import random import datasets import pandas as pd _CITATION = """\ @misc{black2023vader, title={VADER: Video Alignment Differencing and Retrieval}, author={Alexander Black and Simon Jenni and Tu Bui and Md. Mehrab Tanjim and Stefano Petrangeli and Ritwik Sinha and Viswanathan Swaminathan and John Collomosse}, year={2023}, eprint={2303.13193}, archivePrefix={arXiv}, primaryClass={cs.CV} } """ _DESCRIPTION = """\ ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs. """ _HOMEPAGE = "https://github.com/AlexBlck/vader" _LICENSE = "cc-by-4.0" _METADATA_URL = "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv" _FOLDERS = { "all": ("full", "trimmed", "edited", "masks"), "no-full": ("trimmed", "edited", "masks"), "has-masks": ("trimmed", "edited", "masks"), "full-masks": ("full", "trimmed", "edited", "masks"), } class Anakin(datasets.GeneratorBasedBuilder): """ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="all", version=VERSION, description="Full video, trimmed video, edited video, masks (if exists), and edit description", ), datasets.BuilderConfig( name="no-full", version=VERSION, description="Trimmed video, edited video, masks (if exists), and edit description", ), datasets.BuilderConfig( name="has-masks", version=VERSION, description="Only samples that have masks. Without full length video.", ), datasets.BuilderConfig( name="full-masks", version=VERSION, description="Only samples that have masks. With full length video.", ), ] DEFAULT_CONFIG_NAME = "all" def _info(self): if self.config.name == "all": features = datasets.Features( { "full": datasets.Value("string"), "trimmed": datasets.Value("string"), "edited": datasets.Value("string"), "masks": datasets.Sequence(datasets.Image()), "task": datasets.Value("string"), "start-time": datasets.Value("int32"), "end-time": datasets.Value("int32"), "manipulation-type": datasets.Value("string"), "editor-id": datasets.Value("string"), } ) elif self.config.name == "no-full": features = datasets.Features( { "trimmed": datasets.Value("string"), "edited": datasets.Value("string"), "masks": datasets.Sequence(datasets.Image()), "task": datasets.Value("string"), "manipulation-type": datasets.Value("string"), "editor-id": datasets.Value("string"), } ) elif self.config.name == "has-masks": features = datasets.Features( { "trimmed": datasets.Value("string"), "edited": datasets.Value("string"), "masks": datasets.Sequence(datasets.Image()), "task": datasets.Value("string"), "manipulation-type": datasets.Value("string"), "editor-id": datasets.Value("string"), } ) elif self.config.name == "full-masks": features = datasets.Features( { "full": datasets.Value("string"), "trimmed": datasets.Value("string"), "edited": datasets.Value("string"), "masks": datasets.Sequence(datasets.Image()), "task": datasets.Value("string"), "start-time": datasets.Value("int32"), "end-time": datasets.Value("int32"), "manipulation-type": datasets.Value("string"), "editor-id": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): metadata_dir = dl_manager.download(_METADATA_URL) folders = _FOLDERS[self.config.name] random.seed(47) root_url = "https://huggingface.co/datasets/AlexBlck/ANAKIN/resolve/main/" df = pd.read_csv(metadata_dir) if "full" in folders: df = df[df["full-available"] == True] if "-masks" in self.config.name: df = df[df["has-masks"] == True] ids = df["video-id"].to_list() random.shuffle(ids) train_end = int(len(ids) * 0.7) val_end = int(len(ids) * 0.8) split_ids = { datasets.Split.TRAIN: ids[:train_end], datasets.Split.VALIDATION: ids[train_end:val_end], datasets.Split.TEST: ids[val_end:], } data_dir = {} mask_dir = {} for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ]: data_urls = [ { f"{folder}": root_url + f"{folder}/{idx}.mp4" for folder in folders if folder != "masks" } for idx in split_ids[split] ] data_dir[split] = dl_manager.download(data_urls) mask_dir[split] = { idx: dl_manager.iter_archive( dl_manager.download(root_url + f"masks/{idx}.zip") ) for idx in split_ids[split] if df[df["video-id"] == idx]["has-masks"].values[0] } return [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": data_dir[split], "masks": mask_dir[split], "df": df, "ids": split_ids[split], "return_time": "full" in folders, }, ) for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ] ] def _generate_examples(self, files, masks, df, ids, return_time): for key, (idx, sample) in enumerate(zip(ids, files)): entry = df[df["video-id"] == idx] if idx in masks.keys(): sample["masks"] = [ {"path": p, "bytes": im.read()} for p, im in masks[idx] ] else: sample["masks"] = None sample["task"] = entry["task"].values[0] sample["manipulation-type"] = entry["manipulation-type"].values[0] sample["editor-id"] = entry["editor-id"].values[0] if return_time: sample["start-time"] = entry["start-time"].values[0] sample["end-time"] = entry["end-time"].values[0] yield key, sample