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Abstract

This paper describes the Kestrel text normalization system, a component of the Google text-

to-speech synthesis (TTS) system. At the core of Kestrel are text-normalization grammars

that are compiled into libraries of weighted finite-state transducers (WFSTs). While the use

of WFSTs for text normalization is itself not new, Kestrel differs from previous systems in

its separation of the initial tokenization and classification phase of analysis from verbalization.

Input text is first tokenized and different tokens classified using WFSTs. As part of the

classification, detected semiotic classes – expressions such as currency amounts, dates, times,

measure phases, are parsed into protocol buffers (https://code.google.com/p/protobuf/). The

protocol buffers are then verbalized, with possible reordering of the elements, again using

WFSTs. This paper describes the architecture of Kestrel, the protocol buffer representations

of semiotic classes, and presents some examples of grammars for various languages. We also

discuss applications and deployments of Kestrel as part of the Google TTS system, which

runs on both server and client side on multiple devices, and is used daily by millions of people

in nineteen languages and counting.

1 Introduction

Text-to-speech synthesis (TTS) consists of a number of processing steps that control

the conversion of input text into output speech (Taylor 2009). These steps can be

broadly broken down into two main categories: linguistic analysis, and synthesis.

Synthesis involves the actual production of speech, either by selection of units from a

database in a unit-selection system, or by generation of parameters in, for example, an

HMM synthesizer. Prosody control, including intonation and duration modification,

is also part of this phase. Linguistic analysis includes text normalization, homograph

disambiguation, word pronunciation, and linguistic aspects of prosody prediction

such as accent assignment. It is the very first phase, text normalization, that is the

topic of this paper.

Text normalization is generally used to refer to such processes as the expansion

of abbreviations, the verbalization of digit sequences and the reading of such

expressions as times, dates, and currency amounts. Historically this has not been

one of the glamorous areas of TTS, and yet it is a critically important part of the

process for one simple reason: If the system gets it wrong – if it reads turn right on

30N as turn right on thirty Newtons, or $4.5 million as four point five dollars million
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– listeners will immediately notice. In that case, it does not matter how good the

voice quality is: at best the system will sound like a stupid reader who happens to

have a pleasant-sounding voice. At the same time, text normalization is hard: there

are times when 30N should be read as thirty Newtons, and while some of these kinds

of ambiguities can be handled using sense disambiguation techniques (Yarowsky

1996; Navigli 2009), such techniques typically require at least some annotated data

to train models, which is often not available for all of the ambiguities one would

like to resolve. As a result, much of the work on text normalization still involves

hand-constructed grammars, which are carefully tuned to handle the cases most

likely to be encountered. Thus, despite the shift of most of the field of natural

language processing towards statistical methods and machine learning solutions,

text normalization remains one of the last great bastions of manual techniques.1

To start with the obvious, text consists of a sequence of tokens, delimited

by punctuation tokens, and (in most languages) spaces. Many of these (non-

punctuation) tokens represent words or names, spelled using the normal spelling

conventions of the language, as one would find in a dictionary. Following (Sproat

et al. 2001), we term these standard words, or simply words. Then there are things like

numbers, abbreviations, acronyms, letter sequences, which are not generally found

in dictionaries, and are not generally read according to the general pronunciation

rules of the language. Again, following (Sproat et al. 2001) we call these non-standard

words – NSWs.2 Consider the following text:3

The Pentagon concluded that Edward Snowden committed the biggest theft of U.S. secrets

in history, downloading about 1.7 million intelligence files, including information that could

put personnel in jeopardy, according to lawmakers.

This text consists mostly of ordinary words and names, but there are four punctu-

ation marks (underlined) and two NSWs (in bold). As is typical of newswire text,

this example is fairly ‘clean’ in that there are relatively few tokens that need to be

normalized. On the other hand, for example, ads on the web tend to be much richer

in NSWs:

10 lbs. of BodyTech Whey Tech Pro 24 Protein Powder for $72.

Similarly, driving directions are often replete with NSWs:

Continue on NJ-36 S. Take NJ-18 N, County Rd 537 W, NJ-33 W, NJ-133 W and Co

Rd 571/Princeton Hightstown Rd to Blue Jay Way in West Windsor Township.

1 A reviewer notes that there are other areas where manual techniques are still heavily used,
such as gene-name normalization, and even such areas as text classification. To this one
could add the point that various components required to make speech technology actually
work, such as accurate pronunciation dictionaries, still require substantial manual curation.
In any case, it remains true that for the reasons we stated above, text normalization has
remained resistant to replacement by machine-learning-based methods.

2 Also falling into the standard word category are the occasional foreign word or name.
These usually do not follow the conventions of the main language, of course, but we
classify them with standard words since they are usually ordinarily spelled words in some
language, and do not naturally fit into the category of NSW.

3 Source: ‘Pentagon Says Snowden Took Most U.S. Secrets Ever: Rogers’ Bloomberg Politics,
January 10, 2014. http://www.bloomberg.com/news/2014-01-10/pentagon-says-snowden-
took-most-u-s-secrets-ever-rogers.html
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A text normalization system must be able to handle such a range of cases, as well

as provide mechanisms for an application to override what the system would do by

default. Thus, for driving directions, the calling application knows that it is dealing

with road names, and thus can pass NJ-18 N to the TTS system marked as a road,

and expect the TTS system to read it as New Jersey eighteen north.

This paper describes the architecture of Kestrel,4 the text-normalization compon-

ent of the Google TTS system. Since the main data used by Kestrel are language-

specific grammars based on weighted finite-state transducers (WFSTs), we start by

briefly describing the history of the use of WFSTs in text normalization.

2 History of FST-based approaches to text normalization

At the core of Kestrel’s functionality are grammars, developed in collaboration

with native speakers of our target languages, that compile into WFSTs. Recall that

WFSTs are machines that have a finite number of states, with a designated initial

state, one or more final states, and directed arcs connecting states that are labeled

with pairs of input and output symbols taken from an alphabet of symbols unioned

with the empty symbol ε. Arcs may be weighted with costs, and final states with

exit costs. These costs may represent probabilities or, more commonly, negative log

probabilities; or, as in the present work, they may represent hand-assigned penalties

that allow for ranking of different possible analyses.

Finite-state methods for language and speech problems have been with us since

the 1950’s – see Joshi (1996), and have been widely applied to different problems

ranging from early work in morphology (Koskenniemi 1983), parsing (Abney 1996),

and machine translation (Bangalore and Riccardi 2001; de Gispert et al. 2010).

Weighted finite-state acceptors and transducers have shown many applications in

speech and language processing (Pereira, Riley and Sproat 1994; Mohri, Pereira

and Riley 2002; Mohri 2009), and as algorithms have improved, and machines have

become more powerful, the range of applications and the sizes of the problems to

which they can be applied have concomitantly increased. For large statistical models

such as language models, FSTs are typically compiled automatically from tables

representing corpus-derived statistics, but in many applications it is desirable to

write rules by hand. Compilation algorithms, such as Kaplan and Kay (1994) and

Mohri and Sproat (1996), make it possible to write grammars in a human-friendly

intuitive way, which are then compiled into WFSTs. Basic details of WFSTs are at

this stage widely known, and will not be reviewed here; much discussion can be

found in pedagogical natural language processing texts such as Roark and Sproat

(2007) and Jurafsky and Martin (2009). In particular, it will be assumed that the

reader is familiar with the notion of a regular relation between two sets of strings,

namely the class of string-set-to-string-set mappings that is computed by an FST.

Such relations include many of the string-to-string mappings needed in natural

4 The various versions of the Google text normalization system have all been named after
birds: prior to Kestrel was a system called ‘Swift’. At the end of this paper we mention a
research system that we call ‘Warbler’.
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language, but they are limited in that they cannot so readily handle reversals or

copying of arbitrary material. In the discussion below, we will see that these latter

sorts of phenomena do in fact arise occasionally in text normalization.

Speech synthesizers need to do natural language analysis and as such have tended

to make use of methods that are used more widely in the NLP field. Early linguistic

analysis systems, such as the DECOMP lexical analysis module of the MITalk

speech synthesizer from the 1970s (Allen et al. 1987), used a finite-state model of

the lexicon, though this was not explicitly modeled using finite-state machines. For

text normalization more broadly, MITalk and other early systems tended to use

functions written in code.5

The first TTS engine that made systematic use of FSTs in all aspects of text

normalization was the Bell Labs multilingual text-to-speech synthesizer (Sproat 1996,

1997). In that system, the entire analysis of input text, tokenization, normalization,

and conversion to phone sequences was accomplished by a cascaded architecture as

depicted in Figure 1. The two main components of the text-normalization module

were a lexical analysis phase, composed with the input text and converting it into a

sequence of words with possible annotations; followed by a grapheme-to-phoneme

phase, which converted the words into sequences of phones. In most of the systems

developed, the latter was a (composition) cascade of FSTs with hand-built grapheme-

to-phoneme rules; see Möbius et al. (1997), for an example, for German. The lexical

analysis system is more interesting in that it involves:

• A union of transducers for individual lexical classes such as numbers, dates,

currency amounts, and ordinary words; concatenated with

• An FST representing the word separator(s) for the language. For, say, German

this would include punctuation and space; for Chinese it would include

punctuation, but not space. Then finally

• The resulting transducer is converted to the final lexical analysis transducer

using transitive closure.

Thus in summary, the lexical analysis system is the union of all of the individual

lexical classes, concatenated with the space model, and the result of this is then

concatenated with itself zero or more times (transitive closure). Formally, with L
representing the set of lexical classes and S the space model, this can be expressed

as: ( ⋃
l∈L

lS
)∗

(1)

The transducer thus both tokenizes and lexically analyzes the input simultaneously.

Anticipating our discussion below, this is identical to the TokenizeAndClassify

phase of Kestrel, but also includes the Verbalize phase, which in Kestrel is a

separate component.

5 For example, the Bell Labs English TTS system from the mid 1980’s had a text
normalization system called frend (for front end ), that was a complex mix of C code
and compiled tables.
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Fig. 1. (Colour online) The text normalization system in the Bell Labs multilingual TTS

system (Sproat 1996). Input text is first composed with a lexical analysis transducer, yielding

a string of words with possible annotations. These are then passed through a cascade of

grapheme to phoneme transducers to yield a phone sequence.

The underlying assumption of such a system that the reading aloud of text can be

handled by purely finite-state devices is not trivial, since it makes an implicit claim

that the relation between written and spoken language is a regular relation, in the

formal sense defined above. More specifically, what we are claiming is largely regular

is the relation between what is written in unnormalized text, and the normalized

(and ultimately phonetically transcribed) representation from which speech itself is

generated. The reason this claim is interesting is that it means that most of the

work of the text normalizer can be handled using a single computational device,

namely (weighted) finite-state transducers, which we introduced above. Of course,

(W)FSTs have been used widely in other areas such as computational phonology

and morphology: see, e.g. Johnson (1972), Koskenniemi (1983), Bird and Ellison

(1994), and Kaplan and Kay (1994). But to our knowledge, prior to the Bell Labs

work nobody had made this claim explicit about the relation between written and

spoken language. Nonetheless, the assumption works much of the time, because

writing systems rarely employ non-regular devices, the exceptions to this being well

defined. See Sproat (2000) for a discussion of this topic in the context of a general

theory of writing systems. Indeed, given work on using WFSTs as part of the

unit-selection process in concatenative synthesizers – e.g. Allauzen, Mohri and Riley

(2004) – one can treat the entire problem of converting from unnormalized text to

the final speech signal as (largely) regular.

One class of exceptions includes currency expressions, which in most languages

are written with the currency symbol before the number, but read with the currency
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word after the number expression. Thus ‘$200’ is read as two hundred dollars not,

obviously, as dollars two hundred. It was possible in the Bell Labs system to handle

these, but at a cost: every currency symbol would branch a separate set of paths for

number expansion. This duplication was the only way that the FST could ‘remember’

which currency word it should emit at the end. Thus, the transducers for currencies

tended to be large and inefficient. Examples like this are one reason why in Kestrel

the verbalization phase is handled separately from tokenization and classification.

Following on the Bell Labs work, FST-based approaches to text normalization

were pursued at Rhetorical Systems (now part of Nuance) (Skut, Ulrich and

Hammervold 2003, 2004), as well as in research projects at the University of Stuttgart

(Möbius 2001).

3 Philosophy and design of Kestrel

NSWs frequently exhibit a mismatch between what is written and what is pro-

nounced. This can occur for a variety of reasons. With an abbreviation such as St

for Saint, the mismatch is due to the fact that the word being represented is not

spelled in its normal way. For things like numbers and currency amounts, however,

the mismatch is because the symbols in question are ideographic in the literal sense

of that term. Thus $1.50 represents the currency amount consisting of one dollar

and fifty cents. Unlike St, which can be said to represent the English word Saint,

albeit in an abbreviated form, $1.50 does not represent the English words one dollar

and fifty cents any more than it represents the Spanish words un dólar y cincuenta

centavos. Rather it represents the concept directly, and thus can be said to be

ideographic.6 Similarly, a measure phrase such as 3.5 kg represents the concept of

three and a half kilograms, rather than its expression in any particular language.

The case with currency is particularly clear since in many languages, the major

currency symbol – ‘$’ in the example above – is written before the amount, even

though it is spoken after the amount.

Furthermore for some types of NSWs, or complex expressions composed thereof,

there are several equivalent ways to write the same expression. Thus Jan 4, 2014

and (in non-US English) 4/1/2014, both denote and can be read as January the

fourth, twenty fourteen. These written forms are to a greater or lesser extent divorced

from language. This is especially true for constructions like 4/1/2014, which is really

a formal expression for that date that is to a large extent language- and culture-

independent. It is this language-independence and ‘ideographic’ aspect of these

expressions that led (Taylor 2009), to term these semiotic classes. Kestrel recognizes

a large set of these:

• Measure, including percentages

• Currency amounts

• Dates

6 This correct usage of the term ideographic is not to be confused with the incorrect
terminology chosen by the Unicode Consortium to refer to the set of Chinese characters.
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• Various categories of number:

— Cardinal

— Ordinal

— Decimal

— Fraction

• Times

• Telephone numbers

• Electronic addresses

Some of these may include language-particular details, such as Jan above as an

abbreviation for January, something that would work in English or French (janvier)

but not, for example, in Italian (where the equivalent would be gen , for gennaio),

much less in Russian where it would be (for ). But for the most part

these are formal expressions that give little or no indication of how they are to be

read.

Various of the semiotic classes listed above can contain other semiotic classes. For

example, measure phrases, times, dates, and currency amounts contain fields that

may be filled by one of the number classes listed above. These are all defined as

embedded messages in a protocol buffer7 definition for each class. Protocol buffers

are a representation used throughout Google and beyond to represent data in terms

of key-value pairs. The basic unit of a protocol buffer is a message, which consists of

named keys and typed values, where possible types include integers, strings, booleans

or other messages, and where the values may be individual instances or sequences

of such types.

Kestrel processes text in two stages. The first is a tokenization and classification

phase where the text is tokenized into tokens, and each of these is classified into one

of four classes:

• An ordinary word

• One of the above semiotic classes

• Punctuation

• Individual, possibly unknown characters (such as or ).

This tokenization and classification phase is handled using FST grammars. The

output of the application of these grammars is a textual representation of a

linearization – technically, a serialization – of a protocol buffer representation

of the tokens. This serialization is then parsed into protocol buffers and passed to

the second stage, which is verbalization.

During the verbalization phase, the protocol buffers are then reserialized, and the

semiotic classes tokens are passed to the verbalizer. Protocol buffers have no inherent

ordering, and can be serialized in any order. During the verbalization phase, Kestrel

actually produces a lattice representing all possible orderings of the components,

unless this is specifically overridden by a boolean preserve order field. When the

verbalization grammar is applied to this lattice, the orders that match what the

7 https://code.google.com/p/protobuf/
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grammar expects will be verbalized. All others will be ignored. Thus for example, a

money token that the tokenizer/classifier parses as

money { currency: "usd" amount { integer_part: "50" } ... }

(see below), has the currency amount (usd ) before the number since that is the way

it comes in as text ($50 ). During the verbalization phase these are presented in the

various permutations:

money { currency: "usd" amount { integer_part: "50" } ... }

money { amount { integer_part: "50" } currency: "usd" ... }

...

Since English, like most languages, expresses the word for the currency after the

number, the verbalization grammar is written to expect input like the second

serialization above. Therefore the first ordering will be ignored, and the expression

will be verbalized as fifty dollars.

Note that such reorderings are problematic for a model that relies exclusively

on FSTs to compute the string-to-string mappings as in the Bell Labs architecture

(Sproat 1996). As we noted above, while it is possible to handle local reorderings

using FSTs, it can be expensive in terms of size and computation speed. Thus,

a system that dissociates the surface linear order from the order in which the

components are to be verbalized is preferred.

Note also that at the tokenization and classification phase the grammars are

only partly language dependent. There is, for example, no need to make language-

particular assumptions about the analysis of 200. Therefore, a large number of the

rules for detecting and parsing semiotic classes are universal, inherited by language-

particular tokenization and classification grammars. Verbalization grammars are of

course language-dependent.

It will help at this point to work through a specific example. Consider the following

text:

I need $50k. Please call me at 4:00 at +1-503-444-1234.

The serialized protocol buffer representation of the tokenization looks as follows:

tokens { name: "I" }

tokens { name: "need" }

tokens { money { currency: "usd" amount { integer_part: "50" }

quantity: 1000 } }

tokens { name: "." phrase_break: true type: PUNCT }

tokens { name: "Please" }

tokens { name: "call" } tokens { name: "me" }

tokens { name: "at" }

tokens { time { hours: 4 minutes: 0 } }

tokens { name: "at" }

tokens { telephone { country_code: "1" number_part: "503"

number_part: "444" number_part: "1234" } }

tokens { name: "." phrase_break: true type: PUNCT }
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Most of the above is fairly easily interpreted. Thus ordinary words simply have a

name field that is filled by the spelling of the word. Punctuation fields are similar

but also have a type field specified as PUNCT as well as indication of whether the

punctuation is expected to induce a phrase break.8

Currency amounts have fields for the currency, the amount, which is a number

and an optional quantity, which corresponds to a portion of the number that is

not written as a sequence of digits: in this case the k in $50k is represented as a

quantity, rendered during the verbalization phase in English as thousand (or just

k ).

Times include fields for hours and minutes, as well as period (AM, PM), and

seconds if they are expressed.

Telephone numbers include obvious fields like country codes (if present), exten-

sions (similarly) and various number part components.

The option is also available to the user to provide these fields directly rather than

relying on the classifier to make the correct decisions. Thus, the definitions of the

various semiotic classes that Kestrel supports are made available via the input API.

Since Kestrel parses raw text into the same format, nearly no extra effort is required

to accept this additional input form; they are simply passed over by the classifier

and sent directly to the verbalizer.

The verbalizer starts by walking over the token stream. It passes over ordinary

words and punctuation, and focuses on verbalizing semiotic class instances into se-

quences of in-lexicon words. This it accomplishes, again, using finite-state grammars.

Thus in the above example, the money example, with the currency expression and

quantity reordered

money { amount { integer_part: "50" } quantity: 1000

currency: "usd" }

is verbalized into fifty thousand dollars. The time

time { hours: 4 minutes: 0 }

becomes four o’clock. And the telephone number

telephone { country_code: "1" number_part: "503"

number_part: "444" number_part: "1234" } }

is plus one, five oh three, four four four, one two three four.

The above sketch presumes a ‘pure’ interpretation of semiotic classes where their

written form has no direct influence on the way they are spoken. While perhaps

ideal in principle, such a purist interpretation cannot always work in practice. For

example if someone writes (in US English) 2/9/2014, it is reasonable to read it as

any of the following, among others:

8 A boolean field for phrase breaks is of course insufficient to capture the nuance of
all forms of punctuation. A future revision of Kestrel will replace this with a more
flexible representation. Note also that phrasing prediction – both determining which
punctuation symbols correspond to phrase breaks, and where to place phrase breaks
in long unpunctuated word sequences – is outside the scope of Kestrel.
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• two, nine, twenty fourteen

• February the ninth, twenty fourteen

• the ninth of February, twenty fourteen.

By converting all of these to a consistent internal representation where the month,

day, and year are all represented numerically, we can decide at verbalization time

how to express these.

But if someone writes Feb 9, 2014, or February 9, 2014, while this still means

the same thing, only the reading February the ninth, twenty fourteen is appropriate.

That is, while reading two, nine, twenty fourteen for the text Feb 9, 2014 would

convey the same information, it would not be faithful to the original text. A

user who typed that text, or wanted that text rendered from a web page could

legitimately complain if the system produced two, nine, twenty fourteen as output.

This is especially true in accessibility applications where visually impaired users

typically want the system to be as faithful to the input text as possible, while

still producing an appropriate-sounding output.9 The problem is that with the

purist interpretation of semiotic classes, inputs like Feb 9, 2014 also get converted

to numerical internal representations for the month, day and year. So how is the

verbalizer to remember what the original text was? This is handled in Kestrel in two

manners. One is to pass down a style field that encodes this information: with the

appropriate setting, the system can ‘remember’ the original text form and verbalize it

appropriately. The second way is to relax the requirement that, for example, months

be represented internally as numbers, and allow the (possibly normalized) month

names to be passed through; in this case the preserve order field is useful to

distinguish 9 Feb, 2014 from Feb 9, 2014. An earlier version of Kestrel only allowed

integers in the protocol buffer month field, but that has since been changed to allow

for strings, rendering the system less ‘pure’ but at the same time more flexible in

what it can represent.

4 Languages, sample grammar fragments, and technical issues

At the time of writing, Kestrel implementations exist for the following languages:

Cantonese, Danish, Dutch, English, French, German, Hindi, Indonesian, Italian, Japanese,

Korean, Mandarin, Polish, Portuguese, Russian, Spanish, Swedish, Turkish, and Thai.

Finite-state grammars for tokenization, classification and verbalization are con-

structed using an internal toolkit that has also been open-sourced as the Thrax

grammar development toolkit; see Tai, Skut and Sproat (2011) and Roark et al.

(2012) and http://openfst.cs.nyu.edu/twiki/bin/view/GRM/Thrax. Thrax provides

a regular-expression syntax, including (transducer) mappings, and context-dependent

rewrite rules (Kaplan and Kay 1994; Mohri and Sproat 1996). Samples of Thrax

grammars with explanations are given in the ensuing discussion. The reader is

referred to the citations given above as well as the OpenFst website for further

details of the Thrax system.

9 T.V. Raman, personal communication.
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Many of the grammars, in particular the verbalization grammars, depend on Thrax

grammars for number names, grammars that define the ways in which one can read

a number name that is written as a sequence of digits. The number name grammars

depend in turn on a factorization of the digit sequences into sums of products of

powers of ten. Thus, 123 would be factored into 1 × 102 + 2 × 101 + 3.10 This

could be handled via a Thrax grammar, following Sproat (1996), but since the

mechanisms for factorization are largely language-independent, that portion of the

conversion is mostly handled in code within Kestrel.11 Then, a language-specific

number verbalization grammar converts these factorized strings into appropriate

number names. For highly inflected languages like Russian, where how one reads

a number name depends on the context, the grammar produces all possible forms

along with features that can be used along with a morphosyntactic tagger to choose

the appropriate form; see below for further discussion. At present we have number-

name grammars for fifty languages, which are used in both TTS and automatic

speech recognition.

As an example, we start by presenting a slightly abbreviated example of fraction

verbalization for English. Initially, we define how to read the denominator, which

reuses the verbalization rules for ordinal numbers with a small number of special

cases. We ensure these special cases are preferred by attaching a small negative

weight (lower weights being better in the Tropical semiring) to each:

denominator_plural =

("1" : "over one" <-1>)

| ("2" : "halves" <-1>)

| ("4" : "quarters" <-1>)

| o.ORDINAL_PLURAL; # Otherwise grab the plural of ordinal words.

The rules that read from the marked-up form of the fraction that comes from

the classifier reuse the existing cardinal verbalization for the numerator, and our

previously defined rule to read the denominator. The rules imported from the markup

grammar are a set of shared rules that consume the various field names:

# e.g. numerator: 2 denominator: 5 -> two fifths

plural = Optimize[

markup.fraction_numerator

c.CARDINAL

markup.fraction_denominator util.ins_space

denominator_plural

util.del_space_star

];

10 Non-decimal systems, such as the vigesimal system of Basque, would require some small
additional work.

11 How numbers are factored is dependent on cultural region rather than language. Thus
European languages factor based on thousands, East Asian languages on myriads, and so
forth. Kestrel handles all of these cases.
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We define a similar rule to read fractions where the numerator is one and

therefore the denominator should be read as a singular form. The main difference

is that instead of reading one third, we read a third, which generally sounds more

natural when the fraction is combined with a preceding integer (see below). Note that

a determiner is a word id that specifies a particular lexical entry in our dictionary,

in this case the indefinite article a, as opposed to the letter A.

# e.g. numerator: 1 denominator: 4 -> a quarter

singular = Optimize[

markup.fraction_numerator

c.MINUS? ("1" : "a_determiner")

markup.fraction_denominator util.ins_space

denominator

util.del_space_star

];

We can also define a composite case for mixed fractions such as 3. This simply

adds a cardinal reading for the integer part, inserts the word and and reuses the

previously defined rules to read the fraction. Again, a negative weight is applied to

prefer the singular reading when applicable.

# e.g. integer: 3 numerator: 1 denominator: 2 -> three and a half

composite = Optimize[

markup.fraction_integer

c.CARDINAL ("" : " and ")

((singular<-1>) | plural)

];

We now define several rules to fix up particular cases, for example an rather than

a preceding a vowel.

# Converting from a back to one in the simple singular style.

a_to_one = CDRewrite["a_determiner" : "one", "", "", sigma*];

# Correction for "three and a eighth" to "three and an eighth".

a_to_an = CDRewrite["a_determiner" : "an",

"", " " util.VOWELS, sigma*];

# Correction to always say "one over one", not "a over one".

fix_over_one = CDRewrite["a_determiner" : "one",

"", " over", sigma*];

Finally, we define a complete verbalization rule, consuming the outer layer of

markup and tying together all previously defined parts. The export directive makes

the rule available to other grammars which may themselves reuse it; for example,

the grammar for measures reuses this rule for constructions such as three and a half

meters:

export FRACTION_MARKUP = Optimize[

markup.fraction

util.opening_brace (
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(singular @ a_to_one) |

(plural<20>) |

(composite @ fix_over_one @ a_to_an)

) util.closing_brace

];

Below, we show a small fragment of a grammar for Russian dates:

god = "year" @ nouns;

...

god_masgen = g.F[god, "__MAS,GEN"];

...

year_gen = Optimize[

(((year_num g.I[" __MAS,GEN"]) @ o_number) g.I[" " god_masgen]) |

(zero ((d g.I[" __MAS,GEN"]) @ o_number) g.I[" " god_masgen])];

...

dmy_style1_dat = Optimize[

(m.date_day day_dat m.date_month month_gen

m.date_year year_gen m.style1)

@ delfeat @ u.CLEAN_SPACES]

;

...

date_dat = Optimize[

( dmy_style1_dat

| dm_style1_dat

| my_style1_dat

| y_style1_dat)

era?

g.FeaturesWithCase["DAT"]]

;

We start with the verbalization of the word for year , which depends on a

set of nouns defined elsewhere that maps from an English word, into all possible

inflected forms of the Russian equivalent. (Note that by default, measures and other

terms that are passed from classifier to verbalizer are represented as English words.

Thus, kg would be mapped to kilogram in the classifier. This then gets translated

as needed into the particular language of the verbalizer.) Concentrating just on

the genitive form of year here, the second rule shown calls a function defined in

another Thrax grammar that composes the features MAS,GEN with god to produce

the genitive form. This is then used in an expression for the year which consists
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of an ordinal number (o number) in the masculine genitive form, followed by the

genitive form of year. Finally we can define a day-month-year (DMY) reading in the

dative case as involving a dative expression for the day, followed by a genitive [sic]

expression of the month, followed by a genitive expression of the year. In the present

implementation DMY reading choice is controlled by a ‘style’ flag – here style:

1. Finally, a dative date is defined as the above DMY reading, plus several others,

followed by a dative morphosyntactic feature marking. Thus, finally, the dative

of 20/10/2000 would be rendered as .

Deciding whether to use the dative or some other form of the date is outside the

scope of these grammars: that is handled by a separate morphosyntactic tagger,

a pointwise predictor that uses the grad-boost algorithm to predict each attribute

(Duchi and Singer 2009; Neubig, Nakata and Mori 2011).

For some text-normalization applications it is desirable to copy text. An obvious

example is morphological reduplication, which may be indicated with a diacritic in

text rather than by an actual copy of the material. Thus, Indonesian frequently uses

a 2 to represent morphological reduplication: orang2 for orang orang. Such copying

is not handled efficiently with ordinary WFSTs. For this reason Kestrel provides a

mechanism whereby the verbalizer grammars are checked for the existence of a rule

called REDUP. If it exists, then the marked-up token to be verbalized is checked for a

match against that rule. If it matches, then a copy is made in code (a concatenation

of the FST representing the input, with itself), and the duplicated string is added to

the input lattice. The verbalization then proceeds with both the original input, and

the reduplicated input.

This mechanism, necessary in any case for phenomena such as morphological

reduplication, is also convenient for dealing with other cases where a feature is

essentially copied. For example, consider a marked-up currency amount such as:

money { amount { integer_part: 1 fractional_part: 20 }

currency: "usd" }

We want to read this as one dollar and twenty cents, so we want the major currency

word dollar to go with the integer part of the currency, and the appropriate minor

currency term cents to go with the fractional part. It would be most convenient,

therefore if the input were something like:

money { amount { integer_part: 1 } currency: "usd_maj" }

money { amount { fractional_part: 20 } currency: "usd_min" }

This can easily be achieved using the REDUP mechanism, first by copying the whole

marked up expression, and then operating on the left and right copy independently

to yield the final verbalization. Note that to do this using purely regular relations

would necessitate a copy rule for every currency amount. This is a large number –

ISO4217 defines around 150 currencies – and for each minor the WFST would have

to remember the associated major currency, resulting in a lot of duplication of the

intermediate structure, and an explosion in the size of the FST.

We note in passing that for languages such as Chinese, Japanese, and Thai, word

segmentation is needed as a preprocessing step to the Kestrel grammars. At the
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time of writing, our Chinese system uses the Google-internal CJK segmenter, the

Japanese system uses an adapted version of Mecab (http://mecab.sourceforge.jp),

and the Thai system uses a conditional random field-based segmenter.

5 Application domains and deployment info

Kestrel has been designed to be a universal solution to all the text normalization

needs of Google’s text-to-speech system. Hence, it needs to handle inputs in many

forms. The most obvious of these is raw text, which comes from many sources such

as when the text-to-speech system is used to read web pages, books, e-mails or

calendar appointments. In such cases, no hints are available as to how to normalize

any NSWs encountered, and a correct reading may require dealing with many of

them. For example:

• The 100–200 seat narrow-body – or single-aisle – aircraft market is forecast

to generate $20 trillion (12.8tn) over the next 20 years.

• Skyfall (2012 ), the new James Bond 007 movie.

• 4pm pebden:rws 1:1. Attending?

Some of the inputs Kestrel encounters may be partly pre-normalized, such as

with driving directions. For example, the directions shown on screen might be (the

somewhat fictitious) Turn right onto AK-47 N, but when known to be safe, the text

sent to Kestrel may be expanded to Turn right onto Alaska forty seven north. In

general, such domain knowledge is beyond the scope of Kestrel; obviously, in most

cases the AK in AK-47 would not expand to Alaska.

As we noted above, Kestrel also supports receiving fully structured inputs. The

most common usage of this at present is for answers to spoken queries; e.g. the

question What is ten US dollars in Malaysian ringgit would generate an answer like

10 US dollars equals 33.08 Malaysian ringgit. In this case, the entities in the spoken

answer are well known, and so the input to Kestrel is presented as:

money { currency: "usd" amount { integer_part: "10" } }

text: "equals"

money { currency: "myr"

amount { integer_part: "33" fractional_part: "08" } }

This removes any potential ambiguity in the input text, and Kestrel is hence able

to skip classification for most of the input and proceed directly to the verbalization

phase.

Kestrel exists in several deployments. Perhaps the most publicly visible example is

as part of the Google text-to-speech app for Android (https://play.google.com/store/

apps/details?id=com.google.android.tts), which is currently installed on several

hundred million Android devices. Deployment to many remote, portable devices

presents some specific challenges; notably, the most compact voice packs are

downloaded on demand and have total size around 4MB. The text-normalization

data is of course only part of the voice data, and so Kestrel is required to fit

into approximately 800kb in this incarnation. This is achieved partly by aggressive
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compaction of the FSTs shipped with the Kestrel implementation. This reduces

the size of the deployed FSTs by approximately an order of magnitude versus

the standard VectorFst serialization. (See http://www.openfst.org for details of the

different FST representations.) At the same time, close attention is paid to what we

add to the Kestrel grammars and how it is written in order to avoid increasing their

size unnecessarily.

The Android deployment also places requirements on Kestrel with regards to

performance. Since it must run before synthesis takes place, and one of the common

use cases for the local synthesizer is as a screen reader whose users are very sensitive

to latency, its performance is a significant concern. This is exacerbated by running

on cellphones, which still have significantly less computing power than is available

on a server-based implementation.

The significant majority of computation time in Kestrel goes into the tokenization

and classification phase. A major reason for this is that it is highly non-deterministic,

since many parts of the output markup must be emitted before consuming the input

that determines whether they are valid. This is significantly mitigated by integrating

a look-ahead filter (Allauzen, Riley and Schalkwyk 2011) which prunes many invalid

intermediate states that will not lead to connected output states.

Further gains are made simply by care in writing the grammars; for example,

disallowing the tokenization of, say, ‘hello’ into two tokens ‘hel’ and ‘lo’. The single

word analysis would win in any case, but allowing the possibility of splitting it into

two generates unwanted states and arcs which in turn consumes valuable additional

CPU time.

Kestrel also ships as an embedded system on other Android devices, or via

downloadable high-quality voice packs for Android. These have relaxed size re-

quirements versus the compact Android voices, but similar considerations about

performance apply. Finally, Kestrel also runs on Google’s servers as part of the

TTS implementation used to answer, via voice, millions of queries per day. This

deployment has the loosest limits on file size and the greatest computational power

available.

6 Evaluation

Measuring the efficacy of a text normalization system is of course dependent on

having an appropriate data set to evaluate it against. There is, unfortunately, no

appropriate publicly available data that we can use to evaluate our system. There are

datasets for text normalization of social media such as Twitter (e.g. the Edinburgh

Twitter Corpus), but Kestrel’s current text-normalization grammars are not designed

to handle such data.

We do have test sets that were developed for internal use at Google and represent

the kinds of material that our synthesizers are currently most called upon to handle,

such as driving directions, and factoid answers to user queries. Unfortunately we

cannot release the contents of these test sets, but we can report on the performance.

This we do in Tables 1 and 2. Table 1 gives results for English, a relatively easy

language, broken down by semiotic class. For each class we give the number of
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Table 1. Kestrel’s accuracy on English

Cardinal 1000/1000 (100%)

Date 1116/1116 (100%)

Decimal 1000/1000 (100%)

Driving directions 656/1000 (65.6%)

Electronic 430/430 (100%)

Fraction 673/673 (100%)

Measure 1415/1559 (90.8%)

Money 568/568 (100%)

Ordinal 1000/1000 (100%)

Roman numeral 1287/1483 (86.8%)

Telephone 948/1008 (94.1%)

Time 715/1000 (71.5%)

Bug 508/541 (93.9%)

Table 2. Kestrel’s accuracy on Russian. Some categories require explanation.
‘Connector’ denotes to the reading of ‘–’ between numbers, dates, etc., which may be
read in various ways depending upon the intended meaning. ‘Letter sequence’ denotes
the reading of ‘acronyms’ as sequences of letters versus, for example, as a word.
‘Morphosyntactic homographs’ are homographs that can be disambiguated on the basis
of morphosyntactic features, such as number and case. ‘Transliteration’ involves cases
that need to be transliterated from Roman into Cyrillic script in order to be pronounced
in Russian.

Address 15/15 (100%)

Cardinal 74/74 (100%)

Connector 21/21 (100%)

Date 142/142 (100%)

Decimal 125/158 (79.1%)

Digit 194/194 (100%)

Electronic 213/213 (100%)

Fraction 88/88 (100%)

Letter sequence 17/17 (100%)

Measure 330/340 (97.1%)

Money 138/225 (61.3%)

Morphosyntax homographs 144/144 (100%)

Ordinal 53/53 (100%)

Roman numeral 14/14 (100%)

Telephone 12/12 (100%)

Time 100/100 (100%)

Transliteration 3/3 (100%)

Verbatim 134/134 (100%)

Bug 140/155 (90.3%)

examples in the test, and the number and percentages that were correctly handled.

The ‘bug’ set denotes specific text-normalization bugs of a variety of types that have

been reported by users. The percentages reported there reflect the proportion of cases

that have since been fixed. Of particular note are the ‘driving directions’ set, which

are particularly tricky since many require expansions of ambiguous abbreviations
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(such as N for North, or Staten Is for Staten Island ). Overall, Kestrel achieves 91.3%

correct for English.

Table 2 reports similar results for Russian. Since Russian is a younger system,

we have a smaller set of evaluation data. In particular, the trickier test cases such

as driving directions are not yet available, but on the tests we do have, Kestrel

achieves 93.1% correct. Note also that mistakes in Russian often derive from errors

in the statistical morphosyntactic tagger, discussed above, which is strictly speaking

external to Kestrel.

One obvious question that also arises is how long it takes to develop a system

for a new language. Clearly this depends on the difficulty of the language: Russian

and several other Slavic languages require significantly more time to develop than,

say, English, due to the complexity of the morphology. For an easy language, it is

possible to put together an initial system with a couple of weeks’ worth of work,

though of course there will be a substantial amount of development and maintenance

required after that initial construction. For a language like Russian, a few months’

worth of work is required, though in our experience the development of other Slavic

languages, such as Polish, has gone a lot more quickly since the grammars can often

be adapted from those for Russian.

7 Future work

A number of pieces of work are ongoing that will enhance Kestrel.

Thrax includes the ability to specify weighted pushdown transducers (Allauzen and

Riley 2012), and indeed this mechanism is already used in Kestrel grammars for

some languages. It is being extended to weighted multistack pushdown transducers,

that involve more than one stack (Aho 1969), and which are capable of performing

copy operations. This will provide a more principled way to handle phenomena

currently handled by the REDUP mechanism described above.

There is, naturally, an active interest in learning models of text normalization

from unannotated or lightly annotated data. For one relatively recent example,

particularly relevant to the functionality of Kestrel, see Sproat (2010). While we

expect that many components of the text-normalization process are likely to require

hand-developed grammars for the foreseeable future, we are pursuing research to

try to replace portions of the system with automatically learned systems. Recent

work reported in Roark and Sproat (2014), for example, supplements our English

system’s (hand-built) abbreviation expansion system with abbreviation expanders

learned semiautomatically from data. Crucially different from previous work along

these lines, though, the system reported in Roark and Sproat (2014) aims to ‘do

no harm’, by only expanding abbreviations that the system is very confident about

given the context – essentially trading recall for very high precision.

An intriguing possibility would be to allow the classification step to emit multiple

hypotheses, which a trained system could then choose between. This would provide a

cleaner separation between the classification and tokenization step, which is readily

expressed in FSTs, and the decision between ambiguous options, which often needs
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to be informed by other sentence features which are not practical to express in an

FST.

Finally, we discussed at the beginning of the paper the purist notion whereby the

identification of semiotic classes is completely separate from their verbalization. As

we noted there, this purist notion is not tenable in general since many expressions

that must be normalized, nonetheless may give some clues as to how they should

be verbalized in their written representation. Indeed, when one pursues this line of

reasoning further one sees that the verbalization of semiotic classes gives clues as

to how they may sometimes be identified in text. For example, if we know that

a date may be verbalized as January the third, two thousand six, then one might

expect that this could be found in text as Jan 3, 2006, January the 3rd, 2006, and so

forth. Furthermore, when written in these ways, as we noted above, we would expect

them to be read as January the third, two thousand six and not (in US English)

as one, three, two thousand six. It seems redundant to have separate classifier rules

that recognize these expressions, and in such cases there should be a tight link

between what is written and how it is verbalized. Kestrel does not really enforce

this, except via tricks such as the style flags as noted above. We are working on an

experimental system, called Warbler, that allows a closer integration of classification

and verbalization, where that is appropriate.
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