#!/usr/bin/env python3 # Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) """ We use https://hf-mirror.com/yuekai/model_repo_sense_voice_small/blob/main/export_onnx.py as a reference while writing this file. Thanks to https://github.com/yuekaizhang for making the file public. """ import os from typing import Any, Dict, Tuple import onnx import torch from model import SenseVoiceSmall from onnxruntime.quantization import QuantType, quantize_dynamic def add_meta_data(filename: str, meta_data: Dict[str, Any]): """Add meta data to an ONNX model. It is changed in-place. Args: filename: Filename of the ONNX model to be changed. meta_data: Key-value pairs. """ model = onnx.load(filename) while len(model.metadata_props): model.metadata_props.pop() for key, value in meta_data.items(): meta = model.metadata_props.add() meta.key = key meta.value = str(value) onnx.save(model, filename) def modified_forward( self, x: torch.Tensor, x_length: torch.Tensor, language: torch.Tensor, text_norm: torch.Tensor, ): """ Args: x: A 3-D tensor of shape (N, T, C) with dtype torch.float32 x_length: A 1-D tensor of shape (N,) with dtype torch.int32 language: A 1-D tensor of shape (N,) with dtype torch.int32 See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L640 text_norm: A 1-D tensor of shape (N,) with dtype torch.int32 See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L642 """ language_query = self.embed(language).unsqueeze(1) text_norm_query = self.embed(text_norm).unsqueeze(1) event_emo_query = self.embed(torch.LongTensor([[1, 2]])).repeat(x.size(0), 1, 1) x = torch.cat((language_query, event_emo_query, text_norm_query, x), dim=1) x_length += 4 encoder_out, encoder_out_lens = self.encoder(x, x_length) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] ctc_logits = self.ctc.ctc_lo(encoder_out) return ctc_logits def load_cmvn(filename) -> Tuple[str, str]: neg_mean = None inv_stddev = None with open(filename) as f: for line in f: if not line.startswith(""): continue t = line.split()[3:-1] if neg_mean is None: neg_mean = ",".join(t) else: inv_stddev = ",".join(t) return neg_mean, inv_stddev def generate_tokens(params): sp = params["tokenizer"].sp with open("tokens.txt", "w", encoding="utf-8") as f: for i in range(sp.vocab_size()): f.write(f"{sp.id_to_piece(i)} {i}\n") os.system("head tokens.txt; tail -n200 tokens.txt") def display_params(params): print("----------params----------") print(params) print("----------frontend_conf----------") print(params["frontend_conf"]) os.system(f"cat {params['frontend_conf']['cmvn_file']}") print("----------config----------") print(params["config"]) os.system(f"cat {params['config']}") def main(): model, params = SenseVoiceSmall.from_pretrained(model="iic/SenseVoiceSmall") display_params(params) generate_tokens(params) model.__class__.forward = modified_forward x = torch.randn(2, 100, 560, dtype=torch.float32) x_length = torch.tensor([80, 100], dtype=torch.int32) language = torch.tensor([0, 3], dtype=torch.int32) text_norm = torch.tensor([14, 15], dtype=torch.int32) opset_version = 13 filename = "model.onnx" torch.onnx.export( model, (x, x_length, language, text_norm), filename, opset_version=opset_version, input_names=["x", "x_length", "language", "text_norm"], output_names=["logits"], dynamic_axes={ "x": {0: "N", 1: "T"}, "x_length": {0: "N"}, "language": {0: "N"}, "text_norm": {0: "N"}, "logits": {0: "N", 1: "T"}, }, ) lfr_window_size = params["frontend_conf"]["lfr_m"] lfr_window_shift = params["frontend_conf"]["lfr_n"] neg_mean, inv_stddev = load_cmvn(params["frontend_conf"]["cmvn_file"]) vocab_size = params["tokenizer"].sp.vocab_size() meta_data = { "lfr_window_size": lfr_window_size, "lfr_window_shift": lfr_window_shift, "normalize_samples": 0, # input should be in the range [-32768, 32767] "neg_mean": neg_mean, "inv_stddev": inv_stddev, "model_type": "sense_voice_ctc", # version 1: Use QInt8 # version 2: Use QUInt8 "version": "2", "model_author": "iic", "maintainer": "k2-fsa", "vocab_size": vocab_size, "comment": "iic/SenseVoiceSmall", "lang_auto": model.lid_dict["auto"], "lang_zh": model.lid_dict["zh"], "lang_en": model.lid_dict["en"], "lang_yue": model.lid_dict["yue"], # cantonese "lang_ja": model.lid_dict["ja"], "lang_ko": model.lid_dict["ko"], "lang_nospeech": model.lid_dict["nospeech"], "with_itn": model.textnorm_dict["withitn"], "without_itn": model.textnorm_dict["woitn"], "url": "https://huggingface.co/FunAudioLLM/SenseVoiceSmall", } add_meta_data(filename=filename, meta_data=meta_data) filename_int8 = "model.int8.onnx" quantize_dynamic( model_input=filename, model_output=filename_int8, op_types_to_quantize=["MatMul"], # Note that we have to use QUInt8 here. # # When QInt8 is used, C++ onnxruntime produces incorrect results weight_type=QuantType.QUInt8, ) if __name__ == "__main__": torch.manual_seed(20240717) main()