--- library_name: transformers license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-multilingual-cased-aoe-en-indo results: [] --- # distilbert-base-multilingual-cased-aoe-en-indo This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3997 - Accuracy: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2904 | 1.0 | 292 | 0.3097 | 0.8698 | | 0.3509 | 2.0 | 584 | 0.2919 | 0.8745 | | 0.2116 | 3.0 | 876 | 0.3302 | 0.8728 | | 0.225 | 4.0 | 1168 | 0.3540 | 0.8702 | | 0.1239 | 5.0 | 1460 | 0.3997 | 0.8715 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3