--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # AudioLDM AudioLDM is a latent text-to-audio diffusion model capable of generating realistic audio samples given any text input. It is available in the 🧨 Diffusers library from v0.15.0 onwards. # Model Details AudioLDM was proposed in the paper [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://arxiv.org/abs/2301.12503) by Haohe Liu et al. Inspired by [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion-v1-4), AudioLDM is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/laion/clap-htsat-unfused) latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional sound effects, human speech and music. # Checkpoint Details This is the **medium** version of the AudioLDM model, which has a larger UNet, CLAP audio projection dim, and is trained with audio embeddings as condition. The four AudioLDM checkpoints are summarised below: **Table 1:** Summary of the AudioLDM checkpoints. | Checkpoint | Training Steps | Audio conditioning | CLAP audio dim | UNet dim | Params | |-----------------------------------------------------------------------|----------------|--------------------|----------------|----------|--------| | [audioldm-s-full](https://huggingface.co/cvssp/audioldm) | 1.5M | No | 768 | 128 | 421M | | [audioldm-s-full-v2](https://huggingface.co/cvssp/audioldm-s-full-v2) | > 1.5M | No | 768 | 128 | 421M | | [audioldm-m-full](https://huggingface.co/cvssp/audioldm-m-full) | 1.5M | Yes | 1024 | 192 | 652M | | [audioldm-l-full](https://huggingface.co/cvssp/audioldm-l-full) | 1.5M | No | 768 | 256 | 975M | ## Model Sources - [**Original Repository**](https://github.com/haoheliu/AudioLDM) - [**🧨 Diffusers Pipeline**](https://huggingface.co/docs/diffusers/api/pipelines/audioldm) - [**Paper**](https://arxiv.org/abs/2301.12503) - [**Demo**](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation) # Usage First, install the required packages: ``` pip install --upgrade diffusers transformers accelerate ``` ## Text-to-Audio For text-to-audio generation, the [AudioLDMPipeline](https://huggingface.co/docs/diffusers/api/pipelines/audioldm) can be used to load pre-trained weights and generate text-conditional audio outputs: ```python from diffusers import AudioLDMPipeline import torch repo_id = "cvssp/audioldm-m-full" pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Techno music with a strong, upbeat tempo and high melodic riffs" audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0] ``` The resulting audio output can be saved as a .wav file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=16000, data=audio) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(audio, rate=16000) ``` ## Tips Prompts: * Descriptive prompt inputs work best: you can use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g., "water stream in a forest" instead of "stream"). * It's best to use general terms like 'cat' or 'dog' instead of specific names or abstract objects that the model may not be familiar with. Inference: * The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument: higher steps give higher quality audio at the expense of slower inference. * The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument. # Citation **BibTeX:** ``` @article{liu2023audioldm, title={AudioLDM: Text-to-Audio Generation with Latent Diffusion Models}, author={Liu, Haohe and Chen, Zehua and Yuan, Yi and Mei, Xinhao and Liu, Xubo and Mandic, Danilo and Wang, Wenwu and Plumbley, Mark D}, journal={arXiv preprint arXiv:2301.12503}, year={2023} } ```