import argparse import os from helpers import * from faster_whisper import WhisperModel import whisperx import torch from pydub import AudioSegment from nemo.collections.asr.models.msdd_models import NeuralDiarizer from deepmultilingualpunctuation import PunctuationModel import re import logging import pysrt mtypes = {"cpu": "int8", "cuda": "float16"} # Initialize parser parser = argparse.ArgumentParser() parser.add_argument( "-a", "--audio", help="name of the target audio file", required=True ) parser.add_argument( "-s", "--srt", help="name of the target SRT file", required=True ) parser.add_argument( "--no-stem", action="store_false", dest="stemming", default=True, help="Disables source separation." "This helps with long files that don't contain a lot of music.", ) parser.add_argument( "--suppress_numerals", action="store_true", dest="suppress_numerals", default=False, help="Suppresses Numerical Digits." "This helps the diarization accuracy but converts all digits into written text.", ) parser.add_argument( "--whisper-model", dest="model_name", default="medium.en", help="name of the Whisper model to use", ) parser.add_argument( "--batch-size", type=int, dest="batch_size", default=8, help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference", ) parser.add_argument( "--language", type=str, default=None, choices=whisper_langs, help="Language spoken in the audio, specify None to perform language detection", ) parser.add_argument( "--device", dest="device", default="cuda" if torch.cuda.is_available() else "cpu", help="if you have a GPU use 'cuda', otherwise 'cpu'", ) args = parser.parse_args() def ensure_dir(directory): if not os.path.exists(directory): os.makedirs(directory) if args.stemming: # Isolate vocals from the rest of the audio return_code = os.system( f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"' ) if return_code != 0: logging.warning( "Source splitting failed, using original audio file. Use --no-stem argument to disable it." ) vocal_target = args.audio else: vocal_target = os.path.join( "temp_outputs", "htdemucs", os.path.splitext(os.path.basename(args.audio))[0], "vocals.wav", ) else: vocal_target = args.audio # Transcribe the audio file if args.batch_size != 0: from transcription_helpers import transcribe_batched whisper_results, language = transcribe_batched( vocal_target, args.language, args.batch_size, args.model_name, mtypes[args.device], args.suppress_numerals, args.device, ) else: from transcription_helpers import transcribe whisper_results, language = transcribe( vocal_target, args.language, args.model_name, mtypes[args.device], args.suppress_numerals, args.device, ) if language in wav2vec2_langs: alignment_model, metadata = whisperx.load_align_model( language_code=language, device=args.device ) result_aligned = whisperx.align( whisper_results, alignment_model, metadata, vocal_target, args.device ) word_timestamps = filter_missing_timestamps( result_aligned["word_segments"], initial_timestamp=whisper_results[0].get("start"), final_timestamp=whisper_results[-1].get("end"), ) # clear gpu vram del alignment_model torch.cuda.empty_cache() else: assert ( args.batch_size == 0 # TODO: add a better check for word timestamps existence ), ( f"Unsupported language: {language}, use --batch_size to 0" " to generate word timestamps using whisper directly and fix this error." ) word_timestamps = [] for segment in whisper_results: for word in segment["words"]: word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]}) # convert audio to mono for NeMo compatibility sound = AudioSegment.from_file(vocal_target).set_channels(1) ROOT = os.getcwd() temp_path = os.path.join(ROOT, "temp_outputs") os.makedirs(temp_path, exist_ok=True) sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav") # Initialize NeMo MSDD diarization model msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device) msdd_model.diarize() del msdd_model torch.cuda.empty_cache() # Reading timestamps <> Speaker Labels mapping speaker_ts = [] with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f: lines = f.readlines() for line in lines: line_list = line.split(" ") s = int(float(line_list[5]) * 1000) e = s + int(float(line_list[8]) * 1000) speaker_ts.append([s, e, int(line_list[11].split("_")[-1])]) wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start") if language in punct_model_langs: # restoring punctuation in the transcript to help realign the sentences punct_model = PunctuationModel(model="kredor/punctuate-all") words_list = list(map(lambda x: x["word"], wsm)) labled_words = punct_model.predict(words_list) ending_puncts = ".?!" model_puncts = ".,;:!?" # We don't want to punctuate U.S.A. with a period. Right? is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x) for word_dict, labeled_tuple in zip(wsm, labled_words): word = word_dict["word"] if ( word and labeled_tuple[1] in ending_puncts and (word[-1] not in model_puncts or is_acronym(word)) ): word += labeled_tuple[1] if word.endswith(".."): word = word.rstrip(".") word_dict["word"] = word else: logging.warning( f"Punctuation restoration is not available for {language} language. Using the original punctuation." ) wsm = get_realigned_ws_mapping_with_punctuation(wsm) ssm = get_sentences_speaker_mapping(wsm, speaker_ts) # Load the SRT file subs = pysrt.open(args.srt) # Base directory for the LJ Speech-like structure base_dir = "LJ_Speech_dataset" # Dictionary to hold audio segments and texts for easpeaker_audios_texts = {} # Process each subtitle for sub in subs: start_time = (sub.start.hours * 3600 + sub.start.minutes * 60 + sub.start.seconds) * 1000 + sub.start.milliseconds end_time = (sub.end.hours * 3600 + sub.end.minutes * 60 + sub.end.seconds) * 1000 + sub.end.milliseconds # Extract speaker and text from the subtitle speaker_text = sub.text.split(':') if len(speaker_text) > 1: speaker = speaker_text[0].strip() text = ':'.join(speaker_text[1:]).strip() segment = sound[start_time:end_time] # Append or create the audio segment and text for the speaker if speaker not in speaker_audios_texts: speaker_audios_texts[speaker] = [] speaker_audios_texts[speaker].append((segment, text)) # Save each speaker's audio to a separate file and generate metadata for speaker, segments_texts in speaker_audios_texts.items(): speaker_dir = os.path.join(base_dir, speaker.replace(' ', '_')) ensure_dir(speaker_dir) metadata_lines = [] for i, (segment, text) in enumerate(segments_texts, start=1): filename = f"{speaker.replace(' ', '_')}_{i:03}.wav" filepath = os.path.join(speaker_dir, filename) segment.export(filepath, format="wav") # Prepare metadata line (filename without extension, speaker, text) metadata_lines.append(f"{filename[:-4]}|{speaker}|{text}") # Save metadata to a file metadata_file = os.path.join(speaker_dir, "metadata.csv") with open(metadata_file, "w", encoding="utf-8") as f: f.write("\n".join(metadata_lines)) print(f"Exported files and metadata for {speaker}") # Move the original WAV and SRT files to the "handled" subfolder handled_dir = "handled" ensure_dir(handled_dir) os.rename(args.audio, os.path.join(handled_dir, os.path.basename(args.audio))) os.rename(args.srt, os.path.join(handled_dir, os.path.basename(args.srt))) print(f"Moved {args.audio} and {args.srt} to the 'handled' subfolder.") with open(f"{os.path.splitext(args.audio)[0]}.txt", "w", encoding="utf-8-sig") as f: get_speaker_aware_transcript(ssm, f) with open(f"{os.path.splitext(args.audio)[0]}.srt", "w", encoding="utf-8-sig") as srt: write_srt(ssm, srt) cleanup(temp_path)