import logging import random from collections import Counter, defaultdict import numpy as np import pandas as pd from scipy.stats import chisquare, ranksums from sklearn.metrics import accuracy_score, f1_score from . import perturber_utils as pu logger = logging.getLogger(__name__) def downsample_and_shuffle(data, max_ncells, max_ncells_per_class, cell_state_dict): data = data.shuffle(seed=42) num_cells = len(data) # if max number of cells is defined, then subsample to this max number if max_ncells is not None: if num_cells > max_ncells: data = data.select([i for i in range(max_ncells)]) if max_ncells_per_class is not None: class_labels = data[cell_state_dict["state_key"]] random.seed(42) subsample_indices = subsample_by_class(class_labels, max_ncells_per_class) data = data.select(subsample_indices) return data # subsample labels to maximum number N per class and return indices def subsample_by_class(labels, N): label_indices = defaultdict(list) # Gather indices for each label for idx, label in enumerate(labels): label_indices[label].append(idx) selected_indices = [] # Select up to N indices for each label for label, indices in label_indices.items(): if len(indices) > N: selected_indices.extend(random.sample(indices, N)) else: selected_indices.extend(indices) return selected_indices def rename_cols(data, state_key): data = data.rename_column(state_key, "label") return data def validate_and_clean_cols(train_data, eval_data, classifier): # validate that data has expected label column and remove others if classifier == "cell": label_col = "label" elif classifier == "gene": label_col = "labels" cols_to_keep = [label_col] + ["input_ids", "length"] if label_col not in train_data.column_names: logger.error(f"train_data must contain column {label_col} with class labels.") raise else: train_data = remove_cols(train_data, cols_to_keep) if eval_data is not None: if label_col not in eval_data.column_names: logger.error( f"eval_data must contain column {label_col} with class labels." ) raise else: eval_data = remove_cols(eval_data, cols_to_keep) return train_data, eval_data def remove_cols(data, cols_to_keep): other_cols = list(data.features.keys()) other_cols = [ele for ele in other_cols if ele not in cols_to_keep] data = data.remove_columns(other_cols) return data def remove_rare(data, rare_threshold, label, nproc): if rare_threshold > 0: total_cells = len(data) label_counter = Counter(data[label]) nonrare_label_dict = { label: [k for k, v in label_counter if (v / total_cells) > rare_threshold] } data = pu.filter_by_dict(data, nonrare_label_dict, nproc) return data def label_classes(classifier, data, gene_class_dict, nproc): if classifier == "cell": label_set = set(data["label"]) elif classifier == "gene": # remove cells without any of the target genes def if_contains_label(example): a = pu.flatten_list(gene_class_dict.values()) b = example["input_ids"] return not set(a).isdisjoint(b) data = data.filter(if_contains_label, num_proc=nproc) label_set = gene_class_dict.keys() if len(data) == 0: logger.error( "No cells remain after filtering for target genes. Check target gene list." ) raise class_id_dict = dict(zip(label_set, [i for i in range(len(label_set))])) id_class_dict = {v: k for k, v in class_id_dict.items()} def classes_to_ids(example): if classifier == "cell": example["label"] = class_id_dict[example["label"]] elif classifier == "gene": example["labels"] = label_gene_classes( example, class_id_dict, gene_class_dict ) return example data = data.map(classes_to_ids, num_proc=nproc) return data, id_class_dict def label_gene_classes(example, class_id_dict, gene_class_dict): return [ class_id_dict.get(gene_class_dict.get(token_id, -100), -100) for token_id in example["input_ids"] ] def prep_gene_classifier_split( data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc ): # generate cross-validation splits targets = np.array(targets) labels = np.array(labels) targets_train, targets_eval = targets[train_index], targets[eval_index] labels_train, labels_eval = labels[train_index], labels[eval_index] label_dict_train = dict(zip(targets_train, labels_train)) label_dict_eval = dict(zip(targets_eval, labels_eval)) # function to filter by whether contains train or eval labels def if_contains_train_label(example): a = targets_train b = example["input_ids"] return not set(a).isdisjoint(b) def if_contains_eval_label(example): a = targets_eval b = example["input_ids"] return not set(a).isdisjoint(b) # filter dataset for examples containing classes for this split logger.info(f"Filtering training data for genes in split {iteration_num}") train_data = data.filter(if_contains_train_label, num_proc=num_proc) logger.info( f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n" ) logger.info(f"Filtering evalation data for genes in split {iteration_num}") eval_data = data.filter(if_contains_eval_label, num_proc=num_proc) logger.info( f"Filtered {round((1-len(eval_data)/len(data))*100)}%; {len(eval_data)} remain\n" ) # subsample to max_ncells train_data = downsample_and_shuffle(train_data, max_ncells, None, None) eval_data = downsample_and_shuffle(eval_data, max_ncells, None, None) # relabel genes for this split def train_classes_to_ids(example): example["labels"] = [ label_dict_train.get(token_id, -100) for token_id in example["input_ids"] ] return example def eval_classes_to_ids(example): example["labels"] = [ label_dict_eval.get(token_id, -100) for token_id in example["input_ids"] ] return example train_data = train_data.map(train_classes_to_ids, num_proc=num_proc) eval_data = eval_data.map(eval_classes_to_ids, num_proc=num_proc) return train_data, eval_data def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc): targets = np.array(targets) labels = np.array(labels) label_dict_train = dict(zip(targets, labels)) # function to filter by whether contains train labels def if_contains_train_label(example): a = targets b = example["input_ids"] return not set(a).isdisjoint(b) # filter dataset for examples containing classes for this split logger.info("Filtering training data for genes to classify.") train_data = data.filter(if_contains_train_label, num_proc=num_proc) logger.info( f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n" ) # subsample to max_ncells train_data = downsample_and_shuffle(train_data, max_ncells, None, None) # relabel genes for this split def train_classes_to_ids(example): example["labels"] = [ label_dict_train.get(token_id, -100) for token_id in example["input_ids"] ] return example train_data = train_data.map(train_classes_to_ids, num_proc=num_proc) return train_data def balance_attr_splits( data, attr_to_split, attr_to_balance, eval_size, max_trials, pval_threshold, state_key, nproc, ): metadata_df = pd.DataFrame({"split_attr_ids": data[attr_to_split]}) for attr in attr_to_balance: if attr == state_key: metadata_df[attr] = data["label"] else: metadata_df[attr] = data[attr] metadata_df = metadata_df.drop_duplicates() split_attr_ids = list(metadata_df["split_attr_ids"]) assert len(split_attr_ids) == len(set(split_attr_ids)) eval_num = round(len(split_attr_ids) * eval_size) colnames = ( ["trial_num", "train_ids", "eval_ids"] + pu.flatten_list( [ [ f"{attr}_train_mean_or_counts", f"{attr}_eval_mean_or_counts", f"{attr}_pval", ] for attr in attr_to_balance ] ) + ["mean_pval"] ) balance_df = pd.DataFrame(columns=colnames) data_dict = dict() trial_num = 1 for i in range(max_trials): if not all( count > 1 for count in list(Counter(metadata_df[state_key]).values()) ): logger.error( f"Cannot balance by {attr_to_split} while retaining at least 1 occurrence of each {state_key} class in both data splits. " ) raise eval_base = [] for state in set(metadata_df[state_key]): eval_base += list( metadata_df.loc[ metadata_df[state_key][metadata_df[state_key].eq(state)] .sample(1, random_state=i) .index ]["split_attr_ids"] ) non_eval_base = [idx for idx in split_attr_ids if idx not in eval_base] random.seed(i) eval_ids = random.sample(non_eval_base, eval_num - len(eval_base)) + eval_base train_ids = [idx for idx in split_attr_ids if idx not in eval_ids] df_vals = [trial_num, train_ids, eval_ids] pvals = [] for attr in attr_to_balance: train_attr = list( metadata_df[metadata_df["split_attr_ids"].isin(train_ids)][attr] ) eval_attr = list( metadata_df[metadata_df["split_attr_ids"].isin(eval_ids)][attr] ) if attr == state_key: # ensure IDs are interpreted as categorical train_attr = [str(item) for item in train_attr] eval_attr = [str(item) for item in eval_attr] if all(isinstance(item, (int, float)) for item in train_attr + eval_attr): train_attr_mean = np.nanmean(train_attr) eval_attr_mean = np.nanmean(eval_attr) pval = ranksums(train_attr, eval_attr, nan_policy="omit").pvalue df_vals += [train_attr_mean, eval_attr_mean, pval] elif all(isinstance(item, (str)) for item in train_attr + eval_attr): obs_counts = Counter(train_attr) exp_counts = Counter(eval_attr) all_categ = set(obs_counts.keys()).union(set(exp_counts.keys())) obs = [obs_counts[cat] for cat in all_categ] exp = [ exp_counts[cat] * sum(obs) / sum(exp_counts.values()) for cat in all_categ ] chisquare(f_obs=obs, f_exp=exp).pvalue train_attr_counts = str(obs_counts).strip("Counter(").strip(")") eval_attr_counts = str(exp_counts).strip("Counter(").strip(")") df_vals += [train_attr_counts, eval_attr_counts, pval] else: logger.error( f"Inconsistent data types in attribute {attr}. " "Cannot infer if continuous or categorical. " "Must be all numeric (continuous) or all strings (categorical) to balance." ) raise pvals += [pval] df_vals += [np.nanmean(pvals)] balance_df_i = pd.DataFrame(df_vals, index=colnames).T balance_df = pd.concat([balance_df, balance_df_i], ignore_index=True) valid_pvals = [ pval_i for pval_i in pvals if isinstance(pval_i, (int, float)) and not np.isnan(pval_i) ] if all(i >= pval_threshold for i in valid_pvals): data_dict["train"] = pu.filter_by_dict( data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc ) data_dict["test"] = pu.filter_by_dict( data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc ) return data_dict, balance_df trial_num = trial_num + 1 balance_max_df = balance_df.iloc[balance_df["mean_pval"].idxmax(), :] data_dict["train"] = pu.filter_by_dict( data, {attr_to_split: balance_df_i["train_ids"][0]}, nproc ) data_dict["test"] = pu.filter_by_dict( data, {attr_to_split: balance_df_i["eval_ids"][0]}, nproc ) logger.warning( f"No splits found without significant difference in attr_to_balance among {max_trials} trials. " f"Selecting optimal split (trial #{balance_max_df['trial_num']}) from completed trials." ) return data_dict, balance_df def get_num_classes(id_class_dict): return len(set(id_class_dict.values())) def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) # calculate accuracy and macro f1 using sklearn's function acc = accuracy_score(labels, preds) macro_f1 = f1_score(labels, preds, average="macro") return {"accuracy": acc, "macro_f1": macro_f1} def get_default_train_args(model, classifier, data, output_dir): num_layers = pu.quant_layers(model) freeze_layers = 0 batch_size = 12 if classifier == "cell": epochs = 10 evaluation_strategy = "epoch" load_best_model_at_end = True else: epochs = 1 evaluation_strategy = "no" load_best_model_at_end = False if num_layers == 6: default_training_args = { "learning_rate": 5e-5, "lr_scheduler_type": "linear", "warmup_steps": 500, "per_device_train_batch_size": batch_size, "per_device_eval_batch_size": batch_size, } else: default_training_args = { "per_device_train_batch_size": batch_size, } training_args = { "num_train_epochs": epochs, "do_train": True, "do_eval": True, "evaluation_strategy": evaluation_strategy, "logging_steps": np.floor(len(data) / batch_size / 8), # 8 evals per epoch "save_strategy": "epoch", "group_by_length": False, "length_column_name": "length", "disable_tqdm": False, "weight_decay": 0.001, "load_best_model_at_end": load_best_model_at_end, } training_args.update(default_training_args) return training_args, freeze_layers