# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """Loading script for output_sample dataset, from the Historical American Buildings, Landscapes, and Engineering Records collection of the Library of Congress.""" import json import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ """ _DESCRIPTION = """\ Sample dataset scraped from https://www.loc.gov/collections/historic-american-buildings-landscapes-and-engineering-records/?c=150&at!=content,pages&fo=json The dataset contains images and metadata for historic buildings, landscapes, and engineering records. """ _HOMEPAGE = "https://www.loc.gov/collections/historic-american-buildings-landscapes-and-engineering-records" _LICENSE = "Creative Commons 1.0 Universal" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", } class HABLER_LOC(datasets.GeneratorBasedBuilder): """Historical American Buildings, Landscapes, and Engineering Records dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "call_number": datasets.Value("string"), "control_number": datasets.Value("string"), "created": datasets.Value("string"), "created_published": datasets.Value("string"), "created_published_date": datasets.Value("string"), "creators": datasets.Sequence(feature={"link": datasets.Value("string"), "role": datasets.Value("string"), "title": datasets.Value("string") }), "date": datasets.Value("string"), "display_offsite": datasets.Bool(), "id": datasets.Value("string"), "link": datasets.Value("string"), "medium_brief": datasets.Value("string"), "mediums": datasets.Sequence(datasets.Value("string")), "modified": datasets.Value("string"), "notes": datasets.Sequence(datasets.Value("string")), "part_of": datasets.Value("string"), "part_of_group": datasets.Value("string"), "place": datasets.Sequence(features={ "latitude": datasets.Value("string"), "link": datasets.Value("string"), "longitude": datasets.Value("string"), "title": datasets.Value("string")}), "repository": datasets.Value("string"), "resource_links": datasets.Sequence(datasets.Value("string")), "rights_advisory": datasets.Value("string"), "rights_information": datasets.Value("string"), "service_low": datasets.Value("string"), "service_medium": datasets.Value("string"), "source_created": datasets.Value("string"), "source_modified": datasets.Value("string"), "subject_headings": datasets.Sequence(datasets.Value("string")), "thumb_gallery": datasets.Value("string"), "title": datasets.Value("string") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "test.jsonl"), "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) if self.config.name == "first_domain": # Yields examples as (key, example) tuples yield key, { "sentence": data["sentence"], "option1": data["option1"], "answer": "" if split == "test" else data["answer"], } else: yield key, { "sentence": data["sentence"], "option2": data["option2"], "second_domain_answer": "" if split == "test" else data["second_domain_answer"], }