--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - cymen-arfor/25awr metrics: - wer model-index: - name: whisper-large-v2-ft-ca-25awr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: cymen-arfor/25awr default type: cymen-arfor/25awr args: default metrics: - name: Wer type: wer value: 0.40249424956871765 --- # whisper-large-v2-ft-ca-25awr This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the cymen-arfor/25awr default dataset. It achieves the following results on the evaluation set: - Loss: 0.8440 - Wer: 0.4025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4138 | 1.6488 | 1000 | 0.5216 | 0.5082 | | 0.1535 | 3.2976 | 2000 | 0.5362 | 0.4263 | | 0.084 | 4.9464 | 3000 | 0.5920 | 0.4038 | | 0.0185 | 6.5952 | 4000 | 0.7443 | 0.4076 | | 0.0038 | 8.2440 | 5000 | 0.8440 | 0.4025 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3