import os import sys GPU_NUMBER = [0] # CHANGE WITH MULTIGPU os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(s) for s in GPU_NUMBER]) os.environ["NCCL_DEBUG"] = "INFO" import ast import datetime import math import pickle import subprocess from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn.functional as F from datasets import Dataset, load_from_disk from sklearn import preprocessing from sklearn.metrics import ( ConfusionMatrixDisplay, accuracy_score, auc, confusion_matrix, roc_auc_score, roc_curve, ) # imports from sklearn.model_selection import StratifiedKFold, train_test_split from tqdm.notebook import tqdm from transformers import BertForTokenClassification, Trainer from transformers.training_args import TrainingArguments from geneformer import DataCollatorForGeneClassification, EmbExtractor from geneformer.pretrainer import token_dictionary device = torch.device("cuda" if torch.cuda.is_available() else "cpu") from geneformer import TranscriptomeTokenizer def vote(logit_pair): a, b = logit_pair if a > b: return 0 elif b > a: return 1 elif a == b: return "tie" def py_softmax(vector): e = np.exp(vector) return e / e.sum() # Identifies cosine similarity between two embeddings. 0 is perfectly dissimilar and 1 is perfectly similar def similarity(tensor1, tensor2, cosine=True): if cosine == False: if tensor1.ndimension() > 1: tensor1 = tensor1.view(1, -1) if tensor2.ndimension() > 1: tensor2 = tensor2.view(1, -1) dot_product = torch.matmul(tensor1, tensor2) norm_tensor1 = torch.norm(tensor1) norm_tensor2 = torch.norm(tensor2) epsilon = 1e-8 similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon) similarity = (similarity.item() + 1) / 2 else: if tensor1.shape != tensor2.shape: raise ValueError("Input tensors must have the same shape.") # Compute cosine similarity using PyTorch's dot product function dot_product = torch.dot(tensor1, tensor2) norm_tensor1 = torch.norm(tensor1) norm_tensor2 = torch.norm(tensor2) # Avoid division by zero by adding a small epsilon epsilon = 1e-8 similarity = dot_product / (norm_tensor1 * norm_tensor2 + epsilon) return similarity.item() # Plots heatmap between different classes/labels def plot_similarity_heatmap(similarities): classes = list(similarities.keys()) classlen = len(classes) arr = np.zeros((classlen, classlen)) for i, c in enumerate(classes): for j, cc in enumerate(classes): if cc == c: val = 1.0 else: val = similarities[c][cc] arr[i][j] = val plt.figure(figsize=(8, 6)) plt.imshow(arr, cmap="inferno", vmin=0, vmax=1) plt.colorbar() plt.xticks(np.arange(classlen), classes, rotation=45, ha="right") plt.yticks(np.arange(classlen), classes) plt.title("Similarity Heatmap") plt.savefig("similarity_heatmap.png") # get cross-validated mean and sd metrics def get_cross_valid_metrics(all_tpr, all_roc_auc, all_tpr_wt): wts = [count / sum(all_tpr_wt) for count in all_tpr_wt] all_weighted_tpr = [a * b for a, b in zip(all_tpr, wts)] mean_tpr = np.sum(all_weighted_tpr, axis=0) mean_tpr[-1] = 1.0 all_weighted_roc_auc = [a * b for a, b in zip(all_roc_auc, wts)] roc_auc = np.sum(all_weighted_roc_auc) roc_auc_sd = math.sqrt(np.average((all_roc_auc - roc_auc) ** 2, weights=wts)) return mean_tpr, roc_auc, roc_auc_sd def validate( data, targets, labels, nsplits, subsample_size, training_args, freeze_layers, output_dir, num_proc, num_labels, pre_model, ): # initiate eval metrics to return num_classes = len(set(labels)) mean_fpr = np.linspace(0, 1, 100) # create 80/20 train/eval splits targets_train, targets_eval, labels_train, labels_eval = train_test_split( targets, labels, test_size=0.25, shuffle=True ) label_dict_train = dict(zip(targets_train, labels_train)) label_dict_eval = dict(zip(targets_eval, labels_eval)) # function to filter by whether contains train or eval labels def if_contains_train_label(example): a = label_dict_train.keys() b = example["input_ids"] return not set(a).isdisjoint(b) def if_contains_eval_label(example): a = label_dict_eval.keys() b = example["input_ids"] return not set(a).isdisjoint(b) # filter dataset for examples containing classes for this split print(f"Filtering training data") trainset = data.filter(if_contains_train_label, num_proc=num_proc) print( f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n" ) print(f"Filtering evalation data") evalset = data.filter(if_contains_eval_label, num_proc=num_proc) print(f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n") # minimize to smaller training sample training_size = min(subsample_size, len(trainset)) trainset_min = trainset.select([i for i in range(training_size)]) eval_size = min(training_size, len(evalset)) half_training_size = round(eval_size / 2) evalset_train_min = evalset.select([i for i in range(half_training_size)]) evalset_oos_min = evalset.select([i for i in range(half_training_size, eval_size)]) # label conversion functions def generate_train_labels(example): example["labels"] = [ label_dict_train.get(token_id, -100) for token_id in example["input_ids"] ] return example def generate_eval_labels(example): example["labels"] = [ label_dict_eval.get(token_id, -100) for token_id in example["input_ids"] ] return example # label datasets print(f"Labeling training data") trainset_labeled = trainset_min.map(generate_train_labels) print(f"Labeling evaluation data") evalset_train_labeled = evalset_train_min.map(generate_eval_labels) print(f"Labeling evaluation OOS data") evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels) # load model model = BertForTokenClassification.from_pretrained( pre_model, num_labels=num_labels, output_attentions=False, output_hidden_states=False, ) if freeze_layers is not None: modules_to_freeze = model.bert.encoder.layer[:freeze_layers] for module in modules_to_freeze: for param in module.parameters(): param.requires_grad = False model = model.to(device) # add output directory to training args and initiate training_args["output_dir"] = output_dir training_args_init = TrainingArguments(**training_args) # create the trainer trainer = Trainer( model=model, args=training_args_init, data_collator=DataCollatorForGeneClassification(), train_dataset=trainset_labeled, eval_dataset=evalset_train_labeled, ) # train the gene classifier trainer.train() trainer.save_model(output_dir) fpr, tpr, interp_tpr, conf_mat = classifier_predict( trainer.model, evalset_oos_labeled, 200, mean_fpr ) auc_score = auc(fpr, tpr) return fpr, tpr, auc_score # cross-validate gene classifier def cross_validate( data, targets, labels, nsplits, subsample_size, training_args, freeze_layers, output_dir, num_proc, num_labels, pre_model, ): # check if output directory already written to # ensure not overwriting previously saved model model_dir_test = os.path.join(output_dir, "ksplit0/models/pytorch_model.bin") # if os.path.isfile(model_dir_test) == True: # raise Exception("Model already saved to this directory.") device = device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # initiate eval metrics to return num_classes = len(set(labels)) mean_fpr = np.linspace(0, 1, 100) all_tpr = [] all_roc_auc = [] all_tpr_wt = [] label_dicts = [] confusion = np.zeros((num_classes, num_classes)) # set up cross-validation splits skf = StratifiedKFold(n_splits=nsplits, random_state=0, shuffle=True) # train and evaluate iteration_num = 0 for train_index, eval_index in tqdm(skf.split(targets, labels)): if len(labels) > 500: print("early stopping activated due to large # of training examples") if iteration_num == 3: break print(f"****** Crossval split: {iteration_num}/{nsplits-1} ******\n") # generate cross-validation splits targets_train, targets_eval = targets[train_index], targets[eval_index] labels_train, labels_eval = labels[train_index], labels[eval_index] label_dict_train = dict(zip(targets_train, labels_train)) label_dict_eval = dict(zip(targets_eval, labels_eval)) label_dicts += ( iteration_num, targets_train, targets_eval, labels_train, labels_eval, ) # function to filter by whether contains train or eval labels def if_contains_train_label(example): a = label_dict_train.keys() b = example["input_ids"] return not set(a).isdisjoint(b) def if_contains_eval_label(example): a = label_dict_eval.keys() b = example["input_ids"] return not set(a).isdisjoint(b) # filter dataset for examples containing classes for this split print(f"Filtering training data") trainset = data.filter(if_contains_train_label, num_proc=num_proc) print( f"Filtered {round((1-len(trainset)/len(data))*100)}%; {len(trainset)} remain\n" ) print(f"Filtering evalation data") evalset = data.filter(if_contains_eval_label, num_proc=num_proc) print( f"Filtered {round((1-len(evalset)/len(data))*100)}%; {len(evalset)} remain\n" ) # minimize to smaller training sample training_size = min(subsample_size, len(trainset)) trainset_min = trainset.select([i for i in range(training_size)]) eval_size = min(training_size, len(evalset)) half_training_size = round(eval_size / 2) evalset_train_min = evalset.select([i for i in range(half_training_size)]) evalset_oos_min = evalset.select( [i for i in range(half_training_size, eval_size)] ) # label conversion functions def generate_train_labels(example): example["labels"] = [ label_dict_train.get(token_id, -100) for token_id in example["input_ids"] ] return example def generate_eval_labels(example): example["labels"] = [ label_dict_eval.get(token_id, -100) for token_id in example["input_ids"] ] return example # label datasets print(f"Labeling training data") trainset_labeled = trainset_min.map(generate_train_labels) print(f"Labeling evaluation data") evalset_train_labeled = evalset_train_min.map(generate_eval_labels) print(f"Labeling evaluation OOS data") evalset_oos_labeled = evalset_oos_min.map(generate_eval_labels) # create output directories ksplit_output_dir = os.path.join(output_dir, f"ksplit{iteration_num}") ksplit_model_dir = os.path.join(ksplit_output_dir, "models/") # ensure not overwriting previously saved model model_output_file = os.path.join(ksplit_model_dir, "pytorch_model.bin") # if os.path.isfile(model_output_file) == True: # raise Exception("Model already saved to this directory.") # make training and model output directories subprocess.call(f"mkdir -p {ksplit_output_dir}", shell=True) subprocess.call(f"mkdir -p {ksplit_model_dir}", shell=True) # load model model = BertForTokenClassification.from_pretrained( pre_model, num_labels=num_labels, output_attentions=False, output_hidden_states=False, ) if freeze_layers is not None: modules_to_freeze = model.bert.encoder.layer[:freeze_layers] for module in modules_to_freeze: for param in module.parameters(): param.requires_grad = False model = model.to(device) # add output directory to training args and initiate training_args["output_dir"] = ksplit_output_dir training_args_init = TrainingArguments(**training_args) # create the trainer trainer = Trainer( model=model, args=training_args_init, data_collator=DataCollatorForGeneClassification(), train_dataset=trainset_labeled, eval_dataset=evalset_train_labeled, ) # train the gene classifier trainer.train() # save model trainer.save_model(ksplit_model_dir) # evaluate model fpr, tpr, interp_tpr, conf_mat = classifier_predict( trainer.model, evalset_oos_labeled, 200, mean_fpr ) # append to tpr and roc lists confusion = confusion + conf_mat all_tpr.append(interp_tpr) all_roc_auc.append(auc(fpr, tpr)) # append number of eval examples by which to weight tpr in averaged graphs all_tpr_wt.append(len(tpr)) iteration_num = iteration_num + 1 # get overall metrics for cross-validation mean_tpr, roc_auc, roc_auc_sd = get_cross_valid_metrics( all_tpr, all_roc_auc, all_tpr_wt ) return all_roc_auc, roc_auc, roc_auc_sd, mean_fpr, mean_tpr, confusion, label_dicts # Computes metrics def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) # calculate accuracy and macro f1 using sklearn's function acc = accuracy_score(labels, preds) macro_f1 = f1_score(labels, preds, average="macro") return {"accuracy": acc, "macro_f1": macro_f1} # plot ROC curve def plot_ROC(bundled_data, title): plt.figure() lw = 2 for roc_auc, roc_auc_sd, mean_fpr, mean_tpr, sample, color in bundled_data: plt.plot( mean_fpr, mean_tpr, color=color, lw=lw, label="{0} (AUC {1:0.2f} $\pm$ {2:0.2f})".format( sample, roc_auc, roc_auc_sd ), ) plt.plot([0, 1], [0, 1], color="black", lw=lw, linestyle="--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title(title) plt.legend(loc="lower right") plt.savefig("ROC.png") return mean_fpr, mean_tpr, roc_auc # plot confusion matrix def plot_confusion_matrix(classes_list, conf_mat, title): display_labels = [] i = 0 for label in classes_list: display_labels += ["{0}\nn={1:.0f}".format(label, sum(conf_mat[:, i]))] i = i + 1 display = ConfusionMatrixDisplay( confusion_matrix=preprocessing.normalize(conf_mat, norm="l1"), display_labels=display_labels, ) display.plot(cmap="Blues", values_format=".2g") plt.title(title) plt.savefig("CM.png") # Function to find the largest number smaller # than or equal to N that is divisible by k def find_largest_div(N, K): rem = N % K if rem == 0: return N else: return N - rem def preprocess_classifier_batch(cell_batch, max_len): if max_len == None: max_len = max([len(i) for i in cell_batch["input_ids"]]) def pad_label_example(example): example["labels"] = np.pad( example["labels"], (0, max_len - len(example["input_ids"])), mode="constant", constant_values=-100, ) example["input_ids"] = np.pad( example["input_ids"], (0, max_len - len(example["input_ids"])), mode="constant", constant_values=token_dictionary.get(""), ) example["attention_mask"] = ( example["input_ids"] != token_dictionary.get("") ).astype(int) return example padded_batch = cell_batch.map(pad_label_example) return padded_batch # forward batch size is batch size for model inference (e.g. 200) def classifier_predict(model, evalset, forward_batch_size, mean_fpr): predict_logits = [] predict_labels = [] model.to("cpu") model.eval() # ensure there is at least 2 examples in each batch to avoid incorrect tensor dims evalset_len = len(evalset) max_divisible = find_largest_div(evalset_len, forward_batch_size) if len(evalset) - max_divisible == 1: evalset_len = max_divisible max_evalset_len = max(evalset.select([i for i in range(evalset_len)])["length"]) for i in range(0, evalset_len, forward_batch_size): max_range = min(i + forward_batch_size, evalset_len) batch_evalset = evalset.select([i for i in range(i, max_range)]) padded_batch = preprocess_classifier_batch(batch_evalset, max_evalset_len) padded_batch.set_format(type="torch") input_data_batch = padded_batch["input_ids"] attn_msk_batch = padded_batch["attention_mask"] label_batch = padded_batch["labels"] with torch.no_grad(): input_ids = input_data_batch attn_mask = attn_msk_batch labels = label_batch outputs = model( input_ids=input_ids, attention_mask=attn_mask, labels=labels ) predict_logits += [torch.squeeze(outputs.logits.to("cpu"))] predict_labels += [torch.squeeze(label_batch.to("cpu"))] logits_by_cell = torch.cat(predict_logits) all_logits = logits_by_cell.reshape(-1, logits_by_cell.shape[2]) labels_by_cell = torch.cat(predict_labels) all_labels = torch.flatten(labels_by_cell) logit_label_paired = [ item for item in list(zip(all_logits.tolist(), all_labels.tolist())) if item[1] != -100 ] y_pred = [vote(item[0]) for item in logit_label_paired] y_true = [item[1] for item in logit_label_paired] logits_list = [item[0] for item in logit_label_paired] # probability of class 1 y_score = [py_softmax(item)[1] for item in logits_list] conf_mat = confusion_matrix(y_true, y_pred) fpr, tpr, _ = roc_curve(y_true, y_score) # plot roc_curve for this split plt.plot(fpr, tpr) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC") plt.show() # interpolate to graph interp_tpr = np.interp(mean_fpr, fpr, tpr) interp_tpr[0] = 0.0 return fpr, tpr, interp_tpr, conf_mat def classify_genes( gene_info="Genecorpus-30M/example_input_files/gene_info_table.csv", genes="Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv", corpus_30M="Genecorpus-30M/genecorpus_30M_2048.dataset/", model=".", max_input_size=2**11, max_lr=5e-5, freeze_layers=4, num_gpus=1, num_proc=os.cpu_count(), geneformer_batch_size=9, epochs=1, filter_dataset=50_000, emb_extract=True, emb_layer=0, forward_batch=200, filter_data=None, inference=False, k_validate=True, model_location="230917_geneformer_GeneClassifier_dosageTF_L2048_B12_LR5e-05_LSlinear_WU500_E1_Oadamw_n10000_F4/", skip_training=False, emb_dir="gene_emb", output_dir=None, max_cells=1000, num_cpus=os.cpu_count(), ): """ " Primary Parameters ----------- gene_info: path Path to gene mappings corpus_30M: path Path to 30M Gene Corpus model: path Path to pretrained GeneFormer model genes: path Path to csv file containing different columns of genes and the column labels inference: bool Whether the model should be used to run inference. If False, model will train with labeled data instead. Defaults to False k_validate: bool Whether the model should run k-fold validation or simply perform regular training/evaluate. Defaults to True skip_training: bool Whether the model should skip the training portion. Defaults to False emb_extract: bool WHether the model should extract embeddings for a given gene (WIP) Customization Parameters ----------- freeze_layers: int Freezes x number of layers from the model. Default is 4 (2 non-frozen layers) filter_dataset: int Number of cells to filter from 30M dataset. Default is 50_000 emb_layer: int What layer embeddings are extracted from. Default is 4 filter_data: str, list Filters down embeddings to a single category. Default is None """ # table of corresponding Ensembl IDs, gene names, and gene types (e.g. coding, miRNA, etc.) gene_info = pd.read_csv(gene_info, index_col=0) labels = gene_info.columns # create dictionaries for corresponding attributes gene_id_type_dict = dict(zip(gene_info["ensembl_id"], gene_info["gene_type"])) gene_name_id_dict = dict(zip(gene_info["gene_name"], gene_info["ensembl_id"])) gene_id_name_dict = {v: k for k, v in gene_name_id_dict.items()} # function for preparing targets and labels def prep_inputs(label_store, id_type): target_list = [] if id_type == "gene_name": for key in list(label_store.keys()): targets = [ gene_name_id_dict[gene] for gene in label_store[key] if gene_name_id_dict.get(gene) in token_dictionary ] targets_id = [token_dictionary[gene] for gene in targets] target_list.append(targets_id) elif id_type == "ensembl_id": for key in list(label_store.keys()): targets = [ gene for gene in label_store[key] if gene in token_dictionary ] targets_id = [token_dictionary[gene] for gene in targets] target_list.append(targets_id) targets, labels = [], [] for targ in target_list: targets = targets + targ targets = np.array(targets) for num, targ in enumerate(target_list): label = [num] * len(targ) labels = labels + label labels = np.array(labels) unique_labels = num + 1 nsplits = min(5, min([len(targ) for targ in target_list]) - 1) assert nsplits > 2 return targets, labels, nsplits, unique_labels if skip_training == False: # preparing targets and labels for dosage sensitive vs insensitive TFs gene_classes = pd.read_csv(genes, header=0) if filter_data == None: labels = gene_classes.columns else: if isinstance(filter_data, list): labels = filter_data else: labels = [filter_data] label_store = {} # Dictionary for decoding labels decode = {i: labels[i] for i in range(len(labels))} for label in labels: label_store[label] = gene_classes[label].dropna() targets, labels, nsplits, unique_labels = prep_inputs(label_store, "ensembl_id") # load training dataset train_dataset = load_from_disk(corpus_30M) shuffled_train_dataset = train_dataset.shuffle(seed=42) subsampled_train_dataset = shuffled_train_dataset.select( [i for i in range(filter_dataset)] ) lr_schedule_fn = "linear" warmup_steps = 500 optimizer = "adamw" subsample_size = 10_000 training_args = { "learning_rate": max_lr, "do_train": True, "evaluation_strategy": "no", "save_strategy": "epoch", "logging_steps": 10, "group_by_length": True, "length_column_name": "length", "disable_tqdm": False, "lr_scheduler_type": lr_schedule_fn, "warmup_steps": warmup_steps, "weight_decay": 0.001, "per_device_train_batch_size": geneformer_batch_size, "per_device_eval_batch_size": geneformer_batch_size, "num_train_epochs": epochs, } # define output directory path current_date = datetime.datetime.now() datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}" if output_dir == None: training_output_dir = Path( f"{datestamp}_geneformer_GeneClassifier_dosageTF_L{max_input_size}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_E{epochs}_O{optimizer}_n{subsample_size}_F{freeze_layers}/" ) else: training_output_dir = Path(output_dir) # make output directory subprocess.call(f"mkdir -p {training_output_dir}", shell=True) # Places number of classes + in directory num_classes = len(set(labels)) info_list = [num_classes, decode] with open(training_output_dir / "classes.txt", "w") as f: f.write(str(info_list)) subsampled_train_dataset.save_to_disk(output_dir / "dataset") if k_validate == True: ksplit_model = "ksplit0/models" ksplit_model_test = os.path.join(training_output_dir, ksplit_model) # if os.path.isfile(ksplit_model_test) == True: # raise Exception("Model already saved to this directory.") # cross-validate gene classifier ( all_roc_auc, roc_auc, roc_auc_sd, mean_fpr, mean_tpr, confusion, label_dicts, ) = cross_validate( subsampled_train_dataset, targets, labels, nsplits, subsample_size, training_args, freeze_layers, training_output_dir, 1, unique_labels, model, ) bundled_data = [] bundled_data += [ (roc_auc, roc_auc_sd, mean_fpr, mean_tpr, "Geneformer", "red") ] graph_title = " ".join( [ i + " vs" if count < len(label_store) - 1 else i for count, i in enumerate(label_store) ] ) fpr, tpr, auc = plot_ROC( bundled_data, "Dosage Sensitive vs Insensitive TFs" ) print(auc) # plot confusion matrix plot_confusion_matrix(label_store, confusion, "Geneformer") else: fpr, tpr, auc = validate( subsampled_train_dataset, targets, labels, nsplits, subsample_size, training_args, freeze_layers, training_output_dir, 1, unique_labels, model, ) print(auc) if inference == True: # preparing targets and labels for dosage sensitive vs insensitive TFs gene_classes = pd.read_csv(genes, header=0) targets = [] for column in gene_classes.columns: targets += list(gene_classes[column]) tokens = [] for target in targets: try: tokens.append(token_dictionary[target]) except: tokens.append(0) targets = torch.LongTensor([tokens]) with open(f"{model_location}classes.txt", "r") as f: info_list = ast.literal_eval(f.read()) num_classes = info_list[0] labels = info_list[1] model = BertForTokenClassification.from_pretrained( model_location, num_labels=num_classes, output_attentions=False, output_hidden_states=False, local_files_only=True, ) if freeze_layers is not None: modules_to_freeze = model.bert.encoder.layer[:freeze_layers] for module in modules_to_freeze: for param in module.parameters(): param.requires_grad = False model = model.to(device) # evaluate model predictions = F.softmax(model(targets.to(device))["logits"], dim=-1).argmax(-1)[ 0 ] predictions = [labels[int(pred)] for pred in predictions] return predictions # Extracts aggregate gene embeddings for each label if emb_extract == True: with open(f"{model_location}/classes.txt", "r") as f: data = ast.literal_eval(f.read()) num_classes = data[0] decode = data[1] gene_classes = pd.read_csv(genes, header=0) labels = gene_classes.columns tokenize = TranscriptomeTokenizer() label_dict = {} for label in labels: genes = gene_classes[label] tokenized_genes = [] for gene in genes: try: tokenized_genes.append(tokenize.gene_token_dict[gene]) except: continue label_dict[label] = tokenized_genes embex = EmbExtractor( model_type="GeneClassifier", num_classes=num_classes, emb_mode="gene", filter_data=None, max_ncells=max_cells, emb_layer=emb_layer, emb_label=label_dict, labels_to_plot=list(labels), forward_batch_size=forward_batch, nproc=num_cpus, ) subprocess.call(f"mkdir -p {emb_dir}", shell=True) embs = embex.extract_embs( model_directory=model_location, input_data_file=model_location / "dataset", output_directory=emb_dir, output_prefix=f"{label}_embbeddings", ) emb_dict = {label: [] for label in list(set(labels))} similarities = {key: {} for key in list(emb_dict.keys())} for column in embs.columns: remaining_cols = [k for k in embs.columns if k != column] for k in remaining_cols: embedding = torch.Tensor(embs[k]) sim = similarity(torch.Tensor(embs[column]), embedding, cosine=True) similarities[column][k] = sim plot_similarity_heatmap(similarities) print(similarities) return similarities if __name__ == "__main__": classify_genes( k_validate=False, inference=False, skip_training=False, emb_extract=True, output_dir=Path("gene_emb"), model_location=Path("gene_emb"), epochs=5, gene_info="../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_info_table.csv", genes="../GeneFormer_repo/Genecorpus-30M/example_input_files/gene_classification/dosage_sensitive_tfs/dosage_sens_tf_labels.csv", corpus_30M="../GeneFormer_repo/Genecorpus-30M/genecorpus_30M_2048.dataset/", )