dasaprakashk
commited on
Commit
•
ba0d59c
1
Parent(s):
7dc90b3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1598.35 +/- 110.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86ac0d88c6a5aff9e05593b82b389f655652570b59adc50993b1edb25b3f4639
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4c9c13670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4c9c13700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4c9c13790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4c9c13820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb4c9c138b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb4c9c13940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4c9c139d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4c9c13a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb4c9c13af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4c9c13b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4c9c13c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4c9c13ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb4c9c12d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679175245390719372,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG52AD/1aSG/bIYYvoCJqj8JVAa+DSVtP9FSib30YFy/lnLAP5H+4D8cpI4+CVWAv0Mqfj+C2qI/XHMQP24bJEDuh6g/IY6evtBmXb8Ta8C9y2WlvZmunD+eo3y/FwAHvn0uPT+QqaE+yMozP8q4Pb9hP4A/h1uBvlVCjD60+EW+2AYEv6lyr78eaM2/TZitvpeINj8tHcm//1EFvwfFdr8iutA/I4IBv0kVI72KAKe/DliKP//lCkC87GO/dxa+PxHMAECRTtO9IkY5v+f6PD99Lj0/kKmhPkNBtr/KuD2/oZkxP05w2711Qcw+RTp1P1rfx79p1c0/tBvzvwEUUr/HGoU/zUtIP9DtWL9q0Jm//a7qP5m/Qr6wkiI/AfJJPpHupL+NeCbATTMQwHRqSD/3OJ4/vK5KP5KmTT9YB9m/fS49P5CpoT7IyjM/yrg9v4qJlb71zHE/OutpP9H73z72OYs+4vt9P60gy77RbUW+NeJQv2GjGj8uco4+ZSc5P09wvr9aS2k/z1cmP39qpL3WWrM/ckLuvq6TS79lH6S8tEWev9/a+rmmDE0/NTpvv30uPT+QqaE+yMozP8q4Pb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAChCes2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3CLLvQAAAACEfN6/AAAAAJMTnT0AAAAAQhbfPwAAAABHxmE9AAAAALot5z8AAAAA/rOHvQAAAAD6XuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNvqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOi6370AAAAA5GvpvwAAAACkb2E9AAAAAP237D8AAAAA/n+IPAAAAACE1e8/AAAAAB6E+L0AAAAApJ/dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMRbALYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAO9+u9AAAAAB7W9r8AAAAAd0P0vQAAAAAuyPo/AAAAAC+s8b0AAAAAd8r6PwAAAAC+XhG9AAAAAGZ3+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI55o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYL0NPgAAAAD/Deu/AAAAALEntD0AAAAAxFLvPwAAAADmygU+AAAAAGcy/T8AAAAAN7D4vQAAAADFSee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmxKFtbcGmMAWyUTegDjAF0lEdAqP8324/eL3V9lChoBkdAkXxJ4GD+SGgHTegDaAhHQKj/7m4iHIp1fZQoaAZHQJt0SbBoEjhoB03oA2gIR0CpBsn4oJAudX2UKGgGR0CbtJXEqDsdaAdN6ANoCEdAqQhdvhqCYnV9lChoBkdAl/7AbIcR2GgHTegDaAhHQKkKemJm/WV1fZQoaAZHQJrV2l1r6+FoB03oA2gIR0CpCzaZx7zDdX2UKGgGR0CaC3/9Hc1waAdN6ANoCEdAqRPcABDG+HV9lChoBkdAmb5tMfzSTmgHTegDaAhHQKkWZBMzuWt1fZQoaAZHQJg8WYjSofloB03oA2gIR0CpGVmxUvPDdX2UKGgGR0Ca8mYWcjJNaAdN6ANoCEdAqRoQre67NHV9lChoBkdAmev1G0/nn2gHTegDaAhHQKkg8Bkqc3F1fZQoaAZHQJmy2T0QK8doB03oA2gIR0CpIojHn2ZidX2UKGgGR0Ccu5NiH6/JaAdN6ANoCEdAqSSeL1mJ33V9lChoBkdAnSuNAkcCHWgHTegDaAhHQKklWejmCAd1fZQoaAZHQJzkBH09QoFoB03oA2gIR0CpLH7NjbztdX2UKGgGR0CdA0aOxSpBaAdN6ANoCEdAqS7m3Sa3JHV9lChoBkdAk8l9vXK8tmgHTegDaAhHQKkyDT6SDAd1fZQoaAZHQJu7u9US7GxoB03oA2gIR0CpMzZvcafjdX2UKGgGR0Caeafp2U0OaAdN6ANoCEdAqTtjVFx4p3V9lChoBkdAloWVe0G/vmgHTegDaAhHQKk8++/xlQN1fZQoaAZHQJtqaMo+fRNoB03oA2gIR0CpPxtWMju8dX2UKGgGR0CXZhLtNSIhaAdN6ANoCEdAqT/VxVAAyXV9lChoBkdAknAjK5kK/mgHTegDaAhHQKlGu/iYLLJ1fZQoaAZHQJgmbymQ8wJoB03oA2gIR0CpSFyhakhzdX2UKGgGR0CYVIOh0yP/aAdN6ANoCEdAqUpuM6zVt3V9lChoBkdAl2OTm4iHI2gHTegDaAhHQKlLXbiZOSJ1fZQoaAZHQJsgiLpA2Q5oB03oA2gIR0CpVa9Q40djdX2UKGgGR0CZ2mPmgam5aAdN6ANoCEdAqVdGyAxzrHV9lChoBkdAlquRxDLKWGgHTegDaAhHQKlZW9qUNa11fZQoaAZHQJz2bJdSl31oB03oA2gIR0CpWhnCGetkdX2UKGgGR0CcC9P+XJHRaAdN6ANoCEdAqWD6zcAR03V9lChoBkdAnJreg13t8mgHTegDaAhHQKlijF72L511fZQoaAZHQJWA0dELH+9oB03oA2gIR0CpZJsMAmzCdX2UKGgGR0CaNHm2b5M2aAdN6ANoCEdAqWVUMCtA9nV9lChoBkdAmUuSDZlFt2gHTegDaAhHQKltvK5Cngp1fZQoaAZHQJxrZ2FFlTZoB03oA2gIR0CpcDO3+dbxdX2UKGgGR0CaUcnpjc2zaAdN6ANoCEdAqXNToW56MXV9lChoBkdAmmKeUUwi7mgHTegDaAhHQKl0F1e0G/x1fZQoaAZHQJr37kxREWtoB03oA2gIR0CpevaF23a0dX2UKGgGR0CbJUqTbFjvaAdN6ANoCEdAqXyOCmMwUXV9lChoBkdAm765Gax5cGgHTegDaAhHQKl+nCl7+kx1fZQoaAZHQJxdMQ4CIUJoB03oA2gIR0Cpf1a+WWyDdX2UKGgGR0CXaF3QUpNLaAdN6ANoCEdAqYYgL3K0U3V9lChoBkdAmu8zcVQAMmgHTegDaAhHQKmIFgE2YOV1fZQoaAZHQJl8bs2NvO1oB03oA2gIR0Cpix3Ehq0udX2UKGgGR0Ca2wi+cpb2aAdN6ANoCEdAqYxBT/ACXHV9lChoBkdAlTUy5VfeDWgHTegDaAhHQKmU0zUI9kl1fZQoaAZHQJob1BnjABVoB03oA2gIR0Cplmdc0LtvdX2UKGgGR0CZwX+QlruZaAdN6ANoCEdAqZh5c1O0s3V9lChoBkdAl8os+/xlQWgHTegDaAhHQKmZL79hqj91fZQoaAZHQJk5TKzRhMJoB03oA2gIR0CpoBDjBEa3dX2UKGgGR0CYzxaK1og3aAdN6ANoCEdAqaGkSbpeNXV9lChoBkdAloaFFYuCgGgHTegDaAhHQKmjy0v4/NZ1fZQoaAZHQJVkxS2phndoB03oA2gIR0CppIdtEXtTdX2UKGgGR0CYPRSOinHeaAdN6ANoCEdAqa7XtWuHOHV9lChoBkdAm1DHMyJsPGgHTegDaAhHQKmwjPnB+F11fZQoaAZHQJmt7QfIS15oB03oA2gIR0CpsppXyRSxdX2UKGgGR0CZQsDG96C2aAdN6ANoCEdAqbNWhkAggXV9lChoBkdAm0E/XPJJXmgHTegDaAhHQKm6KYzi0fJ1fZQoaAZHQJnvrIMjNY9oB03oA2gIR0Cpu8GCiAUddX2UKGgGR0CaI526kIomaAdN6ANoCEdAqb3ONvOyFHV9lChoBkdAnmUdaIN3GGgHTegDaAhHQKm+izAvcrR1fZQoaAZHQJkoI6p5u65oB03oA2gIR0CpxohNmDlHdX2UKGgGR0CYCWR2bG3naAdN6ANoCEdAqcj74gzP8nV9lChoBkdAmLnVQEZBLWgHTegDaAhHQKnMPjWCmMx1fZQoaAZHQJsIuI42jwhoB03oA2gIR0CpzWyF49owdX2UKGgGR0CX4WxnWattaAdN6ANoCEdAqdRyyWzF/HV9lChoBkdAmIUyjQAuI2gHTegDaAhHQKnWD8FY+0R1fZQoaAZHQJusnMEA5rBoB03oA2gIR0Cp2CuM+/xldX2UKGgGR0CZRl5Xlr/LaAdN6ANoCEdAqdjiu4gA63V9lChoBkdAmcL7ypaRp2gHTegDaAhHQKnfyvoNd7h1fZQoaAZHQJpLx4A0bcZoB03oA2gIR0Cp4YTvRZ2ZdX2UKGgGR0CYEC4jrzGxaAdN6ANoCEdAqeSa4vvjO3V9lChoBkdAmT2qHbh3q2gHTegDaAhHQKnlt9Dx9Xt1fZQoaAZHQJq00oBq9GtoB03oA2gIR0Cp7qpbD/EPdX2UKGgGR0CZSOT3IuGsaAdN6ANoCEdAqfBDM7lq8HV9lChoBkdAlpETYNAkcGgHTegDaAhHQKnyWxSpBHF1fZQoaAZHQJg+QPkJa7poB03oA2gIR0Cp8xUlJHy3dX2UKGgGR0CbMrogFHJ+aAdN6ANoCEdAqfoP+2mYSnV9lChoBkdAlTS+MERramgHTegDaAhHQKn7o8Swnpl1fZQoaAZHQJj1qgte2NNoB03oA2gIR0Cp/bFiay8jdX2UKGgGR0CXgKxjawljaAdN6ANoCEdAqf5rLSuyNXV9lChoBkdAmw+jjJdSl2gHTegDaAhHQKoIciN83Mp1fZQoaAZHQJojMy1uzhRoB03oA2gIR0CqCl2fK6nSdX2UKGgGR0CaE3tqpLmIaAdN6ANoCEdAqgxwTRIBinV9lChoBkdAmsbvR7Z392gHTegDaAhHQKoNMFfzBhx1fZQoaAZHQJkrdycTakBoB03oA2gIR0CqFAxhc7hfdX2UKGgGR0CY70FNcnmaaAdN6ANoCEdAqhWn/kvK2nV9lChoBkdAmeRcXFcY7GgHTegDaAhHQKoXuiFj/dZ1fZQoaAZHQJdhjmdRR/FoB03oA2gIR0CqGHDCHh0hdX2UKGgGR0CaYv8VYZEVaAdN6ANoCEdAqiCkMEzO5nV9lChoBkdAmpKmYSg5BGgHTegDaAhHQKojFM/yGzt1fZQoaAZHQJf4ilvZRKpoB03oA2gIR0CqJnO5avA5dX2UKGgGR0CcKshXr+o+aAdN6ANoCEdAqid6UiY9gXV9lChoBkdAmTb9O6/Zd2gHTegDaAhHQKouSScslLR1fZQoaAZHQJswbcFhXsBoB03oA2gIR0CqL+O7QLNOdX2UKGgGR0CaGSd6sySFaAdN6ANoCEdAqjH24iHIqHV9lChoBkdAlsWpSzgMt2gHTegDaAhHQKoyuPkJa7p1fZQoaAZHQJfc704BFNNoB03oA2gIR0CqOYoG6f8NdX2UKGgGR0CZJFliBoVVaAdN6ANoCEdAqjsgDvE0i3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2f4011e49fce69cd3bf1933edc363407da58277bd8ae274725352762883be2f
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b49613b6e2224495adb70303edfe20b6381a860137994c69eb6c1313c125099
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4c9c13670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4c9c13700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4c9c13790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4c9c13820>", "_build": "<function ActorCriticPolicy._build at 0x7fb4c9c138b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4c9c13940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4c9c139d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4c9c13a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4c9c13af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4c9c13b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4c9c13c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4c9c13ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb4c9c12d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679175245390719372, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG52AD/1aSG/bIYYvoCJqj8JVAa+DSVtP9FSib30YFy/lnLAP5H+4D8cpI4+CVWAv0Mqfj+C2qI/XHMQP24bJEDuh6g/IY6evtBmXb8Ta8C9y2WlvZmunD+eo3y/FwAHvn0uPT+QqaE+yMozP8q4Pb9hP4A/h1uBvlVCjD60+EW+2AYEv6lyr78eaM2/TZitvpeINj8tHcm//1EFvwfFdr8iutA/I4IBv0kVI72KAKe/DliKP//lCkC87GO/dxa+PxHMAECRTtO9IkY5v+f6PD99Lj0/kKmhPkNBtr/KuD2/oZkxP05w2711Qcw+RTp1P1rfx79p1c0/tBvzvwEUUr/HGoU/zUtIP9DtWL9q0Jm//a7qP5m/Qr6wkiI/AfJJPpHupL+NeCbATTMQwHRqSD/3OJ4/vK5KP5KmTT9YB9m/fS49P5CpoT7IyjM/yrg9v4qJlb71zHE/OutpP9H73z72OYs+4vt9P60gy77RbUW+NeJQv2GjGj8uco4+ZSc5P09wvr9aS2k/z1cmP39qpL3WWrM/ckLuvq6TS79lH6S8tEWev9/a+rmmDE0/NTpvv30uPT+QqaE+yMozP8q4Pb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAChCes2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3CLLvQAAAACEfN6/AAAAAJMTnT0AAAAAQhbfPwAAAABHxmE9AAAAALot5z8AAAAA/rOHvQAAAAD6XuG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNvqNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOi6370AAAAA5GvpvwAAAACkb2E9AAAAAP237D8AAAAA/n+IPAAAAACE1e8/AAAAAB6E+L0AAAAApJ/dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMRbALYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAO9+u9AAAAAB7W9r8AAAAAd0P0vQAAAAAuyPo/AAAAAC+s8b0AAAAAd8r6PwAAAAC+XhG9AAAAAGZ3+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI55o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYL0NPgAAAAD/Deu/AAAAALEntD0AAAAAxFLvPwAAAADmygU+AAAAAGcy/T8AAAAAN7D4vQAAAADFSee/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmxKFtbcGmMAWyUTegDjAF0lEdAqP8324/eL3V9lChoBkdAkXxJ4GD+SGgHTegDaAhHQKj/7m4iHIp1fZQoaAZHQJt0SbBoEjhoB03oA2gIR0CpBsn4oJAudX2UKGgGR0CbtJXEqDsdaAdN6ANoCEdAqQhdvhqCYnV9lChoBkdAl/7AbIcR2GgHTegDaAhHQKkKemJm/WV1fZQoaAZHQJrV2l1r6+FoB03oA2gIR0CpCzaZx7zDdX2UKGgGR0CaC3/9Hc1waAdN6ANoCEdAqRPcABDG+HV9lChoBkdAmb5tMfzSTmgHTegDaAhHQKkWZBMzuWt1fZQoaAZHQJg8WYjSofloB03oA2gIR0CpGVmxUvPDdX2UKGgGR0Ca8mYWcjJNaAdN6ANoCEdAqRoQre67NHV9lChoBkdAmev1G0/nn2gHTegDaAhHQKkg8Bkqc3F1fZQoaAZHQJmy2T0QK8doB03oA2gIR0CpIojHn2ZidX2UKGgGR0Ccu5NiH6/JaAdN6ANoCEdAqSSeL1mJ33V9lChoBkdAnSuNAkcCHWgHTegDaAhHQKklWejmCAd1fZQoaAZHQJzkBH09QoFoB03oA2gIR0CpLH7NjbztdX2UKGgGR0CdA0aOxSpBaAdN6ANoCEdAqS7m3Sa3JHV9lChoBkdAk8l9vXK8tmgHTegDaAhHQKkyDT6SDAd1fZQoaAZHQJu7u9US7GxoB03oA2gIR0CpMzZvcafjdX2UKGgGR0Caeafp2U0OaAdN6ANoCEdAqTtjVFx4p3V9lChoBkdAloWVe0G/vmgHTegDaAhHQKk8++/xlQN1fZQoaAZHQJtqaMo+fRNoB03oA2gIR0CpPxtWMju8dX2UKGgGR0CXZhLtNSIhaAdN6ANoCEdAqT/VxVAAyXV9lChoBkdAknAjK5kK/mgHTegDaAhHQKlGu/iYLLJ1fZQoaAZHQJgmbymQ8wJoB03oA2gIR0CpSFyhakhzdX2UKGgGR0CYVIOh0yP/aAdN6ANoCEdAqUpuM6zVt3V9lChoBkdAl2OTm4iHI2gHTegDaAhHQKlLXbiZOSJ1fZQoaAZHQJsgiLpA2Q5oB03oA2gIR0CpVa9Q40djdX2UKGgGR0CZ2mPmgam5aAdN6ANoCEdAqVdGyAxzrHV9lChoBkdAlquRxDLKWGgHTegDaAhHQKlZW9qUNa11fZQoaAZHQJz2bJdSl31oB03oA2gIR0CpWhnCGetkdX2UKGgGR0CcC9P+XJHRaAdN6ANoCEdAqWD6zcAR03V9lChoBkdAnJreg13t8mgHTegDaAhHQKlijF72L511fZQoaAZHQJWA0dELH+9oB03oA2gIR0CpZJsMAmzCdX2UKGgGR0CaNHm2b5M2aAdN6ANoCEdAqWVUMCtA9nV9lChoBkdAmUuSDZlFt2gHTegDaAhHQKltvK5Cngp1fZQoaAZHQJxrZ2FFlTZoB03oA2gIR0CpcDO3+dbxdX2UKGgGR0CaUcnpjc2zaAdN6ANoCEdAqXNToW56MXV9lChoBkdAmmKeUUwi7mgHTegDaAhHQKl0F1e0G/x1fZQoaAZHQJr37kxREWtoB03oA2gIR0CpevaF23a0dX2UKGgGR0CbJUqTbFjvaAdN6ANoCEdAqXyOCmMwUXV9lChoBkdAm765Gax5cGgHTegDaAhHQKl+nCl7+kx1fZQoaAZHQJxdMQ4CIUJoB03oA2gIR0Cpf1a+WWyDdX2UKGgGR0CXaF3QUpNLaAdN6ANoCEdAqYYgL3K0U3V9lChoBkdAmu8zcVQAMmgHTegDaAhHQKmIFgE2YOV1fZQoaAZHQJl8bs2NvO1oB03oA2gIR0Cpix3Ehq0udX2UKGgGR0Ca2wi+cpb2aAdN6ANoCEdAqYxBT/ACXHV9lChoBkdAlTUy5VfeDWgHTegDaAhHQKmU0zUI9kl1fZQoaAZHQJob1BnjABVoB03oA2gIR0Cplmdc0LtvdX2UKGgGR0CZwX+QlruZaAdN6ANoCEdAqZh5c1O0s3V9lChoBkdAl8os+/xlQWgHTegDaAhHQKmZL79hqj91fZQoaAZHQJk5TKzRhMJoB03oA2gIR0CpoBDjBEa3dX2UKGgGR0CYzxaK1og3aAdN6ANoCEdAqaGkSbpeNXV9lChoBkdAloaFFYuCgGgHTegDaAhHQKmjy0v4/NZ1fZQoaAZHQJVkxS2phndoB03oA2gIR0CppIdtEXtTdX2UKGgGR0CYPRSOinHeaAdN6ANoCEdAqa7XtWuHOHV9lChoBkdAm1DHMyJsPGgHTegDaAhHQKmwjPnB+F11fZQoaAZHQJmt7QfIS15oB03oA2gIR0CpsppXyRSxdX2UKGgGR0CZQsDG96C2aAdN6ANoCEdAqbNWhkAggXV9lChoBkdAm0E/XPJJXmgHTegDaAhHQKm6KYzi0fJ1fZQoaAZHQJnvrIMjNY9oB03oA2gIR0Cpu8GCiAUddX2UKGgGR0CaI526kIomaAdN6ANoCEdAqb3ONvOyFHV9lChoBkdAnmUdaIN3GGgHTegDaAhHQKm+izAvcrR1fZQoaAZHQJkoI6p5u65oB03oA2gIR0CpxohNmDlHdX2UKGgGR0CYCWR2bG3naAdN6ANoCEdAqcj74gzP8nV9lChoBkdAmLnVQEZBLWgHTegDaAhHQKnMPjWCmMx1fZQoaAZHQJsIuI42jwhoB03oA2gIR0CpzWyF49owdX2UKGgGR0CX4WxnWattaAdN6ANoCEdAqdRyyWzF/HV9lChoBkdAmIUyjQAuI2gHTegDaAhHQKnWD8FY+0R1fZQoaAZHQJusnMEA5rBoB03oA2gIR0Cp2CuM+/xldX2UKGgGR0CZRl5Xlr/LaAdN6ANoCEdAqdjiu4gA63V9lChoBkdAmcL7ypaRp2gHTegDaAhHQKnfyvoNd7h1fZQoaAZHQJpLx4A0bcZoB03oA2gIR0Cp4YTvRZ2ZdX2UKGgGR0CYEC4jrzGxaAdN6ANoCEdAqeSa4vvjO3V9lChoBkdAmT2qHbh3q2gHTegDaAhHQKnlt9Dx9Xt1fZQoaAZHQJq00oBq9GtoB03oA2gIR0Cp7qpbD/EPdX2UKGgGR0CZSOT3IuGsaAdN6ANoCEdAqfBDM7lq8HV9lChoBkdAlpETYNAkcGgHTegDaAhHQKnyWxSpBHF1fZQoaAZHQJg+QPkJa7poB03oA2gIR0Cp8xUlJHy3dX2UKGgGR0CbMrogFHJ+aAdN6ANoCEdAqfoP+2mYSnV9lChoBkdAlTS+MERramgHTegDaAhHQKn7o8Swnpl1fZQoaAZHQJj1qgte2NNoB03oA2gIR0Cp/bFiay8jdX2UKGgGR0CXgKxjawljaAdN6ANoCEdAqf5rLSuyNXV9lChoBkdAmw+jjJdSl2gHTegDaAhHQKoIciN83Mp1fZQoaAZHQJojMy1uzhRoB03oA2gIR0CqCl2fK6nSdX2UKGgGR0CaE3tqpLmIaAdN6ANoCEdAqgxwTRIBinV9lChoBkdAmsbvR7Z392gHTegDaAhHQKoNMFfzBhx1fZQoaAZHQJkrdycTakBoB03oA2gIR0CqFAxhc7hfdX2UKGgGR0CY70FNcnmaaAdN6ANoCEdAqhWn/kvK2nV9lChoBkdAmeRcXFcY7GgHTegDaAhHQKoXuiFj/dZ1fZQoaAZHQJdhjmdRR/FoB03oA2gIR0CqGHDCHh0hdX2UKGgGR0CaYv8VYZEVaAdN6ANoCEdAqiCkMEzO5nV9lChoBkdAmpKmYSg5BGgHTegDaAhHQKojFM/yGzt1fZQoaAZHQJf4ilvZRKpoB03oA2gIR0CqJnO5avA5dX2UKGgGR0CcKshXr+o+aAdN6ANoCEdAqid6UiY9gXV9lChoBkdAmTb9O6/Zd2gHTegDaAhHQKouSScslLR1fZQoaAZHQJswbcFhXsBoB03oA2gIR0CqL+O7QLNOdX2UKGgGR0CaGSd6sySFaAdN6ANoCEdAqjH24iHIqHV9lChoBkdAlsWpSzgMt2gHTegDaAhHQKoyuPkJa7p1fZQoaAZHQJfc704BFNNoB03oA2gIR0CqOYoG6f8NdX2UKGgGR0CZJFliBoVVaAdN6ANoCEdAqjsgDvE0i3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a64c89e445b4e960eea8b785a50773234df2a2e86de683fcecee515dfdcc4932
|
3 |
+
size 1261693
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1598.3519304544109, "std_reward": 110.49798095468803, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T22:31:12.185986"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ffc03a5373d63501ae0b7880a19dd06eb8e2c7543d6f11e0965e8d13e916e8f
|
3 |
+
size 2136
|