import datasets import pickle import json class EmbeddingsDatasetConfig(datasets.BuilderConfig): def __init__(self, image_base_m, embeddingSize, **kwargs): super(EmbeddingsDatasetConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_urls = { "train" :"Vit_B_32_train_full_mapping.jsonl", "dev": "Vit_B_32_val_full_mapping.jsonl", "test": "Vit_B_32_test_full_mapping.jsonl" } self.image_base_m = image_base_m self.embeddingSize = embeddingSize class ImageCaptionsEmbeddings(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ EmbeddingsDatasetConfig( name="Vit-B-32", image_base_m="Vit-B-32-2", embeddingSize=512, ), ] DEFAULT_CONFIG_NAME = "Vit-B-32" def _info(self): return datasets.DatasetInfo( description='test', features=datasets.Features( { "id": datasets.Value('string'), "embedding": datasets.Array2D((1, self.config.embeddingSize), 'float32'), "en_caption": datasets.Value('string'), "ar_caption": datasets.Value('string'), } ), ) def _split_generators(self, dl_manager): urls_to_download = self.config.data_urls downloaded_files = dl_manager.download_and_extract(urls_to_download) # return [ # datasets.SplitGenerator(name=datasets.Split.TRAIN, # gen_kwargs={ # "data_files": [downloaded_files], # }) # ] return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": [downloaded_files["train"]]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": [downloaded_files["dev"]]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": [downloaded_files["test"]]}), ] def _generate_examples(self, filepath): for data_file in filepath: with open(data_file, "r") as input_file: for line in input_file: json_data = json.loads(line) yield json_data["id"], { "id": json_data["id"], "embedding": json_data["embedding"], "en_caption": json_data["en_caption"], "ar_caption": json_data["ar_caption"], }