zhuchi76's picture
Update README to hub
6956c4d verified
# Real Lifebuoy Dataset for Object Detection
## Overview
This dataset contains images of real lifebuoy for object detection tasks. It can be used to train and evaluate object detection models.
Demo Example 1:
[![Lifebuoy Detection Video](https://img.youtube.com/vi/43IF39-LySI/0.jpg)](https://www.youtube.com/watch?v=43IF39-LySI)
The video is available on video/detr_finetuned_2.mp4 or by clicking the image youtube link.
Demo Example 2:
Left hand side: 1th finetuned with virtual dataset
Right hand side: 2nd further finetuned with real dataset
[![Lifebuoy Detection Video](https://img.youtube.com/vi/Vyb_iCp4bes/0.jpg)](https://www.youtube.com/watch?v=Vyb_iCp4bes)
The video is available on video/detr_finetuned_1vs2.mp4 or by clicking the image youtube link.
## Dataset Structure
### Data Instances
A data point comprises an image and its object annotations.
```
{
'image_id': 1,
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x480 at 0x7781535B67C0>
'image_path': 'images/2024-10-23-20-57-55_mid_305.png',
'width': 640,
'height': 480,
'objects':
{
'id': [1],
'area': [4110.0],
'bbox': [[262.0, 312.0, 137.0, 30.0]],
'category': [0]
},
}
```
### Data Fields
- `image_id`: the image id
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
- `id`: the annotation id
- `area`: the area of the bounding box
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
- `category`: the object's category, with possible values including
- `Lifebuoy` (0)
### Data Splits
- `Training dataset` (540)
- `Real`
- `Lifebuoy` (540)
- `Val dataset` (135)
- `Real`
- `Lifebuoy` (135)
## Usage
```
from datasets import load_dataset
dataset = load_dataset("ARG-NCTU/Real_Lifebuoy_dataset_2024")
```