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ABSTRACT

SRILM is a collection of C++ libraries, executable programs, and
helper scripts designed to allow both production of and grpen-
tation with statistical language models for speech red¢amgnand
other applications.sriLM is freely available for noncommercial
purposes. The toolkit supports creation and evaluation\afra

ety of language model types based on N-gram statistics, As we
as several related tasks, such as statistical tagging anguma
lation of N-best lists and word lattices. This paper sumpeai
the functionality of the toolkit and discusses its desigd ample-
mentation, highlighting ease of rapid prototyping, reiligband
combinability of tools.

1. INTRODUCTION

Statistical language modeling is the science (and often adrt
building models that estimate the prior probabilities ofrdvo
strings. Language modeling has many applications in nidtama
guage technology and other areas where sequences of digbret
jects play a role, with prominent roles in speech recognitiad
natural language tagging (including specialized taskh asgart-
of-speech tagging, word and sentence segmentation, afidvsha
parsing). As pointed out in [1], the main techniques for effe
tive language modeling have been known for at least a dea&de,
though one suspects that important advances are possidlé-a
deed needed, to bring about significant breakthroughs iaghg-
cation areas cited above—such breakthroughs just have leegn v
hard to come by [2, 3].

Various software packages for statistical language mogeli
have been in use for many years—the basic algorithms areeimpl
enough that one can easily implement them with reasonatule ef

2. DESIGN GOALS AND HISTORY

SRILM grew out of a dissatisfaction with previously available LM
tools at SRI, and a desire to design an LM toolkit from the grbu
up, with the following goals in mind:

e Efficient and careful implementation of state-of-the-aM L
algorithms, to support development of competitive systems
mainly in speech recognition.

e Flexibility and extendibility, so as to facilitate reselarimto
new types of LMs, while being able to reuse existing compo-
nents.

e A rational, clean software design, providing both an agplic
tion programming interface (API) and a convenient toolbbx o
commands for LM building and testing.

The design was influenced by other related software imple-
mentations. The CMU-Cambridge toolkit [1], and discussion
with its original author, Roni Rosenfeld, served as a gdriesgi-
ration and reference point. The HTK Lattice Toolkit [5] (tdiech
SRILM has an interface) provided many good ideas for a viable and
efficient API for language models. The decision to explonect
oriented design was based on a prior project, an implenientat
various types of statistical grammars in the Common LispeCtbj
System [6]. The software build system was borrowed from SRI’
DecipheF”VI speech recognition system [7].

A firstimplementation with minimal functionality for staaci
N-gram models was created prior to the 1995 Johns Hopkins Lan
guage Modeling Summer Workshop [8]. By the end of the work-
shop, support for dynamic LM interpolation and N-best reiscp
had been added, and a small community of users outside SRI wit
an associated mailing list existed. Over the next four yasse-
ries of alpha versions were made available to this small grou

for research use. One such package, the CMU-Cambridge LMwhile much of the current functionality (described belovwgsie-

toolkit [1], has been in wide use in the research community an
has greatly facilitated the construction of language no@eMs)
for many practitioners.

This paper describes a fairly recent addition to the set of
publicly available LM tools, the SRI Language Modeling Tkol
(SrRILM). Compared to existing LM toolssriLMm offers a pro-
gramming interface and an extensible set of LM classesrakeve
non-standard LM types, and more a comprehensive funcitgnal
that goes beyond language modeling to include tagging, $-be
rescoring, and other applications. This paper descritegdkign
philosophy and key implementation choicessSRILM, summa-
rizes its capabilities, and concludes by discussing deftiés and
plans for future development. For lack of space we must tefer
other publications for an introduction to language modgéind its
role in speech recognition and other areas [3, 4].

ing added. In July 1999 a beta version was released for datisera
tribution under an open source license, followed about a lgger

by version 1.0. As of this writing, the latest released \@r$s 1.3,
which added a word graph rescoring tool, a test suite, and sup
port for Windows platforms (previous versions were Unixydn
Most ongoing government-funded LM research and developmen
at SR is based oBRILM; we therefore expect a steady stream of
functionality enhancements (as well as bug fixes) to coetinu

3. FUNCTIONALITY

3.1. Basic LM operations

The main purpose ofRILM is to support language model esti-
mation and evaluation. Estimation means the creation of deino
from training data; evaluation means computing the prdibabi



of a test corpus, conventionally expressed as the test ggepity.
Since most LMs irsrRILM are based on N-gram statistics, the tools
to accomplish these two purposes are namgdam count and
ngr am respectively. A standard LM (trigram with Good-Turing
discounting and Katz backoff for smoothing) would be crddig

ngram count -text TRAI NDATA -Im LM

The resulting LM may then be evaluated on a test corpus using

ngram -1 m LM - ppl TESTDATA -debug 2

The ngr am - debug option controls the level of detail of
diagnostic output. A value of 2 means that probabilities tare
be reported at the word level, including the order of N-grazed)
in addition to the standard log probabilities and perpiegitSome
additional statistics that also help gauge LM quality aserthmber
of out-of-vocabulary (OOV) words and the “hit rates” of vars
levels of N-grams (in LMs based on N-grams) [1]; these ateeeit
computed byngr amitself or (as in the case of hit rates) tallied by
auxiliary scripts that analyze thgr amoutput.

SRILM by itself performs no text conditioning, and treats ev-
erything between whitespace as a word. Normalization and to
kenization of text are highly corpus-dependent, and ariajly
accomplished with filters that preprocess the data.

3.2. Bells and whistles

The programsngr am count and ngr amhave a rather large
number of options to control the many parameters of LM estima
tion and testing. The most important parameters for LM trgjn
are

¢ the order of N-grams to use (e.g., unigram, bigram). There is
no built-in limit on the length of N-grams.

the type of discounting algorithm to use. Currently sup-
ported methods include Good-Turing, absolute, Witten;Bel
and modified Kneser-Ney [9]. Each of these discounting meth-

renormalize a model (recomputing backoff weights)

e approximate a class-based or interpolated N-gram withma sta
dard word-based backoff LM

prune N-gram parameters, using an entropy criterion [10]

prepare LMs for conversion to finite-state graphs by rengvin
N-grams that would be superseded by backoffs

e generate random sentences from the distribution embogied b
the LM.

The ability to approximate class-based and interpolated N-
gram LMs by a single word N-gram model deserves some dis-
cussion. Both of these operations are useful in situatidmsrev
other software (e.g., a speech recognizer) supports oahdatd
N-grams. Class N-grams are approximated by expanding lalass
bels into their members (which can contain multiword stsjrand
then computing the marginal probabilities of word N-granmsfs.
This operation increases the number of N-grams combiradiigri
and is therefore feasible only for relatively small models.

An interpolated backoff model is obtained by taking the anio
of N-grams of the input models, assigning each N-gram the
weighted average of the probabilities from those modelsd¢ime
of the models this probability might be computed by backaff)d
then renormalizing the new model. We found that such interpo
lated backoff models consistently give slightly lower gerjties
than the corresponding standard word-level interpolatedets.
The reason could be that the backoff distributions are tieéras
obtained by interpolation, unlike in standard interpalafiwhere
each component model backs off individually.

3.3. Language model types

Besides the standard word-based N-gram backoff modelsm
implements several other LM types, most of them based on N-
grams as basic building blocks.

Class-based models- N-grams over word classes are an ef-

ods requires its own set of parameters, as well as a choice offective way to increase the robustness of LMs and to incaigor
whether higher- and lower-order estimates are to be cordbine domain knowledge, e.g., by defining word classes reflectiieg t
via backoff or interpolation. task semantics.SRILM allows class members to be multiword
an optional predefined vocabulary to limit or augment the set strings (e.g., “san francisco” can be a member of class “CITY

of words from the training data.

whether unknown words are to be discarded or treated as
special “unknown word” token.

e whether to collapse case distinctions in the input text.

Beyond LM estimationngr am count performs useful N-gram
count manipulations, such as generating counts from temt- s
ming count files, and recomputing lower-order counts froghhi-
order countsngr am count handles integer or fractional counts,
although only a subset of the smoothing algorithms suppbes
latter (generally speaking, those that rely on countseofrts
statistics do not).

The main parameters controlling LM evaluation are the order
of N-gram to use (which can be lower than what the LM includes,
so that a 4-gram model may conveniently be used also as arbigra
or trigram model), and the variant of N-gram model to use—for
example, a word-based, class-based, or interpolated i;gra
well as any additional parameters associated with thatdfh/.

The types of models supported are described further in@@e8tB.

Beyond LM evaluationngr amis really a tool to manipulate
LMs in a variety of ways. Besides computing test set log poidba
ities from text or counts, it can

a

NAME?”). This, and the fact that words can belong to more than
one class, requires the use of dynamic programming to eealua
a class N-gram. Word classes may be defined manually or by a
separate programmgr am cl ass, which induces classes from
bigram statistics using the Brown algorithm [11].

Cache models— This well-known LM technique assigns
nonzero probability to recent words, thus modeling the ¢auy
of words to reoccur over short spans [12]. They are usuatgrin
polated with a standard model to obtain an adaptive LM.

Disfluency and hidden event language moedelklidden event
LMs incorporate special words that appear in the model's N-
grams, but are not overt in the observed word stream. Instieayl
correspond to the states of a hidden Markov model, and can be
used to model linguistic events such as unmarked sentenceibo
aries. Optionally, these events can be associated wittexioal
likelihoods to condition the LM on other knowledge sourcesg/,
prosody) [13]. A special type of hidden event LM can model
speech disfluencies by allowing the hidden events to modiy t
word history; for example, a word deletion event would er@se
or more words to model a false start [14].

Skip language models- In this LM, words in the history are
probabilistically skipped, allowing more distant wordsa&e their



places. The skipping probabilities associated with eactdwaoe
estimated using expectation maximization.

HMMs of N-grams— This LM consists of a hidden Markov
model (HMM) where each state is associated with its own Nirgra
distribution. The model generates from a certain state thatilo-
cal N-gram issues an end-of-sentence, at which point isitians
probabilistically to a neighboring state. HMMs of N-gram®
vide a general framework that can encode a variety of LM types
proposed in the literature, such as sentence-level m{a& and
pivot LMs [16].

Dynamically interpolated LMs— Two or more LMs can be
interpolated linearly at the word level such that the intéaiion
weights reflect the likelihoods of the models given the rédén
gram history [8]. With a null history, we obtain the usualtita
LM interpolation approach that is often used to combineedéht
sources of training material into a single model.

3.4. Other applications of language models

Over the yearsRILM has evolved to include tools that go beyond
simple LM construction and evaluation, covering mainly Lt a
plications arising in speech recognition.

di sanbi g — an HMM-based tagger that uses N-gram LMs of
arbitrary order to model the prior on tag sequences.

hi dden- ngr am — a word boundary tagger, based on hidden
event N-gram models.

segnent - nbest — a rescoring tool that applies a language
model over a sequence of adjoining N-best lists, therebyove

coming sentence segmentation mismatch [17].
lattice-tool — atoolto rescore and expand word lattices.

nbest -l atti ce — a tool to perform word error minimiza-
tion on N-best lists [18] or construct confusion networks
(“sausages”) [19]. Together with a helper script, this t@sb
implements a word posterior-based N-best generalization o
the ROVER algorithm [20, 21].

nbest - scri pt s — a collection of wrapper scripts that manip-
ulate and rescore N-best lists.

pf sg-scri pts — for converting LMs to word graphs.

nbest - opti m ze — optimizes log linear score combination
for word posterior-based (“sausage”) decoding.

4. DESIGN AND IMPLEMENTATION

SRILM is designed and implemented in three layers.

1. At the core are libraries comprising about 50 C++ classes

4.1. Class libraries

C++ class libraries implement the API sRiLM. Object-oriented
programming turns out to be an excellent match for LM implame
tation, for several reasons. A class hierarchy naturaflgcts the
specialization relation between different LM types (eagclass N-
gram is a special case of an N-gram, which is a special case of a
LM). Inheritance allows new LM variants to be derived from ex
isting ones with minimal effort. A new LM class minimally ra=e

to define only amor dPr ob function, the method used to compute
conditional probabilities given a word and its historjlost LM
functions are defined generically, and need not be reimpitsde
for a new derived LM class. For exampleent encePr ob is
defined in terms ofwor dPr ob and typically inherited from the
generic LM class; however, a given LM can define its own ver-
sion ofsent encePr ob, for efficiency or to change the standard
behavior.

Hash tables, arrays, tries, and other basic data strudiares
been implemented from scratch, for speed and compactndss un
the types of uses associated with LM data structtifBsmplatized
data structures and functions are very useful beyond thedoel
containers; N-gram statistics and estimation functioas gkam-
ple, are templatized to support both integer and fractiooahts.

4.2. Executable tools

The executable tools are designed to be both self-containdd
combinable in useful ways. Thus, as shown earlier, a stdriddr
can be built from a text file in a single invocation. More coexl
manipulations are possible by chaining together toolsigugihe
Unix standard input/output and “pipe” mechanism. Thus aasl
based N-gram model can be trained, pruned, expanded intoda wo
trigram model, and interpolated with another model usirefiit-
lowing pipeline (some options have been omitted to saveegpac

repl ace-words-wi t h-cl asses TRAI NDATA | \

ngramcount -text - -Im- | \
ngram-Im- -prune le-5 -wite-Im- | \
ngram-Im- -expand-classes 3 -wite-Im- | \

ngram-Im- -mx-ImLM -wite-ImM XLM

4.3. Helpers and wrappers

Miscellaneous other tools are implemented in gawk and shell
scripts, either because they involve simple text manipula-
tions that are more conveniently done this way (such as
repl ace-wor ds-wi t h- cl asses in the example above), or
because they only require a wrapper that combines the lusdsc t
An example of the latter ishange-| m vocab, a script that

for language models and miscellaneous objects (such as vo-modifies the vocabulary of an existing N-gram LM. The script

cabulary symbol tables, N-best lists, word graphs, DP trel-
lises), which in turn make use of a library of efficient contai
classes (e.g., arrays, hash tables).

The 14 main executable tools such agram count,
ngr am and taggers, are written in C++ on top of the API
provided by the libraries.

Numerous helper and wrapper scripts perform miscellameo

eliminates N-grams that have become OQV (using the textMal L
format) and then letagr amfill in new unigrams and renormalize
the backoff weights. Other scripts parse the diagnostipududf
the tools, such asonput e- best - nmi x, which computes opti-
mal interpolation weights fromgr am - ppl output.

10often ar ead function is also needed, but can be borrowed from an
existing class if the same external representation is wed; frequently

tasks that are more conveniently implemented in the gawk andthe case with N-gram based models.

Bourne shell scripting languages.

We summarize the characteristics of each implementati@r.la

2We considered switching to the Standard Template LibramLj$or
containers, but found that this would incur a significanslogboth speed
and compactness.



4.4. File formats (5]

SRILM uses standard file formats where possible—in particular,
the ARPA format for N-gram backoff LMs. Word graphs use SRI’s
probabilistic finite-state grammar (PFSG) format, whicim ¢ee
converted to and from that used by AT&T’s finite state machine
toolkit [22]. Where new file formats were needed we chose-easy
to-parse textual representations. All the main tools can @nd
write compressed files, as large amounts of data and models ar
often associated with LM work. We avoided binary file formats
because of their lack of portability and flexibility, and faeto use
compressed textual formats instead.

(7]

(8]

5. SHORTCOMINGS AND FUTURE DEVELOPMENTS [9]
Many well-established LM techniques are not implemented in
SRILM, such as deleted interpolation or maximum entropy model- [10]
ing, mainly because these have not proven essential in alirsgo
far. One candidate for future addition is a more flexibleslbased
model, since refinements of class-based LMs seem to provide a
effective and efficient way to incorporate grammatical infation
into the LM [23]. The low-level implementation of data struc
tures is currently biased toward speed and conveniencer ridiiin
memory usage; it might be worthwhile to reevaluate this ohoi
to accommodate ever-larger training corpaalLM currently as-
sumes single-byte character encoding and uses only waitespr
tokenization; it would be desirable to include support faultin
byte character sets and SGML-tagged formats at some point. U
timately, however, development of the toolkit will contanto be
driven by research needs, and is therefore hard to predict.
Availability.  sriLM is freely available for noncommer-
cial users under an Open Source Community License, designed5]
to ensure that enhancements by others find their way back
into the user community. Licensing for commercial purposes
is also available. Documentation and software are online at [16]
http://www.speech.sri.com/projects/srilm/.

(11]

(12]

(13]

(14]
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