--- license: cc-by-4.0 dataset_info: - config_name: default features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1137431321 num_examples: 54806 - name: validation num_bytes: 100630592 num_examples: 4997 - name: test num_bytes: 103660755 num_examples: 4988 download_size: 211774968 dataset_size: 1341722668 - config_name: multieurlex-doc-bg features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 407278322 num_examples: 15979 - name: validation num_bytes: 121021498 num_examples: 4997 - name: test num_bytes: 126194699 num_examples: 4988 download_size: 94161088 dataset_size: 654494519 - config_name: multieurlex-doc-cs features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 465064539 num_examples: 23056 - name: validation num_bytes: 98206202 num_examples: 4997 - name: test num_bytes: 101905013 num_examples: 4988 download_size: 103341160 dataset_size: 665175754 - config_name: multieurlex-doc-da features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1137431321 num_examples: 54806 - name: validation num_bytes: 100630592 num_examples: 4997 - name: test num_bytes: 103660755 num_examples: 4988 download_size: 211774968 dataset_size: 1341722668 - config_name: multieurlex-doc-de features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1156790099 num_examples: 54804 - name: test num_bytes: 108731388 num_examples: 4988 - name: validation num_bytes: 105635067 num_examples: 4997 download_size: 214358454 dataset_size: 1371156554 - config_name: multieurlex-doc-en features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1208998381 num_examples: 54808 - name: test num_bytes: 110325080 num_examples: 4988 - name: validation num_bytes: 106866095 num_examples: 4997 download_size: 223853363 dataset_size: 1426189556 - config_name: multieurlex-doc-es features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1354212928 num_examples: 52621 - name: test num_bytes: 128661948 num_examples: 4988 - name: validation num_bytes: 124535827 num_examples: 4997 download_size: 254828898 dataset_size: 1607410703 - config_name: multieurlex-doc-hr features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 166426724 num_examples: 7944 - name: validation num_bytes: 52267708 num_examples: 2499 - name: test num_bytes: 99712738 num_examples: 4988 download_size: 49985102 dataset_size: 318407170 - config_name: multieurlex-doc-nl features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 1286183580 num_examples: 54803 - name: validation num_bytes: 112858254 num_examples: 4997 - name: test num_bytes: 116992911 num_examples: 4988 download_size: 237826260 dataset_size: 1516034745 - config_name: multieurlex-doc-pl features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 471614388 num_examples: 23063 - name: validation num_bytes: 101196012 num_examples: 4997 - name: test num_bytes: 104384366 num_examples: 4988 download_size: 104236091 dataset_size: 677194766 - config_name: multieurlex-doc-sv features: - name: filename dtype: string - name: words sequence: sequence: string - name: boxes sequence: sequence: sequence: int64 splits: - name: train num_bytes: 867755140 num_examples: 42356 - name: validation num_bytes: 101193984 num_examples: 4997 - name: test num_bytes: 103453976 num_examples: 4988 download_size: 166948914 dataset_size: 1072403100 - config_name: wiki-doc-ar-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': Earthquake '1': SolarEclipse '2': MusicFestival '3': MilitaryConflict '4': FilmFestival '5': Convention '6': FootballMatch '7': OlympicEvent '8': GrandPrix '9': GolfTournament '10': WomensTennisAssociationTournament '11': TennisTournament '12': SoccerTournament '13': WrestlingEvent '14': HorseRace '15': CyclingRace '16': MixedMartialArtsEvent '17': Election '18': SoccerClubSeason '19': NationalFootballLeagueSeason '20': NCAATeamSeason '21': BaseballSeason '22': VideoGame '23': BiologicalDatabase '24': EurovisionSongContestEntry '25': Album '26': Musical '27': ClassicalMusicComposition '28': ArtistDiscography '29': Single '30': Poem '31': Magazine '32': Newspaper '33': AcademicJournal '34': Play '35': Manga '36': ComicStrip '37': Anime '38': HollywoodCartoon '39': MusicGenre '40': Grape '41': Conifer '42': Fern '43': Moss '44': GreenAlga '45': CultivatedVariety '46': Cycad '47': Arachnid '48': Fish '49': Insect '50': Reptile '51': Mollusca '52': Bird '53': Amphibian '54': RaceHorse '55': Crustacean '56': Fungus '57': Lighthouse '58': Theatre '59': RollerCoaster '60': Airport '61': RailwayStation '62': Road '63': RailwayLine '64': Bridge '65': RoadTunnel '66': Dam '67': CricketGround '68': Stadium '69': Racecourse '70': GolfCourse '71': Prison '72': Hospital '73': Museum '74': Hotel '75': Library '76': Restaurant '77': ShoppingMall '78': HistoricBuilding '79': Castle '80': Volcano '81': MountainPass '82': Glacier '83': Canal '84': River '85': Lake '86': Mountain '87': Cave '88': MountainRange '89': Galaxy '90': ArtificialSatellite '91': Planet '92': Town '93': Village '94': Diocese '95': AutomobileEngine '96': SupremeCourtOfTheUnitedStatesCase '97': MilitaryPerson '98': Religious '99': Engineer '100': BusinessPerson '101': SportsTeamMember '102': SoccerManager '103': Chef '104': Philosopher '105': CollegeCoach '106': ScreenWriter '107': Historian '108': Poet '109': President '110': PrimeMinister '111': Congressman '112': Senator '113': Mayor '114': MemberOfParliament '115': Governor '116': Monarch '117': PlayboyPlaymate '118': Cardinal '119': Saint '120': Pope '121': ChristianBishop '122': BeautyQueen '123': RadioHost '124': HandballPlayer '125': Cricketer '126': Jockey '127': SumoWrestler '128': AmericanFootballPlayer '129': LacrossePlayer '130': TennisPlayer '131': AmateurBoxer '132': SoccerPlayer '133': Rower '134': TableTennisPlayer '135': BeachVolleyballPlayer '136': SpeedwayRider '137': FormulaOneRacer '138': NascarDriver '139': Swimmer '140': IceHockeyPlayer '141': FigureSkater '142': Skater '143': Curler '144': Skier '145': GolfPlayer '146': SquashPlayer '147': PokerPlayer '148': BadmintonPlayer '149': ChessPlayer '150': RugbyPlayer '151': DartsPlayer '152': NetballPlayer '153': MartialArtist '154': Gymnast '155': Canoeist '156': GaelicGamesPlayer '157': HorseRider '158': BaseballPlayer '159': Cyclist '160': Bodybuilder '161': AustralianRulesFootballPlayer '162': BasketballPlayer '163': Ambassador '164': Baronet '165': Model '166': Architect '167': Judge '168': Economist '169': Journalist '170': Painter '171': Comedian '172': ComicsCreator '173': ClassicalMusicArtist '174': FashionDesigner '175': AdultActor '176': VoiceActor '177': Photographer '178': HorseTrainer '179': Entomologist '180': Medician '181': SoapCharacter '182': AnimangaCharacter '183': MythologicalFigure '184': Noble '185': Astronaut '186': OfficeHolder '187': PublicTransitSystem '188': BusCompany '189': LawFirm '190': Winery '191': RecordLabel '192': Brewery '193': Airline '194': Publisher '195': Bank '196': PoliticalParty '197': Legislature '198': Band '199': BasketballLeague '200': SoccerLeague '201': IceHockeyLeague '202': BaseballLeague '203': RugbyLeague '204': MilitaryUnit '205': University '206': School '207': CyclingTeam '208': CanadianFootballTeam '209': BasketballTeam '210': AustralianFootballTeam '211': HockeyTeam '212': HandballTeam '213': CricketTeam '214': RugbyClub '215': TradeUnion '216': RadioStation '217': BroadcastNetwork '218': TelevisionStation splits: - name: train num_bytes: 7919491304.875 num_examples: 8129 - name: test num_bytes: 1691686089.125 num_examples: 1743 - name: validation num_bytes: 1701166069.25 num_examples: 1742 download_size: 11184835705 dataset_size: 11312343463.25 - config_name: wiki-doc-ja-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30506965411.75 num_examples: 23250 - name: test num_bytes: 6540291049.322 num_examples: 4982 - name: validation num_bytes: 6513584731.193 num_examples: 4983 download_size: 43248429810 dataset_size: 43560841192.265 - config_name: wiki-doc-pt-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 21744787468.0 num_examples: 20168 - name: test num_bytes: 4702448837.106 num_examples: 4322 - name: validation num_bytes: 4646765273.106 num_examples: 4322 download_size: 30769070664 dataset_size: 31094001578.211998 - config_name: wiki-doc-zh-img features: - name: image dtype: image - name: label dtype: class_label: names: '0': AcademicJournal '1': AdultActor '2': Album '3': AmateurBoxer '4': Ambassador '5': AmericanFootballPlayer '6': Amphibian '7': AnimangaCharacter '8': Anime '9': Arachnid '10': Baronet '11': BasketballTeam '12': BeautyQueen '13': BroadcastNetwork '14': BusCompany '15': BusinessPerson '16': CanadianFootballTeam '17': Canal '18': Cardinal '19': Cave '20': ChristianBishop '21': ClassicalMusicArtist '22': ClassicalMusicComposition '23': CollegeCoach '24': Comedian '25': ComicsCreator '26': Congressman '27': Conifer '28': Convention '29': Cricketer '30': Crustacean '31': CultivatedVariety '32': Cycad '33': Dam '34': Economist '35': Engineer '36': Entomologist '37': EurovisionSongContestEntry '38': Fern '39': FilmFestival '40': Fish '41': FootballMatch '42': Glacier '43': GolfTournament '44': Governor '45': Gymnast '46': Historian '47': IceHockeyLeague '48': Insect '49': Journalist '50': Judge '51': Lighthouse '52': Magazine '53': Mayor '54': Medician '55': MemberOfParliament '56': MilitaryPerson '57': Model '58': Mollusca '59': Monarch '60': Moss '61': Mountain '62': MountainPass '63': MountainRange '64': MusicFestival '65': Musical '66': MythologicalFigure '67': Newspaper '68': Noble '69': OfficeHolder '70': Other '71': Philosopher '72': Photographer '73': PlayboyPlaymate '74': Poem '75': Poet '76': Pope '77': President '78': PrimeMinister '79': PublicTransitSystem '80': Racecourse '81': RadioHost '82': RadioStation '83': Religious '84': Reptile '85': Restaurant '86': Road '87': RoadTunnel '88': RollerCoaster '89': RugbyClub '90': RugbyLeague '91': Saint '92': School '93': ScreenWriter '94': Senator '95': ShoppingMall '96': Skater '97': SoccerLeague '98': SoccerManager '99': SoccerPlayer '100': SoccerTournament '101': SportsTeamMember '102': SumoWrestler '103': TelevisionStation '104': TennisTournament '105': TradeUnion '106': University '107': Village '108': VoiceActor '109': Volcano '110': WrestlingEvent splits: - name: train num_bytes: 30248140475.625 num_examples: 23099 - name: test num_bytes: 6471322916.25 num_examples: 4950 - name: validation num_bytes: 6507120137.25 num_examples: 4950 download_size: 42958276266 dataset_size: 43226583529.125 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: multieurlex-doc-bg data_files: - split: train path: multieurlex-doc-bg/train-* - split: validation path: multieurlex-doc-bg/validation-* - split: test path: multieurlex-doc-bg/test-* - config_name: multieurlex-doc-cs data_files: - split: train path: multieurlex-doc-cs/train-* - split: validation path: multieurlex-doc-cs/validation-* - split: test path: multieurlex-doc-cs/test-* - config_name: multieurlex-doc-da data_files: - split: train path: multieurlex-doc-da/train-* - split: validation path: multieurlex-doc-da/validation-* - split: test path: multieurlex-doc-da/test-* - config_name: multieurlex-doc-de data_files: - split: train path: multieurlex-doc-de/train-* - split: test path: multieurlex-doc-de/test-* - split: validation path: multieurlex-doc-de/validation-* - config_name: multieurlex-doc-en data_files: - split: train path: multieurlex-doc-en/train-* - split: test path: multieurlex-doc-en/test-* - split: validation path: multieurlex-doc-en/validation-* - config_name: multieurlex-doc-es data_files: - split: train path: multieurlex-doc-es/train-* - split: test path: multieurlex-doc-es/test-* - split: validation path: multieurlex-doc-es/validation-* - config_name: multieurlex-doc-hr data_files: - split: train path: multieurlex-doc-hr/train-* - split: validation path: multieurlex-doc-hr/validation-* - split: test path: multieurlex-doc-hr/test-* - config_name: multieurlex-doc-nl data_files: - split: train path: multieurlex-doc-nl/train-* - split: validation path: multieurlex-doc-nl/validation-* - split: test path: multieurlex-doc-nl/test-* - config_name: multieurlex-doc-pl data_files: - split: train path: multieurlex-doc-pl/train-* - split: validation path: multieurlex-doc-pl/validation-* - split: test path: multieurlex-doc-pl/test-* - config_name: multieurlex-doc-sv data_files: - split: train path: multieurlex-doc-sv/train-* - split: validation path: multieurlex-doc-sv/validation-* - split: test path: multieurlex-doc-sv/test-* - config_name: wiki-doc-ar-img data_files: - split: train path: wiki-doc-ar-img/train-* - split: test path: wiki-doc-ar-img/test-* - split: validation path: wiki-doc-ar-img/validation-* - config_name: wiki-doc-ja-img data_files: - split: train path: wiki-doc-ja-img/train-* - split: test path: wiki-doc-ja-img/test-* - split: validation path: wiki-doc-ja-img/validation-* - config_name: wiki-doc-pt-img data_files: - split: train path: wiki-doc-pt-img/train-* - split: test path: wiki-doc-pt-img/test-* - split: validation path: wiki-doc-pt-img/validation-* - config_name: wiki-doc-zh-img data_files: - split: train path: wiki-doc-zh-img/train-* - split: test path: wiki-doc-zh-img/test-* - split: validation path: wiki-doc-zh-img/validation-* --- ## Additional Information ### Licensing Information We provide MultiEURLEX with the same licensing as the original EU data (CC-BY-4.0): © European Union, 1998-2021 The Commission’s document reuse policy is based on Decision 2011/833/EU. Unless otherwise specified, you can re-use the legal documents published in EUR-Lex for commercial or non-commercial purposes. The copyright for the editorial content of this website, the summaries of EU legislation and the consolidated texts, which is owned by the EU, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made. Source: https://eur-lex.europa.eu/content/legal-notice/legal-notice.html \ Read more: https://eur-lex.europa.eu/content/help/faq/reuse-contents-eurlex.html ### Citation Information ``` @inproceedings{fujinuma-etal-2023-multi, title = "A Multi-Modal Multilingual Benchmark for Document Image Classification", author = "Fujinuma, Yoshinari and Varia, Siddharth and Sankaran, Nishant and Appalaraju, Srikar and Min, Bonan and Vyas, Yogarshi", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-emnlp.958", doi = "10.18653/v1/2023.findings-emnlp.958", pages = "14361--14376", abstract = "Document image classification is different from plain-text document classification and consists of classifying a document by understanding the content and structure of documents such as forms, emails, and other such documents. We show that the only existing dataset for this task (Lewis et al., 2006) has several limitations and we introduce two newly curated multilingual datasets WIKI-DOC and MULTIEURLEX-DOC that overcome these limitations. We further undertake a comprehensive study of popular visually-rich document understanding or Document AI models in previously untested setting in document image classification such as 1) multi-label classification, and 2) zero-shot cross-lingual transfer setup. Experimental results show limitations of multilingual Document AI models on cross-lingual transfer across typologically distant languages. Our datasets and findings open the door for future research into improving Document AI models.", } ```