--- library_name: transformers license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: distilbert-base-multilingual-cased-aoe-test-hyperparamter-test-results-unchecked results: [] --- # distilbert-base-multilingual-cased-aoe-test-hyperparamter-test-results-unchecked This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3312 - Accuracy: 0.9072 - Recall: 0.6316 - Precision: 0.7 - F1: 0.6640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.324640265180116e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 23 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5941 | 1.0 | 915 | 0.3405 | 0.9050 | 0.5414 | 0.7347 | 0.6234 | | 0.2929 | 2.0 | 1830 | 0.3312 | 0.9072 | 0.6316 | 0.7 | 0.6640 | | 0.1391 | 3.0 | 2745 | 0.4197 | 0.9072 | 0.6090 | 0.7105 | 0.6559 | | 0.3502 | 4.0 | 3660 | 0.4577 | 0.9083 | 0.6241 | 0.7094 | 0.664 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3