--- license: mit --- ## General Description MultiSetTransformerData is a large dataset designed to train and validate neural Symbolic Regression models. It was designed to solve the Multi-Set Symbolic Skeleton Prediction (MSSP) problems, described in the paper **"Univariate Skeleton Prediction in Multivariate Systems Using Transformers"**. However, it can be used for training generic SR models as well. This dataset consists of artificially generated **univariate symbolic skeletons**, from which mathematical expressions are sampled, which are then used to sample data sets. In this repository, a dataset **Q1** is presented: * **Q1**: Consists of mathematical expressions that use up to 5 unary and binary operators (e.g., \\(1 + 1 / (\sin(2x) + 3)\\) uses five operators). It allows up to one nested operator (e.g., \\(\sin( \exp(x))\\) is allowed but \\(\sin( \exp(x^2))\\) is not). ## Dataset Structure In the **Q1** folder, you will find a training set alongside its corresponding validation set. Then, each folder consists of a collection of HDF5 files, as shown below: ``` ├── Q1 │ ├── training │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... │ ├── validation │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... ``` Each HDF5 file contains 5000 **blocks** and has the following structure: ``` { "block_1": { "X": "Support vector, shape (10000, 10)", "Y": "Response vector, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, "block_2": { "X": "Support, shape (10000, 10)", "Y": "Response, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, ... } ``` More specifically, each block corresponds to one univariate symbolic skeleton (i.e., a function without defined constant values); for example, `c + c/(c*sin(c*x_1) + c)`. From this skeleton, 10 random functions are sampled; for example: * `-2.284 + 0.48/(-sin(0.787*x_1) - 1.136)` * `4.462 - 2.545/(3.157*sin(0.422*x_1) - 1.826)`, ... Then, for the \\(i\\)-th function (where \\(i \in [0, 1, ..., 9]\\)), we sample a **support vector** `X[:, i]` of 10000 elements whose values are drawn from a uniform distribution \\(\mathcal{U}(-10, 10)\\). The support vector `X[:, i]` is evaluated on the \\(i\\)-th function to obtain the response vector `Y[:, i]`. In other words, a block contains input-output data generated from 10 **different functions that share the same symbolic skeleton**. For instance, the following figure shows 10 sets of data generated from the symbolic skeleton `c + c/(c*sin(c*x_1) + c)`: