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Abstract—We review developments in the SRI Language Mod-
eling Toolkit ( SRILM) since 2002, when a previous paper on
SRILM was published. These developments include measures to
make training from large data sets more efficient, to implement
additional language modeling techniques (such as for adaptation
and smoothing), and for client/server operation. In addition, the
functionality for lattice processing has been greatly expanded.
We also highlight several external contributions and notable
applications of the toolkit, and assessSRILM’s impact on the
research community.

I. I NTRODUCTION

The SRI Language Modeling Toolkit (SRILM for short) is an
open source software toolkit for statistical language modeling
and related tasks. It was first conceived and implemented—
with minimal functionality—in 1995, followed by a first public
(beta) release in 1999. Since thenSRILM has found wide use
in the speech and natural language research community.

A 2002 paper [1] presented an overview of the toolkit’s
design and functionality, of which we provide only a brief
summary here. This paper takes stock ofSRILM developments
since then, as well as extensions and applications ofSRILM.
We also summarize activities in theSRILM user community,
give an overall assessment of developments so far, and point
out possible future directions.

II. SRILM OVERVIEW

SRILM is a toolkit for building and evaluating statistical
language models (LMs). Most of the LM types it supports
are based on N-gram statistics, including the standard back-
off models, with an array of standard smoothing algorithms
(Good-Turing, Witten-Bell, Kneser-Ney, etc.). Models based
on word classes (automatically induced or externally defined)
are also supported.SRILM implements various methods for
interpolating and adapting LMs, as well as pruning for trading
off size against performance. Once an LM is trained, it can
be evaluated or used in a variety of standard tasks, such as
perplexity computation, N-best and lattice rescoring, andtext
tagging and segmentation.

SRILM consists of three software layers. The core function-
ality is implemented in C++, comprising classes for containers
(arrays, associative maps, tries, N-gram counts), application-
related data structures (N-best lists, lattices, confusion net-
works, text statistics), smoothing methods, and the LMs them-

selves. The latter are arranged in a class hierarchy, reflecting
the fact that many LM types are variants of more basic types,
for which most of the implementation can be shared. The
second layer, and the one most relevant to most users, is a
set of executable tools that carry out the standard tasks of LM
building and application, as well as manipulation of lattices,
N-best lists, and confusion networks. A third layer comprises
tools implemented as scripts in the Bourne shell, Gawk, and
Perl languages for miscellaneous tasks that are carried out
primarily through simple manipulation of text files or on top
of the second-layer tools. The tools in the second and third
layers are designed to combine via Unix pipes to carry out
more complex tasks.

III. N EW DEVELOPMENTS

Since 2002,SRILM has seen a fairly regular stream of
incremental releases (about 2 to 3 per year), each of which
typically contributed some new functionality, as well as bug
fixes and portability improvements. New functionality can be
grouped into the areas of efficient and handling of large data
sets, language modeling algorithms, and lattice and N-best
processing.

A. Efficiency and large LM training

The past ten years have seen an explosion in the availability
of public training data for language modeling purposes. This
was partly due to government funding research programs with
the aim to improve the performance for speech recognition
and machine translation systems. Second, ever-growing audio
archives of broadcast programs are now available for web
access and transcription costs have been lowered through
outsourcing to commercial services. Finally, textual datais
now available in essentially unlimited amounts through the
exponential growth of the world-wide web.

SRILM data structures for N-gram models were not origi-
nally engineered with memory footprint in mind, focusing in-
stead on programming convenience and speed. Since memory
requirements grow roughly linearly with the number of N-
grams in training, this can lead to problems when processing
the ever-increasing amounts of training data. Other LM toolkits
have since been published that are engineered specifically for



memory compactness and avoiding the limitations of random-
access memory by utilizing disk-based data structures [2],[3].

While memory sizes in typical research machines certainly
have not grown on the same scale as the increase in LM
training data, they have grown somewhat (in our case, from
around 500MB whenSRILM was first developed to tens of gi-
gabytes today). This, in combination with several incremental
measures described below, has proven sufficient so far to keep
up with the data demands at least in a research environments.

The techniques that help accommodate large data and mod-
els can be summarized as follows:

1) Count-of-count (metacount) statistics: When count
cutoffs on N-grams are used, as they usually are in
training large LMs, it is not necessary to load all N-
gram counts into memory. Rather, the count-of-count
statistics required for discounting algorithms can be
computed off-line (in constant memory), and for N-
grams that fall below the frequency threshold only
these count-of-counts (how many distinct N-grams of a
certain frequency in a given context occurred) need to be
passed to the LM estimation algorithm. This method is
encapsulated in theSRILM make-big-lm script. (Note
that the gathering of N-gram counts per se is not limited
by memory when using recursive count merging as in
merge-batch-counts).

2) Vocabulary subsetting: At test time, the data can
usually be split into manageable chunks, each of which
utilizes only a small subset of the vocabulary. All LM
types now support a loading method triggered byngram
-limit-vocab, whereby only those LM parameters
are loaded that intersect with a given vocabulary subset.

3) Binary file formats: N-gram counts and backoff LMs
now support binary formats that are inherently faster to
read and, more importantly, support very fast loading
with -limit-vocab, efficiently skipping over file
portions that are outside a given vocabulary. While the
format is binary, it is still portable between different
byte-orders and machine word sizes.

4) Indirect integer storage: Large counts require 64 bits
for encoding, yet this would entail wasted space for
most N-grams, which are still infrequent. We therefore
implemented an integer data type that stores small count
values inline using 2- or 4- byte words, while referencing
a table for large values that do not fit in 15 or 31 bits,
respectively.

5) Optimized heap allocation: We lowered the overall
overhead in heap memory allocation (for bookkeeping)
by providing a special-purpose allocator that keeps lists
of small memory chunks, as are typically found in N-
gram trie data structures. (This, too, exploits the fact
that N-gram frequency distributions have a long tail of
infrequent N-gram types, leading to a large number of
trie nodes with small number of children.) For a 6-gram
LM with 690M N-grams, this reduced memory usage
by 30% (from 33GB to 23GB).

6) Destructive LM merging: Since large LMs are typi-

cally constructed as a static interpolation of component
LMs by N-gram merging, we made N-gram LM merging
destructive, so that the total memory demand is only the
sum of the result LM and the smaller of the two inputs.
This way, very large LMs can be built by successively
merging the component models.

B. Language modeling algorithms

A major algorithmic addition inSRILM is support for
factored language models(FLMs), proposed by Bilmes and
Kirchhoff [4], who implemented FLMs within theSRILM

framework. FLMs represent words as vectors of discrete
features, which allows the prediction of words to be factored in
a number of ways. This treatment is particularly appropriate
for modeling languages with complex morphology, such as
Arabic [5].

The array of N-gramsmoothing algorithms has been
rounded out by adding the original (unmodified) Kneser-Ney
(KN) method [6] and simple additive smoothing. The latter
is useful for instructive purposes, and can give better results
when the goal is not to minimize model perplexity (e.g., when
using N-gram models for classification tasks).

It was recently pointed out [7] that KN-smoothed backoff
models perform poorly when pruned heavily (e.g., for use in
speech decoding). This problem results in part because KN-
smoothed models by their nature are not a good model for the
joint probabilities of lower-order N-grams. As a partial rem-
edy, we added an option to specify a second LM (presumably
smoothed not using KN) to the pruning algorithm for use in
computing lower-order N-gram marginals.

SRILM now also supportsdeleted interpolation (also
known as Jelinek-Mercer smoothing) [8] as an alternative
classical smoothing approach. Although it is no longer state of
the art, this method was included because it confers a practical
advantage when very large training corpora are used. In our
implementation, known as acount-based LM, the model is
stored only as a set of interpolation weights, along with a
pointer to the N-gram count statistics. Together with the ability
to load only those counts that are relevant to a given test set
vocabulary, this enables the use of essentially unlimited N-
gram statistics.

Count-based LMs were specifically motivated by the recent
publication oflarge N-gram corpora by Google and Yahoo.
To leverage these data sources, a method for reading N-
gram counts in the Google format was added (including
efficient reading for sub-vocabularies), as well as severalother
functions that enable effective use of the data (e.g., in machine
translation systems [9]). A vocabulary mapping mechanism
was incorporated to allow the given count statistics to be used
even though the target task might require different text normal-
ization, such as when Web data is used for speech recognition
LMs. Also, because the published Web data statistics were
subjected to count cutoffs, we devised a way to extrapolate
the missing lower count-of-count statistics that are required
for KN and Good-Turing discounting [9].



Two additional methods from the literature for N-gram
model adaptation and combination have been implemented.
Unigram marginal adaptation [10] combines an existing N-
gram LM with unigram statistics from an adaptation set by
scaling the N-gram conditional probabilities to conform tothe
unigram distribution.Log-linear interpolation of LMs [11] is
similar to standard linear interpolation except that probabilities
are combined multiplicatively rather than additively (i.e., the
combination is additive in the log probability space). Both
these methods require renormalization of the modified N-gram
probabilities, which makes them relatively more expensiveto
compute than standard linear interpolation. This drawbackis
mitigated by caching the normalization terms once computed,
given that the same word histories tend to reoccur, especially
in N-best and lattice rescoring.

A simple mechanism forN-gram-based approximation
of any of the implemented non-standard LMs has been
added. The user supplies a standard N-gram LM tongram
-rescore-ngram and all N-gram conditional probabilities
are recomputed according to the LM specified by the remain-
ing options. For example, a log-linearly interpolated model
could be precomputed for all N-grams of interest and stored
as a single standard LM. The quality of the approximation is
determined by the set of N-grams included in the “rescored”
model.

SRILM now includes a simpleclient-server implementa-
tion that allows connecting LM computation and applications
over a TCP/IP network connection. Thengram tool when
started in server mode listens for connections on a specified
port, reads requests for N-gram probabilities, and writes back
results according to the LM options specified. On the client
side, thengram tool is invoked with an option specifying the
host and port number on which the server is found. The client
has an option for caching LM results for fast reuse to reduce
latency.

The SRILM network protocol corresponds to a minimal
subset of theSRILM API and also includes requests for
determining the history length used in an N-gram estimate,
and the corresponding backoff weight (enough information to
allow efficient lattice rescoring). The client-server approach
has obvious uses in network-based LM applications. For
example, evaluation of large LMs may be delegated to a
machine with large memory, thereby reducing the footprint of
LM applications and avoiding the latency incurred by reading
the LM at startup.

Before an LM can be estimated one has to performvocabu-
lary selection. SRILM now includes the toolselect-vocab
that ranks vocabulary words from a union of training corpora,
based on their corpus frequencies as well as the relevance of
each corpus relative to a held-out test set [12]. Conveniently,
training and held-out statistics may be given by text files, N-
gram count files, or LMs.

C. Lattices and N-best processing

Language models are often applied to lattices and N-best
lists of hypotheses, andSRILM from early on had facilities for

handling these data structures. A major enhancement since
2002 has been support for lattices inHTK Standard Lattice
Format. This allows separate encoding of different kinds of
scores (acoustic, pronunciation, language model) from the
recognizer, and efficient replacing and reweighting of scores
when new models are applied to recognition output. Confusion
networks are also accepted as an input lattice format, allowing
further rescoring after confusion network construction.

The lattice expansion algorithm has been generalized to
work for LMs with arbitrary finite history length, either in
exact form or taking advantage of the LM’s backoff structure
[13]. It is also now possible to rescore lattices with higher-
order LMs without explicitly expanding them, saving time and
memory.

Based on HTK lattices, several generally useful algorithms
have been implemented that for the most part are independent
of language models. N-best lists can be generated from HTK
lattices, using either an A-star (stack) or Viterbi-style decoding
algorithm.

Based on the weighted input scores on lattice hypotheses,
posterior probabilities can be computed and used for pruning
lattices. Posterior probabilities may also be used in computing
the weighted counts of all N-grams found in a lattice, which
in turn is the basis of many applications, such as speaker
and language recognition based on phone lattices. To enable
word spotting applications one can generate an index of all
word lattice N-grams with their time offsets and posterior
probabilities.

A major addition is the generation of confusion networks
(CNs) directly from lattices (previously confusion networks
could only be generated from N-best lists). While inspired by
the original CN algorithm of [14], we decided to implement
a new algorithm that is similar to one proposed by [15]
and does not rely on word time marks or pronunciations to
partition word hypotheses into confusion sets. The algorithm
starts with the highest-probability path through the lattice,
and then successively aligns those partial lattice paths tothe
CN that lead to and from remaining nodes, until all word
hypotheses are accounted for. The resulting algorithm has
lower complexity than the one in [14], requiring time that
is only linear in the product of the number of lattice nodes
and the length of the final CN.

Finally, thenbest-optimize tool for score weight op-
timization has been generalized to also allow BLEU score
optimization, as required for machine translation.

D. Portability

Given the diversity of the user community, we have tried to
keep the code as portable as possible. Originally developedon
Unix/Linux platforms, it now builds and runs on MacOS and
Windows systems as well. Windows builds can use either the
Cygwin porting layer or the native Visual C++ environment.
Cygwin supports some functionality that is otherwise not
available (compressed file I/O through pipes, the client/server
implementation based on Unix sockets), but has the limitation
of 32bit word size. A test suite that covers all the major



functions ensures that the expected results are obtained on
all platforms (up to small discrepancies due to differencesin
machine arithmetic).

SRILM has also been ported to ARM-processor-based plat-
forms, and is embedded both in SRI’s DynaSpeakR© small-
footprint speech recognition engine [16] and in the SRInterp
cross-platform statistical machine translation engine, which
supports speech-to-speech translation applications on Android
smartphones [17].

IV. EXTENSIONS AND APPLICATIONS

SRILM from the start was designed to be an extensible
platform that others could use to build new algorithms while
effectively leveraging the facilities already implemented. It is
therefore very satisfying to see that several researchers have
based their implementations onSRILM and released extensions
to it as separate packages. Among these are “semantic LMs”
based on latent semantic analysis [18], random forest LMs
[19], LM smoothing using the hierarchical Pitman-Yor process
and power law discounting [20], and maximum entropy LMs
[21].

Equally satisfying,SRILM has found widespread use as a
ready-made toolbox that can be used to implement state-of-
the-art LMs in a wide range of applications. Various speech
recognition systems, such as the open-source system devel-
oped at RWTH Aachen [22], make use ofSRILM for their
language models. Open-source machine translation systems
such as Moses [23] and Joshua [24] also useSRILM, as
does the commercial SYSTRAN engine [25]. Other natural
language applications include text-to-speech alignment [26],
tagging and word segmentation for Semitic languages [27],
Chinese word segmentation [28], and handwriting recognition
[29]. SRILM has also found applications in bio-informatics
[30].

Finally, we are happy to see thatSRILM has found wide
use in academic teaching of natural language processing and
speech recognition subjects. Courses at Carnegie Mellon, the
Center for Spoken Language Understanding, Mississippi State,
Stanford, and the University of Washington (to name only
those we are aware of) have incorporatedSRILM into their
course materials and hands-on assignments.

V. USERCOMMUNITY

As of this writing, SRILM has been downloaded about
40,000 times from http://www.speech.sri.com/projects/srilm/,
corresponding to 15,299 unique email addresses. Download-
ers by default join a mailing list to receive future re-
lease announcements, from which they can opt out, how-
ever, or remove themselves later (the mailing list software
also automatically removes invalid email addresses). This
srilm-announce list at present contains 5841 email ad-
dresses. A second mailing list requires explicit signing up,
and is meant for users who take a more active interest in the
toolkit and sometimes answer questions about its use. This
srilm-user mailing list currently has 366 members, and
results in a searchable archive of questions and answers about

SRILM usage and possible future extensions. To gauge the
extent to which our toolkit has contributed to research we can
query scholar.google.com, which reports that the 2002SRILM

paper [1] was cited in 1699 research publications.
While the great majority ofSRILM users work on not-for-

profit or government-sponsored research (the legitimate fields
of use when the software is obtained for free), the toolkit has
also been licensed for commercial use.1

VI. SUMMARY AND OUTLOOK

SRILM has proven itself as a popular toolkit for the purposes
it was designed to serve: as a ready-made set of tools for state-
of-the-art language modeling in a wide range of application
domains (speech recognition, text-based natural languagepro-
cessing, machine translation, and bio-informatics), as well as
a platform for LM research that continues to be extended with
new functionality.

The toolkit’s basic software design has aged remarkably
well given the many extensions in functionality over the past
sixteen years. This is not to say thatSRILM could not use
some reengineering, such as an overhaul of datastructures
to accommodate very large datasets, including disk-based
container abstractions.

Several advances in LM research in recent years seem to
show consistent gains and wider adoption, such as class-based
exponential models [31] and neural network-based LMs [32].
Clearly, adding some of these new approaches to the toolkit
would serve its users well, and we hope that contributions
from the community will continue to be forthcoming.
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