--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 763742 num_examples: 13084 - name: test num_bytes: 83070 num_examples: 1400 download_size: 409335 dataset_size: 846812 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 260 num_examples: 7 download_size: 3112 dataset_size: 260 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # snips This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset snips = Dataset.from_datasets("AutoIntent/snips") ``` ## Source This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python """Convert snips dataset to autointent internal format and scheme.""" # noqa: INP001 from datasets import Dataset as HFDataset from datasets import load_dataset from autointent import Dataset from autointent.schemas import Intent, Sample def _extract_intents_data(split: HFDataset) -> tuple[dict[str, int], list[Intent]]: intent_names = sorted(split.unique("category")) name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False)) return name_to_id, [Intent(id=i, name=name) for i, name in enumerate(intent_names)] def convert_snips(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]: """Convert one split into desired format.""" n_classes = len(name_to_id) classwise_samples = [[] for _ in range(n_classes)] for batch in split.iter(batch_size=16, drop_last_batch=False): for txt, name in zip(batch["text"], batch["category"], strict=False): intent_id = name_to_id[name] target_list = classwise_samples[intent_id] target_list.append({"utterance": txt, "label": intent_id}) return [Sample(**sample) for samples_from_one_class in classwise_samples for sample in samples_from_one_class] if __name__ == "__main__": snips = load_dataset("benayas/snips") name_to_id, intents_data = _extract_intents_data(snips["train"]) train_samples = convert_snips(snips["train"], name_to_id) test_samples = convert_snips(snips["test"], name_to_id) dataset = Dataset.from_dict({"train": train_samples, "test": test_samples, "intents": intents_data}) ```