diff --git "a/speech_tokenizer/modeling_whisper.py" "b/speech_tokenizer/modeling_whisper.py" new file mode 100644--- /dev/null +++ "b/speech_tokenizer/modeling_whisper.py" @@ -0,0 +1,2546 @@ +# coding=utf-8 +# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Whisper model.""" + +import math +import os.path +import random +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache +from transformers.modeling_attn_mask_utils import AttentionMaskConverter +from dataclasses import dataclass +from transformers.modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + SequenceClassifierOutput, +) +from transformers.modeling_utils import PreTrainedModel +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_whisper import WhisperVQConfig +from .generation_whisper import WhisperGenerationMixin + +if is_flash_attn_2_available(): + from transformers.modeling_flash_attention_utils import _flash_attention_forward + +logger = logging.get_logger(__name__) + +_HIDDEN_STATES_START_POSITION = 1 + +_CONFIG_FOR_DOC = "WhisperConfig" +_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" + + +@dataclass +class QuantizedBaseModelOutput(BaseModelOutput): + quantized_token_ids: Optional[torch.LongTensor] = None + + +def vector_quantize(inputs, codebook): + embedding_size = codebook.size(1) + inputs_flatten = inputs.reshape(-1, embedding_size) + codebook_sqr = torch.sum(codebook ** 2, dim=1) + inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True) + # Compute the distances to the codebook + distances = torch.addmm(codebook_sqr + inputs_sqr, + inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0) + + _, indices_flatten = torch.min(distances, dim=1) + codes_flatten = torch.index_select(codebook, dim=0, + index=indices_flatten) + codes = codes_flatten.view_as(inputs) + return codes, indices_flatten, distances + + +def mse_loss_with_mask(input, target, mask): + loss = torch.nn.functional.mse_loss(input, target, reduction='none') + loss = loss.mean(dim=-1) + loss = loss * mask + return loss.sum() / mask.sum() + + +class CausalConv1d(nn.Conv1d): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + **kwargs + ): + super(CausalConv1d, self).__init__( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=0, + dilation=dilation, + groups=groups, + bias=bias, + **kwargs + ) + + self.left_padding = dilation * (kernel_size - 1) + + def forward(self, inp): + x = torch.nn.functional.pad(inp.unsqueeze(2), (self.left_padding, 0, 0, 0)).squeeze(2) + + return super(CausalConv1d, self).forward(x) + + +# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position +def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + min_dtype: float, + cache_position: torch.Tensor, + batch_size: int, +): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + min_dtype (`float`): + The minimum value representable with the dtype `dtype`. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor: + """Returns sinusoids for positional embedding""" + if channels % 2 != 0: + raise ValueError( + f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." + ) + log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1) + inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) + scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1) + return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1) + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +class WhisperPositionalEmbedding(nn.Embedding): + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__(num_positions, embedding_dim) + + def forward(self, input_ids, past_key_values_length=0, position_ids=None): + if position_ids is None: + return self.weight[past_key_values_length: past_key_values_length + input_ids.shape[1]] + else: + return self.weight[position_ids] + + +class WhisperAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + layer_idx: Optional[int] = None, + config: Optional[WhisperVQConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim ** -0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + if layer_idx is None and is_decoder: + logger.warning_once( + f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " + "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + self.layer_idx = layer_idx + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[EncoderDecoderCache] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) + + if past_key_value is not None: + is_updated = past_key_value.is_updated.get(self.layer_idx) + if is_cross_attention: + # after the first generated id, we can subsequently re-use all key/value_states from cache + past_key_value.is_updated[self.layer_idx] = True + past_key_value = past_key_value.cross_attention_cache + else: + past_key_value = past_key_value.self_attention_cache + + # use key_value_states if cross attention + current_states = key_value_states if key_value_states is not None else hidden_states + if is_cross_attention and past_key_value and is_updated: + # reuse k,v, cross_attentions + key_states = past_key_value.key_cache[self.layer_idx] + value_states = past_key_value.value_cache[self.layer_idx] + else: + key_states = self._shape(self.k_proj(current_states), -1, bsz) + value_states = self._shape(self.v_proj(current_states), -1, bsz) + if past_key_value is not None: + # save all key/value_states to cache to be re-used for fast auto-regressive generation + cache_position = cache_position if not is_cross_attention else None + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, {"cache_position": cache_position} + ) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + attn_output = torch.matmul(attn_probs, value_states) + + if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights, past_key_value + + +class WhisperFlashAttention2(WhisperAttention): + """ + Whisper flash attention module. This module inherits from `WhisperAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[EncoderDecoderCache] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if isinstance(past_key_value, StaticCache): + raise ValueError( + "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " + "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" + ) + # WhisperFlashAttention2 attention does not support output_attentions + if output_attentions: + raise ValueError("WhisperFlashAttention2 attention does not support output_attentions") + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) + + if past_key_value is not None: + is_updated = past_key_value.is_updated.get(self.layer_idx) + if is_cross_attention: + # after the first generated id, we can subsequently re-use all key/value_states from cache + past_key_value.is_updated[self.layer_idx] = True + past_key_value = past_key_value.cross_attention_cache + else: + past_key_value = past_key_value.self_attention_cache + + # use key_value_states if cross attention + current_states = key_value_states if key_value_states is not None else hidden_states + if is_cross_attention and past_key_value and is_updated: + # reuse k,v, cross_attentions + key_states = past_key_value.key_cache[self.layer_idx] + value_states = past_key_value.value_cache[self.layer_idx] + else: + key_states = self._shape(self.k_proj(current_states), -1, bsz) + value_states = self._shape(self.v_proj(current_states), -1, bsz) + if past_key_value is not None: + # save all key/value_states to cache to be re-used for fast auto-regressive generation + cache_position = cache_position if not is_cross_attention else None + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, {"cache_position": cache_position} + ) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] + # We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + causal_mask = attention_mask + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (LlamaRMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = _flash_attention_forward( + query_states, + key_states, + value_states, + causal_mask, + tgt_len, + dropout=self.dropout, + is_causal=self.is_causal, + use_top_left_mask=self._flash_attn_uses_top_left_mask, + ) + + attn_output = attn_output.reshape(bsz, tgt_len, -1) + attn_output = self.out_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class WhisperSdpaAttention(WhisperAttention): + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[EncoderDecoderCache] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + if output_attentions or layer_head_mask is not None: + # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "WhisperModel is using WhisperSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" + ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states, + key_value_states=key_value_states, + past_key_value=past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + cache_position=cache_position, + ) + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) + + if past_key_value is not None: + is_updated = past_key_value.is_updated.get(self.layer_idx) + if is_cross_attention: + # after the first generated id, we can subsequently re-use all key/value_states from cache + past_key_value.is_updated[self.layer_idx] = True + past_key_value = past_key_value.cross_attention_cache + else: + past_key_value = past_key_value.self_attention_cache + + # use key_value_states if cross attention + current_states = key_value_states if key_value_states is not None else hidden_states + if is_cross_attention and past_key_value and is_updated: + # reuse k,v, cross_attentions + key_states = past_key_value.key_cache[self.layer_idx] + value_states = past_key_value.value_cache[self.layer_idx] + else: + key_states = self._shape(self.k_proj(current_states), -1, bsz) + value_states = self._shape(self.v_proj(current_states), -1, bsz) + if past_key_value is not None: + # save all key/value_states to cache to be re-used for fast auto-regressive generation + cache_position = cache_position if not is_cross_attention else None + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, {"cache_position": cache_position} + ) + + causal_mask = attention_mask + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. + is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False + + # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, + # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + dropout_p=self.dropout if self.training else 0.0, + is_causal=is_causal, + ) + + if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, None, past_key_value + + +WHISPER_ATTENTION_CLASSES = { + "eager": WhisperAttention, + # "flash_attention_2": WhisperFlashAttention2, + "sdpa": WhisperSdpaAttention, +} + + +# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper, MBART->WHISPER +class WhisperVQEncoderLayer(nn.Module): + def __init__(self, config: WhisperVQConfig, is_causal=False): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + is_causal=is_causal + ) + self.is_causal = is_causal + if self.is_causal: + assert isinstance(self.self_attn, WhisperSdpaAttention), "Causal attention is only supported for SDPA" + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + output_attentions: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask if not self.is_causal else None, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class WhisperDecoderLayer(nn.Module): + def __init__(self, config: WhisperVQConfig, layer_idx: int = None): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + layer_idx=layer_idx, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + layer_idx=layer_idx, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[EncoderDecoderCache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + cache_position: Optional[torch.LongTensor] = None, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + cache_position=cache_position, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 1 of present_key_value tuple + present_key_value = (present_key_value, cross_attn_present_key_value) + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class WhisperPreTrainedModel(PreTrainedModel): + config_class = WhisperVQConfig + base_model_prefix = "model" + main_input_name = "input_features" + supports_gradient_checkpointing = True + _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + _supports_static_cache = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, (nn.Linear, nn.Conv1d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, WhisperVQEncoder): + with torch.no_grad(): + embed_positions = module.embed_positions.weight + embed_positions.copy_(sinusoids(*embed_positions.shape)) + + def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): + """ + Computes the output length of the convolutional layers + """ + input_lengths = (input_lengths - 1) // 2 + 1 + + return input_lengths + + +WHISPER_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`WhisperConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +WHISPER_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): + Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by + loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via + the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a + tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should read + [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are + four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and + in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or + when `config.use_cache=True` + + Two formats are allowed: + - An [`~cache_utils.EncoderDecoderCache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache + in the correct position and to infer the complete sequence length. +""" + +WHISPER_ENCODER_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): + Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by + loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via + the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a + tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class WhisperVQEncoder(WhisperPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`WhisperEncoderLayer`]. + + Args: + config: WhisperConfig + """ + + def __init__(self, config: WhisperVQConfig): + super().__init__(config) + self.config = config + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.num_mel_bins = config.num_mel_bins + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_source_positions + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + if config.encoder_causal_convolution: + conv_class = CausalConv1d + else: + conv_class = nn.Conv1d + self.conv1 = conv_class(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) + self.conv2 = conv_class(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) + + self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) + self.embed_positions.requires_grad_(False) + if config.quantize_encoder_only: + self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, + is_causal=config.encoder_causal_attention or config.quantize_causal_encoder) + for _ in range(config.quantize_position)]) + else: + self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, is_causal=config.encoder_causal_attention or ( + config.quantize_causal_encoder and layer_id < config.quantize_position)) for layer_id in + range(config.encoder_layers)]) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Parameters related to pooling layer + self.pooling_layer = None + # Parameters related to quantization layer + self.codebook = None + self.embed_positions2 = None + self.quantize_loss = None + self.num_active_codes = None + self.quantize_ema_count = 0 + # Save hiddens + self.save_hidden_dir = None + self.save_hidden_position = None + # Initialize weights and apply final processing + self.init_pooling_layer(config) + self.init_quantize_layer(config) + self.post_init() + + def init_pooling_layer(self, config: WhisperVQConfig): + if config.pooling_kernel_size is not None: + if config.pooling_type == "max": + self.pooling_layer = nn.MaxPool1d(kernel_size=config.pooling_kernel_size) + elif config.pooling_type == "avg": + self.pooling_layer = nn.AvgPool1d(kernel_size=config.pooling_kernel_size) + else: + raise NotImplementedError(f"Pooling type {config.pooling_type} not implemented") + + def init_quantize_layer(self, config: WhisperVQConfig, quantize_load_codebook=None): + if config.quantize_vocab_size is not None: + if config.pooling_position is not None: + assert config.quantize_position >= config.pooling_position + self.codebook = nn.Embedding(config.quantize_vocab_size, self.config.d_model) + if quantize_load_codebook is not None: + init_codes = np.load(quantize_load_codebook) + self.codebook.weight.data.copy_(torch.from_numpy(init_codes)) + max_source_positions = self.max_source_positions + if config.pooling_kernel_size is not None: + max_source_positions = math.ceil(max_source_positions / self.config.pooling_kernel_size) + self.embed_positions2 = nn.Embedding(max_source_positions, self.config.d_model) + self.embed_positions2.weight.data.copy_(self.embed_positions.weight.data[:max_source_positions]) + if config.quantize_ema_decay is not None: + self.codebook.weight.requires_grad = False + self.register_buffer("ema_count", torch.ones(config.quantize_vocab_size, dtype=torch.float)) + self.register_buffer("ema_weight", self.codebook.weight.data.clone().float()) + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def get_input_embeddings(self) -> nn.Module: + return self.conv1 + + def set_input_embeddings(self, value: nn.Module): + self.conv1 = value + + def get_block_causal_attention_mask(self, attention_mask, block_size=50): + dtype = self.dtype + batch_size, seq_length = attention_mask.shape + causal_mask = torch.torch.tril( + torch.ones(1, seq_length, seq_length, dtype=torch.bool, device=attention_mask.device)) + block_square_mask = [] + for start in range(0, seq_length, block_size): + end = min(start + block_size, seq_length) + length = end - start + block_square_mask.append(causal_mask.new_ones((length, length))) + block_square_mask = torch.block_diag(*block_square_mask) + block_causal_mask = causal_mask | block_square_mask + block_causal_mask = block_causal_mask & attention_mask[:, None, :] + block_causal_mask = block_causal_mask.to(dtype=dtype) # fp16 compatibility + block_causal_mask = (1.0 - block_causal_mask) * torch.finfo(dtype).min + block_causal_mask = block_causal_mask.unsqueeze(1) + return block_causal_mask + + def forward( + self, + input_features, + attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + quantized_token_ids=None + ): + r""" + Args: + input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): + Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be + obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a + `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into + `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding + and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] + attention_mask (`torch.Tensor`)`, *optional*): + Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, + but it is not used. By default the silence in the input log mel spectrogram are ignored. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + # expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] + # if input_features.shape[-1] != expected_seq_length: + # raise ValueError( + # f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." + # ) + + batch_size, feature_size, seq_length = input_features.shape + seq_length = seq_length // (self.conv1.stride[0] * self.conv2.stride[0]) + + attention_mask = attention_mask[:, :: self.conv1.stride[0] * self.conv2.stride[0]] + if self.config.quantize_causal_block_size is not None: + extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, + block_size=self.config.quantize_causal_block_size) + else: + extended_attention_mask = self.get_extended_attention_mask(attention_mask, (batch_size, seq_length)) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + inputs_embeds = nn.functional.gelu(self.conv1(input_features)) + inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) + + inputs_embeds = inputs_embeds.permute(0, 2, 1) + embed_pos = self.embed_positions.weight + + hidden_states = inputs_embeds + embed_pos[:seq_length] + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + assert attention_mask.shape[-1] == hidden_states.shape[1] + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + extended_attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + extended_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if idx + 1 == self.config.pooling_position and self.config.pooling_kernel_size is not None: + hidden_states = hidden_states.permute(0, 2, 1) + if hidden_states.shape[-1] % self.config.pooling_kernel_size != 0: + hidden_states = torch.nn.functional.pad(hidden_states, ( + 0, self.config.pooling_kernel_size - hidden_states.shape[-1] % self.config.pooling_kernel_size)) + hidden_states = self.pooling_layer(hidden_states).permute(0, 2, 1) + attention_mask = attention_mask[:, ::self.config.pooling_kernel_size] + if self.config.quantize_causal_block_size is not None: + extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, block_size=self.config.quantize_causal_block_size // self.config.pooling_kernel_size) + else: + extended_attention_mask = self.get_extended_attention_mask(attention_mask, ( + batch_size, seq_length // self.config.pooling_kernel_size)) + + if idx + 1 == self.config.quantize_position and self.config.quantize_vocab_size is not None: + if quantized_token_ids is not None: + hidden_states = self.codebook(quantized_token_ids) + else: + hidden_quantized, indices_flat, distances = vector_quantize(hidden_states, self.codebook.weight) + quantized_token_ids = indices_flat.reshape(batch_size, hidden_quantized.shape[1]) + if self.training: + encodings = torch.nn.functional.one_hot(indices_flat, self.config.quantize_vocab_size).float() + encodings = encodings * attention_mask.reshape(-1, 1) + n = torch.sum(encodings, dim=0) + torch.distributed.all_reduce(n, op=torch.distributed.ReduceOp.SUM) + self.num_active_codes = n.nonzero().shape[0] + if self.config.quantize_ema_decay: + hidden_flat = hidden_states.detach().float().reshape(-1, hidden_states.shape[-1]) + with torch.autocast(device_type='cuda', dtype=torch.float32): + dw = torch.matmul(encodings.t(), hidden_flat) + torch.distributed.all_reduce(dw, op=torch.distributed.ReduceOp.SUM) + self.ema_count = self.ema_count * self.config.quantize_ema_decay + ( + 1 - self.config.quantize_ema_decay) * n + total_count = torch.sum(self.ema_count) + self.ema_count = (self.ema_count + 1e-5) / ( + total_count + self.config.quantize_vocab_size * 1e-5) * total_count + self.ema_weight = self.ema_weight * self.config.quantize_ema_decay + ( + 1 - self.config.quantize_ema_decay) * dw + self.codebook.weight.data = self.ema_weight / self.ema_count.unsqueeze(1) + self.quantize_loss = self.config.quantize_loss_scale * self.config.quantize_commit_coefficient * mse_loss_with_mask( + hidden_states, hidden_quantized.detach(), attention_mask) + self.quantize_ema_count += 1 + if self.config.quantize_restart_interval is not None and self.quantize_ema_count % self.config.quantize_restart_interval == 0: + rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size() + segment_vocab_size = self.config.quantize_vocab_size // world_size + start_idx = segment_vocab_size * rank + ema_count_segment = self.ema_count[start_idx: start_idx + segment_vocab_size] + threshold = 1 * ( + self.config.quantize_ema_decay ** self.config.quantize_restart_interval) + update_indices = (ema_count_segment < threshold).nonzero()[:, 0] + start_idx + num_update = update_indices.shape[0] + mask_flat = attention_mask.reshape(-1) > 0 + hidden_selected = hidden_flat[mask_flat] + hidden_update = hidden_selected[random.sample(range(len(hidden_selected)), num_update)] + num_update = torch.as_tensor([num_update], dtype=torch.long, + device=hidden_states.device) + num_update_list = [torch.as_tensor([0], dtype=torch.long, device=hidden_states.device) + for _ + in range(world_size)] + torch.distributed.all_gather(num_update_list, num_update) + update_indices_list = [ + torch.zeros(num.item(), dtype=torch.long, device=hidden_states.device) for num in + num_update_list] + torch.distributed.all_gather(update_indices_list, update_indices) + update_indices = torch.cat(update_indices_list) + hidden_update_list = [ + torch.zeros(num.item(), hidden_flat.shape[-1], dtype=hidden_update.dtype, + device=hidden_states.device) for num in num_update_list] + torch.distributed.all_gather(hidden_update_list, hidden_update) + hidden_update = torch.cat(hidden_update_list) + self.codebook.weight.data[update_indices] = hidden_update + self.ema_count[update_indices] = 1 + self.ema_weight[update_indices] = hidden_update + if torch.distributed.get_rank() == 0: + print(f"restart {len(update_indices)} tokens") + else: + loss = self.config.quantize_loss_scale * ( + self.config.quantize_commit_coefficient * mse_loss_with_mask(hidden_states, + hidden_quantized.detach(), + attention_mask) + mse_loss_with_mask( + hidden_quantized, hidden_states.detach(), attention_mask)) + self.quantize_loss = loss + hidden_states = hidden_states + (hidden_quantized - hidden_states).detach() + else: + hidden_states = hidden_quantized + hidden_states = hidden_states + self.embed_positions2.weight[:hidden_states.shape[1]] + + if idx + 1 == self.save_hidden_position: + import numpy as np + import uuid + to_save = [] + for batch_idx, hidden_state in enumerate(hidden_states): + for seq_idx, hidden in enumerate(hidden_state): + if attention_mask[batch_idx, seq_idx]: + to_save.append(hidden.detach().cpu().numpy()) + np.save(os.path.join(self.save_hidden_dir, f"{str(uuid.uuid4())}.npy"), to_save) + if not self.config.quantize_encoder_only: + hidden_states = self.layer_norm(hidden_states) + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return QuantizedBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, + quantized_token_ids=quantized_token_ids, + ) + + +class WhisperVQDecoder(WhisperPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] + + Args: + config: WhisperConfig + """ + + main_input_name = "input_ids" + + def __init__(self, config: WhisperVQConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_target_positions + self.max_source_positions = config.max_source_positions + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) + + self.layers = nn.ModuleList( + [WhisperDecoderLayer(config, layer_idx) for layer_idx in range(config.decoder_layers)] + ) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self._use_sdpa = config._attn_implementation == "sdpa" + + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + inputs_embeds=None, + position_ids=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + cache_position=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder.] + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention + on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are + four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and + in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or + when `config.use_cache=True` + + Two formats are allowed: + - An [`~cache_utils.EncoderDecoderCache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of + shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing + `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more + control over how to convert `input_ids` indices into associated vectors than the model's internal + embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. It is used to update the + cache in the correct position and to infer the complete sequence length. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + assert encoder_attention_mask.shape[-1] == encoder_hidden_states.shape[1] + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + + return_legacy_cache = False + return_self_attention_cache = False + if use_cache or past_key_values is not None: + if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): + return_self_attention_cache = True + past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) + elif not isinstance(past_key_values, EncoderDecoderCache): + return_legacy_cache = True + logger.warning_once( + "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. " + "You should pass an instance of `EncoderDecoderCache` instead, e.g. " + "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." + ) + past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) + + past_key_values_length = 0 + if cache_position is not None: + past_key_values_length = cache_position[0] + elif past_key_values is not None: + past_key_values_length = past_key_values.get_seq_length() + + if cache_position is None: + cache_position = torch.arange( + past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + # embed positions + if input_ids is not None: + positions = self.embed_positions( + input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids + ) + else: + positions = self.embed_positions( + inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids + ) + + hidden_states = inputs_embeds + positions.to(inputs_embeds.device) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + causal_mask = self._update_causal_mask( + attention_mask, + inputs_embeds, + cache_position, + past_key_values.self_attention_cache if past_key_values is not None else None, + output_attentions, + ) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." + ) + use_cache = False + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + encoder_hidden_states, + encoder_extended_attention_mask, # encoder attention mask + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, # past_key_value + output_attentions, + use_cache, + cache_position, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_values if use_cache else None, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = past_key_values if use_cache else None + if return_self_attention_cache: + next_cache = past_key_values.self_attention_cache + if return_legacy_cache: + next_cache = past_key_values.to_legacy_cache() + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool, + ): + # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static + # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. + # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using + # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 + + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and 0.0 in attention_mask: + return attention_mask + return None + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_length() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=target_length, + dtype=dtype, + device=device, + min_dtype=min_dtype, + cache_position=cache_position, + batch_size=input_tensor.shape[0], + ) + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + +@add_start_docstrings( + "The bare Whisper Model outputting raw hidden-states without any specific head on top.", + WHISPER_START_DOCSTRING, +) +class WhisperVQModel(WhisperPreTrainedModel): + def __init__(self, config: WhisperVQConfig): + super().__init__(config) + + self.encoder = WhisperVQEncoder(config) + self.decoder = WhisperVQDecoder(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.decoder.embed_tokens = value + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_encoder(self): + """ + Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will + not be updated during training. + """ + self.encoder._freeze_parameters() + + def _mask_input_features( + self, + input_features: torch.FloatTensor, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return input_features + + # generate indices & apply SpecAugment along time axis + batch_size, hidden_size, sequence_length = input_features.size() + + if self.config.mask_time_prob > 0 and self.training: + # generate indices & apply SpecAugment along time axis + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) + mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) + input_features[mask_time_indices] = 0 + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) + input_features[mask_feature_indices] = 0 + + return input_features + + @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, + decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, + decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + quantized_token_ids: Optional[torch.LongTensor] = None + ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: + r""" + Returns: + + Example: + ```python + >>> import torch + >>> from transformers import AutoFeatureExtractor, WhisperModel + >>> from datasets import load_dataset + + >>> model = WhisperVQModel.from_pretrained("openai/whisper-base") + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") + >>> input_features = inputs.input_features + >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id + >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state + >>> list(last_hidden_state.shape) + [1, 2, 512] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + input_features = self._mask_input_features(input_features, attention_mask=attention_mask) + + encoder_outputs = self.encoder( + input_features, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + quantized_token_ids=quantized_token_ids + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + attention_mask = attention_mask[:, ::self.encoder.conv1.stride[0] * self.encoder.conv2.stride[0]] + if self.encoder.config.pooling_kernel_size is not None: + attention_mask = attention_mask[:, ::self.encoder.config.pooling_kernel_size] + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_attention_mask=attention_mask, + encoder_hidden_states=encoder_outputs[0], + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + position_ids=decoder_position_ids, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.", + WHISPER_START_DOCSTRING, +) +class WhisperVQForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedModel): + base_model_prefix = "model" + _tied_weights_keys = ["proj_out.weight"] + + def __init__(self, config: WhisperVQConfig): + super().__init__(config) + self.model = WhisperVQModel(config) + self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) + self.quantize_loss = None + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def get_output_embeddings(self): + return self.proj_out + + def set_output_embeddings(self, new_embeddings): + self.proj_out = new_embeddings + + def get_input_embeddings(self) -> nn.Module: + return self.model.get_input_embeddings() + + def freeze_encoder(self): + """ + Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will + not be updated during training. + """ + self.model.encoder._freeze_parameters() + + @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, + decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, + decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + quantized_token_ids: Optional[torch.LongTensor] = None + ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` + or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is + only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoProcessor, WhisperForConditionalGeneration + >>> from datasets import load_dataset + + >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") + >>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") + + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + + >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") + >>> input_features = inputs.input_features + + >>> generated_ids = model.generate(inputs=input_features) + + >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> transcription + ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_features, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + decoder_inputs_embeds=decoder_inputs_embeds, + decoder_position_ids=decoder_position_ids, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + quantized_token_ids=quantized_token_ids + ) + lm_logits = self.proj_out(outputs[0]) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # move labels to correct device to enable PP + labels = labels.to(lm_logits.device) + loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) + if self.training and self.model.encoder.quantize_loss is not None: + loss = loss + self.model.encoder.quantize_loss + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + use_cache=None, + encoder_outputs=None, + attention_mask=None, + decoder_attention_mask=None, + cache_position=None, + quantized_token_ids=None, + **kwargs, + ): + decoder_position_ids = None + if decoder_attention_mask is not None: + decoder_position_ids = (decoder_attention_mask.cumsum(-1) - 1).clamp(min=0) + + past_length = 0 + if past_key_values is not None: + if isinstance(past_key_values, EncoderDecoderCache): + past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() + else: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + if decoder_position_ids is not None: + decoder_position_ids = decoder_position_ids[:, remove_prefix_length:] + # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. + decoder_position_ids = decoder_position_ids.clone(memory_format=torch.contiguous_format) + + if cache_position is None: + cache_position = torch.arange( + past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device + ) + elif use_cache: + cache_position = cache_position[-decoder_input_ids.shape[1]:] + + # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise + # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 + decoder_input_ids = decoder_input_ids.contiguous() + + if ( + isinstance(past_key_values, EncoderDecoderCache) + and ( + isinstance(past_key_values.self_attention_cache, StaticCache) + or isinstance(past_key_values.cross_attention_cache, StaticCache) + ) + and decoder_attention_mask is not None + and decoder_attention_mask.ndim == 2 + ): + batch_size, sequence_length = decoder_input_ids.shape + device = decoder_input_ids.device + + dtype = self.proj_out.weight.dtype + min_dtype = torch.finfo(dtype).min + + decoder_attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( + decoder_attention_mask, + sequence_length=sequence_length, + target_length=past_key_values.self_attention_cache.get_max_length(), + dtype=dtype, + device=device, + min_dtype=min_dtype, + cache_position=cache_position, + batch_size=batch_size, + ) + + return { + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "use_cache": use_cache, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "cache_position": cache_position, + "quantized_token_ids": quantized_token_ids + } + + def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs): + if self.config.skip_language_detection: + return torch.as_tensor([[generation_config.decoder_start_token_id] for _ in range(batch_size)], + dtype=torch.long, device=self.device).expand(batch_size, -1) + else: + return super()._retrieve_init_tokens(input_features, batch_size, generation_config, config, + num_segment_frames, kwargs) + + +class WhisperDecoderWrapper(WhisperPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + config.is_encoder_decoder = False + self.decoder = WhisperVQDecoder(config) + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.decoder.embed_tokens = value + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) + + +@add_start_docstrings( + """ + Whisper decoder with a language modeling head on top (linear layer with weights tied to the input embeddings). + """, + WHISPER_START_DOCSTRING, +) +class WhisperForCausalLM(WhisperPreTrainedModel): + _tied_weights_keys = ["proj_out.weight"] + main_input_name = "input_ids" + + def __init__(self, config): + super().__init__(config) + config.is_encoder_decoder = False + self.model = WhisperDecoderWrapper(config) + + self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.proj_out + + def set_output_embeddings(self, new_embeddings): + self.proj_out = new_embeddings + + def get_input_embeddings(self) -> nn.Module: + return self.model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.model.set_input_embeddings(value) + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + encoder_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains + pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If + `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache + in the correct position and to infer the complete sequence length. + + Returns: + + Example: + + ```python + >>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor + >>> import torch + >>> from datasets import load_dataset + + >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") + >>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-large-v2") + + >>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2") + + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> sample = ds[0]["audio"] + >>> input_features = processor( + ... sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" + ... ).input_features + + >>> predicted_ids = model.generate(input_features, assistant_model=assistant_model) + + >>> # decode token ids to text + >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] + >>> transcription + ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # If the user passed a tuple or `BaseModelOutput` for encoder_outputs, we extract only the hidden states + if isinstance(encoder_outputs, (BaseModelOutput, tuple, list)): + encoder_outputs = encoder_outputs[0] + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_outputs, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + logits = self.proj_out(outputs[0]) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + use_cache=None, + encoder_outputs=None, + attention_mask=None, + cache_position=None, + **kwargs, + ): + past_length = 0 + if past_key_values is not None: + if isinstance(past_key_values, (Cache, EncoderDecoderCache)): + past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() + else: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + if cache_position is None: + cache_position = torch.arange(past_length, past_length + input_ids.shape[1], device=input_ids.device) + elif use_cache: + cache_position = cache_position[-input_ids.shape[1]:] + + return { + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "input_ids": input_ids, + "use_cache": use_cache, + "attention_mask": attention_mask, + "cache_position": cache_position, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + Whisper Encoder Model with a sequence classification head on top (a linear layer over the pooled output) for tasks + like SUPERB Keyword Spotting. + """, + WHISPER_ENCODER_INPUTS_DOCSTRING, +) +class WhisperForAudioClassification(WhisperPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.encoder = WhisperVQEncoder(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) + self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def freeze_encoder(self): + """ + Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will + not be updated during training. Only the projection layers and classification head will be updated. + """ + self.encoder._freeze_parameters() + + def get_input_embeddings(self) -> nn.Module: + return self.encoder.get_input_embeddings() + + def set_input_embeddings(self, value: nn.Module): + self.encoder.set_input_embeddings(value) + + @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_features: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification + >>> from datasets import load_dataset + + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") + >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") + + >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) + >>> sample = next(iter(ds)) + + >>> inputs = feature_extractor( + ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" + ... ) + >>> input_features = inputs.input_features + + >>> with torch.no_grad(): + ... logits = model(input_features).logits + + >>> predicted_class_ids = torch.argmax(logits).item() + >>> predicted_label = model.config.id2label[predicted_class_ids] + >>> predicted_label + 'Afrikaans' + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + if self.config.use_weighted_layer_sum: + output_hidden_states = True + elif output_hidden_states is None: + output_hidden_states = self.config.output_hidden_states + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_features, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = encoder_outputs[0] + + hidden_states = self.projector(hidden_states) + pooled_output = hidden_states.mean(dim=1) + + logits = self.classifier(pooled_output) + + loss = None + + if labels is not None: + loss_fct = CrossEntropyLoss() + # move labels to correct device to enable PP + labels = labels.to(logits.device) + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + encoder_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + )