--- annotations_creators: - other language_creators: - machine-generated language: - en license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - n<1K source_datasets: - extended|glue task_categories: - text-classification task_ids: - natural-language-inference - sentiment-classification pretty_name: Adversarial GLUE config_names: - adv_mnli - adv_mnli_mismatched - adv_qnli - adv_qqp - adv_rte - adv_sst2 tags: - paraphrase-identification - qa-nli dataset_info: - config_name: adv_mnli features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction - name: idx dtype: int32 splits: - name: validation num_bytes: 23712 num_examples: 121 download_size: 13485 dataset_size: 23712 - config_name: adv_mnli_mismatched features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction - name: idx dtype: int32 splits: - name: validation num_bytes: 40953 num_examples: 162 download_size: 25166 dataset_size: 40953 - config_name: adv_qnli features: - name: question dtype: string - name: sentence dtype: string - name: label dtype: class_label: names: '0': entailment '1': not_entailment - name: idx dtype: int32 splits: - name: validation num_bytes: 34850 num_examples: 148 download_size: 19111 dataset_size: 34850 - config_name: adv_qqp features: - name: question1 dtype: string - name: question2 dtype: string - name: label dtype: class_label: names: '0': not_duplicate '1': duplicate - name: idx dtype: int32 splits: - name: validation num_bytes: 9908 num_examples: 78 download_size: 7705 dataset_size: 9908 - config_name: adv_rte features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': entailment '1': not_entailment - name: idx dtype: int32 splits: - name: validation num_bytes: 25979 num_examples: 81 download_size: 15872 dataset_size: 25979 - config_name: adv_sst2 features: - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': positive - name: idx dtype: int32 splits: - name: validation num_bytes: 16595 num_examples: 148 download_size: 40662 dataset_size: 16595 configs: - config_name: adv_mnli data_files: - split: validation path: adv_mnli/validation-* - config_name: adv_mnli_mismatched data_files: - split: validation path: adv_mnli_mismatched/validation-* - config_name: adv_qnli data_files: - split: validation path: adv_qnli/validation-* - config_name: adv_qqp data_files: - split: validation path: adv_qqp/validation-* - config_name: adv_rte data_files: - split: validation path: adv_rte/validation-* --- # Dataset Card for Adversarial GLUE ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://adversarialglue.github.io/ - **Repository:** - **Paper:** [arXiv](https://arxiv.org/pdf/2111.02840.pdf) - **Leaderboard:** - **Point of Contact:** - **Size of downloaded dataset files:** 202.75 kB ### Dataset Summary Adversarial GLUE Benchmark (AdvGLUE) is a comprehensive robustness evaluation benchmark that focuses on the adversarial robustness evaluation of language models. It covers five natural language understanding tasks from the famous GLUE tasks and is an adversarial version of GLUE benchmark. AdvGLUE considers textual adversarial attacks from different perspectives and hierarchies, including word-level transformations, sentence-level manipulations, and human-written adversarial examples, which provide comprehensive coverage of various adversarial linguistic phenomena. ### Supported Tasks and Leaderboards Leaderboard available on the homepage: [https://adversarialglue.github.io/](https://adversarialglue.github.io/). ### Languages AdvGLUE deviates from the GLUE dataset, which has a base language of English. ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 202.75 kB - **Example**: ```python >>> datasets.load_dataset('adv_glue', 'adv_sst2')['validation'][0] {'sentence': "it 's an uneven treat that bores fun at the democratic exercise while also examining its significance for those who take part .", 'label': 1, 'idx': 0} ``` ### Data Fields The data fields are the same as in the GLUE dataset, which differ by task. The data fields are the same among all splits. #### adv_mnli - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). - `idx`: a `int32` feature. #### adv_mnli_matched - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). - `idx`: a `int32` feature. #### adv_mnli_mismatched - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). - `idx`: a `int32` feature. #### adv_qnli [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### adv_qqp [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### adv_rte [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### adv_sst2 [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Data Splits Adversarial GLUE provides only a 'dev' split. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The dataset is distributed under the [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/legalcode) license. ### Citation Information ```bibtex @article{Wang2021AdversarialGA, title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models}, author={Boxin Wang and Chejian Xu and Shuohang Wang and Zhe Gan and Yu Cheng and Jianfeng Gao and Ahmed Hassan Awadallah and B. Li}, journal={ArXiv}, year={2021}, volume={abs/2111.02840} } ``` ### Contributions Thanks to [@jxmorris12](https://github.com/jxmorris12) for adding this dataset.