import datasets from datasets.tasks import ImageClassification # _NAMES = ['ა', 'ბ', 'გ', 'დ', 'ე', 'ვ', 'ზ', 'თ', 'ი', 'კ', 'ლ', 'მ', 'ნ', 'ო', 'პ', 'ჟ', 'რ', 'ს', 'ტ', 'უ', 'ფ', 'ქ', 'ღ', 'ყ', 'შ', 'ჩ', 'ც', 'ძ', 'წ', 'ჭ', 'ხ', 'ჯ', 'ჰ'] logger = datasets.logging.get_logger(__name__) _CITATION = """\ @InProceedings{huggingface:dataset, title = {Georgian language alphabet dataset}, author={Ana Chikashua}, year={2023} } """ _DESCRIPTION = """ Georgian language handwriting dataset! """ _URL = "https://huggingface.co/datasets/AnaChikashua/handwriting/resolve/main/handwriting_dataset.zip" class HandwritingData(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, features=datasets.Features( { "label": datasets.features.ClassLabel(), "image": datasets.Image() } ), supervised_keys=("image", "label"), homepage="https://huggingface.co/datasets/AnaChikashua/alphabet", # task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager): path = dl_manager.dowload(_URL) image_iters = dl_manager.iter_archive(path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters} ), ] def _generate_examples(self, images): """This function returns the examples in the raw (text) form.""" # Iterate through images for idx, filepath, image in enumerate(images): # extract the text from the filename logger.error(filepath) text = [c for c in str(filepath) if not 0 <= ord(c) <= 127][0] yield idx, { "label": str(idx)+'txt', "image": image }