# limitations under the License. """ Bilingual model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class BilingualConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BilingualModel`] or a [`TFBilingualModel`]. It is used to instantiate a Bilingual model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bilingual Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Bilingual model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BilingualModel`] or [`TFBilingualModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_Bilingual"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BilingualModel`] or [`TFBilingualModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"rope"`): Type of position embedding. Choose one of `"absolute"`, `"rope"`. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: """ model_type = "Bilingual" def __init__( self, vocab_size=30528, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.0, max_position_embeddings=2048, type_vocab_size=1, initializer_range=0.02, layer_norm_type='layer_norm', layer_norm_eps=1e-12, # pad_token_id=0, position_embedding_type="rope", rope_theta=10000.0, rope_scaling=None, classifier_dropout=None, pack_qkv=True, unpad_inputs=False, use_memory_efficient_attention=False, logn_attention_scale=False, logn_attention_clip1=False, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_type = layer_norm_type self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.classifier_dropout = classifier_dropout self.pack_qkv = pack_qkv self.unpad_inputs = unpad_inputs self.use_memory_efficient_attention = use_memory_efficient_attention self.logn_attention_scale = logn_attention_scale self.logn_attention_clip1 = logn_attention_clip1