#!/bin/bash # Launch script using torch.distributed.run(). Used by slurm # scripts, don't invoke directly. # Samuel's fix for apparent error in SLURM initialization if [ $SLURM_LOCALID -eq 0 ]; then rm -rf /dev/shm/* rocm-smi || true else sleep 2 fi SLURM_JOB_NUM_NODES=32 export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK export FI_CXI_DEFAULT_CQ_SIZE=262144 # debugging (noisy) #export NCCL_DEBUG=INFO #export RCCL_KERNEL_COLL_TRACE_ENABLE=1 #export NCCL_DEBUG_SUBSYS=INIT,COLL module --quiet purge module load cray-python module load CrayEnv module load PrgEnv-cray/8.3.3 module load craype-accel-amd-gfx90a module load cray-python module use /pfs/lustrep2/projappl/project_462000125/samantao-public/mymodules module load suse-repo-deps/sam-default module load rocm/sam-5.2.3.lua module load rccl/sam-develop.lua module load aws-ofi-rccl/sam-default.lua source venv/bin/activate MASTER_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) MASTER_PORT=9999 echo "Launching on $SLURMD_NODENAME ($SLURM_PROCID/$SLURM_JOB_NUM_NODES)," \ "master $MASTER_NODE port $MASTER_PORT," \ "GPUs $SLURM_GPUS_ON_NODE," \ "CUDA: $(python -c 'import torch; print(torch.cuda.is_available())')" python -u -m torch.distributed.run \ --nnodes $SLURM_JOB_NUM_NODES \ --nproc_per_node $SLURM_GPUS_ON_NODE \ --node_rank=$SLURM_PROCID \ --master_addr $MASTER_NODE \ --master_port $MASTER_PORT \ "$@"