--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_model results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - type: accuracy value: 0.55 name: Accuracy --- # emotion_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3934 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8544 | 1.0 | 40 | 1.8094 | 0.3312 | | 1.5093 | 2.0 | 80 | 1.5869 | 0.4625 | | 1.2956 | 3.0 | 120 | 1.4686 | 0.5125 | | 1.141 | 4.0 | 160 | 1.4099 | 0.55 | | 0.9953 | 5.0 | 200 | 1.3934 | 0.55 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0