import os import random from glob import glob import json from huggingface_hub import hf_hub_download from tqdm import tqdm import numpy as np from astropy.io import fits from astropy.wcs import WCS import datasets from datasets import DownloadManager from fsspec.core import url_to_fs def get_fits_footprint(fits_path): """ Process a FITS file to extract WCS information and calculate the footprint. Parameters: fits_path (str): Path to the FITS file. Returns: tuple: A tuple containing the WCS footprint coordinates. """ with fits.open(fits_path) as hdul: hdul[1].data = hdul[1].data[0, 0] wcs = WCS(hdul[1].header) shape = sorted(tuple(wcs.pixel_shape))[:2] footprint = wcs.calc_footprint(axes=shape) coords = list(footprint.flatten()) return coords def calculate_pixel_scale(header): """ Calculate the pixel scale in arcseconds per pixel from a FITS header. Parameters: header (astropy.io.fits.header.Header): The FITS header containing WCS information. Returns: Mean of the pixel scales in x and y. """ # Calculate the pixel scales in arcseconds per pixel pixscale_x = header.get('CDELT1', np.nan) pixscale_y = header.get('CDELT2', np.nan) return np.mean([pixscale_x, pixscale_y]) def make_split_jsonl_files(config_type="tiny", data_dir="./data", outdir="./splits", seed=42): """ Create jsonl files for the SBI-16-3D dataset. config_type: str, default="tiny" The type of split to create. Options are "tiny" and "full". data_dir: str, default="./data" The directory where the FITS files are located. outdir: str, default="./splits" The directory where the jsonl files will be created. seed: int, default=42 The seed for the random split. """ random.seed(seed) os.makedirs(outdir, exist_ok=True) fits_files = glob(os.path.join(data_dir, "*.fits")) random.shuffle(fits_files) if config_type == "tiny": train_files = fits_files[:2] test_files = fits_files[2:3] elif config_type == "full": split_idx = int(0.8 * len(fits_files)) train_files = fits_files[:split_idx] test_files = fits_files[split_idx:] else: raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.") def create_jsonl(files, split_name): output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl") with open(output_file, "w") as out_f: for file in tqdm(files): #print(file, flush=True, end="...") with fits.open(file, memmap=False) as hdul: image_id = os.path.basename(file).split(".fits")[0] ra = hdul["SCI"].header.get('CRVAL1', 0) dec = hdul["SCI"].header.get('CRVAL2', 0) pixscale = calculate_pixel_scale(hdul["SCI"].header) footprint = get_fits_footprint(file) read_pattern = hdul[0].header.get('READPATT', 0) # get the number of groups per int ntimes = hdul["SCI"].data.shape[1] item = {"image_id": image_id, "image": file, "ra": ra, "dec": dec, "pixscale": pixscale, "ntimes": ntimes, "read_pattern": read_pattern, "footprint": footprint} out_f.write(json.dumps(item) + "\n") create_jsonl(train_files, "train") create_jsonl(test_files, "test") if __name__ == "__main__": make_split_jsonl_files("tiny") make_split_jsonl_files("full")