# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cleaned Indonesian split of the KoPI corpus.""" import json import glob import gzip import textwrap import datasets import zstandard as zstd logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """\ """ _HOMEPAGE = "https://huggingface.co/datasets/munggok/KoPI" _LICENSE = "CC0" _BASE_URL = { "train":"https://huggingface.co/datasets/munggok/KoPI/resolve/main/data/kopi-{index:012d}.json.zst", "val":"https://huggingface.co/datasets/munggok/KoPI/resolve/main/data/kopi-val-{index:012d}.json.zst" } _CONFIGS = { "tiny": {"train": 10, "validation": 1}, "small": {"train": 30, "validation": 2}, "medium": {"train": 55, "validation": 2}, "large": {"train": 75, "validation": 3}, "full": {"train": 107, "validation": 4} } class KoPIConfig(datasets.BuilderConfig): """BuilderConfig for the Clean KoPI corpus.""" def __init__(self, **kwargs): """BuilderConfig for Clean KoPI corpus. Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) class KoPI(datasets.GeneratorBasedBuilder): """KoPI corpus.""" BUILDER_CONFIGS = [ KoPIConfig( name="tiny", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ Tiny version only using 10 shard """ ) ), KoPIConfig( name="small", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ small version only using 30 shard """ ) ), KoPIConfig( name="medium", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ medion version only using 50 shard """ ) ), KoPIConfig( name="large", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ large version only using 75 shard """ ) ), KoPIConfig( name="full", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ The full cleaned version of KoPI corpus. Estimated size of compressed files: 53GB """ ) ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "url": datasets.Value("string"), "timestamp": datasets.Value("string"), "meta": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): train = [_BASE_URL["train"].format(index=k + 1) for k in range(107)][0:_CONFIGS[self.config.name]['train']] validation = [_BASE_URL["val"].format(index=k + 108) for k in range(4)][0:_CONFIGS[self.config.name]['validation']] train_downloaded_files = dl_manager.download(train) validation_downloaded_files = dl_manager.download(validation) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} ), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info(f"Generating examples from {filepath}") with zstd.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) if example.get('meta') is not None: yield id_, {'text':example['text'],'url':example['url'],'timestamp':example['timestamp'],'meta': example['meta']} id_ += 1 else: yield id_, {'text':example['text'],'url':example['url'],'timestamp':example['timestamp'],'meta': "None"} id_ += 1