Loading pytorch-gpu/py3/2.1.1 Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2 sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4 + HF_DATASETS_OFFLINE=1 + TRANSFORMERS_OFFLINE=1 + python3 OnlyGeneralTokenizer.py Checking label assignment: Domain: Mathematics Categories: hep-th math-ph math.MP nlin.SI Abstract: three new models with vshaped field potentials u are considered a complex scalar field x in dimensio... Domain: Computer Science Categories: cs.AR Abstract: this special session adresses the problems that designers face when implementing analog and digital ... Domain: Physics Categories: physics.plasm-ph Abstract: starting from the governing equations for a quantum magnetoplasma including the quantum bohm potenti... Domain: Chemistry Categories: nlin.CD Abstract: we present recent results on noiseinduced transitions in a nonlinear oscillator with randomly modula... Domain: Statistics Categories: stat.AP Abstract: in microarray technology a number of critical steps are required to convert the raw measurements int... Domain: Biology Categories: q-bio.MN Abstract: the architecture of biological networks has been reported to exhibit high level of modularity and to... /linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead. warnings.warn( Training with All Cluster tokenizer: Vocabulary size: 16005 Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file. Initialized model with vocabulary size: 16005 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. scaler = amp.GradScaler() Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 1/3: Val Accuracy: 0.7549, Val F1: 0.7014 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 2/3: Val Accuracy: 0.7937, Val F1: 0.7657 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 16003 Vocab size: 16005 Epoch 3/3: Val Accuracy: 0.8065, Val F1: 0.7645 Test Results for All Cluster tokenizer: Accuracy: 0.8065 F1 Score: 0.7645 AUC-ROC: 0.8683 Training with Final tokenizer: Vocabulary size: 18524 Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file. Initialized model with vocabulary size: 18524 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. scaler = amp.GradScaler() Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Epoch 1/3: Val Accuracy: 0.6744, Val F1: 0.6438 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Epoch 2/3: Val Accuracy: 0.7737, Val F1: 0.7343 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 18523 Vocab size: 18524 Epoch 3/3: Val Accuracy: 0.7975, Val F1: 0.7612 Test Results for Final tokenizer: Accuracy: 0.7978 F1 Score: 0.7615 AUC-ROC: 0.8035 Training with General tokenizer: Vocabulary size: 30522 Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file. Initialized model with vocabulary size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead. scaler = amp.GradScaler() Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29454 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29474 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29413 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29561 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29413 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29486 Vocab size: 30522 Epoch 1/3: Val Accuracy: 0.6932, Val F1: 0.6626 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29545 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29464 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29178 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29446 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29513 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29454 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29347 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29535 Vocab size: 30522 Epoch 2/3: Val Accuracy: 0.7860, Val F1: 0.7438 Batch 0: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 /gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead. with amp.autocast(): Batch 100: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29598 Vocab size: 30522 Batch 200: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29237 Vocab size: 30522 Batch 300: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29605 Vocab size: 30522 Batch 400: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29577 Vocab size: 30522 Batch 500: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29454 Vocab size: 30522 Batch 600: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29586 Vocab size: 30522 Batch 700: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29536 Vocab size: 30522 Batch 800: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29532 Vocab size: 30522 Batch 900: input_ids shape: torch.Size([16, 256]) attention_mask shape: torch.Size([16, 256]) labels shape: torch.Size([16]) input_ids max value: 29486 Vocab size: 30522 Epoch 3/3: Val Accuracy: 0.8062, Val F1: 0.7665 Test Results for General tokenizer: Accuracy: 0.8062 F1 Score: 0.7665 AUC-ROC: 0.8879 Summary of Results: All Cluster Tokenizer: Accuracy: 0.8065 F1 Score: 0.7645 AUC-ROC: 0.8683 Final Tokenizer: Accuracy: 0.7978 F1 Score: 0.7615 AUC-ROC: 0.8035 General Tokenizer: Accuracy: 0.8062 F1 Score: 0.7665 AUC-ROC: 0.8879 Class distribution in training set: Class Biology: 439 samples Class Chemistry: 454 samples Class Computer Science: 1358 samples Class Mathematics: 9480 samples Class Physics: 2733 samples Class Statistics: 200 samples