import argparse import os from os import path as osp # from basicsr.utils.download_util import download_file_from_google_drive import gdown def download_pretrained_models(method, file_ids): save_path_root = f'./weights/{method}' os.makedirs(save_path_root, exist_ok=True) for file_name, file_id in file_ids.items(): file_url = 'https://drive.google.com/uc?id='+file_id save_path = osp.abspath(osp.join(save_path_root, file_name)) if osp.exists(save_path): user_response = input(f'{file_name} already exist. Do you want to cover it? Y/N\n') if user_response.lower() == 'y': print(f'Covering {file_name} to {save_path}') gdown.download(file_url, save_path, quiet=False) # download_file_from_google_drive(file_id, save_path) elif user_response.lower() == 'n': print(f'Skipping {file_name}') else: raise ValueError('Wrong input. Only accepts Y/N.') else: print(f'Downloading {file_name} to {save_path}') gdown.download(file_url, save_path, quiet=False) # download_file_from_google_drive(file_id, save_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( 'method', type=str, help=("Options: 'CodeFormer' 'facelib'. Set to 'all' to download all the models.")) args = parser.parse_args() # file name: file id # 'dlib': { # 'mmod_human_face_detector-4cb19393.dat': '1qD-OqY8M6j4PWUP_FtqfwUPFPRMu6ubX', # 'shape_predictor_5_face_landmarks-c4b1e980.dat': '1vF3WBUApw4662v9Pw6wke3uk1qxnmLdg', # 'shape_predictor_68_face_landmarks-fbdc2cb8.dat': '1tJyIVdCHaU6IDMDx86BZCxLGZfsWB8yq' # } file_ids = { 'CodeFormer': { 'codeformer.pth': '1v_E_vZvP-dQPF55Kc5SRCjaKTQXDz-JB' }, 'facelib': { 'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV', 'parsing_parsenet.pth': '16pkohyZZ8ViHGBk3QtVqxLZKzdo466bK' } } if args.method == 'all': for method in file_ids.keys(): download_pretrained_models(method, file_ids[method]) else: download_pretrained_models(args.method, file_ids[args.method])