# Lifebuoy Underwater Dataset for Object Detection ## Overview This dataset contains images of virtual underwater lifebuoy for object detection tasks. It can be used to train and evaluate object detection models. Demo Example: [![Lifebuoy Underwater Detection Video](https://img.youtube.com/vi/azpLvmDEy3A/0.jpg)](https://www.youtube.com/watch?v=azpLvmDEy3A) Video is available on video/lifebuoy_underwater_detection.mp4 or by clicking the image youtube link. ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` {'image_id': 1, 'image_path': 'images/Lifebuoy_Scene2_1.png', 'width': 640, 'height': 480, 'objects': {'id': [1], 'area': [7273.22705078125], 'bbox': [[316.0, 254.0, 106.0, 46.0]], 'category': [0]}} ``` ### Data Fields - `image_id`: the image id - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category, with possible values including - `Lifebuoy` (0) ### Data Splits - `Training dataset` (2396) - `Virtual` - `Lifebuoy` (2396) - `Val dataset` (598) - `Virtual` - `Lifebuoy` (598) ## Usage ``` from datasets import load_dataset dataset = load_dataset("ARG-NCTU/Lifebuoy_underwater_dataset_2024") ```