DISCLAIMER: **For those of you who are downloading this model, it is not finished, the results are poor.** Question Answering Model applying fine tuning to a GPT2 text generator model in a Catalan Dataset "projecte-aina/catalanqa". Results over the first epoch 200it [01:14, 2.29it/s]Train: wpb=10, num_updates=200, accuracy=2.5, loss=0.97 500it [02:57, 3.06it/s]Train: wpb=10, num_updates=500, accuracy=3.1, loss=0.98 1000it [05:47, 2.72it/s]Train: wpb=10, num_updates=1000, accuracy=3.7, loss=0.91 2000it [11:29, 3.32it/s]Train: wpb=10, num_updates=2000, accuracy=3.7, loss=0.85 3000it [16:48, 3.90it/s]Train: wpb=10, num_updates=3000, accuracy=3.7, loss=0.82 4000it [22:10, 3.06it/s]Train: wpb=10, num_updates=4000, accuracy=3.9, loss=0.79 5000it [27:24, 3.50it/s]Train: wpb=10, num_updates=5000, accuracy=4.1, loss=0.77 6000it [32:41, 2.19it/s]Train: wpb=10, num_updates=6000, accuracy=4.5, loss=0.76 7000it [37:56, 3.03it/s]Train: wpb=10, num_updates=7000, accuracy=4.6, loss=0.75 8000it [43:06, 3.73it/s]Train: wpb=10, num_updates=8000, accuracy=4.8, loss=0.74 9000it [48:28, 2.85it/s]Train: wpb=10, num_updates=9000, accuracy=4.9, loss=0.73 10000it [53:43, 2.89it/s]Train: wpb=10, num_updates=10000, accuracy=5.1, loss=0.73 11000it [59:09, 3.10it/s]Train: wpb=10, num_updates=11000, accuracy=5.2, loss=0.73 12000it [1:04:37, 2.64it/s]Train: wpb=10, num_updates=12000, accuracy=5.3, loss=0.72 13000it [1:10:02, 2.66it/s]Train: wpb=10, num_updates=13000, accuracy=5.4, loss=0.72 14000it [1:15:15, 2.68it/s]Train: wpb=10, num_updates=14000, accuracy=5.4, loss=0.72 14150it [1:16:05, 3.10it/s] Train: wpb=9, num_updates=14150, accuracy=5.4, loss=0.72 | epoch 000 | train accuracy=5.4%, train loss=0.72 | epoch 000 | valid accuracy=7.6%, valid loss=0.69 200it [01:16, 2.21it/s]Train: wpb=10, num_updates=200, accuracy=4.5, loss=0.68 500it [03:02, 2.94it/s]Train: wpb=10, num_updates=500, accuracy=4.3, loss=0.74 1000it [05:59, 2.60it/s]Train: wpb=10, num_updates=1000, accuracy=4.9, loss=0.74 2000it [11:53, 3.18it/s]Train: wpb=10, num_updates=2000, accuracy=4.8, loss=0.74 3000it [17:24, 3.80it/s]Train: wpb=10, num_updates=3000, accuracy=4.8, loss=0.73 4000it [22:58, 2.96it/s]Train: wpb=10, num_updates=4000, accuracy=4.9, loss=0.72 5000it [28:23, 3.43it/s]Train: wpb=10, num_updates=5000, accuracy=5.0, loss=0.71 6000it [33:52, 2.15it/s]Train: wpb=10, num_updates=6000, accuracy=5.2, loss=0.70 7000it [39:18, 2.92it/s]Train: wpb=10, num_updates=7000, accuracy=5.3, loss=0.70 8000it [44:39, 3.63it/s]Train: wpb=10, num_updates=8000, accuracy=5.4, loss=0.69 9000it [50:13, 2.74it/s]Train: wpb=10, num_updates=9000, accuracy=5.5, loss=0.69 10000it [55:39, 2.84it/s]Train: wpb=10, num_updates=10000, accuracy=5.7, loss=0.69 11000it [1:01:16, 3.00it/s]Train: wpb=10, num_updates=11000, accuracy=5.7, loss=0.69 12000it [1:06:57, 2.54it/s]Train: wpb=10, num_updates=12000, accuracy=5.8, loss=0.69 13000it [1:12:33, 2.56it/s]Train: wpb=10, num_updates=13000, accuracy=5.8, loss=0.69 14000it [1:17:58, 2.56it/s]Train: wpb=10, num_updates=14000, accuracy=5.9, loss=0.69 14150it [1:18:49, 2.99it/s] Train: wpb=9, num_updates=14150, accuracy=5.9, loss=0.69 | epoch 001 | train accuracy=5.9%, train loss=0.69 | epoch 001 | valid accuracy=7.7%, valid loss=0.69