{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7871e0ec0b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716179187303388187, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBroz0H900/HkivPZKw8L7dBms9E6gCvQAAAAAAAAAAAEmTPRp+GD5in488ZhFcvgrwxD1adyw9AAAAAAAAAAA2r1S+vJe0PpBAQz4fXjO+Rb9iPSoovD0AAAAAAAAAAGAoIT7Ovqw+jR8LvsW0hL4mVcU7ugervAAAAAAAAAAATf/APa5tkbovzyg4ROYGM9E/GTrSP0O3AACAPwAAAABzJUU+kIQRP4MCRr3Aob6+KPALPS5R7LwAAAAAAAAAADPkkrw91SG7UOMpO8ZHhjzy7x48spdovQAAgD8AAIA/oEkUPnYnHz9qJHI7Ou+xvn5kaz0jGd68AAAAAAAAAACaHo+8e/avujnOHTaG6EAxh8csOpdgQrUAAIA/AACAP4ZTCD6C8FU+bVCvvQQYP75776q8RAGIvAAAAAAAAAAAzTwvOz4eoT9m/v08qU8Qv+/HPzy0Ta48AAAAAAAAAAAz/f89b+MyPt78270W22q+9mayuxkxm7wAAAAAAAAAABowzb0ogaM+HTp7vTHAgb4B8w++KNALPQAAAAAAAAAAU+cQPpyrfbxalac9Mkk9PGMT7joDxa+9AACAPwAAgD9TE3c+FCMNP6obLr0yk+K+1ZmMPmByIb4AAAAAAAAAAADgd731IUY+5pUqPnQNYr5+1p49OWXMPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9f7r9l2/2MAWyUTS4BjAF0lEdAkbQnFxXGO3V9lChoBkdAcUbmqHXVb2gHTTUBaAhHQJG04G0NSZV1fZQoaAZHQFVBzT4L1EpoB0uZaAhHQJG2N6IFeOZ1fZQoaAZHQHIixrzoUztoB00aAWgIR0CRtpDGLk0adX2UKGgGR0Bw+eDVYp2EaAdNKQFoCEdAkbbUIX0oSnV9lChoBkdASEpsKsuFpWgHS8FoCEdAkbdLtVrAQHV9lChoBkdAcQU+717IDGgHTVMBaAhHQJG3XDdgv111fZQoaAZHQHCUdz8xbjdoB0v8aAhHQJG3VhScbzd1fZQoaAZHQFMSHnEETxpoB0vraAhHQJG301YQrc11fZQoaAZHQHCaOaa1Cw9oB01AAWgIR0CRuG8cuJ1rdX2UKGgGR0BvIsfigkC4aAdNDwFoCEdAkbjxoysS03V9lChoBkdAbld9MK1G9mgHS/FoCEdAkblE4//vOXV9lChoBkdAXbkCeVcD82gHTegDaAhHQJG6xf8dgfF1fZQoaAZHQHHMVYlpoK5oB00EAWgIR0CRutUUfxMGdX2UKGgGR0BuvnSlWOp9aAdNOgFoCEdAkbrQ2l2vCHV9lChoBkdAcr3jdpItlWgHS+5oCEdAkbyIq5LAYnV9lChoBkdASLUOuq3mWGgHS8hoCEdAkb2jDTBqK3V9lChoBkdAb6/pRoAXEmgHTfgBaAhHQJG90uctoSN1fZQoaAZHQHH2dFvybx5oB01SAWgIR0CRv02Dxsl+dX2UKGgGR0Br7hCQcPvsaAdNIAFoCEdAkb/+4PPLPnV9lChoBkdAc2zmcvugH2gHTSgBaAhHQJG/+zZ6D5F1fZQoaAZHQHBzLL2YfGNoB00cAWgIR0CRwIlfZ26kdX2UKGgGR0Btkq704BFNaAdL/2gIR0CRwLuogmqpdX2UKGgGR0BtKC6MBIWhaAdNFQFoCEdAkcDQ5q/M4nV9lChoBkdAb6FR8c+7lWgHTR4BaAhHQJHCL0jC53F1fZQoaAZHQHGhxk7OmixoB0v1aAhHQJHC1RqGlAN1fZQoaAZHQGyYjoyKvV5oB0v5aAhHQJHC7Ms6JZZ1fZQoaAZHQHLSCi/O+qRoB00uAWgIR0CRwxhsImgKdX2UKGgGR0Bys9rhzeXSaAdNBgFoCEdAkcNey3Td+HV9lChoBkdAbt6UCaJAMWgHTacBaAhHQJHEU2YOUdJ1fZQoaAZHQETNDD0lJH1oB0vcaAhHQJHExPN3W4F1fZQoaAZHQG0zsByS3b5oB0v3aAhHQJHFX94u9OB1fZQoaAZHQGzSfdRBNVRoB00uAWgIR0CRxg/kvK2bdX2UKGgGR0BvzuvZAY51aAdNBwFoCEdAkcdHEAHVw3V9lChoBkdAcPFHtF8XvmgHTQgBaAhHQJHI1lvqC6J1fZQoaAZHQHHdFXFLnLdoB00LAWgIR0CRyNyOaOPvdX2UKGgGR0BwwW+XZ5AyaAdNLgFoCEdAkclCjQAuI3V9lChoBkdAOGxClabF0mgHS8VoCEdAkclaFZgXuXV9lChoBkdAbhGf0VafSWgHS/BoCEdAkcmO+M6zV3V9lChoBkdAcQJejVQQ+WgHTTkBaAhHQJHKHns9jgB1fZQoaAZHQHHWtJJ5E+hoB01WAWgIR0CRym8PnSv1dX2UKGgGR0BxDAaUA1ejaAdL/WgIR0CRyreDWbw0dX2UKGgGR0BxbO7Wd3B6aAdNDQFoCEdAkcsMgEEDAHV9lChoBkdAcrU9gF5fMWgHTT4BaAhHQJHfe+N96Tp1fZQoaAZHQHCAREWqLjxoB00DAWgIR0CR391/Ue+3dX2UKGgGR0BuXKTnq3VkaAdNHwFoCEdAkeBRLwnYx3V9lChoBkdAcCxW2gFotmgHS/poCEdAkeFI3Ns3ynV9lChoBkdAcmNyylenh2gHS+poCEdAkeI1wYLsr3V9lChoBkdAcXqfIS13MmgHTWABaAhHQJHkvWH1vl51fZQoaAZHQHJNmYrrgO1oB0v1aAhHQJHl0E+xGDt1fZQoaAZHQHLwDFyaNMpoB0vraAhHQJHmMNutOmB1fZQoaAZHQHBLpvUBnzxoB0vkaAhHQJHmZ78ejmF1fZQoaAZHQHCf1FH8TBZoB00XAWgIR0CR5mdcjZ+QdX2UKGgGR0Bwk4WhysCDaAdNGgFoCEdAkeZ96cAimnV9lChoBkdAcBxbpeNT+GgHTRIBaAhHQJHmwn5SFXd1fZQoaAZHQG4cUMoc7yRoB00aAWgIR0CR6M3QUpNLdX2UKGgGR0BxEthE0BOpaAdNLwFoCEdAkem3IMjNZHV9lChoBkdAbPefozN2T2gHTQIBaAhHQJHpwLF4s3B1fZQoaAZHQHEY6ySmqHZoB00DAWgIR0CR6hGj9GZvdX2UKGgGR0BwXM2ETQE7aAdNIQFoCEdAketajnFHa3V9lChoBkdAY+PHrhR64WgHTegDaAhHQJHr3mW+oLp1fZQoaAZHQHJPaSxJNCZoB00HAWgIR0CR7AtAcDKYdX2UKGgGR0BvVwPkJa7maAdNMAFoCEdAkeyYdyT6i3V9lChoBkdAbyNeLNwBHWgHS/BoCEdAkez5sTFl1HV9lChoBkdAbZNB4Uvf0mgHS/toCEdAke5ot6HCXXV9lChoBkdASaCK+BYms2gHTRwBaAhHQJHviBreqJd1fZQoaAZHQHFhXX7Lt/poB0vgaAhHQJHvqJyhi9Z1fZQoaAZHQHBCRqCYkVxoB00wAWgIR0CR78Y77sOYdX2UKGgGR0BvtiGWUr08aAdNJgFoCEdAke/xKpT/AHV9lChoBkdAchi7Q9ic5WgHTSkBaAhHQJHwQtbs4T91fZQoaAZHQHEtD0g8r7RoB00/AmgIR0CR8Ex7RfF8dX2UKGgGR0BvGHVqesgdaAdNLgFoCEdAkfMsKsuFpXV9lChoBkdAcbftIkJKJ2gHTTYBaAhHQJHzhJZntfJ1fZQoaAZHQHDie0w8GLVoB00xAWgIR0CR87tQ9A5adX2UKGgGR0BwhyIhyKekaAdNBwFoCEdAkfRk2kzoEHV9lChoBkdAcimhScbzb2gHTQgBaAhHQJH1LlRxcVx1fZQoaAZHQG8nT/ZM+NdoB00EAWgIR0CR9YEFW4mUdX2UKGgGR0BwgovduYQbaAdNRQFoCEdAkfaQqNIbwXV9lChoBkdAcMyZm7J4jmgHTfQBaAhHQJH2kLJCBwx1fZQoaAZHQG+ZlI3BHkNoB01gAWgIR0CR9ruLJjlQdX2UKGgGR0BuA1SydFvyaAdNBwFoCEdAkfcXCj1wpHV9lChoBkdAb9gh8IAwPGgHS/xoCEdAkfgfkvK2a3V9lChoBkdAcIi1h9b5dmgHTQwBaAhHQJH4P8WKuSx1fZQoaAZHQHMMKrmyPdVoB00OAWgIR0CR+GmjTKDDdX2UKGgGR0BzLpZ4fOlgaAdL+2gIR0CR+GbsWweOdX2UKGgGR0BxLZ1X/5tWaAdNKwFoCEdAkfnNf5ULlXV9lChoBkdAcjRUhmoR7WgHS+toCEdAkfqZr+Hae3V9lChoBkdAa9h+DvmYB2gHTV8BaAhHQJH64LBsQ/Z1fZQoaAZHQG6Wklme18doB00UAWgIR0CR/ODr7fpEdX2UKGgGR0Bw00oiLVFyaAdNLQFoCEdAkf0EU0vXb3V9lChoBkdAcNmCx/ustGgHTTABaAhHQJH9ShoM8YB1fZQoaAZHQHIiH446wMZoB0v+aAhHQJH9UN/e+Eh1fZQoaAZHQHEliB9Tgl5oB0vraAhHQJH93RBu4w11fZQoaAZHQHETOzt1IRRoB00tAWgIR0CR/mo24uscdX2UKGgGR0Bsb8eOn2qUaAdLxWgIR0CR/nCuEEkjdX2UKGgGR0BwAV3IMjNZaAdNGwFoCEdAkf8nuRcNY3V9lChoBkdAcoGYxtYSx2gHTSEBaAhHQJH/Wcx0uDl1fZQoaAZHQHCRUfLcKw9oB00bAWgIR0CR/67j1f3OdX2UKGgGR0BwFhAhStNjaAdL/mgIR0CR/9k9ECvHdX2UKGgGR0ByGQJ3PiT/aAdNKAFoCEdAkgEENnXd03VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}