th17 cells; however, we have recently identified a novel population of innate lymphoid cells (ILCs) in mice that produces IL-17, IL-22, and IFN-γ in response to IL-23 and mediates innate colitis. The relevance of ILC populations in human health and disease is currently poorly understood. In this study, we have analyzed the role of IL-23-responsive ILCs in the human intestine in control and IBD patients. Our results show increased expression of the Th17-associated cytokine genes IL17A and IL17F among intestinal CD3⁻ cells in IBD. IL17A and IL17F expression is restricted to CD56⁻ ILCs, whereas IL-23 induces IL22 and IL26 in the CD56⁺ ILC compartment. Furthermore, we observed a significant and selective increase in CD127⁺CD56⁻ ILCs in the inflamed intestine in Crohn's disease (CD) patients but not in ulcerative colitis patients. These results indicate that IL-23-responsive ILCs are present in the human intestine and that intestinal inflammation in CD is associated with the selective accumulation of a phenotypically distinct ILC population characterized by inflammatory cytokine expression. ILCs may contribute to intestinal inflammation through cytokine production, lymphocyte recruitment, and organization of the inflammatory tissue and may represent a novel tissue-specific target for subtypes of IBD.
1031534
Scaling of Dorsal-Ventral Patterning by Embryo Size-Dependent Degradation of Spemann’s Organizer Signals
Spemann's organizer plays a key role in dorsal-ventral (DV) patterning in the amphibian embryo by secreting diffusible proteins such as Chordin, an antagonist to ventralizing bone morphogenetic proteins (BMPs). The DV patterning is so robust that an amphibian embryo with its ventral half surgically removed can develop into a smaller but proportionally patterned larva. Here, we show that this robust patterning depends on facilitated Chordin degradation and requires the expression of the Chordin-proteinase inhibitor Sizzled on the opposite side. Sizzled, which is stable and diffuses widely along the DV axis, stabilizes Chordin and expands its distribution in the ventral direction. This expanded Chordin distribution, in turn, limits BMP-dependent Sizzled production, forming an axis-wide feedback loop for shaping Chordin's activity. Using bisection assays, we demonstrate that Chordin degradation is dynamically controlled by embryo-size-coupled Sizzled accumulation. We propose a scaling model that enables the DV pattern to adjust proportionally to embryonic axis size.
1032372
Augmenting Antitumor Immune Responses with Epigenetic Modifying Agents
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
1044552
Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study
Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.
1049501
Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease
Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.
1065627
Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors.
Stiffness is a biophysical property of the extracellular matrix that modulates cellular functions, including proliferation, invasion, and differentiation, and it also may affect therapeutic responses. Therapeutic durability in cancer treatments remains a problem for both chemotherapies and pathway-targeted drugs, but the reasons for this are not well understood. Tumor progression is accompanied by changes in the biophysical properties of the tissue, and we asked whether matrix rigidity modulated the sensitive versus resistant states in HER2-amplified breast cancer cell responses to the HER2-targeted kinase inhibitor lapatinib. The antiproliferative effect of lapatinib was inversely proportional to the elastic modulus of the adhesive substrata. Down-regulation of the mechanosensitive transcription coactivators YAP and TAZ, either by siRNA or with the small-molecule YAP/TEAD inhibitor verteporfin, eliminated modulus-dependent lapatinib resistance. Reduction of YAP in vivo in mice also slowed the growth of implanted HER2-amplified tumors, showing a trend of increasing sensitivity to lapatinib as YAP decreased. Thus we address the role of stiffness in resistance to and efficacy of a HER2 pathway-targeted therapeutic via the mechanotransduction arm of the Hippo pathway.
1067605
Effective population size and patterns of molecular evolution and variation
The effective size of a population, Ne, determines the rate of change in the composition of a population caused by genetic drift, which is the random sampling of genetic variants in a finite population. Ne is crucial in determining the level of variability in a population, and the effectiveness of selection relative to drift. This article reviews the properties of Ne in a variety of different situations of biological interest, and the factors that influence it. In particular, the action of selection means that Ne varies across the genome, and advances in genomic techniques are giving new insights into how selection shapes Ne.
1068106
Is emotional dysregulation part of the psychopathology of ADHD in adults?
Attention-deficit hyperactivity disorder is a common condition in adulthood. The disorder is characterized by symptoms of inattention, hyperactivity, and impulsivity. Alongside these symptoms, it is discussed whether symptoms of emotional dysregulation could add additional and better description of the psychopathology of ADHD. Neither the current ICD-10 and DSM-IV nor the upcoming DSM-5 includes symptoms of emotional dysregulation as a core aspect of ADHD. Several authors (e.g., Wender 1995) describe adult ADHD in a more differentiated way and propose concepts of the disorder that consider the subjective experiences of the adult patient by introducing the symptomatology of emotional symptoms. Empirical studies attest this dimension sufficient reliability and validity. Symptoms of emotional dysregulation are definable and seem to be distinct factors of the psychopathology of adult ADHD. Pharmacological and psychotherapeutic interventions help to alleviate this type of symptoms. This review attests a decisive role to the emotional symptoms in the ADHD symptomatology, which should be taken in serious consideration by future research.
1070920
A neural basis for melanocortin-4 receptor regulated appetite
Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development.
1071991
Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines
Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.
1084062
Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice
BACKGROUND Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. METHODS We combined neuroanatomic, pharmacologic, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-hydroxytryptamine (5-HT) 2C receptor (5-HT2CR) expressed by dopamine (DA) neurons in the regulation of binge-like eating behavior in mice. RESULTS We showed that 5-HT stimulates DA neural activity through a 5-HT2CR-mediated mechanism, and activation of this midbrain 5-HT→DA neural circuit effectively inhibits binge-like eating behavior in mice. Notably, 5-HT medications, including fluoxetine, d-fenfluramine, and lorcaserin (a selective 5-HT2CR agonist), act on 5-HT2CRs expressed by DA neurons to inhibit binge-like eating in mice. CONCLUSIONS We identified the 5-HT2CR population in DA neurons as one potential target for antibinge therapies, and provided preclinical evidence that 5-HT2CR agonists could be used to treat binge eating.
1084345
Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
Chaperone-mediated autophagy (CMA), a selective mechanism for degradation of cytosolic proteins in lysosomes, contributes to the removal of altered proteins as part of the cellular quality-control systems. We have previously found that CMA activity declines in aged organisms and have proposed that this failure in cellular clearance could contribute to the accumulation of altered proteins, the abnormal cellular homeostasis and, eventually, the functional loss characteristic of aged organisms. To determine whether these negative features of aging can be prevented by maintaining efficient autophagic activity until late in life, in this work we have corrected the CMA defect in aged rodents. We have generated a double transgenic mouse model in which the amount of the lysosomal receptor for CMA, previously shown to decrease in abundance with age, can be modulated. We have analyzed in this model the consequences of preventing the age-dependent decrease in receptor abundance in aged rodents at the cellular and organ levels. We show here that CMA activity is maintained until advanced ages if the decrease in the receptor abundance is prevented and that preservation of autophagic activity is associated with lower intracellular accumulation of damaged proteins, better ability to handle protein damage and improved organ function.
1102268
The Incidence and Repetition of Hospital-Treated Deliberate Self Harm: Findings from the World's First National Registry
BACKGROUND Suicide is a significant public health issue with almost one million people dying by suicide each year worldwide. Deliberate self harm (DSH) is the single most important risk factor for suicide yet few countries have reliable data on DSH. We developed a national DSH registry in the Republic of Ireland to establish the incidence of hospital-treated DSH at national level and the spectrum and pattern of presentations with DSH and repetition. METHODS AND FINDINGS Between 2003 and 2009, the Irish National Registry of Deliberate Self Harm collected data on DSH presentations to all 40 hospital emergency departments in the country. Data were collected by trained data registration officers using standard methods of case ascertainment and definition. The Registry recorded 75,119 DSH presentations involving 48,206 individuals. The total incidence rate fell from 209 (95% CI: 205-213) per 100,000 in 2003 to 184 (95% CI: 180-189) per 100,000 in 2006 and increased again to 209 (95% CI: 204-213) per 100,000 in 2009. The most notable annual changes were successive 10% increases in the male rate in 2008 and 2009. There was significant variation by age with peak rates in women in the 15-19 year age group (620 (95% CI: 605-636) per 100,000), and in men in the 20-24 age group (427 (95% CI: 416-439) per 100,000). Repetition rates varied significantly by age, method of self harm and number of previous episodes. CONCLUSIONS Population-based data on hospital-treated DSH represent an important index of the burden of mental illness and suicide risk in the community. The increased DSH rate in Irish men in 2008 and 2009 coincided with the advent of the economic recession in Ireland. The findings underline the need for developing effective interventions to reduce DSH repetition rates as a key priority for health systems.
1103795
A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics
Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
1122198
Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages.
Macrophage-derived foam cells express apolipoprotein E (apoE) abundantly in atherosclerotic lesions. To examine the physiologic role of apoE secretion by the macrophage in atherogenesis, bone marrow transplantation was used to reconstitute C57BL/6 mice with macrophages that were either null or wild type for the apoE gene. After 13 weeks on an atherogenic diet, C57BL/6 mice reconstituted with apoE null marrow developed 10-fold more atherosclerosis than controls in the absence of significant differences in serum cholesterol levels or lipoprotein profiles. ApoE expression was absent in the macrophage-derived foam cells of C57BL/6 mice reconstituted with apoE null marrow. Thus, lack of apoE expression by the macrophage promotes foam cell formation. These data support a protective role for apoE expression by the macrophage in early atherogenesis.