Dataset Preview
The dataset preview is not available for this dataset.
Server Error
Status code:   400
Exception:     TypeError
Message:       __init__() got an unexpected keyword argument 'encoding'

Need help to make the dataset viewer work? Open an issue for direct support.

ViquiQuAD, An extractive QA dataset for catalan, from the Wikipedia

BibTeX citation

If you use any of these resources (datasets or models) in your work, please cite our latest paper:

    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",

Digital Object Identifier (DOI) and access to dataset files


This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (, and 1 to 5 questions with their answer for each fragment.

Viquipedia articles are used under [CC-by-sa] ( licence.

This dataset can be used to fine-tune and evaluate extractive-QA and Language Models. It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:

Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M. and Villegas M.,Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).

Supported Tasks and Leaderboards

Extractive-QA, Language Model


CA- Catalan

Directory structure

  • dev.json
  • test.json
  • train.json

Dataset Structure

Data Instances

json files

Data Fields

Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)


  "data": [
      "title": "Frederick W. Mote",
      "paragraphs": [
          "context": "L'historiador Frederick W. Mote va escriure que l'ús del terme \\\\\\\\\\\\\\\\"classes socials\\\\\\\\\\\\\\\\" per a aquest sistema era enganyós i que la posició de les persones dins del sistema de quatre classes no era una indicació del seu poder social i riquesa reals, sinó que només implicava \\\\\\\\\\\\\\\\"graus de privilegi\\\\\\\\\\\\\\\\" als quals tenien dret institucionalment i legalment, de manera que la posició d'una persona dins de les classes no era una garantia de la seva posició, ja que hi havia xinesos rics i amb bona reputació social, però alhora hi havia menys mongols i semu rics que mongols i semu que vivien en la pobresa i eren maltractats.",
          "qas": [
              "answers": [
                  "text": "Frederick W. Mote",
                  "answer_start": 14
              "id": "5728848cff5b5019007da298",
              "question": "Qui creia que el sistema de classes socials de Yuan no s’hauria d’anomenar classes socials?"

Data Splits


Content analysis

Number of articles, paragraphs and questions

  • Number of articles: 597
  • Number of contexts: 3111
  • Number of questions: 15153
  • Questions/context: 4.87
  • Number of sentences in contexts: 15100
  • Sentences/context: 4.85

Number of tokens

  • tokens in context: 469335
  • tokens/context 150.86
  • tokens in questions: 145249
  • tokens/questions: 9.58
  • tokens in answers: 63246
  • tokens/answers: 4.17

Lexical variation

After filtering (tokenization, stopwords, punctuation, case), 83,88% of the words in the question can be found in the Context

Question type

Question Count %
què 4220 27.85 %
qui 2239 14.78 %
com 1964 12.96 %
quan 1133 7.48 %
on 1580 10.43 %
quant 925 6.1 %
quin 3399 22.43 %
no question mark 21 0.14 %

Question-answer relationships

From 100 randomly selected samples:

  • Lexical variation: 33.0%
  • World knowledge: 16.0%
  • Syntactic variation: 35.0%
  • Multiple sentence: 17.0%

Dataset Creation


From a set of high quality, non-translation, articles in the Catalan Wikipedia (, 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)], ( In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.

Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.

Source Data

Initial Data Collection and Normalization

The source data are scraped articles from the Catalan wikipedia site (

Who are the source language producers?

[More Information Needed]


Annotation process

We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)),

Who are the annotators?

Native language speakers.

Dataset Curators

Carlos Rodríguez and Carme Armentano, from BSC-CNS

Personal and Sensitive Information

No personal or sensitive information included.

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]


Carlos Rodríguez-Penagos or Carme Armentano-Oller (


Attribution-ShareAlike 4.0 International License
This work is licensed under a Attribution-ShareAlike 4.0 International License.

Edit Dataset Tags

Models trained or fine-tuned on BSC-TeMU/viquiquad

None yet