# %% import datasets import numpy as np from torch.utils.data import DataLoader quakeflow_nc = datasets.load_dataset( "AI4EPS/quakeflow_nc", name="station", split="train", # name="station_test", # split="test", download_mode="force_redownload", trust_remote_code=True, num_proc=36, ) # quakeflow_nc = datasets.load_dataset( # "./quakeflow_nc.py", # name="station", # split="train", # # name="statoin_test", # # split="test", # num_proc=36, # ) print(quakeflow_nc) # print the first sample of the iterable dataset for example in quakeflow_nc: print("\nIterable dataset\n") print(example) print(example.keys()) for key in example.keys(): if key == "data": print(key, np.array(example[key]).shape) else: print(key, example[key]) break # %% quakeflow_nc = quakeflow_nc.with_format("torch") dataloader = DataLoader(quakeflow_nc, batch_size=8, num_workers=0, collate_fn=lambda x: x) for batch in dataloader: print("\nDataloader dataset\n") print(f"Batch size: {len(batch)}") print(batch[0].keys()) for key in batch[0].keys(): if key == "data": print(key, np.array(batch[0][key]).shape) else: print(key, batch[0][key]) break # %%