Datasets:
File size: 5,280 Bytes
1d7a93d c4115a4 eb6a2d7 1d7a93d c4115a4 e15ff9e 637b83f c4115a4 e15ff9e c4115a4 f06a805 637b83f f06a805 c4115a4 f06a805 c4115a4 e83fc5e c4115a4 f06a805 c4115a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
pretty_name: SongFormBench
tags:
- MSA
- Benchmark
license: cc-by-4.0
language:
- en
- zh
---
# SongFormBench π
[English ο½ [δΈζ](README_ZH.md)]
**A High-Quality Benchmark for Music Structure Analysis**
<div align="center">


[](https://arxiv.org/abs/2510.02797)
[](https://github.com/ASLP-lab/SongFormer)
[](https://huggingface.co/spaces/ASLP-lab/SongFormer)
[](https://huggingface.co/ASLP-lab/SongFormer)
[](https://huggingface.co/datasets/ASLP-lab/SongFormDB)
[](https://huggingface.co/datasets/ASLP-lab/SongFormBench)
[](https://discord.gg/p5uBryC4Zs)
[](http://www.npu-aslp.org/)
</div>
<div align="center">
<h3>
Chunbo Hao<sup>1*</sup>, Ruibin Yuan<sup>2,5*</sup>, Jixun Yao<sup>1</sup>, Qixin Deng<sup>3,5</sup>,<br>Xinyi Bai<sup>4,5</sup>, Wei Xue<sup>2</sup>, Lei Xie<sup>1β </sup>
</h3>
<p>
<sup>*</sup>Equal contribution <sup>β </sup>Corresponding author
</p>
<p>
<sup>1</sup>Audio, Speech and Language Processing Group (ASLP@NPU),<br>Northwestern Polytechnical University<br>
<sup>2</sup>Hong Kong University of Science and Technology<br>
<sup>3</sup>Northwestern University<br>
<sup>4</sup>Cornell University<br>
<sup>5</sup>Multimodal Art Projection (M-A-P)
</p>
</div>
---
## π What is SongFormBench?
SongFormBench is a **carefully curated, expert-annotated benchmark** designed to revolutionize music structure analysis (MSA) evaluation. Our dataset provides a unified standard for comparing MSA models.
### π Dataset Composition
- **πΈ SongFormBench-HarmonixSet (BHX)**: 200 songs from HarmonixSet
- **π€ SongFormBench-CN (BC)**: 100 Chinese popular songs
**Total: 300 high-quality annotated songs**
---
## β¨ Key Highlights
### π― **Unified Evaluation Standard**
- Establishes a **standardized benchmark** for fair comparison across MSA models
- Eliminates inconsistencies in evaluation protocols
### π·οΈ **Simple Label System**
- Adopts the widely used 7-class classification system (as described in [arxiv.org/abs/2205.14700](https://arxiv.org/abs/2205.14700)
)
- Preserves **pre-chorus** segments for enhanced granularity
- Easy conversion to 7-class (pre-chorus β verse) for compatibility
### π¨βπ¬ **Expert-Verified Quality**
- Multi-source validation
- Manual corrections by expert annotators
### π **Multilingual Coverage**
- **First Chinese MSA dataset** (100 songs)
- Bridges the gap in Chinese music structure analysis
- Enables cross-lingual MSA research
---
## π Getting Started
### Quick Load
```python
from datasets import load_dataset
# Load the complete benchmark
dataset = load_dataset("ASLP-lab/SongFormBench")
```
---
## π Resources & Links
- π Paper: *coming soon*
- π» Code: [GitHub Repository](https://github.com/ASLP-lab/SongFormer)
- π§βπ» Model: [SongFormer](https://huggingface.co/ASLP-lab/SongFormer)
- π Dataset: [SongFormDB](https://huggingface.co/datasets/ASLP-lab/SongFormDB)
---
## π€ Citation
```bibtex
@misc{hao2025songformer,
title = {SongFormer: Scaling Music Structure Analysis with Heterogeneous Supervision},
author = {Chunbo Hao and Ruibin Yuan and Jixun Yao and Qixin Deng and Xinyi Bai and Wei Xue and Lei Xie},
year = {2025},
eprint = {2510.02797},
archivePrefix = {arXiv},
primaryClass = {eess.AS},
url = {https://arxiv.org/abs/2510.02797}
}
```
---
## πΌ Mel Spectrogram Details
<details>
<summary>Click to expand/collapse</summary>
Environment configuration can refer to the official implementation of BigVGan. If the audio source becomes invalid, you can reconstruct the audio using the following method.
### πΈ SongFormBench-HarmonixSet
Uses official HarmonixSet mel spectrograms. To reproduce:
```bash
# Clone BigVGAN repository
git clone https://github.com/NVIDIA/BigVGAN.git
# Navigate to utils
cd utils/HarmonixSet
# Update BIGVGAN_REPO_DIR in inference_e2e.sh
# Run the inference script
bash inference_e2e.sh
```
### π€ SongFormBench-CN
Reproduce using [**bigvgan_v2_44khz_128band_256x**](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x)
You should first download bigvgan_v2_44khz_128band_256x, then add its project directory to your PYTHONPATH, after which you can use the code below:
```python
# See implementation
utils/CN/infer.py
```
</details>
---
## π§ Contact
For questions, issues, or collaboration opportunities, please visit our [GitHub repository](https://github.com/ASLP-lab/SongFormer) or open an issue. |