
SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSINGMORGAN CLAYPOOL PUBLISHERS&

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: B.H. Juang, Georgia Institute of Technology

CM& MORGAN CLAYPOOL PUBLISHERS&SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSING

H
O

RI • N
AKAM

URA
SPEECH

 RECO
G

N
ITIO

N
 ALG

O
RITH

M
S USIN

G
 W

EIG
H

TED
 FIN

ITE-STATE TRAN
SD

UCERS
M

O
R

G
A

N
&

C
L

A
Y

P
O

O
L

Speech Recognition
Algorithms Using
Weighted Finite-State
Transducers

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Series ISSN: 1932-121X

B.H. Juang, Series Editor

ISBN: 978-1-60845-473-0

9 781608 454730

90000

Speech Recognition Algorithms Using
Weighted Finite-State Transducers
Takaaki Hori and Atsushi Nakamura,
NTT Communication Science Laboratories, NTT Corporation.

This book introduces the theory, algorithms, and implementation techniques for efficient decoding in
speech recognition mainly focusing on the Weighted Finite-StateTransducer (WFST) approach. The
decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence
of words that best matches an input speech signal. Since this process becomes computationally more
expensive as the system vocabulary size increases, research has long been devoted to reducing the
computational cost. Recently, the WFST approach has become an important state-of-the-art speech
recognition technology, because it offers improved decoding speed with fewer recognition errors compared
with conventional methods. However, it is not easy to understand all the algorithms used in this framework,
and they are still in a black box for many people. In this book, we review the WFST approach and aim
to provide comprehensive interpretations of WFST operations and decoding algorithms to help anyone
who wants to understand, develop, and study WFST-based speech recognizers. We also mention recent
advances in this framework and its appli≠cations to spoken language processing.

Takaaki Hori
Atsushi Nakamura

SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSINGMORGAN CLAYPOOL PUBLISHERS&

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: B.H. Juang, Georgia Institute of Technology

CM& MORGAN CLAYPOOL PUBLISHERS&SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSING

H
O

RI • N
AKAM

URA
SPEECH

 RECO
G

N
ITIO

N
 ALG

O
RITH

M
S USIN

G
 W

EIG
H

TED
 FIN

ITE-STATE TRAN
SD

UCERS
M

O
R

G
A

N
&

C
L

A
Y

P
O

O
L

Speech Recognition
Algorithms Using
Weighted Finite-State
Transducers

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Series ISSN: 1932-121X

B.H. Juang, Series Editor

ISBN: 978-1-60845-473-0

9 781608 454730

90000

Speech Recognition Algorithms Using
Weighted Finite-State Transducers
Takaaki Hori and Atsushi Nakamura,
NTT Communication Science Laboratories, NTT Corporation.

This book introduces the theory, algorithms, and implementation techniques for efficient decoding in
speech recognition mainly focusing on the Weighted Finite-StateTransducer (WFST) approach. The
decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence
of words that best matches an input speech signal. Since this process becomes computationally more
expensive as the system vocabulary size increases, research has long been devoted to reducing the
computational cost. Recently, the WFST approach has become an important state-of-the-art speech
recognition technology, because it offers improved decoding speed with fewer recognition errors compared
with conventional methods. However, it is not easy to understand all the algorithms used in this framework,
and they are still in a black box for many people. In this book, we review the WFST approach and aim
to provide comprehensive interpretations of WFST operations and decoding algorithms to help anyone
who wants to understand, develop, and study WFST-based speech recognizers. We also mention recent
advances in this framework and its appli≠cations to spoken language processing.

Takaaki Hori
Atsushi Nakamura

SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSINGMORGAN CLAYPOOL PUBLISHERS&

w w w . m o r g a n c l a y p o o l . c o m

Series Editor: B.H. Juang, Georgia Institute of Technology

CM& MORGAN CLAYPOOL PUBLISHERS&SYNTHESIS LECTURES ON
SPEECH AND AUDIO PROCESSING

H
O

RI • N
AKAM

URA
SPEECH

 RECO
G

N
ITIO

N
 ALG

O
RITH

M
S USIN

G
 W

EIG
H

TED
 FIN

ITE-STATE TRAN
SD

UCERS
M

O
R

G
A

N
&

C
L

A
Y

P
O

O
L

Speech Recognition
Algorithms Using
Weighted Finite-State
Transducers

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Series ISSN: 1932-121X

B.H. Juang, Series Editor

ISBN: 978-1-60845-473-0

9 781608 454730

90000

Speech Recognition Algorithms Using
Weighted Finite-State Transducers
Takaaki Hori and Atsushi Nakamura,
NTT Communication Science Laboratories, NTT Corporation.

This book introduces the theory, algorithms, and implementation techniques for efficient decoding in
speech recognition mainly focusing on the Weighted Finite-StateTransducer (WFST) approach. The
decoding process for speech recognition is viewed as a search problem whose goal is to find a sequence
of words that best matches an input speech signal. Since this process becomes computationally more
expensive as the system vocabulary size increases, research has long been devoted to reducing the
computational cost. Recently, the WFST approach has become an important state-of-the-art speech
recognition technology, because it offers improved decoding speed with fewer recognition errors compared
with conventional methods. However, it is not easy to understand all the algorithms used in this framework,
and they are still in a black box for many people. In this book, we review the WFST approach and aim
to provide comprehensive interpretations of WFST operations and decoding algorithms to help anyone
who wants to understand, develop, and study WFST-based speech recognizers. We also mention recent
advances in this framework and its appli≠cations to spoken language processing.

Takaaki Hori
Atsushi Nakamura

Speech Recognition Algorithms
Using Weighted
Finite-State Transducers

Synthesis Lectures on Speech
and Audio Processing

Editor
B.H. Juang, Georgia Tech

Speech Recognition Algorithms Using Weighted Finite-State Transducers
Takaaki Hori and Atsushi Nakamura
2013

Articulatory Speech Synthesis from the Fluid Dynamics of the Vocal Apparatus
Stephen Levinson, Don Davis, Scot Slimon, and Jun Huang
2012

A Perspective on Single-Channel Frequency-Domain Speech Enhancement
Jacob Benesty and Yiteng Huang
2011

Speech Enhancement in the Karhunen-Loève Expansion Domain
Jacob Benesty, Jingdong Chen, and Yiteng Huang
2011

Sparse Adaptive Filters for Echo Cancellation
Constantin Paleologu, Jacob Benesty, and Silviu Ciochina
2010

Multi-Pitch Estimation
Mads Græsbøll Christensen and Andreas Jakobsson
2009

Discriminative Learning for Speech Recognition: Theory and Practice
Xiaodong He and Li Deng
2008

Latent Semantic Mapping: Principles & Applications
Jerome R. Bellegarda
2007

iii

Dynamic Speech Models: Theory, Algorithms, and Applications
Li Deng
2006

Articulation and Intelligibility
Jont B. Allen
2005

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Speech Recognition Algorithms Using Weighted Finite-State Transducers

Takaaki Hori and Atsushi Nakamura

www.morganclaypool.com

ISBN: 9781608454730 paperback
ISBN: 9781608454747 ebook

DOI 10.2200/S00462ED1V01Y201212SAP010

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON SPEECH AND AUDIO PROCESSING

Lecture #10
Series Editor: B.H. Juang, Georgia Tech

Series ISSN
Synthesis Lectures on Speech and Audio Processing
Print 1932-121X Electronic 1932-1678

www.morganclaypool.com

Speech Recognition Algorithms
Using Weighted
Finite-State Transducers

Takaaki Hori and Atsushi Nakamura
NTT Communication Science Laboratories, NTT Corporation

SYNTHESIS LECTURES ON SPEECH AND AUDIO PROCESSING #10

CM& cLaypoolMorgan publishers&

ABSTRACT
This book introduces the theory, algorithms, and implementation techniques for efficient decoding
in speech recognition mainly focusing on the Weighted Finite-State Transducer (WFST) approach.
The decoding process for speech recognition is viewed as a search problem whose goal is to find
a sequence of words that best matches an input speech signal. Since this process becomes compu-
tationally more expensive as the system vocabulary size increases, research has long been devoted
to reducing the computational cost. Recently, the WFST approach has become an important state-
of-the-art speech recognition technology, because it offers improved decoding speed with fewer
recognition errors compared with conventional methods. However, it is not easy to understand all
the algorithms used in this framework, and they are still in a black box for many people. In this
book, we review the WFST approach and aim to provide comprehensive interpretations of WFST
operations and decoding algorithms to help anyone who wants to understand, develop, and study
WFST-based speech recognizers. We also mention recent advances in this framework and its appli-
cations to spoken language processing.

KEYWORDS
speech recognition, automaton, weighted finite-state transducer, Viterbi algorithm, de-
coder, optimization

vii

Contents

Preface . xi

1 Introduction .1

1.1 Speech Recognition and Computation . 1
1.2 Why WFST? . 4
1.3 Purpose of this Book . 7
1.4 Book Organization . 7

2 Brief Overview of Speech Recognition .9

2.1 Statistical Framework of Speech Recognition . 9
2.2 Speech Analysis . 11
2.3 Acoustic Model . 12

2.3.1 Hidden Markov Model . 12
2.3.2 Computation of Acoustic Likelihood . 14
2.3.3 Output Probability Distribution . 16

2.4 Subword Models and Pronunciation Lexicon . 17
2.5 Context-dependent Phone Models . 17
2.6 Language Model . 19

2.6.1 Finite-State Grammar . 20
2.6.2 N-gram Model . 20
2.6.3 Back-off Smoothing . 22

2.7 Decoder . 22
2.7.1 Viterbi Algorithm for Continuous Speech Recognition 23
2.7.2 Time-Synchronous Viterbi Beam Search . 27
2.7.3 Practical Techniques for LVCSR . 30
2.7.4 Context-dependent Phone Search Network . 35
2.7.5 Lattice Generation and N-Best Search . 35

3 Introduction to Weighted Finite-State Transducers . 41

3.1 Finite Automata . 41
3.2 Basic Properties of Finite Automata . 44

viii

3.3 Semiring . 46
3.4 Basic Operations . 49
3.5 Transducer Composition . 51
3.6 Optimization . 54

3.6.1 Determinization . 55
3.6.2 Weight Pushing . 58
3.6.3 Minimization . 61

3.7 Epsilon Removal . 64

4 Speech Recognition by Weighted Finite-State Transducers 67

4.1 Overview of WFST-based Speech Recognition . 67
4.2 Construction of Component WFSTs . 69

4.2.1 Acoustic Models . 70
4.2.2 Phone Context Dependency . 71
4.2.3 Pronunciation Lexicon . 73
4.2.4 Language Models . 75

4.3 Composition and Optimization . 80
4.4 Decoding Algorithm Using a Single WFST . 84
4.5 Decoding Performance . 89

5 Dynamic Decoders with On-the-fly WFST Operations . 93

5.1 Problems in the Native WFST Approach . 93
5.2 On-the-fly Composition and Optimization . 95
5.3 Known Problems of On-the-fly Composition Approach . 96
5.4 Look-ahead Composition . 99

5.4.1 How to Obtain Prospective Output Labels . 99
5.4.2 Basic Principle of Look-ahead Composition . 100
5.4.3 Realization of Look-ahead Composition Using a Filter Transducer 102
5.4.4 Look-ahead Composition with Weight Pushing . 103
5.4.5 Generalized Composition . 104
5.4.6 Interval Representation of Label Sets . 107

5.5 On-the-fly Rescoring Approach . 110
5.5.1 Construction of Component WFSTs for On-the-fly Rescoring 110
5.5.2 Concept . 111
5.5.3 Algorithm . 116
5.5.4 Approximation in Decoding . 125
5.5.5 Comparison with Look-ahead Composition . 126

ix

6 Summary and Perspective . 129

6.1 Realization of Advanced Speech Recognition Techniques Using WFSTs 129
6.1.1 WFSTs for Extended Language Models . 130
6.1.2 Dynamic Grammars Based on WFSTs . 131
6.1.3 Wide-context-dependent HMMs . 131
6.1.4 Extension of WFSTs for Multi-modal Inputs . 132
6.1.5 Use of WFSTs for Learning . 132

6.2 Integration of Speech and Language Processing . 133
6.3 Other Speech Applications Using WFSTs . 135
6.4 Conclusion . 136

Bibliography . 137

Authors’ Biographies . 149

xi

Preface
The authors first encountered speech recognition technology nearly 20 years ago. At that time, rather
than being a useful tool, it was one of the new technologies only available in a laboratory. In the
1990s, the authors began to study speech recognition. In those days, many researchers were focusing
on large vocabulary tasks in the field of speech recognition. In addition to acoustic and language
modeling with the aim of improving recognition accuracy, efficient decoding algorithms were also
extensively investigated to find the most likely hypothesis in an enormous number of possible word
sequences covering a large vocabulary.

One of the authors, Takaaki Hori, has long been engaged in the research and development of
decoding algorithms for speech recognition, and has written many program codes for experimental
and commercial systems.When he was a doctoral student,he started to develop a decoder for research
purposes. The computer he used for the study was a Hewlett Packard C200/A4318A workstation
with a 64MB memory, which was a high-end machine of the day. However, on this computer it
was very hard to achieve speech recognition even for a 5,000-word vocabulary task. He dedicated
himself to increasing the speed within the limitations of the available memory and computation
power by introducing a new strategy and efficient algorithms. Despite his extensive experience of
the development of speech recognition decoders in his company, he was fascinated to learn of the
Weighted Finite-State Transducer (WFST) approach, which is the main theme of this book. The
new approach was theoretically elegant and actually very fast as regards speech recognition decod-
ing although it needed a large memory. Many heuristic techniques had already been proposed for
conventional decoding approaches, but the essential components of these techniques were included
more effectively and naturally in the WFST approach. At that time, he became convinced that the
optimal decoding strategy for modern speech recognition was the WFST approach.

However, it was not easy to master the operations needed for manipulating WFSTs. Of
course, there was publicly available software for the WFST operations, but they easily exhausted
computer memory and often yielded unexpected results. The authors learned the basic properties of
WFST operations from related papers and repeated trial and error, and they finally became skilled
in the use of this approach. However, the time and memory consumption required for building and
decoding with a WFST in large vocabulary tasks was often too large for the computers of the day to
handle. For this reason, the authors concentrated on on-the-fly approaches that dynamically built
a WFST during decoding and performed the decoding efficiently with a small memory footprint
while maintaining its speed. As a result of this research and development, they finally wrote their
own WFST tools and decoder.

In writing this book, the authors have tried to provide as much detail as possible about WFST-
based speech recognition. It might be insufficient to provide a complete understanding of the theory

xii PREFACE

and versatility behind the WFST, but those topics have been well covered in work cited in this book.
Instead, this book focuses on its use in speech recognition. The authors’ aim was to summarize the
fundamentals and important techniques that have been proposed for speech recognition. They hope
that this work will prove useful for researchers and developers who want to understand the WFST
approach.

As regards writing this book, the authors would like to thank Prof. Shigeru Katagiri of
Doshisha University for giving us the chance to work on WFST-based speech recognition when he
was a superior of the authors at NTT Communication Science Laboratories, and Dr. Daniel Willett
(currently at Nuance Communications, Inc.) and Dr. Yasuhiro Minami for teaching us about the
initial implementation of a WFST-based speech recognition system. The authors would also like
to thank Dr. Chiori Hori (currently at the National Institute of Information and Communications
Technology, Japan) who helped with the task of extremely large vocabulary speech recognition us-
ing WFSTs, and Dr. Shinji Watanabe (currently at Mitsubishi Electric Research Laboratories), Dr.
Mike Schuster and Dr. Erik McDermott (currently at Google Research) for the fruitful discussions
in collaboration at NTT. Furthermore, the authors are deeply grateful to Prof. Masaki Kohda, emer-
itus professor at Yamagata University, Prof. Sadaoki Furui, emeritus professor of Tokyo Institute of
Technology, and Prof. Yoshinori Sagisaka at Waseda University for giving them many opportunities
and the motivation to pursue speech recognition research. Finally, they would like to express their
gratitude to Prof. Biing-Hwang Juang at Georgia Institute of Technology for giving them the great
opportunity to write this book.

Takaaki Hori and Atsushi Nakamura
January 2013

1

C H A P T E R 1

Introduction

1.1 SPEECH RECOGNITION AND COMPUTATION

Nowadays, we often encounter computers that can recognize speech. For example, they allow us
to enter text by speaking instead of typing. They may also answer our questions instead of a hu-
man operator. Furthermore, some applications not only recognize speech but also translate it into
another language. Although the speech recognition performance of these devices is still inferior to
the corresponding human ability, the result would be better if we were to speak clearly into the
microphone.

Speech recognition is certainly useful when inputting linguistic information into computers.
However, its mechanism is not widely known. How do such computers recognize speech? We can
imagine software running on a computer (or a server) that somehow analyzes a speech signal and
infers the spoken content. Indeed, a piece of software called a speech recognition engine is running on
the computer, although the algorithm is complex, in which many computer science techniques have
been adopted to achieve highly accurate and fast speech recognition.

Technically speaking, speech recognition is a process for converting a speech signal into text
that corresponds to the spoken words conveyed by the signal. A speech recognition engine usually
has knowledge sources related to acoustic and linguistic speech behavior and a program for finding
the most likely word sequence for an input signal by referring to these knowledge sources. The
knowledge representation and the algorithm are based on speech recognition technology that has
been developed through a long history of research on speech and language processing.

Speech recognition research came to prominence in the 1970s and has made remarkable
progress. The target of the research has been changing from the performance of simple tasks,
e.g., isolated digit or word recognition, to more complex tasks, e.g., continuous word or sentence
speech recognition. Before around 1990, the target vocabulary size of speech recognition systems
was about 1,000 words. The vocabulary was limited to a specific domain such as resource manage-
ment [FBP88, Pal89] and air travel information services [HGD90, PFFG90]. Because the compu-
tational power and memory size of computers were very limited, it was not easy to address large-scale
tasks. However, most of the basic ideas appeared at that time and formed the basis of today’s speech
recognition technology. The statistical framework of speech recognition based on a source-channel
model was established in the 1980s, and has become a standard framework that comprises Hidden
Markov Models (HMMs) and n-gram language models [Jel98]. In this framework, speech signals
are assumed to be signals encoded from message text, which are observed through a noisy channel.

2 1. INTRODUCTION

Thus, the speech recognition process is interpreted as the decoding of the message text from the
observed signals.

Speech signals vary in both the time and spectral domains. When single words are spoken, the
speaking rate changes utterance by utterance. The spectral feature also changes depending on the
speaker and the recording environment. Therefore, even if the same word is reiterated by the same
speaker, the speech waveform will not completely match the previous one. In addition, the waveform
does not contain explicit information indicating boundaries between phones, and it expands or
contracts nonlinearly in the time domain. Consequently, it is computationally expensive to compare
such speech waveforms properly while considering their nonlinear time alignment even in a simple
task such as isolated word recognition. In spite of this large computational cost, speech recognition
systems were usually required to work in real time on a standard computer. Thus, reducing the
amount of computation required has constituted a major research topic in the speech recognition
field.

In the early 1970s, the Dynamic Programming (DP) matching algorithm was introduced
to compare a reference speech signal and an input speech signal efficiently for speech recogni-
tion [SC70, SC71].1 Although DP matching is an efficient algorithm that takes account of the
nonlinear expansion and contraction of a speech signal using the Dynamic Programming tech-
nique [BD62], it still needs O(|R| × |S|) computation where |R| and |S| denote the lengths of the
reference speech signal R and input speech signal S, respectively. For isolated word recognition with
vocabulary V , the complexity of recognizing one spoken word is O(|V | × ¯|R| × |S|), where |V |
indicates the vocabulary size and ¯|R| is the average length of the reference speech signals for words
in V .

The research target moved to Large-vocabulary Continuous-speech Recognition (LVCSR) in
the 1990s. In those days, a statistical framework was already a mainstream of the technology, which
was supported with large corpora. The Defense Advanced Research Projects Agency (DARPA
or ARPA) in the United States boosted the LVCSR research by undertaking a series of large
projects. Many benchmark tests were designed for several speech data targets as part of those projects.
Large-scale corpora were also intensively collected to acquire statistical models. Major institutes and
universities developed LVCSR systems using these common corpora, and competed with each other
in terms of accuracy and speed. As a result of those projects, the vocabulary size increased from 1K to
65K. The target speech included read newspaper articles, Broadcast News (BN), and conversational
speech over the telephone. Thus, the LVCSR projects aimed to develop general-purpose speech
recognition systems by targeting a wide range of speech less restricted by vocabulary, speaker, and
speaking style.

However, LVCSR needs a large amount of computation. There is a synergy involved in
increasing vocabulary size and coping with continuous speech that increases the complexity of
decoding. A continuous speech signal contains multiple words, and yet the number of words and
their time boundaries are unknown. Even if the system knows the number of spoken words to be L,

1DP matching is also called Dynamic Time Warping (DTW) in the speech recognition field.

1.1. SPEECH RECOGNITION AND COMPUTATION 3

the number of hypotheses to be compared is |V |L (e.g., |V |L = 1015 for |V | = 1000 and L = 5).
If L is unknown, i.e., in a general case, it results in

∑
1≤l≤L̂

|V |l , where L̂ is an assumed upper
bound of L. If we enumerate all the hypotheses and compare each of them with the input signal,
the complexity becomes O(|V |L̂ × ¯|R| × |S|). Thus, dealing with a large vocabulary in continuous
speech recognition potentially has a large impact on the amount of computation required in the
decoding process.

In fact, we do not have to enumerate all the hypotheses in LVCSR. Instead, we can use
one-pass DP matching [BBC82, Ney84], which is a basic but efficient approach to continuous
speech recognition. This method is called one-pass Viterbi algorithm when probabilistic models
such as HMMs and an n-gram language model are used. If the HMMs are typical left-to-right
type, i.e., each state has only one self loop and one exiting transition, the computational complexity
is O(|V |N−1 × ¯|M| × |S|), where n is typically 2 or 3 and ¯|M| is the number of HMM states per
word. Thus, the total computation is much less than that required for the full enumeration.

Most current speech recognition decoders are based on one-pass Viterbi algorithm (for details
see Chapter 2). The algorithm ensures that the best hypothesis for a speech signal is found with
given acoustic and language models. However, it is expensive to search for the best sequence of
words from among a large vocabulary of over 10 thousand. In DARPA projects, search strategies for
efficient decoding, which do not necessarily ensure the best hypothesis, were intensively investigated
together with highly accurate acoustic and language models.

The most practical approach to reducing the computation for LVCSR decoding is to abandon
the verification of all possible hypotheses. Beam search is the most popular method for reducing
the number of hypotheses verified during the decoding process, which was originally introduced in
1976 [Low76]. With the Viterbi algorithm, partial sentence hypotheses are extended synchronously
with time from the beginning of the speech. With the beam search, relatively unpromising partial
hypotheses are selected and pruned out at each time frame. Those pruned hypotheses are no longer
extended. As a result, the amount of computation can be reduced significantly since only some of
the hypotheses are evaluated until the end of the speech signal. However, there is a potential risk
that the correct partial hypothesis that would become the best sentence hypothesis may be lost by
pruning.To eliminate such pruning errors, the beam search has been improved with various methods
such as look-ahead techniques.

On the other hand, the efficient representation of speech information was also investigated
to reduce redundant search space. A tree-organized lexicon was successfully introduced to represent
the LVCSR search space. It is a data structure that shares pronunciation prefixes of the words
in the vocabulary as a prefix tree (or called trie). This structure is also effective in alleviating the
upswing of hypotheses at word boundaries, which causes an increase in pruning errors. Without a
tree-organized lexicon, there are |V | possible branches from the end of each word when extending
partial hypotheses. By using this tree structure, the number of branches decreases to at most the
number of phones.

4 1. INTRODUCTION

In those days, many types of search strategies were proposed for the LVCSR decoding prob-
lem. Researchers studied stack-based time-asynchronous approaches such as A∗-stack decoding
[KHG+91, Pau91], envelope search with fast acoustic match [GBM95], and multi-stack decod-
ing [Sch00], which were performed differently from the one-pass Viterbi algorithm. The aim of
these approaches was both to reduce the amount of computation and to reduce memory usage,
which was severely limited by the computers of the day. The various search strategies for LVCSR
are well summarized in [Aub02].

Multi-pass search strategies were also intensively investigated. A multi-pass search usually
employs rough models that need less computation in the first pass to generate a set of promising
sentence hypotheses. Then it uses detailed models that need more computation in the second pass
to find the best hypothesis from a small set of hypotheses. Forward-backward search [ASP91],
tree-trellis search [SH91], lattice N-best search [SC90], and word graph algorithm [ONA97] are
well known approaches. If these strategies are not being used for real-time applications, more passes
are often performed together with acoustic and language model adaptation to further improve the
recognition accuracy. Moreover, the efficient representation of multiple hypotheses and how to
generate a better set of hypotheses in the first pass decoding were also investigated at the same time.

Thus, LVCSR gradually became a reality along with the progress made on the decoding
technology and the computational power of hardware. Some commercial software for LVCSR had
appeared by the end of the 1990s, which was capable of taking dictation consisting of a user’s
continuous speech with a personal computer. For example, IBM ViaVoice(R) and Dragon Naturally
Speaking(R) are representative products. These products made speech recognition familiar to the
general population.

In the 2000s, a new paradigm has entered mainstream speech recognition technology, namely
the Weighted Finite-State Transducer (WFST) approach and this is the main theme of this
book. The framework was proposed in 1994 by researchers at AT&T Laboratories [PRS94, PR96,
MPR96]. After that, the technique was improved steadily and has been considered the most effi-
cient and theoretically elegant approach to the LVCSR decoding problem [MPR02]. Recently most
major research institutes and universities have introduced this approach and are undertaking further
investigations. In this book, we describe WFST-based speech recognition and related algorithms
while paying attention to their differences when compared with traditional approaches.

1.2 WHY WFST?

Why has the WFST approach become so popular in the speech recognition field? The reason could
be the aggressive use of automata theory. In other words, the approach takes full advantage of the
theory over the whole decoding scheme, while ordinary methods have used it only in a limited
fashion. This has resulted in an efficient and elegant framework.

The automata theory is the study of abstract computing devices, or machines [AHU74,
HMU06], and it has long since entered mainstream computer science. Currently most undergrad-
uate students on computer science courses learn the fundamentals of the automata theory, because

1.2. WHY WFST? 5

automata are used in many areas such as logic circuits, data compression, cryptography, compilers,
and natural language processing.

The theory has often been used to define a set of symbol sequences as a language, where an
automaton is a way of expressing a grammar in formal language theory. For example, it is known
that a regular grammar can be represented as a finite automaton, and a context free grammar can be
represented as a push-down automaton.

A WFST is a sort of finite automaton. Roughly speaking, a basic finite automaton has a
finite set of states and transitions between states. In ordinary finite automata, each transition has
an input label. In addition, the WFST has an output label and a weight at the transition. Actually,
finite automata were already being used in speech recognition before the WFST approach appeared.
However, their use was limited to grammar representation as a language model. Since a WFST can to
some degree represent relations between input and output strings with a weight that can correspond
to some cost or probability, it can also represent relations between different levels of sequences such
as HMM states, phones, and words in a unified framework.

In WFST-based speech recognition, WFSTs are typically used to represent an acoustic model,
a pronunciation lexicon, and a language model, where the acoustic model WFST transduces an
acoustic state sequence into a phone sequence, the lexicon WFST transduces a phone sequence into
a word sequence, and the language model WFST transduces a word sequence into a sentence. Then
those WFSTs are integrated by composition and optimization operations to a single WFST that
directly transduces an acoustic state sequence into a sentence.

The WFST approach substantially increases the speed of most LVCSR tasks compared with
traditional LVCSR approaches. Where does the difference come from? Two reasons have been
presented.

1. Static search space organization
The integrated WFST can be viewed as a large search network, where speech recognition is
considered a search problem where the goal is to find a path that best matches the speech
input signal in the network. This framework itself is trivial in speech recognition technology.
But with the WFST approach, the network is statically stored in the memory known as full
expansion, while traditional approaches usually construct a search network on demand, i.e.,
dynamic expansion. Since dynamic expansion needs a certain overhead during decoding, a fully
expanded network is better for faster decoding.

2. Optimization of search network
The search network often contains some redundancy. For example, different words often have
partially the same pronunciation and are separately compared with the input signal during
decoding. Such redundancy increases the number of computation and pruning errors when
using a beam search. In the WFST framework, the redundancy can be removed by employing
optimization operations such as weighted determinization and minimization.

6 1. INTRODUCTION

These two factors seem to be straightforward. However, an LVCSR search network is extremely large
and full expansion is actually almost impossible due to the limitation of memory size.Therefore, most
LVCSR systems in the 1990s did not adopt such a full-expansion approach.The WFST accomplishes
full expansion by reducing the search space with a series of optimization operations defined on
WFSTs. As mentioned above, the optimization is also effective in removing the redundancy and
accelerating the search process.

Some techniques have already been used to reduce the redundancy even in non-WFST-based
speech recognition. A tree-organized lexicon is one example technique that is still widely used in
many LVCSR systems. In the WFST framework, such a data structure can be constructed through
optimization. The determinization of a WFST representing a lexicon yields a similar structure to
the prefix tree. However, the use of determinization is not limited to a lexicon. It can be applied to
the entire search space, i.e., the integrated WFST, and therefore the redundancy can be removed
more rigorously. Minimization is also available, which corresponds to sharing suffixes in the case of
a lexicon.

Accordingly, the WFSTs yield highly-optimized speech recognition for fast decoding. With
the WFST framework, LVCSR has become faster than before. Currently real-time speech recog-
nition with an extremely large vocabulary of over 1M words has become possible on a standard
personal computer [HHM04, HHMN07].

On the other hand, simplicity is an attractive feature of the WFST framework. In speech
recognition, the construction of a search network is basically performed by embedding knowledge
sources hierarchically. An acoustic state sequence is embedded in a phone node, a phone node
sequence is embedded in a word node, a word node sequence is embedded in a language model,
and they are hierarchically associated to organize the search space. However, since the actual data
structure and algorithm are not explicitly defined, the implementation changes system by system.
The decoding program also depends strongly on the data structure, which is specialized for the
models used in the system. Therefore, the system tends to have low expandability.

In the WFST framework, the construction process is well-explained by the composition
operation that combines different levels of string-to-string relations. WFSTs of an acoustic state
sequence to a phone sequence, a phone sequence to a word sequence, and a word sequence to a
sentence can be composed into a single WFST of an acoustic state sequence to a sentence, which
corresponds to the entire search space.

The actual construction of the integrated WFST, including the optimization step, is achieved
by a small number of operations.Thus, the construction process is explicitly defined in this framework.
The decoding program simply finds a path that best matches the speech input in the WFST, where
the WFST acts as an interface between the models and the decoding program.

In addition, this framework provides the system with some flexibility. The decoder becomes
more general. In many cases, we do not have to modify the decoding program to expand the function
of the system. We can focus solely on the WFST that realizes the function. For example, speech-

1.3. PURPOSE OF THIS BOOK 7

input language processing such as speech translation and speech summarization are possible without
any decoder modification.

As stated above, the WFST framework has many advantages, which are well-explained based
on the theory of finite automata. This is why it has become popular in the speech recognition field.

1.3 PURPOSE OF THIS BOOK

The main focus of this book is on the decoding problem in speech recognition. Currently the WFST
approach is known as the most efficient way to solve this problem.

Many papers have been written by Mehryar Mohri, Fernando Pereira, and Michael Riley who
are the pioneers of this approach. They have clearly described its concept, techniques, and impact
on speech recognition speed. However, since these are academic papers for people that already know
a lot about the decoding problem in speech recognition, they do not relate the basics of LVCSR
decoding or provide details of WFST operations. On the other hand, major textbooks on speech
recognition do not include WFSTs because they were written before the WFST became popular.

Algorithms of WFST operations can be found in some studies. But these studies explain an
individual operation as a general-purpose tool and focus on its theoretical aspect. In fact, few studies
deal with all algorithms for the construction of component WFSTs and the WFST operations
needed for speech recognition. Thus, if we develop a WFST-based speech recognition decoder
from scratch, we need to seek out and comprehend many studies. The purpose of this book is
to aggregate such distributed knowledge, and provide comprehensive interpretations of WFST
operations and decoding algorithms to help anyone who wants to understand, develop, and study
WFST-based speech recognizers. In addition, we also mention recent advances in this framework
and its applications to spoken language processing.

1.4 BOOK ORGANIZATION

This book is organized as follows. Chapter 2 defines speech recognition as a search problem. First, we
present the statistical framework of speech recognition including Hidden Markov Models (HMMs)
and n-gram language models. Second, we describe the one-pass Viterbi algorithm as a basic decoding
method. Third, we introduce some traditional approaches to efficient large-vocabulary continuous-
speech recognition based on search space optimization and aggressive pruning techniques. Finally,
we show basic methods for generating multiple sentence hypotheses such as a word n-best list and
a word lattice.

Chapter 3 introduces the WFST framework and its operations. First, we define the WFST
and describe its basic properties. Second, we present algorithms that combine and optimize WFSTs
such as composition, determinization, minimization, epsilon removal, and weight pushing.

Chapter 4 provides an overview of WFST-based speech recognition. First, we introduce the
approach and show how speech recognition models can be represented in WFST form. Second, we

8 1. INTRODUCTION

describe the procedure for constructing a fully composed WFST for speech recognition. Finally, we
show a Viterbi algorithm when using the composed WFST.

Chapter 5 focuses on dynamic decoders based on on-the-fly operations. Some efficient ap-
proaches have recently been proposed to achieve high-speed and memory-efficient decoding. We
describe their principles and the algorithms.

Chapter 6 summarizes this book and offers some perspectives, where we overview recent
applications based on the WFST approach with certain extensions. We also introduce publicly
available software that can perform WFST operations and decoding.

9

C H A P T E R 2

Brief Overview of Speech
Recognition

In this chapter, we review the statistical framework of speech recognition, which forms the basis of
state-of-the-art speech recognition technology. However, since the technology is wide ranging and
progressing day by day, this chapter focuses specifically on a standard approach to large vocabulary
continuous speech recognition (LVCSR), which covers continuous-density hidden Markov mod-
els, context-dependent phone modeling, n-gram language models, time-synchronous Viterbi beam
search, and an extension of the Viterbi search to obtain multiple sentence hypotheses. Since there
have already been many studies describing these methods including the underlying theories and
implementation techniques, we simply present a brief overview and emphasize how the methods are
used in a Viterbi search.

The standard approach described in this chapter underlies WFST-based speech recognition.
Therefore, it is important to describe the framework before explaining the WFST framework. How-
ever, use of WFSTs is not limited to the above methods. The standard approach is one example that
can be optimized by using the WFST framework for fast decoding. Readers who are familiar with
the basic methods may want to proceed directly to the next chapter (Chapter 3).

2.1 STATISTICAL FRAMEWORK OF SPEECH
RECOGNITION

The statistical approach to speech recognition is modeled as a noisy channel model in information
theory [JBM75, BJM83, Jel98]. The top of Fig. 2.1 shows a model where each component is
associated with that of the general noisy channel model in the bottom of the figure. The speech
recognition process includes a speaker and a speech recognizer. A word sequence W is generated in
the speaker’s mind (message source). W is then sent through an acoustic channel (noisy channel)
consisting of a speech producer and an acoustic processor, where a speech producer vocalizes W

and generates S in an acoustic environment, and the acoustic processor undertakes signal processing
(and phone recognition) for S to obtain acoustic (and phonetic) features O. The linguistic decoder
receives the feature vector sequence O and infers a word sequence Ŵ that is close to the original
word sequence W . In this model, the acoustic processor and the linguistic decoder are included in
the speech recognizer.

10 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

OSW

Speech Recognizer
Acoustic Channel

W
^

Speaker’s
Mind

Speaker

Speech
Producer

Acoustic
Processor

Linguistic
Decoder

Message
Source

Noisy Channel Decoder

Noisy channel model

W O
W
^

Figure 2.1: Speech recognition as a noisy channel model.The diagram shows speech recognition viewed
as a noisy channel model where the upper block diagram is a model of speech recognition and the
lower one is a general noisy channel model. The vertical bidirectional arrows indicate the correspondence
between their components.

In accordance with information theory, the linguistic decoder finds the most likely word
sequence Ŵ in a set of possible word sequences, W , for a given input O, i.e.,

Ŵ = argmax
W∈W

P(W |O). (2.1)

Eq. (2.1) is also known as the Bayes decision rule that classifies the input O into Ŵ . This rule
means that a class Ŵ with the maximum a posteriori (MAP) probability P(Ŵ |O) is selected and
the probability of error minimized. Therefore, this type of decoder is often called a MAP decoder.

P(W |O) can be rewritten by using the Bayes’ theorem as

P(W |O) = p(O|W)P (W)

p(O)
. (2.2)

and therefore Eq. (2.1) can be rewritten as

Ŵ = argmax
W∈W

p(O|W)P (W), (2.3)

where p(O|W) is the acoustic likelihood of O for W , and P(W) is the prior probability of W .
Although p(O) in Eq. (2.2) is the likelihood of O, p(O) is not required in Eq. (2.3) since p(O)

is independent of Ŵ . Accordingly, we consider only p(O|W)P (W) when searching for Ŵ , where
p(O|W) is calculated with an acoustic model and P(W) is calculated with a language model.

Thanks to Bayes’ theorem, we can separately model p(O|W) and P(W), and score possible
sentence hypotheses for a given speech input using those models. The decoder works to find the

2.2. SPEECH ANALYSIS 11

Speech Analysis

Acoustic Model Language Model

Recognition Result

O

S

W=argmax p(O|W)P(W)^
W

Speech Input

Decoder

Ŵ

Pronunciation
Lexicon

p(O|W) P(W)

W

U

Figure 2.2: Continuous-speech recognition system

most likely sentence hypothesis Ŵ that is best-scored by the acoustic and language models, and
output Ŵ as a recognition result.

According to this statistical approach, a standard speech recognizer is organized as in Fig. 2.2.
Speech analysis is first applied to the speech waveform S and a feature vector sequence O is extracted.
The decoder obtains the recognition result Ŵ using the acoustic model and the language model.
Since the acoustic model is usually prepared phone by phone, the decoder requires a pronunciation
dictionary that has a set of phone sequences for each word to calculate the acoustic likelihood of a
word sequence. In the following sections, we review standard ways of constructing these components.

2.2 SPEECH ANALYSIS

The objective of speech analysis is to extract a feature vector sequence from an input waveform,
where it is desirable that the vector space be separable into distinct phone categories.

Since speech is viewed as a piecewise stationary signal, speech analysis is generally performed
at short time intervals of, e.g., 10 milliseconds, which is called a time frame or simply a frame. For
example, after the A/D conversion of 16 kHz sampling, the signal is pre-emphasized with a high-
pass filter and a power spectrum is derived using short-time Fourier analysis at each frame. Then,
the 24 filter-bank amplitudes are obtained from the spectrum using mel filter-bank analysis, and
their log amplitudes are transformed into Mel-Frequency Cepstral Coefficients (MFCCs) using the
Discrete Cosine Transform (DCT). The first 12 MFCCs are used to form a feature vector together
with the log power of the signal. A sequence of feature vectors is acquired continuously using a 25
millisecond time window and a 10 millisecond window shift. Moreover, their regression coefficients
obtained from several consecutive feature vectors in the time domain can be appended to the original

12 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

vector [Fur86]. The regression coefficients are called delta parameters and they capture the trend of
each feature component in the time domain.The second or higher order regressions or delta of delta
are also available. If we use 12 MFCCs, a log power, and their delta and delta-delta parameters, we
obtain a 39-dimensional feature vector for each time frame.

Instead of appending the delta parameters, we can use a joint vector of consecutive feature
vectors in the time domain, which is then transformed into a reduced dimensional space using Lin-
ear Discriminant Analysis (LDA) or Heteroscedastic LDA (HLDA) [KA98]. Moreover, posterior
probabilities for phone categories are also used together with the above features, which can be derived
using a Neural Network [HES00]. Actually there are many analysis methods and combinations for
forming a feature vector, which aim to alleviate environment noise, channel distortion, and speaker
variations, and improve class separability and recognition accuracy. Feature extraction methods are
not detailed in this book. Readers interested in this topic should see [LJ93, HAH01].

The feature vector sequence O can be represented as O = o1, o2, . . . , ot , . . . , oT −1, oT ,where
ot is a feature vector at the t-th frame, and T stands for the length of O, i.e., the number of frames
in O.

2.3 ACOUSTIC MODEL
In the statistical approach, an acoustic model is needed to calculate the acoustic likelihood p(O|W).
If O was obtained when a speaker uttered a word sequence W , the likelihood can be expected to
take a large value. On the other hand, if the content uttered by the speaker differed from W , it can
be expected to take a small value.

2.3.1 HIDDEN MARKOV MODEL
Hidden Markov Models (HMMs) are widely used as acoustic models for speech recognition. An
HMM can be considered a model of a non-stationary information source. Speech is certainly a
non-stationary signal and includes linguistic information in the time-variant spectral pattern. For
example, if the speech includes the word “hello,” the spectral pattern changes moderately according
to the pronunciation /h/,/ae/, /l/ and /ou/. An HMM has a set of states, each of which is viewed as
a statistically stationary signal source in speech recognition. The model generates a non-stationary
signal by switching the state synchronously with the time frame.

Figure 2.3 shows a left-to-right HMM, which is often used to represent a phone model in
speech recognition.The HMM has three states with a signal source and transitions to the state itself
and the next state. The initial state of the HMM is the leftmost state from which it starts to output
a feature vector sequence corresponding to the speech signal of the phone, and finally it arrives at
the rightmost (final) state. At each time frame, one feature vector is output from a signal source
associated with a state. A characteristic of HMMs is that it is assumed that the state transition
process is probabilistic and therefore not observable, and only the output symbol (feature vector)
sequence is observable. This property is effective as regards modeling speech signals, which vary
depending on many factors including speakers, speaking styles, and recording environments.

2.3. ACOUSTIC MODEL 13

S1 S2 S3

Figure 2.3: Left-to-right HMM: the nodes indicate the states with their identities S1, S2, and S3, and
the arcs represent possible state transitions.

Note that the HMM is a probabilistic model used for calculating acoustic likelihood, and
therefore it actually does not output any symbols in a speech recognition system. The important
thing is that when we observe a speech signal, we assume that the speech signal is generated by
the HMM of W . Thus, p(O|W) is considered the likelihood that the HMM of W generates the
observed signal O.

An HMM is defined with the following parameters.

θ = (S,Y,A,B, �,F) , (2.4)

where

S: a set of states.

Y : a set of output symbols.

A: a set of state transition probabilities; A = {aσs}; aσs is the transition probability from state σ to
state s, where

∑
s aσs = 1.

B: a set of output probability distributions; B = {bs(x)}; bs(x) is the distribution of state s for
x ∈ Y , where

∫ ∞
−∞ bs(x)dx = 1.

�: a set of initial state probabilities; � = {πs}; πs is the initial probability at state s, where
∑

s πs =
1.

F : a set of final states.

These parameters can be estimated using training data based on the Maximum Likelihood criterion.
If we have N utterances ON

1 and the corresponding transcriptions WN
1 , a set of parameters

for all phone HMMs, �, can be estimated so as to maximize the likelihood function,

L(�|ON
1 , WN

1) =
N∏

n=1

p(On|Wn, �), (2.5)

where p(On|Wn, �) denotes the acoustic likelihood as a function of �. We can also use other criteria
such as maximum mutual information (MMI) and minimum phone error (MPE) [PW02]. Details
regarding the training HMMs are not included in this book.

14 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

In speech recognition, the output symbols in Y correspond to feature vectors in a continuous
space, and therefore an output probability distribution bs(x) is defined as a probability density
function (PDF). This type of HMM is called a Continuous Density HMM to distinguish it from the
standard type called a Discrete HMM.

2.3.2 COMPUTATION OF ACOUSTIC LIKELIHOOD
An acoustic likelihood with an HMM can be calculated by the Forward algorithm. Given an HMM
M and a feature vector sequence O = o1, o2, ..., oT , the acoustic likelihood p(O|M), i.e., the
likelihood that the model M generates O, is defined as

p(O|M) =
∑
S

P (O, S|M)

=
∑
S

πs1bs1(o1)as1s2bs2(o2) . . . asT −1sT bsT (oT), (2.6)

where S denotes a state sequence s1, s2, . . . , sT , and each state st means the state that arrives at time
frame t .

In Eq. (2.6), p(O|M) is obtained as the sum of the probabilities for all the state transition
processes that can be followed in the HMM. The probability for a state sequence can be obtained
by multiplying the state transition probabilities and the output probabilities according to the state
sequence. However, summing up the probabilities by enumerating all possible state sequences needs
an enormous amount of computation.To obtain the summation efficiently,we can utilize the Forward
algorithm, which is calculated by the following recurrence formula.

α(1, s) = πsbs(o1)

α(t, s) =
∑
σ∈S

α(t − 1, σ)aσsbs(ot) t = 2, . . . , T (2.7)

where α(t, s) means the forward probability that the model M outputs o1, . . . , ot and arrives at
state s, i.e., p(o1, . . . , ot , st = s|M).

Finally, the acoustic likelihood is obtained at the final frame T

p(O|M) =
∑
s∈F

α(T , s) (2.8)

For the HMM in Fig. 2.3, the forward probability is calculated along a trellis as depicted in
Fig. 2.4. The trellis represents a set of possible paths going from the initial state to the final state,
each of which corresponds to a unique state sequence aligned to the feature vector sequence. On
the trellis, the state transition probability at each arc and the output probability at each node are
accumulated, and α(t, s) is obtained at each node by summing α(t − 1, σ)aσs from the preceding
states σ ∈ S , and then multiplying by bs(ot).

When decoding for speech recognition, the Viterbi algorithm is usually used rather than the
Forward algorithm. The Viterbi algorithm obtains the likelihood of the most likely state sequence

2.3. ACOUSTIC MODEL 15

S1

S2

S3

o1 o2 o3 oT-1 oT.......
Feature vector sequence

HMM states

Figure 2.4: Trellis space in Forward algorithm and Viterbi algorithm

that outputs O as

p̃(O|M) = max
S

P (O, S|M)

= max
S

πs1bs1(o1)as1s2bs2(o2) . . . asT −1sT bsT (oT), (2.9)

This is similar to the likelihood given by the Forward algorithm, but
∑

in Eq. (2.6) is replaced with
max.

As a result, (2.7) and (2.8) are also modified as

α̃(1, s) = πsbs(o1)

α̃(t, s) = max
σ∈S

α̃(t − 1, σ)aσsbs(ot) t = 2, . . . , T (2.10)

and
p̃(O|M) = max

s∈F
α̃(T , s), (2.11)

where α̃(t, s) means the likelihood that the model M outputs o1, . . . , ot along the most likely state
sequence arriving at state s. p̃(O|M) is also called the Viterbi score.

In the example in Fig. 2.4, the Viterbi score p̃(O|M) is the likelihood accumulated along the
path indicated by the thick line, where we assume that the state sequence along the path maximizes
p(O, S|M). The path that gives the Viterbi score is called the Viterbi path.

In the algorithm, all the probabilities are usually accumulated in the log domain, i.e., the
probabilities are transformed into their logarithmic values, and the multiplications are computed as
additions in Eqs. 2.10 and 2.11. This is useful for avoiding the underflow or overflow caused by the
iterative multiplications through the recurrence formula.

Although the Viterbi score is not the exact likelihood, there is no problem with respect to
recognition accuracy if we use the Viterbi score instead of the Forward probability. Moreover, if

16 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

we memorize the best preceding state obtained at each maximum selection in Eq. (2.10), the most
likely state sequence that generates O can be obtained by back-tracking the best preceding states
from the best final state selected in Eq. (2.11) at frame T . This procedure is basically the same as
the Dynamic Programming [BD62], and can be directly applied to continuous speech recognition,
which finds the most likely word sequence. The details are given in Section 2.7.1.

2.3.3 OUTPUT PROBABILITY DISTRIBUTION
HMMs can be classified depending on the type of output probability distribution at each state,
i.e., Discrete and Continuous Density HMMs. The Discrete HMMs were originally incorporated
into speech recognition, in which feature vectors are converted into discrete symbols using Vector
Quantization (VQ). The output probability was defined on a finite set of code vectors. At present,
Continuous Density HMMs are widely used, which have a multivariate Gaussian mixture density
function at each state.

Given a feature vector x, a multivariate Gaussian mixture density at state i is computed as

bi(x) =
Mi∑

m=1

cimN (x|μim, �im) (2.12)

N (x|μim, �im) = 1√
(2π)P |�im| exp

{
−1

2
(x − μim)t�−1

im (x − μim)

}
(2.13)

where N (x|μim, �im) is the m-th Gaussian density. μim and �im are the mean vector and the
covariance matrix, respectively, and cim is the branch probability (or mixture weight) for the m-th
Gaussian, where

Mi∑
m=1

cim = 1.

Mi is the number of mixture components for state i, and P is the number of feature vector dimensions.
To reduce the required computation and the number of parameters, diagonal covariance ma-

trices are often used, in which off-diagonal elements of the matrices are set at zero. In this case, each
Gaussian distribution becomes dimensionally independent and can be computed as

N (x|μim, �im) =
P∏

p=1

1√
2πσ 2

imp

exp

{
− (xp − μimp)2

2σ 2
imp

}
, (2.14)

where μimp and σ 2
imp are the mean and variance values of the p-th dimension of the m-th Gaussian

distribution. σ 2
imp corresponds to the p-th diagonal element of the covariance matrix �im.

For further refinement of output probability distributions, there are many attempts including
Neural Networks [RMB+94, MDH09, PBA+11, SLY11].

2.4. SUBWORD MODELS AND PRONUNCIATION LEXICON 17

g1 g2 g3 ow1 ow2 ow3

model of /g/ model of /ow/

Figure 2.5: Example of an HMM for the word ‘go’ synthesized with subword models of /g/ and /ow/

2.4 SUBWORD MODELS AND PRONUNCIATION LEXICON
Given an acoustic model of a word sequence W and a feature vector sequence O, the acoustic
likelihood p(O|W) can be computed using the Forward or Viterbi algorithm described in Section
2.3.2. However, since it is unrealistic to prepare a dedicated acoustic model for each possible word
sequence beforehand, the acoustic models are usually made for subword units such as phones and
syllables. An acoustic model of a word or a word sequence can be synthesized by concatenating
the corresponding subword acoustic models. Using a pronunciation lexicon, we can synthesize an
acoustic model for any word in the lexicon.

Let us assume that two subword models of phones /g/ and /ou/ are concatenated to synthesize
a word model for ‘go’ as in Fig. 2.5. The acoustic likelihood p(O|W = ‘go′) can be calculated using
a Forward or Viterbi algorithm to obtain p(O|M) with a single model M. Figure 2.6 shows an
example of a trellis for the concatenated HMMs, in which the thick line is assumed to be the Viterbi
path. Since we know which state belongs to which phone unit, we can estimate the boundary time
between units according to the Viterbi path. As shown with the dotted line in Fig. 2.6, the time
frames 6 and 7 are estimated to be the most likely boundary between phones /g/ and /ou/. Thus,
the Viterbi algorithm with concatenated HMMs is also useful for the automatic segmentation of
speech.

2.5 CONTEXT-DEPENDENT PHONE MODELS
In acoustic modeling for speech recognition, finding a way to design a set of subword units has
long been a problem. Currently, context-dependent phone units are widely used and known to be
an effective approach. The acoustic property of each phone is not steady because it is influenced by
adjacent or nearby phones. This property is called coarticulation. For example, the words sketch (/s k
eh ch/) and fox (/f ao k s/) have the same phone /k/ but their sounds are not the same. Thus, a phone
has allophones, and they are strongly dependent on the phone context.The incorporation of context-
dependent phone HMMs is an effective solution for modeling such allophones accurately [Lee88].

A context-dependent phone is, for example, written as (s)k(eh) which stands for a phone /k/
preceded by /s/ and followed by /eh/. As in this example, a phone that depends on one preceding

18 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

ow1

ow2

ow3

o1 o2 o3 oT-1 oT.......

Feature vector sequence

HMM states

g1

g2

g3

o4 o5 o6 o7 o8

Figure 2.6: Trellis space with concatenated HMMs

phone and one succeeding phone is called a triphone. A word model for ‘hello’ can be synthesized
with triphone models of (sil)h(ae), (h)ae(l), (ae)l(ou), and (l)ou(sil), where we assume that the word is
interposed in silences (/sil/). Actually, it is necessary to change the first and last triphones according
to the preceding and succeeding words. Specifically, triphones exactly dealt with between words
are called cross-word triphones. Although the use of cross-word triphones increases the complexity
of decoding, it substantially reduces recognition errors compared with when using triphones only
within each word model, i.e., using only a right-context-dependent model for the first phone and
only a left-context-dependent model for the last phone.

In addition, it is known that parameter tying is effective when using context-dependent models.
The number of context-dependent phones is much larger than the number of context-independent
phones. If we have 40 phone units, we need to consider 403(= 64, 000) triphones. Although the
triphones are not all usually observed in the training data, the number of observed triphones is much
larger than the number of phones. In this case, it is difficult to reliably estimate all the parameters
of the triphone models in the training phase because a triphone may have only a few samples with
which to estimate the mean vectors, the covariance matrices, and the mixture weights for each HMM
state. Furthermore, even triphones required in the decoding phase may not be seen in the training
data. To recover such triphone models, there are certain techniques for interpolating the parameters
by using those of other triphones that have similar coarticulations.

Tied-state triphone models have a shared output probability distribution at each state. A set
of state clusters with a shared distribution is derived through decision tree construction [BdSG91,
YOW94]. In [YOW94], a decision tree is constructed for each state of a phone model, where all the

2.6. LANGUAGE MODEL 19

left=voiced?

right=nasal?left=/a/?

noyes

yes no yes no

Figure 2.7: Phonetic decision tree

triphones derived from the phone model are assumed to have the same number of states as that of
the phone model (usually three).

As a preliminary step in the decision tree construction, a set of phonetic questions is designed
based on the phonetics of the language. Example phonetic questions are like “Is the left context a
vowel?” or “Is the right context nasal?” A context class can be split by assigning each triphone in the
class as either yes or no for a phonetic question as in Fig. 2.7.

First, only a root node is constructed, to which a context-independent phone class is assigned.
At each step, a pair consisting of a leaf node and a question is selected from all possible pairs so that
it gives the maximum gain of the expected log likelihood if the leaf node is split by the question.
Then the best split is actually performed. The decision tree is grown by iterating this step. To stop
the tree growth, we can utilize a condition where the number of frames assigned for each leaf node
is greater than a predefined threshold. Since only a pair that satisfies this condition is adopted, the
candidates for splitting gradually disappear, and finally the tree growth stops. We can also use a
more advanced technique for this clustering step such as an MDL-based approach [SW00] and a
variational Bayesian approach [WMNU04].

Thus, decision trees for all states of all phone models are constructed. A probability density
function (PDF) such as a Gaussian mixture is assigned to each leaf node and the parameters are
estimated with the training samples corresponding to the context class of the node. Using a decision
tree, we can find appropriate PDFs for any triphone model (even for unseen ones) by tracing the tree
from the root node to a corresponding leaf node. The transition probabilities are usually estimated
independently of the context class.

2.6 LANGUAGE MODEL

A language model is used to define a set of word sequences that can be recognized by a speech
recognizer. Some language models also give a probability or a weight to each word sequence as a
language score. The score indicates the likelihood that the word sequence is uttered by an assumed

20 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

go

turn

and

stop

straight

left

right

Figure 2.8: Finite-State Grammar

user. With the language model, ungrammatical and unlikely sentence hypotheses can be excluded
from the speech recognition process, and therefore recognition errors are reduced.

Several types of language models are available for speech recognition, from which an appro-
priate model is selected according to the target domain.

2.6.1 FINITE-STATE GRAMMAR
If we can confidently predict what is spoken to the system, we can design the language model
manually. In this case, Finite-State Grammars (FSGs) are usually used to design such hand-crafted
models. There are several ways to represent FSGs. For example, a word is associated with a state,
and a connection between words is represented as a state transition. Figure 2.8 shows an example
of an FSG that represents a set of voice commands to a robot, where each node has a word label
and directed arcs between nodes represent possible state transitions. A node without a word label
indicates a null state. In the grammar, the leftmost node indicates the initial state and the double-
circled node indicates the final state. This grammar accepts, for example, the utterance “go straight
and turn left.” Accordingly, FSGs are useful for building speech recognizers for small tasks.

There is another style of FSGs in which the word label is assigned to each transition. It is
known that an FSG with state labels is mutually convertible with an equivalent FSG with transition
labels.

2.6.2 N-GRAM MODEL
The target domain of LVCSR is a naturally spoken language. Therefore, it is no longer realistic
to build the language model by hand using highly specialized knowledge about the language. In

2.6. LANGUAGE MODEL 21

most LVCSR tasks, spontaneous speech needs to be recognized that is often ungrammatical and
unpredictable. Statistical language models are effective for recognizing such spontaneous speech,
because they can be acquired from a large text corpus including many example sentences. In such
statistical models, n-gram models are widely used for LVCSR.

An n-gram model is known as a simple and the most effective statistical language model
for LVCSR. The term “n-gram” stands for a subsequence of n items in a sequence. The n-gram is
referred to as a unigram when n = 1, a bigram when n = 2, and a trigram when n = 3. In the n-gram
language model for speech recognition, the item corresponds to a word and n is usually 3 (trigram)
or 4.

Let us denote a sequence of M words w1, w2 . . . , wM as wM
1 and a subsequence from the

i-th word to the j-th word as w
j
i . Given a word sequence W = wM

1 , the prior probability of W can
be factored as

P(W) = P(w1)P (w2|w1) . . . P (wM |wM−1
1)

=
M∏

m=1

P(wm|wm−1
1). (2.15)

In the n-gram model, the conditional probability P(wm|wm−1
1) is approximated with the n-gram

probability P(wm|wm−1
m−n+1) by truncating the history of wm into the previous n − 1 words. Note

that wm−n+1 is assumed to be null if m − n + 1 < 1, e.g., P(w1|w−1w0) = P(w1) when n = 3.
Accordingly, the prior probability of W is given as

P(W) =
M∏

m=1

P(wm|wm−1
m−n+1), (2.16)

where it is assumed that the occurrence probability of a word is dependent only on the previous
n − 1 words.

It is also known that the n-gram model is equivalent to the (n − 1)-order Markov model in
which a state of the Markov model corresponds to an (n − 1)-word history, and a state transition
has an n-gram probability conditioned by the history of the source state.

Let wn
1 be an n-gram of words, w1, . . . , wn.The maximum likelihood estimate of the n-gram

probability can be obtained using a text corpus as

P(wn|wn−1
1) = C(wn

1)

C(wn−1
1)

, (2.17)

where C(wm
1) is the number of occurrences of the n-gram, wn

1 , in the text corpus. However, since
the corpus is finite even if we try to collect as much of it as we can, many n-grams may have zero
or very few occurrences. Some important n-grams may happen to be unobserved in the corpus.
Such n-grams are not well estimated statistically, and therefore not correctly recognized. Back-off
smoothing described in the next section is a useful technique that can be used to mitigate such a
sparse data problem for n-gram models.

22 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

2.6.3 BACK-OFF SMOOTHING
Back-off smoothing is a technique for estimating the probabilities of unseen n-grams using (n − 1)-
gram probabilities [Kat87].The idea is basically to discount a part of probability of observed n-grams
and redistribute the part to the unseen n-grams so that their probabilities are proportional to the
corresponding (n − 1)-gram probabilities.

The n-gram probability of wn
1 based on back-off smoothing has the following form:

P(wn|wn−1
1) =

{
P ∗(wn|wn−1

1) if C(wn
1) > 0

α(wn−1
1)P (wn|wn−1

2) if C(wn
1) = 0

(2.18)

where P ∗(wn|wn−1
1) is the discounted n-gram probability, and alpha(wn−1

1) is called a back-off
coefficient when applying the (n − 1)-gram probability for unseen n-grams, i.e., C(wn

1) = 0.
Based on the discounted probabilities, the back-off coefficient is calculated as

α(wn−1
1) =

1 −
∑

wn:C(wn
1)>0

P ∗(wn|wn−1
1)

1 −
∑

wn:C(wn
1)>0

P ∗(wn|wn−1
2)

. (2.19)

The numerator means the sum of unseen n-gram probabilities in the context of wn−1
1 . The denom-

inator is the normalization factor.
There are several methods for estimating the discounted probabilities. With Good-Turing

discounting [Kat87], P ∗(wn|wn−1
1) is estimated as

P ∗(wn|wn−1
1) = C∗(wn

1)

C(wn−1
1)

(2.20)

using the modified count

C∗(x) = (C(x) + 1)
NC(x)+1

NC(x)

, (2.21)

based on the Good-Turing estimate [Goo53], where Nr means the number of words that occurred
in the corpus exactly r times. This estimate can be derived from Zipf ’s law.1 The modified count is
applied only when C(x) is small, e.g., C(x) ≤ 5 in [Kat87].

2.7 DECODER
As mentioned in Section 2.1, the decoder is a computer program that searches for the most likely
sentence hypothesis Ŵ based on Eq. (2.3) using an acoustic model and a language model. However,

1An empirical law observed in many types of data, in which the relative frequency of the k-th most frequent component is
proportional to 1/k.

2.7. DECODER 23

it is difficult to compute Eq. (2.3) directly because a huge computation is needed for enumerating
all possible sentence hypotheses W and calculating p(O|W)P (W) for each W . It is well known that
the one-pass Viterbi algorithm is effective for finding the best hypothesis Ŵ .

2.7.1 VITERBI ALGORITHM FOR CONTINUOUS SPEECH RECOGNITION
Assuming that each sentence hypothesis W is a sequence of MW words,w1, . . . , wMW

, the likelihood
of Eq. (2.3) can be factored into word-level scores as

Ŵ = argmax
W∈W

⎧⎨
⎩

∑
S∈SW

p(O, S|W)P (W)

⎫⎬
⎭

= argmax
W∈W

⎧⎨
⎩

∑
S∈SW

MW∏
m=1

p(o
tm
tm−1+1, s

tm
tm−1+1|wm)P (wm|wm−1

1)

⎫⎬
⎭ , (2.22)

where p(oτ
t , s

τ
t |w) denotes the likelihood that the model of word w generates the speech segment

ot . . . oτ along the state transition process st . . . sτ . SW denotes a set of possible state sequences for
W . tm represents the ending frame of word wm, which is determined by the state sequence S, i.e.,
the requirement that stm is a final state in the model of wm and stm+1 is an initial state in the model
of wm+1 is satisfied. Here we assume t0 = 0.

In the case of Viterbi algorithm, the best word sequence Ŵ is obtained along the best state
sequence as

Ŵ = argmax
W∈W

{
max
S∈SW

p(O, S|W)P (W)

}

= argmax
W∈W

⎧⎨
⎩ max

S∈SW

MW∏
m=1

p(o
tm
tm−1+1, s

tm
tm−1+1|wm)P (wm|wm−1

1)

⎫⎬
⎭

= argmax
W∈W

⎧⎨
⎩ max

T ∈TW

MW∏
m=1

p̃(o
tm
tm−1+1|wm)P (wm|wm−1

1)

⎫⎬
⎭ , (2.23)

where TW denotes a set of possible word ending frame sequences for W , and T ∈ TW is a time frame
sequence that corresponds to t1, ..., tMW

. Consequently, the Viterbi score for a word sequence can
be obtained by accumulating the word-level Viterbi scores with their language probabilities.

As mentioned in Section 2.4, a Viterbi score for a single word is obtained as in Fig. 2.6
using Eqs. (2.10) and (2.11). To find Ŵ efficiently without the enumeration of all W s, the Viterbi
algorithm for a single word is extended by introducing inter-word state transitions between different
word HMMs. The possible inter-word transitions are defined by a language model such as an FSG.
The n-gram language model can also be used in the same manner because the n-gram model can be
viewed as a probabilistic FSG (PFSG) in which a probability is appended to each state transition.

24 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

As well as the Viterbi algorithm for a single HMM, it iterates the maximum score selection
at every HMM state over T frames. The total number of HMM states becomes |S̄| × |Q|, where
|S̄| is the number of states per word HMM and |Q| is the number of grammar states. Thus, we no
longer have to enumerate all W s and compute p(O|W)P (W) for each W .

A PFSG is defined with a 7-tuple

G = (Q,V, E,I,F , P , π) (2.24)

where

1. Q is a set of states;

2. V is a set of word labels, i.e., vocabulary;

3. E ⊆ Q × Q is a set of state transitions;

4. I ⊆ Q is a set of initial states;

5. F ⊆ Q is a set of final states;

6. P : Q × Q → [0, 1] is a state transition probability function;

7. π : I → [0, 1] is an initial state probability function;

If G is a bigram language model, each state is assigned to a word in the vocabulary. Suppose a state
pw indicates the state for the word w. The initial probability π(pw) is the same as the unigram
probability P(w). The state transition probability P(pw|pv) is the same as the bigram probability
P(w|v). With a trigram language model, each state is assigned to a word pair and the state transition
probability is set at the trigram probability.

Now we show the Viterbi algorithm for continuous speech recognition, given a grammar G

and an input feature vector sequence O = o1 . . . oT . In this algorithm, each state of G has a word
HMM that corresponds to the word label of the state, where we may synthesize each word HMM
using subword HMMs as in Fig. 2.5.

When using the word HMMs in the algorithm, each word model is extended to have single
initial and final states. Let a word HMM in a grammar state p be θp = (Sp,Yp,Ap,Bp, �p,F),
where Ap = {a(p)

σs |σ, s ∈ Sp}, Bp = {b(p)
s (o)|s ∈ Sp, o ∈ Yp}, and �p = {π(p)

s |s ∈ Sp}. We de-
note the initial and final states by ip and fp, where the word HMM is assigned to a grammar state
p. We also introduce state transition probabilities aips and asfp for an arbitrary HMM state s ∈ Sp,

where aips is set at the initial state probability π
(p)
s , and asfp is set at a transition probability of

leaving the word HMM via state s. No word model is assigned to a null state but we assume it has
a single HMM state such that ip = fp.

When we use a grammar in Fig. 2.8, the whole search network for decoding is organized as
in Fig. 2.9 by embedding each word HMM into a corresponding grammar state. The word HMM

2.7. DECODER 25

go

turn

stop

straight

left

right

and

i

i

i

i

g1 g2 g3 ow1 ow2 ow3 f
i

t1 t2 t3 er1 er2 er3 n1 n2 n3 f

i

i

s1 s2 s3 t1 t2 t3 aa1 aa2 aa3 p1 p2 p3
f

s1 s2 s3 t1 t2 t3 r1 r2 r3 ey1 ey2 ey3 t1 t2 t3 f

l1 l2 l3 eh1 eh2 eh3 f1 f2 f3 t1 t2 t3 f

r1 r2 r3 ay1 ay2 ay3 t1 t2 t3 f

ax1 ax2 ax3 n1 n2 n3 d1 d2 d3 f

Figure 2.9: A search network for decoding

is synthesized for the grammar state based on the pronunciation of the word, and corresponding
subword HMMs, single initial and final states are also connected at the entry and exit of the grammar
state.

Given a decoding graph, the most likely word sequence for an utterance can be obtained using
a one-pass Viterbi algorithm. This algorithm is also known as a time-synchronous Viterbi search, and
is based on the time-synchronous computations designed to obtain the following quantities.

α̃(t, p, s): The Viterbi score of a partial path up to time frame t , at an HMM state s in a grammar
state p.

B(t, p, s): A back pointer to keep track of the most likely word sequence up to time frame t at
an HMM state s in a grammar state p. B(t, p, s) takes a pair 〈τ, q〉, where τ indicates the
starting frame of the word assigned to grammar state p, and q is the most likely grammar state
right before p. Let q = 0 if there is no grammar state before p.

At the ending frame of the utterance, the most likely word sequence can be found by back-tracking
the preceding grammar states using back pointers from the best final state with the highest Viterbi
score.

We show the basic steps of the algorithm below. Here, let Adj(s) be the adjacency list of state
s and Word(p) be the word label of grammar state p. If p is a null state, Word(p) returns ε, which
stands for the null string.

Step 1: Initialization
For each grammar state p ∈ Q,

For each HMM state s ∈ Sp,

26 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

α̃(0, p, s) =

⎧⎪⎨
⎪⎩

π(p) if p ∈ I and s = ip

max
q∈Q

α̃(0, q, fq)P (p|q) if p �∈ I and s = ip

0 otherwise

(2.25)

B(0, p, ip) = 〈0, 0〉 (2.26)

Step 2: Time-synchronous processing
For time frames: t = 1, 2, . . . , T ,

• Intra-word transition
For each grammar state p ∈ Q,

For each HMM state s ∈ (Sp − {ip, fp}),

α̃(t, p, s) = max
σ∈(Sp−{fp})

α̃(t − 1, q, σ)a
(p)
σs b

(p)
s (ot) (2.27)

B(t, p, s) = B(t − 1, p, σmax) (2.28)

For the word-final HMM state fp,

α̃(t, p, fp) = max
s∈(S−{ip,fp})

α̃(t, q, s)asfq (2.29)

B(t, p, fp) = B(t, p, smax) (2.30)

• Inter-word transition
For each grammar state p ∈ Q,

α̃(t, p, ip) = max
q∈Q

α̃(t, q, fq)P (p|q) (2.31)

B(t, p, ip) = 〈t, qmax〉 (2.32)

Step 3: Termination

α̂ = max
p∈F

α̃(T , p, fp) (2.33)

B̂ = 〈T , pmax〉 (2.34)

Step 4: Backtracking

Ŵ = ε (2.35)
〈t̂ , p̂〉 = B̂ (2.36)
while 〈t̂ , p̂〉 �= 〈0, 0〉

Ŵ = Word(p̂) · Ŵ (2.37)
〈t̂ , p̂〉 = B(t̂, p̂, fp̂) (2.38)

2.7. DECODER 27

In Step 1, Viterbi scores and back pointers are initialized with Eqs. (2.25) and (2.26), respec-
tively. The Viterbi score for an initial state ip of each word HMM assigned to one of the initial
grammar states p ∈ I is set by the initial probabilities π(p).The Viterbi scores for null states that can
be visited from one of the initial grammar states are also calculated in Eq. (2.25), where we assume
that the grammar state p is referred to in the topological order, i.e., when we calculate α̃(0, p, ip),
α̃(0, q, iq) is already obtained for every state q that can transit to state p. There must be no cycles
with only null states in the grammar. Scores for all the other HMM states are set at 0. All back
pointers are initially set at 〈0, 0〉.

In Step 2, the Viterbi scores and the back pointers are updated time-synchronously. At each
time frame t , intra-word and inter-word transitions are performed. In the intra-word transition, the
Viterbi score and the back pointer are obtained with Eqs. (2.28) and (2.28), respectively. In Eq. (2.28),
smax indicates the best preceding state in Adj(σ) that gives the maximum score in Eq. (2.28). Thus,
the back pointer is simply copied from that of the best preceding state in the intra-word transitions.
Then, the scores and pointers are also calculated for the final state fp in each word HMM using
Eqs. (2.30) and (2.30), respectively.

In the inter-word transition, the maximum score and the back pointer are delivered from the
final state of each word HMM to the initial state of another word HMM, which can be allowed
by the grammar. In Eq. (2.32), the Viterbi score for the best preceding grammar state is selected.
In Eq. (2.32), the back pointers are renewed and set at those of the initial states of the next word
HMMs, where the current time frame t as the ending frame of the previous word, the best preceding
grammar state pmax , and the back pointer of the best preceding state B(t, qmax, fqmax) are generated.
Transitions for null states in the grammar are also handled in this step, but they need to be processed
according to the topological order for the null states.

Finally, Step 3 finds the best score and the back pointer in the final states according to
Eqs. (2.34) and (2.34), respectively. Step 4 performs backtracking, which traces back pointers from
the best-scored final state and obtains the most likely word sequence. The word sequence Ŵ is
derived using Eqs. (2.37) to (2.38). First Ŵ is set at ε that satisfies W · ε = ε · W = W , where
“·” represents a binary operation that concatenates two strings. Using Eqs. (2.37) to (2.38), Ŵ is
constructed from the end of the sentence by tracking the back pointer 〈t̂ , p̂〉 until 〈t̂ , p̂〉 = 〈0, 0〉,
i.e., the beginning of the sentence hypothesis.

2.7.2 TIME-SYNCHRONOUS VITERBI BEAM SEARCH
The basic algorithm described in the previous section does not require the enumeration of all possible
word sequences. However, it does require the computation of O(|S̄|2 × |Q|2 × T). Since |Q| is very
large in LVCSR, further reduction of the required computation is crucial. The most widely used
technique for this purpose is beam search [Low76, NHUTO92]. With this technique, the maximum
Viterbi score at each time frame

Lmax
t = max

p∈Q,s∈Sp

α̃(t, p, s), (2.39)

28 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

Algorithm 1 TimeSynchronousViterbiBeamSearch(G, �, O)

1: 〈N, H 〉 ← initialize(G)

2: 〈N, HF 〉 ← interword_transition(G, N, H, 0)

3: for t ← 1 to T do
4: 〈N, H 〉 ← intraword_transition(G, �, N, ot , t)

5: 〈N, HF 〉 ← interword_transition(G, N, H, t)

6: prune(N, t)

7: end for
8: B̂ ← terminate(G, HF , T)

9: Ŵ ← backtrack(B̂)

10: return Ŵ

is used to prune unpromising partial paths, i.e., if α̃(t, p, s) is smaller than γLmax
t , the decoder

marks the state inactive at this frame and does not make a transition from the inactive state at the
next frame, where γ is assumed to be a constant such that 0 < γ < 1, which is used to control the
degree of beam pruning. Since the scores are accumulated in the log domain, (log Lmax

t − η) is used
as the threshold for pruning, where η = − log γ . η is often called beam width. We can also limit the
number of active states by a predetermined number K , i.e., at most K best states are kept active at
each frame. K is also called beam width. This number-based pruning can be used together with the
above score-based pruning. Thus, we can eliminate the computation for the pruned paths, but we
need to choose appropriate η and K so that we do not miss the correct path as a result of pruning.

If we incorporate the beam search in the Viterbi algorithm, it is important to handle ac-
tive/inactive states efficiently. We present an example of a more practical version of the one-pass
Viterbi algorithm including beam pruning, which is called a time-synchronous Viterbi beam search.
Algorithm 1 shows its pseudo code, which consists of the component Algorithms 2 to 7.

Algorithm 1 is basically the same as the procedure we presented in Eqs. 2.25 to 2.34. But
active/inactive states are handled efficiently using queues. N is a queue of active state pairs in the
grammar and the HMM. At line 1, initial state pairs are inserted in N using Algorithm 2. H is a
queue of active grammar states that should be taken into account in the inter-word transitions. HF

is a queue of active final grammar states.The queue discipline, i.e., the rule that determines the order
of the components to be popped from the queue, is not defined for N , H , and HF , i.e., any order
is allowed. But if a topological order is used for H , the computation for null state transitions in the
grammar can be minimized.

In line 2, inter-word transitions are made for initial transitions among null states. Lines 3 to 7
iterate the state transitions at each frame, which consist of intra-word and inter-word state transition
steps and a pruning step. The most likely word sequence Ŵ is obtained by backtracking at line 8,
and returned at line 9. Next we briefly explain these component algorithms.

Algorithm 2 performs initialization for the Viterbi search. In line 1, queues N and H are
initialized as empty queues. In lines 3 and 4, Viterbi scores and back pointers for initial grammar

2.7. DECODER 29

Algorithm 2 initialize(G)
1: N ← H ← ∅
2: for each p ∈ I do
3: α̃(0, p, ip) ← π(p)

4: B(0, p, ip) ← null
5: if Word(p) �= ε then
6: Enqueue(N, 〈p, ip〉)
7: else
8: Enqueue(H, p)

9: end if
10: end for
11: return 〈N, H 〉

states and initial HMM states at frame 0 are set at their initial probabilities and the null pointer,
respectively. Each pair consisting of initial grammar state p and its initial HMM state ip is inserted
in queue N at line 5. In lines 6-8, only when initial grammar state p is a null state, i.e., Word(p) = ε,
p is inserted in H for null transitions from state p.

Algorithm 3 performs intra-word transitions at each frame. In line 1, queues N ′ and H are
initialized. In lines 2-15, state transitions in each word HMM are made from each active HMM
state in N , and new active state pairs are inserted in N ′ for the next frame. In lines 16-27, state
transitions to the final state of the word HMM are made from active states in N ′, and the grammar
state that has an active final state in the word HMM is inserted in H . This means that the grammar
state is ready for transition.

Algorithm 4 performs inter-word transitions, i.e., grammar level state transitions are made.
Each grammar state in H that is ready for transition is picked up, and its score and back pointer are
propagated from the final state of the word HMM to the initial state of another word HMM of a
succeeding grammar state. Line 9 checks whether or not the grammar state is a null state. If the state
is null, it is inserted in H for further transitions. If it is not null, it is inserted in N for intra-word
transitions at the next frame.

Algorithm 5 prunes unpromising active states. First, the maximum Viterbi score, Lmax
t , is

obtained at the current frame t . Active states whose score is less than γLmax
t are removed from

queue N .
Algorithm 6 obtains the recognition result. In lines 3-9, the final state with the best score

is found in HF . Algorithm 7 backtracks the back pointers from the best final state. In line 1, Ŵ

is initialized. In lines 2-6, the most likely word sequence is traced backward from B̂, and Ŵ is
constructed.

30 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

Algorithm 3 intraword_transition(G, �, N, ot , t)
1: N ′ ← H ← ∅
2: while N �= ∅ do
3: 〈p, σ 〉 ← Head(N)

4: Dequeue(N)

5: for each s ∈ Adj(σ) such that s �= fp do
6: ls = α̃(t − 1, p, σ)a

(p)
σs b

(p)
s (ot)

7: if α̃(t, p, s) < ls then
8: α̃(t, p, s) ← ls

9: B(t, p, s) ← B(t − 1, p, σ)

10: if 〈p, s〉 �∈ N ′ then
11: Enqueue(N ′, 〈p, s〉)
12: end if
13: end if
14: end for
15: end while
16: for each 〈p, s〉 ∈ N ′ do
17: if fp ∈ Adj(s) then
18: lf = α̃(t, p, s)a

(p)
sfp

19: if α̃(t, p, fp) < lf then
20: α̃(t, p, fp) ← lf

21: B(t, p, fp) ← B(t, p, s)

22: if p �∈ H then
23: Enqueue(H, p)

24: end if
25: end if
26: end if
27: end for
28: return 〈N ′, H 〉

2.7.3 PRACTICAL TECHNIQUES FOR LVCSR
The time-synchronous Viterbi beam search described in the previous section is a general algorithm
for continuous speech recognition. However, when it is applied to LVCSR, we face crucial problems
in terms of computation amount and search error. Here we describe the problems and introduce
practical solutions used for traditional LVCSR systems.

An n-gram language model is used as a grammar in most LVCSR systems. The n-gram
model basically allows all possible concatenations between words. Thus, the number of transitions
outgoing from one grammar state is equal to the vocabulary size, e.g., 65 thousand. This means that

2.7. DECODER 31

Algorithm 4 interword_transition(G, N, H, t)
1: HF ← ∅
2: while H �= ∅ do
3: q ← Head(H)

4: Dequeue(H)

5: for each p ∈ Adj(q) do
6: li ← α̃(t, q, fq)P (p|q)

7: if α̃(t, p, ip) < li then
8: α̃(t, p, ip) ← li

9: B(t, p, ip) ← 〈t, q〉
10: if Word(p) �= ε then
11: if 〈p, ip〉 �∈ N then
12: Enqueue(N, 〈p, ip〉)
13: end if
14: else
15: if p �∈ H then
16: Enqueue(H, p)

17: end if
18: end if
19: end if
20: end for
21: if q ∈ F and q �∈ HF then
22: Enqueue(HF , q)

23: end if
24: end while
25: return 〈N, HF 〉

the number of active states is greatly increased by the transitions from the final state of each word
HMM to all the initial states of the succeeding word HMMs. In this case, it is difficult to reduce
the active states safely by beam pruning, because there are many active states with equivalent Viterbi
scores in the initial parts of the word HMMs.

One solution is to use a pronunciation prefix tree. Since there are many words that have
the same pronunciation prefix in a large vocabulary, the number of outgoing transitions can be
decreased by sharing such prefixes in the search network. Suppose a vocabulary consists of the words
start, stop, straight, and go. The pronunciation prefix tree can be constructed as in Fig. 2.10. In the
search network, a phone HMM is embedded in each phone node and the leaf nodes of the tree are
linked to the root node. Each node of a rectangle is a final HMM state for identifying which word
corresponds to the path from the root node to the leaf node. By introducing this tree structure in
the search network, the number of outgoing transitions from each HMM state becomes at most the

32 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

Algorithm 5 prune(N, t)
1: Lmax

t ← max〈p,s〉∈N
α̃(t, p, s)

2: for each 〈p, s〉 ∈ N do
3: if α̃(t, p, s) < γLmax

t then
4: Erase(N, 〈p, s〉)
5: end if
6: end for
7: return N

Algorithm 6 terminate(G, HF , T)
1: α̂ ← 0
2: B̂ ← 〈0, 0〉
3: for each q ∈ HF do
4: lf = α̃(T , q, fq)

5: if α̂ < lf then
6: α̂ ← lf

7: B̂ ← 〈T , q〉
8: end if
9: end for

10: return B̂

Algorithm 7 backtrack(B̂)

1: Ŵ ← ε

2: 〈t̂ , p̂〉 ← B̂

3: while 〈t̂ , p̂〉 �= 〈0, 0〉 do
4: Ŵ ← Word(p̂) · Ŵ

5: 〈t̂ , p̂〉 ← B(t̂, p̂, fp̂)

6: end while
7: return Ŵ

number of phones, which is much less than the number of words in LVCSR.Thus, the pronunciation
prefix tree is very important as regards avoiding irruptions of active states in the beam search.

However, when we use a prefix tree, we need to consider that the word identity is unknown
until the path reaches a leaf node. Since grammar-level state transitions cannot be made until the
word identity is determined, we need to associate the tree with each grammar state. In the case of
n-gram language models, |V |n−1 trees are necessary, and each of them depends on the history of
n − 1 words. Figure 2.11(a) shows a search network with prefix trees based on a bigram language
model of a vocabulary {u, v, w}. The tree on the left-hand side is the unigram tree whose root node

2.7. DECODER 33

s

g

t

aa

r

t

p

start

stop

ey t streight

ow go

Figure 2.10: Pronunciation prefix tree

becomes active first in the Viterbi search. Then active states are propagated to the leaf nodes and
each word is identified if its leaf node is activated. After that, a transition is made to a successor tree,
where the tree is conditioned by the n − 1-word history of the path, i.e., the previously identified
word in the bigram case.

Although the total number of transitions becomes much larger than that without the prefix
trees, the tree organization is very effective in the beam search. However, a large memory is needed
to store an entire search network. This typically requires the incremental construction of the net-
work during the search to save memory, which generates a substantial computation overhead. To
reduce the number of transitions, there is a technique for introducing back-off transitions into the
network [ABCF95, BC95]. If there is no bigram entry for a word at a leaf node conditioned by
the previous word, a transition to the unigram tree is made with the back-off weight. Using this
technique, the history-conditioned tree includes only existing n-gram entries. Figure 2.11(b) shows
an example where there are no bigram entries for P(w|v), P(u|w), and P(w|w) in the model.
The network is represented as a small number of transitions compared with that in Fig. 2.11(a).
However, with this method, a back-off transition from an n-gram to its corresponding n − 1-gram
can be made even though the n-gram entry exists in the model. For example, in Fig. 2.11(b), if
P(u|v) < α(v)P (u), the path going through α(v)P (u) is selected even if the entry P(u|v) exists.
Since P(u|v) > α(v)P (u) is usually satisfied, it has little impact on the recognition results, but the
score may include a slight error.

Indeed, Algorithms 3 and 4 need to be extended if they are to use the prefix-tree-based search
network, because each grammar state has a prefix tree but does not have a single word HMM. The
tree has multiple final HMM states each of which corresponds to a word. In this case, we have
to consider transitions from each final state to the corresponding initial (root) HMM state of a
successor tree in the inter-word transition procedure. In the initial state, the maximum score needs
to be selected. The prefix-tree-based search algorithm is not described in detail in this book. The
details can be found, for example, in [ONA97].

34 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

u

v

w

u

v

w

u

v

w

u

v

w

u

v

w

(a) Bigram-based search network

u

v

w

u

v

w

u

v

u

u

v

w

α(w)

α(v)

(b) Back-off bigram-based search network

Figure 2.11: Bigram-based search networks with prefix trees

We also need to consider the fact that the n-gram probability cannot be applied until the leaf
node. This increases the risk of pruning error. In general, it is better to apply the language scores as
soon as possible for the beam search, because the decoder can find unpromising paths earlier and
exclude them as candidates. Since it is impossible to apply the correct score before the word identity
is determined, a look-ahead score is used instead. The look-ahead score is, for example, calculated
at each node as the maximum of the n-gram probabilities of the words that can be reached from
that node. This is realized by attaching a factored language score to each transition between phone
nodes. The factored score for a transition from node i to node j in the prefix tree of history h is
calculated as

P(j |i, h) = maxw∈
(j) P (w|h)

maxv∈
(i) P (v|h)
, (2.40)

where
(j) represents a set of words that can be reached from node j .The accumulation of factored
scores along a path from a root node to a leaf node is equal to the language score corresponding to
the leaf node.

2.7. DECODER 35

start(g)
(t)g(ow)

(g)ow(g)

(g)ow(s)

go(g)

go(s)

start(s)
(t)s(t)

(s)t(aa)

(s)t(r)

(t)aa(t)

(t)aa(p)

(aa)t(g)

(aa)t(s)

start(g)

start(s)

(aa)p(g)

(aa)p(s)

stop(g)

stop(s)
(t)r(ey)

(r)ey(t) (ey)t(g)

(ey)t(s)

streight(g)

streight(s)

Figure 2.12: Triphone-based pronunciation prefix tree conditioned by preceding word start.“start(g)” and
“start(s)” represent word labels of start, which depend on the succeeding phones /g/ and /s/, respectively.

2.7.4 CONTEXT-DEPENDENT PHONE SEARCH NETWORK
As mentioned in Section 2.5, context-dependent phone models need to be connected consistently
with their context information when synthesizing a word model.The pronunciation prefix trees must
also be constructed so that each phone node is context-dependent and consistently connected with
each other. Figure 2.12 shows an example of a triphone-based prefix tree conditioned by the word
start. Each node has a triphone that depends on the preceding and succeeding phones. As shown in
the figure, the root and leaf nodes are also dependent on the context, i.e., the ending phone of the
preceding word and the beginning phone of the succeeding word. At each inter-word transition, the
phone context dependency needs to be correctly dealt with in the decoder.

2.7.5 LATTICE GENERATION AND N-BEST SEARCH
In the previous sections, we described the Viterbi search for finding the most likely word sequence.
However, multiple hypotheses are often needed by applications using speech recognition. Since a
speech signal is essentially ambiguous and difficult to resolve using only acoustic and language scores,
it is impossible to avoid recognition errors. Therefore, if the speech recognizer can output multiple
hypotheses with high scores, the application can select a reasonable hypothesis from among them
using some additional knowledge such as the current status of the application or the topic of the
conversation.

On the other hand, multiple hypotheses are also used in some important speech recognition
techniques such as multi-pass decoding, discriminative training, unsupervised adaptation, and con-

36 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

SIL

I

Ah

have

I

three
cats

freeit has
cat

SILth
re
efree

time

(a) Word lattice

SIL I have three cats SIL

SIL I have free cat SIL

SIL Ah it has three cats SIL

SIL Ah I have three cats SIL

:

(b) N-best list

Figure 2.13: Multiple hypotheses represented by (a) word lattice and (b) N-best list.

fidence estimation. In multi-pass decoding, a set of hypotheses is first generated and then rescored
with more complex models or adapted models. After rescoring, the final result is selected from
among them.This rescoring step can be repeated to obtain a better result. In discriminative training,
the multiple hypotheses for training data are used to calculate a loss function, which indicates the
risk of occurrence of recognition errors. The acoustic/language models are trained to minimize the
loss function. Basically, the model parameters are updated so that the scores for correct hypotheses
increase and those for incorrect hypotheses decrease. In unsupervised adaptation, model parameters
are estimated using the multiple hypotheses for the adaptation data as a pseudo transcript. It is
known that using multiple hypotheses is more effective in mitigating the impact of errors on the
adaptation process than using only the best hypothesis. In confidence estimation, the likelihood
ratio of the best hypothesis to the other hypotheses is considered a confidence measure of the best
hypothesis. Thus, generating multiple hypotheses is currently one of the most important functions
of speech recognition engines.

A set of multiple hypotheses is usually represented as a word lattice or an N-best list. An N-
best list is a list of N-most likely word sequences sorted by their scores.The word lattice is a directed
acyclic graph in which each arc is labeled with a hypothesized word and each node corresponds to a
word boundary with the time information. A path from an initial node to a final node in the graph
indicates a word sequence, i.e., the graph represents a set of multiple hypotheses. Figure 2.13 shows
(a) a word lattice and (b) an N-best list. A word lattice is generally more effective in representing

2.7. DECODER 37

various hypotheses compactly. Each lattice arc has a word label and its score. Each lattice node
depends on a grammar state and a time frame. On the other hand, the N-best list is easier to use for
post processing such as parsing that analyzes the meaning of each word sequence, because a word
sequence like a sentence is assumed to be given as an input in most language processing techniques.

The word lattice can be constructed in a time-synchronous Viterbi beam search. The N-best
list can be extracted from the word lattice using the A∗ search. First we briefly explain how to
generate a word lattice.

A word lattice is a subset of all possible word sequences accepted by the grammar that survived
in the beam search. Hence, the lattice size changes depending on the beam width. Basically, the nodes
and arcs of a word lattice can be generated at each inter-word state transition by keeping all the back
pointers from active states. This means that we do not assign only the best preceding back pointer,
but also a set of possible back pointers, i.e., Eq. (2.32) is replaced with

B(t, p, ip) = {〈t, q〉|q ∈ Q}. (2.41)

In the termination step, Eq. (2.34) is also replaced with

B̂ = {〈t, p〉|p ∈ F}. (2.42)

In Algorithm 4 for inter-word transition, line 9 is changed to

B(t, p, ip) ← B(t, p, ip) ∪ {〈t, q〉}, (2.43)

and moved between lines 6 and 7 to keep all active back pointers other than the best pointer. In
Algorithm 6 for termination, line 7 is also changed to

B̂ ← B̂ ∪ {〈T , p〉}. (2.44)

and moved between lines 4 and 5.
The lattice can be constructed with Algorithm 8 in which the nodes and arcs of the lattice are

created by tracking the back pointers from active final states in the same manner as the backtracking.
But we need to consider multiple hypotheses. In the algorithm, an empty lattice L is first created in
line 1. The active back pointers are inserted into queue H at line 2. An empty queue C is prepared
in line 3, which is used to memorize already-created lattice nodes. Note that a lattice node is defined
as a pair consisting of a time index and a grammar state. Lines 4 to 16 are repeated until the lattice
is completed. In lines 5 and 6, a back pointer is popped from H . Each lattice arc from the pointer
is created with function AddArc at line 9. Arc score l calculated in line 8 is also assigned to the arc,
where we assume α̃(τ, q, fq) = 1 if q = 0. Each preceding back pointer is inserted into H in line
13 to make nodes and arcs further back toward the initial state. In line 14, 〈t, p〉 is inserted in C to
memorize a lattice node corresponding to this pair.

Although the above procedure for lattice generation is widely used, we need to consider that
it includes an approximation. Since the algorithm is based on the Viterbi search designed to find

38 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

Algorithm 8 lattice_generation(B̂)
1: L ← ∅
2: B ← B̂

3: C ← ∅
4: while H �= ∅ do
5: 〈t, p〉 ← Head(B)

6: Dequeue(B)

7: for each 〈τ, q〉 ∈ B(t, p, fp) do
8: l ← α̃(t, p, fp)/α̃(τ, q, fq)

9: AddArc(L, 〈〈τ, q〉, 〈t, p〉, Word(p), l〉)
10: if 〈τ, q〉 �∈ C then
11: Enqueue(B, 〈τ, q〉)
12: end if
13: end for
14: Enqueue(C, 〈t, p〉)
15: end while
16: return L

only the best path, it cannot be guaranteed that candidates other than the best path are obtained
exactly.

We show an example in which an approximation error occurs. Figure 2.14 (a) represents a
trellis space, where three paths from grammar states u, v, and x go into the next grammar state
w. Suppose the thick line is the best path. The inter-word transitions from u and v to w at time
t1 are retained by making back pointers. In this case, the paths going through uw and vw will be
created correctly in the lattice. On the other hand, a path going through an inter-word transition
from x to w at time t2 will be lost at time t3 because only one score and one back pointer are held
at a certain time frame within a grammar state. Thus, even if the path is the second or third best
path, it will be lost when it encounters the best path in the grammar state. It is possible to save such
a path by making all back pointers in intra-word transitions. However, it much increases memory
consumption and computation amount.

There is another approach for efficiently reducing such approximation errors. This is realized
by keeping scores and back pointers differently depending on the preceding word, where it is assumed
that the best starting time of a word depends only on the preceding word. Although it may depend
on earlier preceding words, this assumption, called word-pair approximation [ONA97], is much safer
than the simple lattice generation method above. Figure 2.14 (b) represents paths in the trellis space
depending on the previous word. In this example, all the paths safely reach the end of the grammar
state w at time t4 because the scores and back pointers are differently held within w.

This extension can be made by simply duplicating each grammar state depending on the words
attached to the preceding grammar states that have transitions to the original state. Although this

2.7. DECODER 39
H

M
M

 s
ta

te

time

u v x

lost
w

t1 t2 t3 t4
(a) Standard Viterbi search

H
M

M
 s

ta
te

time

u v x

t1 t2 t3 t4

w

(b) Word-conditioned search

Figure 2.14: Paths in (a) standard search and (b) word-conditioned search.

duplication seems to increase the amount of computation needed for the Viterbi search, there are
many search networks that inherently satisfy this assumption. Actually, a prefix tree-based search
network as in 2.11(a) has a grammar state for each tree that depends on the previous word. But
2.11(b) has a word independent tree for back-off transitions. Therefore, a search network such as
that in Fig. 2.11(a) is usually used to generate word lattices.

Next we show how to obtain the N-best list by using an A∗ search, which is performed
backward from the final states. The algorithm is similar to that for lattice generation, and therefore
it includes the same approximation [SA90]. Algorithm 9 performs the N-best search in which a
priority queue according to the product of the forward and backward Viterbi scores is used to obtain
the top N-best word sequences. In the first line, an empty list W for word sequences is prepared.
Priority queue U is initialized in line 2 and elements corresponding to active final states are inserted in
U , where each element consists of time, grammar state, word sequence, forward score, and backward
score. In lines 6-17, word sequences with highest scores are searched until the size of W becomes N .
In lines 7 and 9, the element is popped from U such that the product of forward and backward scores,
(α × β), is the maximum in U . If the preceding grammar state p is 0, the sentence is completed.The
word sequence W is inserted in W . If W is already included in W , we may abandon it to eliminate
duplication. If p �= 0, new elements are generated based on the back pointers and they are inserted in
U . In line 13, the word score for the preceding state q is calculated, where we assume α̃(τ, q, fq) = 1
if q = 0. The score is then used to obtain new α and β. The word sequence is updated by adding
Word(q) before W . Finally, the N-best list including N word sequences is obtained. The N-best list
can also be obtained from a word lattice using the same algorithm.

40 2. BRIEF OVERVIEW OF SPEECH RECOGNITION

Algorithm 9 nbest_search(B̂, N)
1: W ← ∅
2: U ← ∅
3: for each 〈t, p〉 ∈ B̂ do
4: U ← U ∪ {〈t, p, ε, α̃(t, p, fp), 1〉}
5: end for
6: while |W| < N and U �= ∅ do
7: 〈t, p, W, α, β〉 ← Head(U)

8: Dequeue(U)

9: if p = 0 then
10: W ← {W } ∪ W
11: else
12: for each 〈τ, q〉 ∈ B(t, p, fp) do
13: l ← α̃(t, p, fp)/α̃(τ, q, fq)

14: Enqueue(U, 〈τ, q, Word(p) · W, α̃(τ, q, fq), l × β〉)
15: end for
16: end if
17: end while
18: return W

41

C H A P T E R 3

Introduction to Weighted
Finite-State Transducers

We already mentioned in Chapter 1, that the Weighted Finite-State Transducer (WFST) provides
an elegant framework [MPR02] for speech recognition decoding. In this chapter, we formally define
WFSTs and describe their basic properties based on automata theory.Then we show some important
operations defined on WFSTs, which are used for constructing and optimizing a speech recognition
network.

3.1 FINITE AUTOMATA
A WFST is a sort of finite automaton (FA). An FA consists of a finite set of states and state
transitions, where each transition has at least one label. The most basic FA is a finite-state acceptor
(FSA). Given a sequence of input symbols, an FSA returns “accepted ” or “not accepted,” according to
whether or not the FSA has a path, i.e., a state transition process, from an initial state to a final state,
whose label sequence matches the input symbol sequence.

Figure 3.1 (a) shows an example of an FSA, where the nodes and arcs correspond to its states
and state transitions. For example, the FSA accepts a symbol sequence “a,b,c,d” with state transitions
0, 1, 1, 2, 5, but does not accept “a,b,d.” Thus, an FSA represents a set of symbol sequences that
can be accepted. A symbol sequence is also called a string. The FSA in the figure represents a set of
acceptable symbol sequences, which corresponds to a regular expression “ab∗cd|bcd∗e.” We assume
here that state 0 is the initial state and state 5 is the final state. Unless noted, let an initial state be
depicted with a circle of thick line and a final state be depicted with a double circle in this book.

Next we introduce several extensions of FSAs, where we mention only Finite-State Trans-
ducers (FSTs), Weighted Finite-State Acceptors (WFSAs), and Weighted Finite-State Transducers
(WFSTs).These automata inherit the basic characteristics of FSAs, but they output not only a binary
value “accepted/not accepted” but also a symbol sequence, a weight, or both.

An FST has an output label at each transition, i.e., a pair of input and output labels is assigned.
Figure 3.1 (b) shows an example of an FST. A label pair in the form of “input-label : output-label”
is placed at each transition. By this extension, an FST can describe a set of rules for conversion or
transduction from one symbol sequence to another. The example FST converts a symbol sequence
“a,b,c,d” into another symbol sequence “z,y,x,w.”

A WFSA has a weight at each transition,an initial weight in each initial state,and a final weight
in each final state. A weight usually indicates the probability or cost of a transition or initial/final

42 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0

1a

3
b

b

2c

4
c

5

d

ed

(a) Finite-State Acceptor (FSA)

0/0.5

1a/1.2

3
b/0.8

b/0.7

2c/3

4
c/0.2

5/0.1

d/2

e/0.6d/1.2

(c) Weighted Finite-State Acceptor (WFSA)

0

1a:z

3
b:y

b:y

2c:x

4
c:x

5

d:w

e:vd:w

(b) Finite-State Transducer (FST)

0/0.5

1a:z/1.2

3
b:y/0.8

b:y/0.7

2c:x/3

4
c:x/0.2

5/0.1

d:w/2

e:v/0.6d:w/1.2

(d) Weighted Finite-State Transducer (WFST)

Figure 3.1: Examples of finite automata

state, and weights are assumed to be cumulated by multiplication along each path and addition over
different paths.Thus, the WFSA gives us a measure with which to compare different paths, different
sets of paths, or different WFSAs. Figure 3.1 (c) shows an example of a WFSA. As in the figure, the
weight at each transition is denoted an “input-label/weight” and weights for initial and final states
are denoted “state number/weight,” where the initial state 0 possesses an initial weight 0.5 and the
final state 5 possesses a final weight 0.1. This WFSA, for example, accepts a sequence “a,b,c,d” with
a cumulative weight “0.252” as a result of multiplication 0.5 × 1.2 × 0.7 × 3 × 2 × 0.1 along the
path of state transitions 0,1,1,2,5.

A WFST has both an output label and a weight in addition to an input label at each transition,
i.e., the WFST inherits the properties of both the FST and WFSA. Figure 3.1 (d) shows an example
of a WFST, where the label on each transition represents the “input-label : output-label / weight”
of the transition. Initial and final weights are also assigned to the corresponding states. This WFST,
for example, converts a symbol sequence “a,b,c,d” into “z,y,x,w” with a cumulative weight “0.252.”

A WFST over a set of weight elements K is formally defined by an 8-tuple
(�, �, Q, I, F, E, λ, ρ) where:

1. � is a finite set of input labels;

2. � is a finite set of output labels;

3. Q is a finite set of states;

4. I ⊆ Q is a set of initial states;

3.1. FINITE AUTOMATA 43

5. F ⊆ Q is a set of final states;

6. E ⊆ Q × (� ∪ {ε}) × (� ∪ {ε}) × K × Q is a finite multi-set of transitions;

7. λ : I → K is an initial weight function;

8. ρ : F → K is a final weight function.

“ε” is a meta symbol label that indicates there is no symbol to input or output. According to the
above form, the WFST in Fig. 3.1(d) can be defined as:

1. � = {a,b,c,d,e},
2. � = {v,x,y,w,z},
3. Q = {0, 1, 2, 3, 4, 5},
4. I = {0},
5. F = {5},
6. E = {(0,a,z,1.2,1), (0,b,y,0.8,3), (1,b,y,0.7,1), (1,c,x,3,2), (2,d,w,2,5), (3,c,x,0.2,4),

(4,d,w,1.2,4), (4,e,v,0.6,5)},
7. λ(0) = 0.5,

8. ρ(5) = 0.1,

where each transition in E is represented as (source state, input label, output label,weight,destination
state). The other FAs, i.e., FSA, FST, and WFSA, can be viewed as special cases of a WFST and
can also be defined in similar ways by omitting weights and/or output labels.

There is another extension for representing a finite automaton in which a label of each tran-
sition is allowed to be an input string (and an output string) rather than a single input symbol (and
a single output symbol). However, in this book we focus on the case where each transition accepts
(and outputs) at most one symbol at a transition. Basically, such a string-based automaton can be
converted into its equivalent symbol-based automaton by substituting each string-based transition
with a chain of symbol-based transitions.

Finally, we summarize the four types of automata in Table 3.1. As mentioned above, an FSA
has only an input label on each transition and returns accepted or not accepted for an input symbol
sequence. In the table, “function” means the mapping that can be represented by the automaton.
With an FSA, an input symbol sequence in �∗ can be mapped to a binary value in {0, 1}, where we
assume that 0 and 1 correspond to “accepted” and “not accepted,” respectively. An FST has input
and output labels on each transition and can represent a function f : �∗ → 2�∗

, where 2�∗
is the

power set of �∗. This means that an FST can convert an input symbol sequence into a set of output
symbol sequences. An WFSA has an input label and a weight on each transition and represents a

44 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

mapping f : �∗ → K, i.e., given an input symbol sequence, it returns a weight for the sequence.
An WFST represents a mapping to a set of weighted output symbol sequences from a given input
symbol sequence.

Table 3.1: Types of finite automaton

type input output weight mapping
Finite-state Acceptor (FSA) � �∗ → {0, 1}
Finite-state Transducer (FST) � � �∗ → 2�∗

Weighted FSA (WFSA) � � �∗ → K

Weighted FST (WFST) � � � �∗ → 2�∗ × K

3.2 BASIC PROPERTIES OF FINITE AUTOMATA
An important characteristic of a finite automaton is whether the automaton is deterministic or non-
deterministic. A deterministic FA (DFA) has only one single initial state and at most one transition
for any input label from each state. This means that the transition made by the FA is unique at a
given state for a given symbol, and therefore the destination state is also unique. Accordingly, there
is only one path from the initial state to the final state for an input symbol sequence if it is accepted.
Thus, DFAs have the advantage of computation with which to obtain an output for an input symbol
sequence. Actually, the complexity is O(L log2 D̂) if we use a binary search to find a transition
with an input label matched to every input symbol in a sequence of length L, where D̂ denotes the
maximum number of transitions outgoing from a state in the automaton. The complexity is linear
to the length L but not significantly dominated by D̂, i.e., the structure of the automaton does not
have a big impact on the computation time.

On the other hand, a non-deterministic FA (NFA) can have more than one transition from
a state for an input label. Accordingly, we have to consider multiple paths for an input symbol
sequence. Although the computational complexity depends on the structure of the NFA, it becomes
O(L × |Q| × |E|) in the worst case. However, there is an algorithm for converting an NFA into an
DFA that is equivalent to the original NFA. This is well known as the determinization algorithm.
With determinization, the function of the NFA can be applied to an input sequence with a small
amount of computation using its equivalent DFA. Figure 3.2 shows examples of NFA and DFA
that have the same function. Note that although all FSAs are determinizable, this is not always the
case with other FAs such as FSTs, WFSAs, and WFSTs.

Transducers, i.e., FSTs and WFSTs, are defined as sequential if and only if they are determinis-
tic with respect to the input labels of their transitions. Moreover, transducers are defined as functional
if and only if they have at most one output symbol sequence for any given input symbol sequence.
It is known that functional transducers are determinizable. Formal definitions are given in [RS97].
Figure 3.3 shows some types of FSTs. Figure 3.3(a) is an example of functional FST and Fig. 3.3(b)
is its sequential FST obtained by determinization. Figure 3.3(c) is an example of non-functional

3.2. BASIC PROPERTIES OF FINITE AUTOMATA 45

0

a

1
a

2a

3

b

4

b

c

5

c

c

d

e

(a) NFA

0

1a

2
b

a

b

3c

4
d
e

c

(b) DFA

Figure 3.2: Non-deterministic and deterministic finite automata

FST. This FST is determinizable as regards input labels, but there is an ambiguity as regards output
labels. In this case, its determinization results in a p-subsequential FST as in Fig. 3.3(d), which is a
more general class of sequential FSTs. A p-subsequential FST is allowed to have p final emission
labels at final states, where p ≤ 0. However, the representation including final emission labels is
beyond the definition of a WFST in this book. For such FSTs, we can use a pseudo representation
as in Fig. 3.3(e), which is equivalent to the p-subsequential FST in Fig. 3.3(d).

Another important property of finite automata is whether or not they have at least one
transition such that the input label is epsilon. Epsilon is the empty string denoted by “ε.” Such
a transition is called an epsilon transition, and the state transition can be made without any input.
Figure 3.4 (a) shows an example of an FSA that has epsilon transitions. This FSA first makes a
transition from state 0 to 1 for input symbol “a” or “b.” Since there is an epsilon transition from state
1 to state 2, the FSA can make a transition to state 3 before reading the next symbol. But it may
remain at state 2. This means that the FSA can be in states 2 and 3 simultaneously. Thus, FAs with
epsilon transitions are non-deterministic and called ε-NFAs.

There is an operation that can eliminate epsilon transitions from an ε-NFA. The epsilon
removal operation converts an ε-NFA into one without epsilon transitions, that is equivalent to the
original ε-NFA. The FSA in Fig. 3.4 (a) is shown in Fig. 3.4 (b) with epsilon removed.

Finally, we mention a minimal DFA that has the minimum number of states in a set of
equivalent DFAs. The minimization operation finds the minimal DFA that is equivalent to a given
DFA. Figure 3.5 shows an example of (a) a DFA and (b) its minimal DFA.This property is also used
to check the equivalence of FAs, since equivalent FAs after epsilon removal, determinization, and
minimization have exactly the same set of states and transitions. The properties mentioned above
are formally described in textbooks on finite automata [HMU06].

46 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0

1a:u

2
a:u 3

b:v

c:w

(a) Functional FST

0 1a:u 2
b:v
c:w

(b) Sequential FST

0

1a:u

2
a:u 3

b:v

b:w

(c) Non-functional FST

0 1a:u 2b :ε
v

w

(d) p-subsequential FST

0 1a:u 2b :ε 3
ε : v
ε :w

(e) Pseudo representation of p-subsequential FST

Figure 3.3: Finite-state transducers with different properties

0

1a

b

c

2ε

3

d

e

f
ε

(a) FSA with ε-transitions

0 1
a
b

c

2

d

e
f
a
b

(b) ε-removed FSA

Figure 3.4: ε-NFA and ε-free NFA

3.3 SEMIRING

In weighted automata, the weights and their binary operations “addition” and “multiplication” are
formally defined to generalize the automata and their algorithms. In the theory, weights and their
operations are defined by a semiring, which is an algebraic structure in abstract algebra. This means
that any kinds of weights can be dealt with in the automata algorithms if a semiring can be defined
over the set of weights.

A semiring is similar to a ring, which is also an algebraic structure, but the existence of additive
inverse is not required. A semiring is defined as (K, ⊕, ⊗, 0̄, 1̄), where K is a set of elements, ⊕ and

3.3. SEMIRING 47

0

1a

2

b

3
c

4d

5c

6

d

(a) DFA

0 1
a
b

2
c
d

(b) minimal DFA

Figure 3.5: DFA and its minimal DFA

⊗ are two formally defined binary operations, i.e., “addition” and “multiplication,” over K, 0̄ is an
additive identity element, and 1̄ is a multiplicative identity element. The semiring must satisfy the
axioms listed in Table 3.2.

Table 3.2: Algebraic structure of semiring, that satisfies the listed axioms
for all x, y, z ∈ K

Associativity for addition (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

Commutativity for addition x ⊕ y = y ⊕ x

Associativity for mutiplication (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

Distributivity for multiplication (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z)

over addition x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

Property of additive identity 0̄ ⊕ x = x ⊕ 0̄ = x

0̄ ⊗ x = x ⊗ 0̄ = 0̄
Property of multiplicative identity 1̄ ⊗ x = x ⊗ 1̄ = x

Table 3.3 shows some semirings used in WFST-based applications. ⊕log denotes a binary

Table 3.3: Semirings

Semiring K ⊕ ⊗ 0̄ 1̄
Probability [0, 1] + × 0 1
Log [−∞, +∞] ⊕log + ∞ 0
Tropical [−∞, +∞] min + ∞ 0
String �∗ ∪ {s∞} ∧ · s∞ ε

operation x ⊕log y = − log(e−x + e−y) for any x and y in K. ∧ denotes the longest common prefix

48 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

between two strings. In WFST-based speech recognition, the tropical semiring is mainly used,
which consists of a set of real-valued weights with “addition” and “multiplication” defined as the
minimum of the two and ordinary addition, respectively. In some optimization steps for WFSTs,
the log semiring is also used.

When we apply an operation to a weighted automaton, it is meaningful to consider certain
properties of the semiring we are using, because the algorithm and computation of the operation
may be simplified by using the properties. We describe some of these properties below.

• Commutative;
A semiring (K, ⊕, ⊗, 0̄, 1̄) is commutative if its multiplication is commutative, i.e.,

x ⊗ y = y ⊗ x

for all x and y in K. The tropical and log semirings are commutative.

• Idempotent ;
A semiring (K, ⊕, ⊗, 0̄, 1̄) is idempotent if its addition “⊕” satisfies

x = x ⊕ x

for all x in K. The tropical semiring is idempotent, i.e.,

x = min(x, x),

but the log semiring is not, i.e.,
x �= x ⊕log x

for some x in K.

• k-closed semiring;
Let k ≥ 0 be an integer. A semiring (K, ⊕, ⊗, 0̄, 1̄) is k-closed if

k+1⊕
n=0

xn =
k⊕

n=0

xn

for all x in K. For any integer l such that l > k,

l⊕
n=0

xn =
k⊕

n=0

xn.

can be proved with the mathematical induction. The tropical semiring is obviously 0-closed.
The log semiring can be assumed to be k-closed if we ignore very small differences.

3.4. BASIC OPERATIONS 49

• Weakly left-divisible;
A semiring (K, ⊕, ⊗, 0̄, 1̄) is weakly left-divisible if for any x and y in K such that x ⊕ y �= 0̄,
there exists at least one z such that x = (x ⊕ y) ⊗ z. The tropical and log semirings are both
weakly left-divisible.

• Zero-sum free;
A semiring is zero-sum free if x ⊕ y = 0̄ implies x = y = 0̄ for any x and y in K.

3.4 BASIC OPERATIONS

Here, we overview unary and binary operations defined over finite automata. We have already stated
that a finite automaton represents a set of (weighted) symbol sequences or (weighted) transductions
between symbol sequences. The basic operations extend the set by adding or removing transitions
and combining it with another automaton.

In automata theory, three rational operations, Kleene closure, union, and concatenation are de-
fined over FAs. Kleene closure modifies the automaton so that the set of symbol sequences or trans-
ductions is sequentially repeated zero or more times. Given an automaton A, the Kleene closure of
A is denoted as A∗. The union combines two automata in parallel so that the resulting automaton
represents a union of the two sets for the two automata. The concatenation combines two automata
in series. The resulting automaton represents a set of symbol sequences or transductions, in which
each element is a concatenation of two elements in the two respective automata.

Given two automata A1 and A2, their union is denoted as A1 ∪ A2, and their concatenation
is denoted as A1 · A2. Examples of the original and resulting WFSTs for Kleene closure, union
and concatenation are shown in Fig. 3.6. These operations can also be applied to FSAs, FSTs, and
WFSAs.

With transducers, projection, inversion, and composition are important operations. Projection is
an operation for converting a transducer into an acceptor by omitting input or output labels from the
transducer. Inversion is an operation for inverting the input and output labels at each transition.The
resulting transducer represents a set of inverted transductions. Figure 3.7 shows the results of the
projection and inversion of the WFST TA in Fig. 3.6 (a). Composition is an operation for combining
two transducers into one single transducer that represents a set of transductions cascaded with the
original two transducers. In addition, there are several optimization operations.

In the succeeding sections we provide further details about composition and some optimization
operations. However, first we define terms for describing their concepts and algorithms.

Given a WFST T = (�, �, Q, I, F, E, λ, ρ), for any state q ∈ Q, we denote a multi-set of
transitions outgoing from q by E[q], and for any transition e ∈ E, we denote its input label by i[e],
its output label by o[e], its origin state by p[e], its destination state by n[e], and its weight by w[e].
We denote a path as a series of consecutive transitions π = e1, . . . , ek such that n[ej−1] = p[ej]
for j = 2, . . . , k. We extend n[·] and p[·] for paths as n[π] = n[ek] and p[π] = p[e1]. We also
extend o[·] and w[·] as o[π] = o[e1] · · · · · o[ek] and w[π] = w[e1] ⊗ · · · ⊗ w[ek]. If n[e1] ∈ I and

50 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0/0.2

1a:A/1

2
b:C/1.5 3/0.5

c:B/0.3

d:D/2

(a) Example WFST TA.

0/1.3 1d:F/0.2

e:E/1.2

2/0.8f:D/0.6

(b) Example WFST TB .

0 1ε : ε / 0 . 2

2a:A/1

3b:C/1.5 4/0.5

c:B/0.3

d:D/2

ε : ε / 0 . 5

(c) Kleene Closure: T ∗
A

.

0

1ε : ε / 0 . 2

2

ε : ε / 1 . 3

3a:A/1

4b:C/1.5

5

d:F/0.2

6/0.5

c:B/0.3

d:D/2

e:E/1.2

7/0.8f:D/0.6

(d) Union: TA + TB .

0/0.2

1a:A/1

2
b:C/1.5 3

c:B/0.3

d:D/2 4ε : ε / 1 . 8 5d:F/0.2

e:E/1.2

6/0.8f:D/0.6

(e) Concatenation: TA × TB .

Figure 3.6: Examples of original and resulting WFSTs for rational operations
.

0/0.2

1a/1

2

b/1.5 3/0.5

c/0.3

d/2

(a) Projection of TA.

0/0.2

1A:a/1

2
C:b/1.5 3/0.5

B:c/0.3

D:d/2

(b) Inversion of TA.

Figure 3.7: Examples of projection and inversion
.

n[ek] ∈ F , the path is said to be a successful path. If a state is accessible from both an initial and a final
state, the state is denoted coaccessible. All the coaccessible states are on at least one successful path.
States that are not coaccessible are termed dead states. Similarly, transitions that are not coaccessible
are called dead transitions. Removing all the dead states and transitions from an FA is called trimming,
and an FA without any dead states and transitions is called a trimmed FA, which is obtained as a
result of trimming.

3.5. TRANSDUCER COMPOSITION 51

3.5 TRANSDUCER COMPOSITION

We explain the principle of composition and its algorithm. Transducers shown in Fig. 3.8 (a) and
(b) assume that the transducer in (a) converts a sequence of letters so that they are all uppercase
letters, and the transducer in (b) converts the sequence of uppercase letters to a sequence of specific
words that matches the letters.The composition of these transducers results in the transducer shown
in Fig. 3.8 (c), which converts a sequence of letters into the word sequence. Actually, it is not
easy to construct the resulting transducer from scratch because we need to consider uppercase and
lowercase letters for each word entry. However, complicated transductions can often be factored into
a cascade of more simple transductions. In many cases, it is much easier to design simple component
transducers and then combine them than to design one directly from scratch.

First we show Algorithm 10, which is an epsilon-free composition algorithm for WFSTs
which combines two WFSTs such that the first transducer does not have any epsilon outputs and
the second does not have any epsilon inputs. We will then show how to compose general transducers
including epsilons.

In the algorithm, transducers T1 = (�1, �1, Q1, I1, F1, E1, λ1, ρ1) and T2 =
(�2, �2, Q2, I2, F2, E2, λ2, ρ2) are combined into T = (�1, �2, Q, I, F, E, λ, ρ). Each
state in T is composed by coupling a state in T1 and a state in T2. Therefore, a composite state is
identified as a pair of original states, (q1, q2), where q1 ∈ Q1 and q2 ∈ Q2. Each transition from
the composite state (q1, q2) is also made by coupling transitions e1 and e2 such that e1 ∈ E[q1],
e2 ∈ E[q2], and o[e1] = i[e2] �= ε. This results in a transition that has input i[e1], output o[e2],
and weight w[e1] ⊗ w[e2]. In this way, T becomes a transducer directly performing transductions
that are cascaded by T1 and T2. The computational complexity of this algorithm is O(|T1||T2|),
where |Ti | = |Qi | + |Ei | for i = 1 or 2.

First, the algorithm composes initial states on lines 1-4, where a set of initial states is ob-
tained as a direct product of I1 and I2. The initial weight for each initial state (i1, i2) is obtained
as λ(i1) ⊗ λ(i2). The initial states are then inserted in a queue on line 5. Next it composes tran-
sitions from each composed state (q1, q2) in the queue. In lines 9-12, (q1, q2) becomes a final
state in T if both q1 and q2 are final states in T1 and T2. The final weight ρ((q1, q2)) is com-
puted as ρ(q1) ⊗ ρ(q2). In lines 13-19, a transition from state (q1, q2) is made for each tran-
sition pair (e1, e2) ∈ E[q1] × E[q2] such that o[e1] = i[e2], and the next state (n[e1], n[e2]) as
a pair of next states for e1 and e2 is made for the transition, and then inserted in the queue
at line 16 for further composition. As a result, the following composite transition is obtained;
((q1, q2), i[e1], o[e2], w[e1] ⊗ w[e2], (n[e1], n[e2])), which is added into E by a join operation
� in line 19. Since E is a multi-set, transitions are allowed to appear more than once. In terms of
composition in general, the operation needs a special treatment for epsilons, where the epsilon-free
algorithm is extended by simulating the epsilon transitions. This extension can be explained with
FST level operations. First we modify T1 and T2 to T ′

1 and T ′
2. As mentioned in Section 3.2, an

epsilon transition is made without any input. For composition, we need to consider two cases, namely
when T1 makes a transition with an epsilon output and when T2 makes a transition with an epsilon

52 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0

a:A
A:A
b:B
B:B
c:C
C:C

ε : ε
z:Z
Z:Z
:

(a) Letter transducer: transitions for some
letters are omitted because of space

limitations.

0

[A-Z]: ε
2R:RED

4B:BLUE

7
G:GREEN

3E :ε

5L :ε

8
R :ε

1

:

D :ε

6U :ε E :ε

9
E :ε

10E :ε
N :ε

(b) Word recognition transducer that picks up words RED, BLUE,
and GREEN.

0

[A-z]: ε

1
r:RED

R:RED

2
b:BLUE

B:BLUE

3

g:GREEN

G:GREEN

4

e :ε
E :ε

5L :ε
l :ε

6

r : ε
R :ε

7

d :ε

D :ε

8u :ε
U :ε

9

e :ε
E :ε

:

e :ε

E :ε

10

e :ε
E :ε

n :ε

N :ε

(c) Composition of (a) and (b).

Figure 3.8: Examples of component and composite transducers: for simplification we introduce a label
[A-Z] (or [A-z]) that represents a set of English letters in the figure.The transition with this label actually
represents multiple transitions for all the symbols in the set.

input. In the first case, T1 outputs nothing and therefore only T1 makes the epsilon transition and
T2 stays in the current state. In the second case, T2 makes the epsilon transition with no input while
T1 stays in the current state. To simulate these state transitions, we expand T1 and T2 to T ′

1 and T ′
2

as in Fig. 3.9.
For T1, the ε output is replaced with εo, and self loops that match εi are added to each state.

For T2, the ε input is replaced with εi, and self loops that accept εo are added to each state. With
this extension, the epsilon-free composition can be used for T ′

1 ◦ T ′
2, where εi and εo are considered

regular symbols. The result of this composition is shown in Fig. 3.10.

3.5. TRANSDUCER COMPOSITION 53

Algorithm 10 WFST-Composition(T1, T2)
1: for each (i1, i2) ∈ I1 × I2 do
2: λ((i1, i2)) ← λ1(i1) ⊗ λ2(i2)

3: I ← I ∪ {(i1, i2)}
4: end for
5: Q ← S ← I

6: while S �= ∅ do
7: (q1, q2) ← Head(S)

8: Dequeue(S)

9: if (q1, q2) ∈ F1 × F2 then
10: F ← F ∪ {(q1, q2)}
11: ρ((q1, q2)) ← ρ1(q1) ⊗ ρ2(q2)

12: end if
13: for each (e1, e2) ∈ E[q1] × E[q2] such that o[e1] = i[e2] do
14: if (n[e1], n[e2]) �∈ Q then
15: Q ← Q ∪ {(n[e1], n[e2])}
16: Enqueue(S, (n[e1], n[e2]))
17: end if
18: E ← E � {((q1, q2), i[e1], o[e2], w[e1] ⊗ w[e2], (n[e1], n[e2]))}
19: end for
20: end while
21: return T = (�1, �2, Q, I, F, E, λ, ρ)

However, the transducer in Fig. 3.10 includes redundant paths. In addition, the weight sum-
ming over possible paths is actually incorrect for non-idempotent semirings such as probability and
log semirings. To solve this problem, a special transducer called a filter is introduced in the compo-
sition operation. Assuming F is a filter, we perform T ′

1 ◦ F ◦ T ′
2 instead of T ′

1 ◦ T ′
2. For example, a

2-state filter (epsilon-sequencing filter) in Fig. 3.11(a) can be used as F . In the figure, “x” represents
any symbol in �2 ∩ �1.

The composition T ′
1 ◦ F ◦ T ′

2 results in the transducer of Fig. 3.12(a). In the figure, dead
states and transitions are shown in gray. Although such states and transitions are composed by the
algorithm, they can later be removed by a trimming operation.1 During composition with a 2-state
filter, an epsilon output (εo) transition in T1 is not allowed immediately after an epsilon input (εi)
transition in T2, because the filter changes state from 0 to 1 by εo of T2, but does not accept εo of T1

from state 1. Consequently, whenever both an epsilon output transition in T1 and an epsilon input
transition in T2 are possible from each state paired in a composite state, the transition in T1 is always
located first in the composite transducer. Finally, the redundant paths are successfully filtered out.
1The trimming operation first detects dead states and transitions by checking the coaccessiblity from the initial and final states
using a graph traversal technique, and then removes them from the original automaton.

54 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0 1a:e/1 2b :ε / 2 3/0.2c:f/0.5

(a) transducer T1

0 1e:A/2 2ε : B/0.2 3ε : C/1 4/0.6f:D/0.5

(b) transducer T2

0

ε : ε i

1a:e/1

ε : ε i

2b : ε o/2

ε : ε i

3/0.2c:f/0.5

ε : ε i

(c) transducer T ′
1

0

εo :ε

1e:A/2

εo :ε

2ε i:B/0.2

εo :ε

3ε i:C/1

εo :ε

4/0.6f:D/0.5

εo :ε

(d) transducer T ′
2

Figure 3.9: Transducers including epsilons and modified transducers for general composition

(0,0) (1,1)

(2,1)

(1,2) (1,3)

(2,2) (2,3) (3,4)/0.8

a:A/3

c:D/1

ε:B/0.2 ε:C/1

ε:C/1ε:B/0.2

b:ε/2 b:ε/2 b:ε/2

Figure 3.10: Result of composition T ′
1 ◦ T ′

2

On the other hand, we can use a 3-state filter (epsilon-matching filter) as in Fig. 3.11 (b),
which derives the composite transducer in Fig. 3.12(b) for T ′

1 ◦ F ◦ T ′
2. The 3-state filter makes it

necessary to match the epsilon output of T ′
1 with the epsilon input of T ′

2 if possible, and therefore
the resulting transducer has shorter paths than those obtained with the 2-state filter. A filter can
be selected depending on the target composition. If we want to keep the same number of original
epsilons on the composite paths, we should use a 2-state filter. If not, we can use a 3-state filter to
obtain a more compact WFST.

In practical implementations of the composition operation, filter transducers are usually em-
bedded directly in the program code, i.e., state transitions in the filter are simulated in the code
without using the data structure for a general WFST. This improves the speed and memory effi-
ciency of the composition operation.

3.6 OPTIMIZATION

Here we briefly introduce important optimization operations, determinization, weight pushing, and
minimization for WFSTs.These operations transform the structure of a WFST into a more efficient
one in terms of speed and memory in run time,but they retain the function represented by the original
WFST.

3.6. OPTIMIZATION 55

0

x:x
ε o :ε o

1
ε i :ε i

x:x

ε i :ε i

(a) 2-state filter (epsilon-sequencing filter).

0

x:x
ε o :ε i

1ε i :ε i

2

ε o :ε o

x:x

ε i :ε i

x:x

ε o :ε o

(b) 3-state filter (epsilon-matching filter).

Figure 3.11: Filter transducers

(0,0,0) (1,0,1)

(2,0,1) (2,1,2) (2,1,3) (3,0,4)/0.8

a:A/3

c:D/1

(1,1,2)

ε:B/0.2

(1,1,3)

ε:C/1

b:ε/2

ε:B/0.2 ε:C/1

(a) Composite WFST with 2-state filter.

(0,0,0) (1,0,1)

(2,2,1) (2,0,2) (2,1,3) (3,0,4)/0.8

a:A/3

c:D/1ε:C/1

b:ε/2

(1,1,2)
ε:B/0.2

(1,1,3)
ε:C/1

b:B/2.2

(b) Composite WFST with 3-state filter.

Figure 3.12: Result of T ′
1 ◦ F ◦ T ′

2

3.6.1 DETERMINIZATION
Determinization is the most important optimization operation for finite automata (FAs).The avail-
ability of determinization is a big advantage as regards solving sequence recognition or transduction
problems using FAs, because it yields the most efficient FA in terms of speed, i.e., a deterministic
FA (DFA) that is equivalent to the original FA. When designing an FA to solve a problem, we try to
design it transparently so that it is easy to understand. However, such an FA is not always efficient in
terms of speed when we run it on a computer. Determinization is useful for accelerating its run-time
speed.

As mentioned in 3.2, each transition made by the DFA is unique at any state for a given
input symbol, and therefore the successful path is also unique for an input symbol sequence if the
sequence is accepted by the DFA. The computational complexity involved in finding a successful
path is linear for the length of the sequence. The computation needed to find a transition with an
input label that matches each input symbol is proportional to log2 |E(q)|, where |E(q)| denotes the
number of outgoing transitions from state q.

The pseudo-code of determinization for WFSTs is shown in Algorithm 11, which basically
follows the classical determinization algorithm for FSAs. In the classical method, if there are multiple
transitions with the same input label outgoing from a state, they are merged into one transition with

56 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 11 WFST-Determinization(T)
1: i′ ← {(i, ε, λ(i))|i ∈ I }
2: λ′(i′) ← 1̄
3: Q′ ← S ← {i′}
4: while S �= ∅ do
5: p′ ← Head(S)

6: Dequeue(S)

7: for each x ∈ {x|i[e] = x, e ∈ E[p], p ∈ Q[p′]} do
8: y′ ← ∧{z · y|(p, z, v) ∈ p′, (p, x, y, w, q) ∈ E}
9: w′ ← ⊕{v ⊗ w|(p, z, v) ∈ p′, (p, x, y, w, q) ∈ E}

10: q ′ ← {(q, y′−1 · z · y,
⊕{w′−1 ⊗ v ⊗ w|(p, z, v) ∈ p′, (p, x, y, w, q) ∈ E})

| (p, z, v) ∈ p′, (p, x, y, w, q) ∈ E}
11: E′ ← E′ ∪ {(p′, x, y′, w′, q ′)}
12: if q ′ �∈ Q′ then
13: Q′ ← Q′ ∪ {q ′}
14: if Q[q ′] ∩ F �= ∅ then
15: F ′ ← F ′ ∪ {q ′}
16: ρ′(q ′) ← {(z, ⊕{v ⊗ ρ(q)|(q, z, v) ∈ q ′, q ∈ F }) | (q, z, v) ∈ q ′, q ∈ F }
17: end if
18: Enqueue(S, q ′)
19: end if
20: end for
21: end while
22: return T ′ = (�, �, Q′, {i′}, F ′, E′, λ′, ρ′)

the same input label in the determinized FSA. The destination states of the multiple transitions
are also merged into one state. Therefore, each state in the determinized FSA is identified by a
subset of states in the original FSA. When making a transition with an input label from an already
determinized state, all transitions with the input label outgoing from all the states in the subset
associated with the determinized state are merged into a new transition, and their destination states
are also merged. In this way, states and transitions of the determinized FSA can be constructed
iteratively from its initial state, which is identified by the set of initial states in the original FSA.

With WFSTs, the algorithm needs to be extended to deal with output labels and weights.2

Roughly speaking, the classical determinization binds the transitions and destination states by input
label. However, WFSTs have an output label and a weight on each transition. Even if the input
labels are the same in the transitions, their output labels and weights may differ. Basically, different

2A general determinization algorithm for WFSAs is presented in [Moh09].The algorithm for WFSTs can be explained as a special
case in which a pair of an output string and a weight is considered a single weight. However, we here focus on an algorithm
dedicated to WFSTs for consistency in terms of the algorithms presented in this book.

3.6. OPTIMIZATION 57

output labels and weights cannot be assigned to one transition. Hence, in WFST determinization, a
common prefix for the output labels and the sum of the weights over the transitions are assigned to
the new transition. The leftover output label excluding the common prefix and the residual weight
excluding the sum of the weights for each original transition are held in the new destination state
together with the original destination states. Accordingly, each determinized state is identified by
a set of triplets, {(p, z, v)|p ∈ Q, z ∈ �∗, v ∈ K}, where p is a state in the original WFST, z is a
leftover output label, and v is a residual weight. To perform this operation, the semiring needs to be
weakly left-divisible for dividing the sum of the weights from each transition weight.

Algorithm 11 generates a deterministic WFST T ′ = 〈�, �, Q′, I ′, F ′, E′, λ′, ρ′〉 from the
original WFST T = 〈�, �, Q, I, F, E, λ, ρ〉. It starts by generating one initial state i′ for T ′ on
line 1, where i′ corresponds to a set of triplets, {(i, ε, λ(i))|i ∈ I }. Then, i′ is inserted in a queue S,
and also inserted in Q′ on line 3. In lines 7-20, new states are derived from state p′ that is taken out
of S. For each input label x in the set of input labels for transitions leaving Q[p′], all the original
states belonging to p′, a new state q ′ and a transition (p′, x, y′, w′, q ′) are made in lines 8-11. Over
triplets of (p, z, v) in p′ and transitions of (p, x, y, w, q) in E[p], a set of strings, {z · y} is made in
line 8. Then, y′ is obtained as the common head symbol in the set, which is denoted by

∧
.3 Here

we assume that the common head symbol equals ε if there is no common head symbol in the set.
The weight w′ can also be computed as the ⊕-sum of v ⊗ w over the triplets and the transitions at
line 9. On line 10, a set of triplets that includes the leftover string and the residual weight is defined
as the new state q ′. If q ′ is not included in Q′, it is added to Q′ in lines 12-13.

Lines 14-17 deal with final states, final output labels, and final weights of T ′. If there is at least
one final state in q ′, q ′ can be a final state. In line 16, ρ′(q ′) is defined as a set of pairs consisting of
a final output string and a final weight for state q ′, which correspond to the pairs of leftover strings
and residual weights in q ′. ρ′(q ′) obviously has a different meaning from the final weight function
found in the definition of WFST in Section 3.1. It is similar to a final emission function of output
symbols, which is defined for p-subsequential transducers as in Fig. 3.3(d). To convert the resulting
p-subsequential transducer into a WFST according to the form shown in Fig. 3.3(e), the algorithm
requires more steps, but we skip them to avoid complication. On line 18, the new state q ′ is pushed
into the queue S. The above steps are repeated until S is not empty, and then T ′ is returned as a
result of determinization of T on line 19.

Figure 3.13 shows an example of determinization. Given a non-deterministic WFST T as
in Fig. 3.13(a), states realized by WFST determinization are generated as in Fig. 3.13(b). In this
example, first the initial state is formed as {(0, ε, 0.2)} whose weight is 0.2. Then, a transition
from {(0, ε, 0.2} and its destination state are generated based on the two original transitions, which
originate from state 0, and their input symbol is “a,” i.e., (0,a,X,0.5,1) and (0,a,Y,1.2,2) in the original
WFST. The output label of the new transition is obtained as X ∧ Y = ε. The transition weight is
0.5 ⊕ 1.2 = 0.5 in a tropical semiring. The destination state becomes {(1, X, 0), (2, Y, 0.7)} by

3According to the algorithm of [Moh09], the output label for the transition, y′, is obtained as the longest common prefix in the set
of such strings. However, since y′ should be a single symbol in our case, we just pick at most one common head symbol of them.

58 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0/0.2

1a:X/0.5

2

a:Y/1.2

4/0.3

b :ε / 0

5/0.1
c:Z/0

6/0

b :ε / 1

d:Z/0

3

(a) Non-deterministic WFST: T .

{(0,ε ,0.2)}
/0.2

{(1,X,0),
(2,Y,0.7)}

a: ε /0.5

{(4,X,0),
(6,Y,1.7)}
/{(X,0.3),
(Y,1.7)}

b :ε / 0

{(5,Z,0)}
/{(Z,0.1)}

c:X/0

{(6,Z,0)}
/{(Z,0)}

d:Y/0.7

(b) Determinization of T .

0/0.2 1a: ε /0.5

2b :ε / 0

3c:X/0

4

d:Y/0.7

5/0

ε : X/0.3

ε : Y/1.7

ε : Z/0.1

ε : Z/0

(c) Determinized WFST: det(T).

Figure 3.13: Example of WFST determinization

grouping states 1 and 2 of the original WFST. Subsequently, states 4 and 6 are grouped based on
the transitions with input symbol “b,” and become {(4, X, 0), (6, Y, 1.7)} with the final emission
{(X, 0.3), (Y, 1.7)}. Other states and transitions in the figure are also constructed with the same
procedure. After this determinization process, all the states are renumbered and the final emission
function in each final state is replaced with epsilon transitions to a new final state as the WFST of
det(T) in Fig. 3.13(c).

3.6.2 WEIGHT PUSHING
The weight pushing operation moves the weights distributed over all the paths to the initial states in
a WFSA or a WFST without changing its function. In many sequence recognition or transduction
problems, finding the most likely or minimal cost solution is a main task for solving the problem.
When we apply a weighted automaton, the problem is interpreted as being a search for the minimally
or maximally weighted successful path in the automaton. It is well known that the effect of weight
look-ahead caused by pushing weights accelerates the search process since the unpromising paths
can be eliminated in the early stage of the search, and therefore the total processing time can be
reduced.

3.6. OPTIMIZATION 59

0/0

1a:A/1

2
b:C/0

d:D/1.2

3/0.5

c:B/1

e:E/3

(a) Original WFST.

0/2.5

1a:A/0

2

b:C/1

d:D/1.2

3/0

c:B/0

e:E/0

(b) Weight-pushed WFST in
tropical semiring.

0/1.91

1a:A/0.229

2
b:C/1.59

d:D/1.2

3/0

c:B/0.358

e:E/0

(c) Weight-pushed WFST in log
semiring.

Figure 3.14: Weight pushing

Figure 3.14 shows a WFST and the results of weight pushing in a tropical semiring and
a log semiring. In Fig. 3.14(a), the weight of the successful path along states 0,1,3 is obtained as
1 ⊗ 1 ⊗ 0.5 = 2.5. All the path weight is moved to the initial state in Fig. 3.14(b).The other weight
for the path of states 0,2,3 is 0 ⊗ 3 ⊗ 0.5 = 3.5, and this is pushed to the initial state with weight
2.5 and to the first transition from 0 to 2 with weight 1 in Fig. 3.14(b). Thus, the weight of each
successful path in the original WFST is retained in the weight-pushed WFST.

A general weight pushing algorithm comprises two steps. The first step computes a potential
for each state,which is obtained as the sum of the weights over all the paths originating from that state
to some final states. In the second step, the weight for each transition is modified with the potential
difference between the source and destination states of the transition. As a result, the weights move
to the initial states. Note that each transition weight is decided based on the difference between
potentials, i.e., the bias component is removed and moved to the initial states. A set of potentials for
all the states can be obtained with a general shortest distance algorithm from the final states, which
is given as Algorithm 12.

In the algorithm, V [q], the potential for state q, is computed as

V [q] =
⊕

π∈�(q,F)

w[π] ⊗ ρ(n[π]) , (3.1)

where �(q, F) is a set of paths that originate from state q and arrive at a final state in F . w[π] is the
path weight of path π . However, we need to consider that �(q, F) is infinite if cycles are included
in the paths from q to a final state. Since it is impossible to deal with infinite paths, the algorithm
postulates that the semiring is k-closed. Accordingly, for any cycle c, the equation

l⊕
n=0

w[c]n =
k⊕

n=0

w[c]n

is satisfied for any integer l such that l > k. Thus, we can omit l or more loops in each cycle from
the sum of those path weights.

In lines 1-7 of Algorithm 12, potentials V [q] are initialized by ρ(q) for the final states and 0̄
for the other states. In line 8, the final states in F are first enqueued in S. In lines 9-23, the potentials
are computed based on a backward search from the final states. In lines 10-13, state q is removed

60 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 12 WFST-Potential(T)
1: for each q ∈ Q do
2: if q ∈ F then
3: V [q] ← r[q] ← ρ(q)

4: else
5: V [q] ← r[q] ← 0̄
6: end if
7: end for
8: S ← F

9: while S �= ∅ do
10: q ← Head(S)

11: Dequeue(S)

12: R ← r[q]
13: r[q] ← 0̄
14: for each e ∈ E−1[q] do
15: if V [p[e]] �= V [p[e]] ⊕ (R ⊗ w[e]) then
16: V [p[e]] ← V [p[e]] ⊕ (R ⊗ w[e])
17: r[p[e]] ← r[p[e]] ⊕ (R ⊗ w[e])
18: if p[e] �∈ S then
19: Enqueue(S, p[e])
20: end if
21: end if
22: end for
23: end while
24: return V

from S, r[q] is recorded in R and r[q] is set at 0̄, where r[q] means the sum of the path weights
added since the last time q was popped. In lines 14-22, for each transition e incoming to state q, the
path weight is propagated to its previous state p[e], where E−1[q] represents a multi-set of incoming
transitions to q. In line 15, the current potential V [p[e]] for state p[e] is compared with the new
potential, i.e., V [p[e]] ⊕ (R ⊗ w[e]). If the current and the new potentials are equal, V [p[e]] does
not have to be updated and not enqueued. If they are not equal, the potential is updated and state
p[e] is enqueued for the further summing up of path weights. When S becomes empty, i.e., all the
potentials are fixed, the algorithm terminates and returns the set of potentials in line 24.

This algorithm is guaranteed to terminate for k-closed semirings. The tropical semiring is
0-closed. The log semiring is k-closed if we disregard small differences between weights. For such
k-closed semirings, the condition on line 15 needs to admit small differences between them, i.e., we
assume x = y if |x − y| < δ where δ is a small value that can be ignored. In addition, the algorithm

3.6. OPTIMIZATION 61

Algorithm 13 WFST-WeightPushing(T)
1: V [·] ← WFST-Potential(T)

2: for each q ∈ Q do
3: if q ∈ I then
4: λ(q) ← λ(q) ⊗ V [q]
5: end if
6: for each e ∈ E[q] do
7: w[e] ← V [q]−1 ⊗ w[e] ⊗ V [n[e]]
8: end for
9: if q ∈ F then

10: ρ(q) ← V [q]−1 ⊗ ρ(q)

11: end if
12: end for

admits any queue discipline for S. A priority queue in which the state with the largest potential is
popped first is often chosen, because potentials become larger and fixed earlier.

The weight pushing operation updates the weights using the potentials. As in Algorithm 13,
the initial weight λ(q), transition weight w[e], and final weight ρ(q) are updated as in lines 4, 7, and
10, respectively. In the weight pushing algorithm, it is assumed that WFST T is a trimmed FA and
the weight semiring is weakly left-divisible and zero-sum free such as tropical and log semirings.

3.6.3 MINIMIZATION
Minimization is an algorithm designed to minimize the number of states for any DFA. The mini-
mization for WFSTs is described in [Moh09], and consists of two steps:

1. Push weights and output labels to the initial states in the WFST, and

2. Minimize the WFST using a classical minimization algorithm assuming that the triplet “in-
put:output/weight” on each transition is one single label.

There are several algorithms for minimization [BBCF10]. Such algorithms basically obtain a
partition of the set of states in the automaton, i.e., the set of states is divided into non-overlapping
and non-empty blocks.The partition is determined so that each block includes equivalent states that
are not distinguished from each other, i.e., they accept the identical set of symbol sequences along
the paths from those states to some final states. With WFSTs, two states q1, q2 ∈ Q are equivalent
if and only if

L(q1, x) = L(q2, x), ∀x ∈ �∗, (3.2)

where
L(q, x) = (o[π], w[π]) s.t. p[π] = q, i[π] = x, n[π] ∈ F. (3.3)

62 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

0/0.8 1a : ε /0

2b: ε /0 .2

3c:X/0

4

d:Y/0.6

5/0

ε : X/0

ε : Y/1.4

ε : Z/0

ε : Z/0

(a) Weight-pushed WFST: push(det(T)), where det(T) is
of Fig. 3.13 (c).

0/0.8 1a : ε /0

2b: ε /0 .2

3

c:X/0

d:Y/0.6

4/0

ε : X/0

ε : Y/1.4

ε : Z/0

(b) Minimized WFST: min(push(det(T))).

Figure 3.15: Example of minimization

We assume here that the WFST is deterministic, i.e., given q and x, path π is unique.
Once the partition is obtained, all the states are replaced with a new set of states each of which

corresponds to a block of equivalent states in the partition. Transitions outgoing from all states in
a block are bound by their labels, and they are redirected for the new states, where the state indices
are replaced with those for the blocks to which the original states belong.

Figure 3.15(a) shows the result of push(det(T)), where weight pushing is applied to det(T)
in Fig. 3.13(c). Figure 3.15(b) shows the result of min(push(det(T))), i.e., the minimization of
push(det(T)). Finally, states 3 and 4 of det(T) are considered to be equivalent, and merged into state
3 in min(push(det(T))). Note that states 3 and 4 are not equivalent in det(T), and therefore weight
pushing is needed to minimize the WFST. Label pushing is also applied as necessary. For example,
it can be realized by considering each output label as a weight in a string semiring.

Hopcroft’s algorithm is a well-known algorithm for efficiently minimizing DFAs, whose
computational complexity is O(|E| log |Q|). This algorithm iterates the division of blocks, starting
from a smaller number of larger blocks, until every block becomes an equivalent state set. To split
each block in the current partition, one block is chosen as a splitter with which each block is split and
the partition is updated. At each splitting step, a subset of states in the block, which have transitions
with a label to some states in the splitter, is taken out of the block.Then, the original block is replaced
with the new blocks, i.e., the subset and the remainder. By iterating this process, the partition is
gradually refined into a set of equivalent state subsets. The proof can be seen in many studies.

Algorithm 14 shows the minimization algorithm slightly modified for WFSTs. On the first
line,partition P and queue W are initialized with ∅.The queue W is a waiting list used for containing
the blocks used to split each block in P . In lines 2-7, an initial partition is derived so that P includes
blocks of final states with the same final weight, and one for non-final states. In line 5, blocks of
final states are inserted into W as splitters.

The original Hopcroft’s algorithm initializes partition P as two blocks F and Q − F . For the
weighted transducers, we further split F according to their final weights because final states with
different weights are obviously not equivalent. In addition, we may obtain a finer initial partition by
using information of outgoing transitions from each state because two states are differentiated from
each other if the two states have different sets of outgoing transitions as regards triplet of input,

3.6. OPTIMIZATION 63

Algorithm 14 WFST-Minimization(T)
1: P ← W ← ∅
2: for each ρ ∈ {ρ(f)|f ∈ F } do
3: Fρ ← {f |ρ(f) = ρ, f ∈ F }
4: P ← P ∪ {Fρ}
5: Enqueue(W, Fρ)

6: end for
7: P ← P ∪ {Q − F }
8: while W �= ∅ do
9: S ← Head(W) ; Dequeue(W)

10: for each (i, o, w) ∈ {(i[e], o[e], w[e]) | e ∈ E−1[S]} do
11: Ri,o,w ← {p[e] | i[e] = i, o[e] = o, w[e] = w, e ∈ E−1[S]}
12: for each B ∈ P such that B ∩ Ri,o,w �= ∅ and B �⊆ Ri,o,w do
13: B1 ← B ∩ Ri,o,w

14: B2 ← B − B1

15: P ← (P − {B}) ∪ {B1, B2}
16: if B ∈ W then
17: Erase(W, B); Enqueue(W, B1); Enqueue(W, B2)

18: else
19: if |B1| ≤ |B2| then
20: Enqueue(W, B1)

21: else
22: Enqueue(W, B2)

23: end if
24: end if
25: end for
26: end for
27: end while
28: Q′ ← P
29: for each e ∈ E do
30: E′ ← E′ ∪ {(B(p[e]), i[e], o[e], w[e], B(n[e]))}
31: end for
32: for each S ∈ Q′ such that S ⊆ F do
33: F ′ ← F ′ ∪ {S}
34: ρ′(S) ← ρ(q) for some q ∈ S

35: end for
36: return T ′ = (�, �, Q′, I, F ′, E′, λ, ρ′)

64 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

output, and weight on each transition. Hence, we can further classify all the states into smaller blocks
and construct a finer partition. This initial partition is possible to accelerate the main steps of the
algorithm. But we do not describe this initialization because of space limitations.

The procedure in lines 8-27 iteratively splits the blocks. In line 9, block S is removed from
queue W . In line 10, a set of triplets of input, output, and weight for transitions in E−1[S] is prepared,
where E−1[S] denotes a set of transitions incoming to at least one state in S, i.e., {e ∈ E|n[e] ∈ S}.
For each triplet (i, o, w) in the set, a binary split for each block is performed in lines 11-25. Ri,o,w in
line 11 is obtained as a set of previous states of transitions into some state in block S with (i, o, w).
Each block B in P can be split by Ri,o,w into B1 = B ∩ Ri,o,w and B2 = B − B1 in lines 12 and
13. B is removed from P , and new blocks B1 and B2 are added to P on line 15. The smaller one of
the tow blocks B1 and B2 is enqueued in W to be used as a splitter.

After the right partition is obtained, the WFST is reconstructed for minimization in lines
28-35. In line 28, a minimal set of states, Q′, is obtained as the partition P . In lines 29-31, for each
transition e ∈ E, the previous and next states are changed into the indices of blocks, where B(s)

returns the index of the block to which the state s belongs. In lines 32-35, final states and weights
are decided for the new states.

Since Hopcroft’s algorithm is general, it can be applied to any determinized WFSTs in-
cluding cyclic ones. If the WFST is acyclic, we can use a more efficient algorithm called Revuz’s
algorithm [Rev92], which complexity is O(|E|). In this method, the initial partition is obtained
according to the maximum height from a final state using a depth-first search. Each block based on
the maximum height is split according to the input label. See details in [Rev92].

3.7 EPSILON REMOVAL

Epsilon removal is an operation for converting an ε-NFA to its equivalent NFA without epsilon
transitions. As mentioned in Section 3.2, the existence of epsilon transitions makes the FA non-
deterministic. Although the determinization algorithm can be applied to ε-NFA by considering ε as
a regular symbol, the resulting FA still has epsilon transitions and therefore the FA is not completely
determinized. By performing the epsilon removal operation before determinization, the FA can be
fully determinized.

Epsilon removal basically deletes epsilon transitions and adds new non-epsilon transitions,
which are then spread from each state to all the states that can be reached with one or more epsilon
transitions plus one non-epsilon transition.The input label of the new transition is set so that it is the
same as that of the last non-epsilon transition. If there is a non-final state that can reach a final state
solely with epsilon transitions, the state becomes a final state in the epsilon-removed automaton.
Figure 3.16 shows the basic concept of epsilon removal. Figure 3.16 (a) is assumed to be a part of
ε-NFA. The epsilon removal first finds an epsilon closure for each state. An epsilon closure is a set
of states that can be reached from a given state by only epsilon transitions. The meshed states 1 and
2 in Fig. 3.16 (b) correspond to the elements in the epsilon closure for state 0. Then, to each state
directed with a non-epsilon label from those in the epsilon closure, a transition with a non-epsilon

3.7. EPSILON REMOVAL 65

ε
ε

a

b
c0 1

2

3

4

5

(a) Original ε-NFA.

ε
ε

a

b
c

b

c

a

0 1

2

3

4

5

(b) Epsilon closure and new
transitions.

b

c

a

0

3

4

5

(c) Result of epsilon removal.

Figure 3.16: Concept of epsilon removal

label is added. In Fig. 3.16 (b), dashed lines correspond to those new transitions. Finally, the epsilon
transitions are deleted, and all dead states and transitions are also removed. In Fig. 3.16 (c), the paths
that were passing through epsilon transitions have been removed, and only non-epsilon transitions
remain.

Output labels and weights need to be considered for WFSTs. An efficient method is presented
in [Moh02, Moh09]. First, a pair of input and output epsilons, i.e., ε : ε, is assumed to be a single
epsilon in the algorithm. Secondly, the distance from a source state to each destination state in
the epsilon closure for the source state is computed, and it is multiplied by the weight of the last
non-epsilon transition to obtain the weight of the new transition. The distance between the source
and destination states can be obtained by a general single-source shortest distance algorithm along
epsilon transitions.

Algorithm 15 shows the pseudo-code of epsilon removal for WFSTs. In lines 1-16, for each
state p, epsilon transitions with ε : ε are discarded and non-epsilon transitions are added so that
the epsilon-removed WFST is equivalent to the original. First, only non-epsilon transitions are
copied to E′ (line 2). For each element (q, w′) in the epsilon closure for state p, new transitions
originating from state p are generated based on the non-epsilon transitions from state q, where the
new transitions are given by {(p, x, y, w′ ⊗ w, r)|(q, x, y, w, r) ∈ E[q], (x, y) �= (ε, ε)} (line 3).
In lines 5-14, the algorithm checks whether state p is final in the epsilon-removed WFST. State
p is final if state p or q is final in the original WFST. If state q is final, the original final weight
multiplied by w′ is added to the final weight (line 13) because the path weight to state q with only
epsilon transitions must be included. Finally, the epsilon-removed WFST T ′ is returned (line 17).

However, we need to consider that epsilon removal for transducers removes only transitions
labeled with ε : ε. Therefore, transitions with ε : x and x : ε may remain in the transducer. An
effective way of removing the maximum number of epsilons is to first apply synchronization. The
synchronization converts a transducer so that it consumes input and output labels as synchronously
as possible along each successful path. Therefore, transitions such as ε : x and x : ε decrease while
those such as (x : x) and (ε : ε) increase. The epsilon removal excludes more epsilons from the
transducer. The synchronization is explained in detail in [Moh09].

66 3. INTRODUCTION TO WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 15 WFST-EpsilonRemoval(T)
1: for each p ∈ Q do
2: E′ ← E′ � {e ∈ E[p]|(i[e], o[e]) �= (ε, ε)}
3: for each (q, w′) ∈ EpsilonClosure(p) do
4: E′ ← E′ � {(p, x, y, w′ ⊗ w, r)|(q, x, y, w, r) ∈ E[q], (x, y) �= (ε, ε)}
5: if p ∈ F then
6: F ′ ← F ′ ∪ {p}
7: ρ′(p) ← ρ(p)

8: end if
9: if q ∈ F then

10: if p �∈ F then
11: F ′ ← F ′ ∪ {p}
12: end if
13: ρ′(p) ← ρ′(p) ⊕ (w′ ⊗ ρ(q))

14: end if
15: end for
16: end for
17: return T ′ = (�, �, Q, I, F ′, E′, λ, ρ′)

67

C H A P T E R 4

Speech Recognition by
Weighted Finite-State

Transducers
In this chapter, we provide more details about the WFST approach to speech recognition. First
we overview the approach, and then we explain how speech recognition models can be represented
in WFST form and organized into a single search network. Finally, we show a time-synchronous
Viterbi beam search algorithm when using a fully composed WFST.

4.1 OVERVIEW OF WFST-BASED SPEECH RECOGNITION

The WFST offers a unified form that can represent various knowledge sources utilized in state-of-
the-art Large-Vocabulary Continuous-Speech Recognition (LVCSR), e.g., Hidden Markov Models
(HMMs), phonotactic networks, lexical descriptions, and N-gram language models. And, multiple
WFSTs, each of which corresponds to one such knowledge source, can be integrated into a fully
composed single WFST that organizes an entire search network represented at the HMM-state
level. Then the single WFST is converted into an equivalent and more efficient WFST by opti-
mization methods, which eliminate the redundancy of the search network and therefore accelerate
the decoding process. Here we overview WFST-based speech recognition.

As stated in Chapter 2, continuous speech recognition is defined as the problem of finding the
most likely word sequence Ŵ for a given input speech O as in Eq. (2.3). The likelihood is calculated
as p(O|W)P (W) for any word sequence hypothesis W , where p(O|W) is the acoustic likelihood
and P(W) is the language probability of W . More practically, a pronunciation probability P(V |W)

is incorporated, which is the probability of phone sequence V given W . These likelihoods and
probabilities are calculated with given acoustic, pronunciation, and language models. Then Eq. (2.3)
is rewritten as

Ŵ = argmax
W∈W

∑
V ∈R(W)

p(O|V, W)P (V |W)P (W) (4.1)

≈ argmax
W∈W

⎧⎨
⎩

∑
V ∈R(W)

p(O|V)P (V |W)P (W)

⎫⎬
⎭ , (4.2)

68 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

where p(O|V), P(V |W), and P(W) are calculated with the acoustic model, the pronunciation
lexicon, and the language model, respectively. W is a set of possible word sequences and R(W) is a
set of possible phone sequences for word W . Since subword-based acoustic models are employed in
state-of-the-art LVCSR systems, the acoustic likelihood p(O|V, W) is assumed to depend only on
the phone sequence V and therefore is approximated to p(O|V).

Mainly for implementation reasons, we use the logarithms of these values in a Viterbi decoder.
Namely the decoder performs the following with given models:

Ŵ ≈ argmax
W∈W

{
max

V ∈R(W)
p(O|V)P (V |W)P (W)

}
(4.3)

= argmax
W∈W

{
max

V ∈R(W)
{log p(O|V) + log P(V |W) + log P(W)}

}
, (4.4)

where the summation is replaced with the maximum value obtained by the Viterbi approximation.For
simplicity, henceforth we refer to the log likelihood and log probabilities as scores, i.e., log p(O|V)

is referred to as the acoustic score, log P(V |W) as the pronunciation score and log P(W) as the
language score. The WFST framework gives us an efficient procedure with which to solve Eq. (4.4).

In the WFST framework, the speech recognition problem is treated as a transduction from
input speech signal O to a word sequence W . Each of the models used in speech recognition is
interpretable as a WFST whose weights are defined as the negatives of scores. Namely, we consider
WFSTs H , L and G corresponding to Eq. (4.4), which transduce O into V with weight wH(O →
V) = − log p(O|V), V into W with weight wL(V → W) = − log P(V |W), and W into W with
weight wG(W → W) = − log P(W), respectively. Then, the target transduction from O to W can
be achieved by a cascade consisting of H , L and G. To make the transduction more efficient, these
WFSTs are combined into one single WFST N that transduces O into W directly:

N = H ◦ L ◦ G, (4.5)

where “◦” is a composition operator. Then, the speech recognition is formulated as a search process
on N for the word sequence with the minimum overall weight:

Ŵ ≈ argmin
W∈W

{
min

V ∈R(W)
{(− log P(O|V)) + (− log P(V |W)) + (− log P(W))}

}
(4.6)

= argmin
W∈W

{
min

V ∈R(W)
{(wH (O → V) ⊗ wL(V → W) ⊗ wG(W → W)}

}
= argmin

W∈W
wN(O → W). (4.7)

Note that this is obviously equivalent to the word sequence with the maximum overall scores in
Eq. (4.4). Here we assume the weights are dealt with in a tropical semiring, i.e., “⊗” performs the
numerical addition “+.”

When we incorporate triphone models, which are standard models in state-of-the-art speech
recognition, we insert an additional WFST C that transduces a triphone sequence into a phone

4.2. CONSTRUCTION OF COMPONENT WFSTS 69

sequence:
N = H ◦ C ◦ L ◦ G. (4.8)

This fully composed WFST organizes an all-in-one search network, where the cross-word triphone
contexts are exactly incorporated, which is complicated when we employ traditional approaches.
The fully composed WFST can be optimized further by operations commonly employed in WFST
frameworks, such as weighted determinization and minimization. These operations achieve opti-
mization over the entire search space, and can greatly increase the search efficiency while the effects
of similar techniques in traditional approaches have been limited to a local part of the search space
basically corresponding to each model.

Once a fully composed WFST is constructed, the decoder works to find the best path in
the WFST for any speech input. The WFST does not need to be updated unless the underlying
models are updated. Thus, the decoder can concentrate on its search process using the optimized
static search network unlike some conventional decoders that require the dynamic expansion of a
less optimized search network.This is a primary advantage of the WFST framework over traditional
approaches. In addition, since the decoder is designed to work with any WFST, the decoder program
can be largely independent of speech models contained in the WFST. This is another advantage of
the WFST framework, which allows the decoder to be used for more general purposes and easily
maintained.

In the following sections, we describe how to construct component WFSTs for speech models,
the composition and optimization steps needed to organize a fully composed WFST, and a decoding
algorithm using the WFST for speech recognition. As mentioned above, we treat WFST-based
speech recognition as a transduction from input speech signal to a word sequence. However, we
should note that this transduction actually falls outside the definition of a WFST. As with traditional
speech recognizers, the speech signal is converted into a sequence of real-valued vectors by feature
extraction. But these vectors cannot be defined as elements of a finite set of symbols for WFSTs.
In addition, the acoustic likelihood for such a vector cannot be embedded as a transition weight in
advance because the likelihood must be calculated on demand using probability density functions
(PDFs) of HMM states during decoding. Accordingly, the WFST-based speech recognizer must
be separated into a part for handling speech input and another part for handling a pure WFST. We
also make this point clear in the next section.

4.2 CONSTRUCTION OF COMPONENT WFSTS
In this section, we show how the knowledge sources for speech recognition are represented in WFST
form, which are acoustic models, phone context dependency, pronunciation lexicons, and language
models. Specifically, we focus on standard models used in speech recognition such as hidden Markov
models, triphone context dependency, a simple (non probabilistic) pronunciation lexicon, and an n-
gram language model.

70 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

4.2.1 ACOUSTIC MODELS
In the context of a WFST approach, a set of acoustic models can be viewed as a transducer that
converts an input speech signal into a sequence of (context-dependent) phone units with the weight
of the acoustic likelihood. Suppose a set of context-dependent HMMs for speech recognition is
represented as a transducer as in Fig. 4.1. In the figure, three models for context-dependent phones
s(t), (s)s, and (s)s(t) are included and connected so that they can be repeated via state 0 as the origin,
where the label “(s)s(t)” denotes phone /s/ in the left context of /s/ and the right context of t . If there
is no bracket on the left or right side, this means that the side is context independent. Each model is
a left-to-right HMM with three states, and each state has one self loop and one outgoing transition.
x is a meta symbol that represents the set of all vectors in the feature space of speech signals. The
label “x : s(t)/w(x|S0)” for the state transition from 0 to 1 means that any input feature vector can
be accepted and converted into an output symbol “s(t)” with weight function w(x|S0), where “S0”
indicates the 0-th shared state in the HMMs. All the shared states have individual output probability
density functions like bSk(x) where Sk indicates the k-th shared state. In a tropical or log semiring,
the weight function w(x|Sk) equals − log bSk(x). On the other hand, another transition holds an
ε output label and a transition weight, which includes a minus log value of the state transition
probability for the HMM. For example, the self loop at state 1 has weight 0.22 ⊗ w(x|S0), where
0.22 corresponds to the minus log of the state transition probability of the HMM, and where the
original probability is assumed to be 0.8. “⊗” means the multiplication in the tropical or log semiring.
Accordingly, the transducer accepts a sequence of feature vectors and transduces it into the context
dependent phone sequence with the acoustic weight. Note that the context dependency of these
models is not considered in this example, and is given by the context dependency transducer C.

Here, we should note that the transducer in Fig. 4.1 is outside the definition of a WFST, and
therefore cannot be dealt with directly in the WFST framework. As mentioned in Section 4.1, the
input feature vector consists of continuous-valued elements that are not supported in the definition
of WFSTs. Hence, we needed to introduce meta symbol x and weight function w(x|Sk) to represent
the HMMs as a transducer. To deal with the acoustic models in WFST-based speech recognition,
the transducer is factorized into two parts, the HMM topology and acoustic matching. The former
can be dealt with as a pure WFST, and the latter is dealt with virtually as a transducer in the decoder
program. Figure 4.2 shows an example of the factorization for the transducer in Fig. 4.1.The HMM
topology WFST (1) accepts a sequence of labels each of which corresponds to a shared state in
the HMMs. Thus, the HMM topology can be written as a formal WFST. On the other hand, the
acoustic matching transducer (1) holds x and w(x|Sk) and these computations are performed on
demand and combined with the other WFST by using a dedicated program in the decoder.

Another type of factorization is also possible. Figure 4.3 and 4.4 are such examples. In Fig. 4.3,
the HMM topology simply represents the order of the states. Self loops and state transition prob-
abilities are included in the acoustic matching transducer. In Fig. 4.4, the HMM topology simply
represents a mapping between each context-dependent phone and a sequence of shared states. All
state transitions within a phone are represented in the acoustic matching transducer. The manner of

4.2. CONSTRUCTION OF COMPONENT WFSTS 71

factorization can be chosen according to the balance between generality and efficiency of the decoder.
With regard to efficiency, factorization as in Fig. 4.3 or 4.4 is often adopted because the HMM
topology handled by a general-purpose program for WFST is smaller than the acoustic matching
transducer handled by a dedicated program that usually runs faster than the general-purpose pro-
gram. By contrast, the factorization as in Fig. 4.2 makes it easier to use any kind of HMM topology
in the WFST framework.

Finally, H in Eq. (4.8) is constructed to transduce an HMM-shared-state Id sequence into
a context-dependent phone sequence [RPM97]. As a result, the composite WFST H ◦ C ◦ L ◦ G

also accepts an HMM-shared-state Id sequence. In [MPR02], H is first constructed as the example
of Fig. 4.3(a), and then chained transitions are replaced with one transition after composition and
optimization for H , C, L, and G.The input label of the new transition results in the HMM-shared-
state Id sequence along the chain as in 4.4(a). This step is described in Section 4.3. In [ARS09], H
is not made and the transducer in Fig. 4.1 is handled directly by the decoder program and combined
with CLG = C ◦ L ◦ G during decoding.

Figure 4.1: HMM transducer

4.2.2 PHONE CONTEXT DEPENDENCY
As described in Section 2.5, subword-based acoustic models are made for context-dependent phone
units in most LVCSR systems. Those models have to be connected properly in the search network
according to their context dependency. The connections between such context-dependent units are
represented as an FST denoted by C.

C is not difficult to construct if the context dependency is limited to one preceding phone
and one succeeding phone, i.e., in the case of triphones. A state is prepared for every phone pair and
a state transition is made for each triphone. The transition is spread between source and destination

72 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

(a) HMM-topology WFST (1)

0

x:S0/w(x|S0)
x:S1/w(x|S1)
x:S2/w(x|S2)
x:S3/w(x|S3)
x:S4/w(x|S4)

(b) Acoustic matching transducer
(1)

Figure 4.2: Example 1: HMM-topology WFST and acoustic matching transducer

(a) HMM-topology WFST (2)

(b) Acoustic matching transducer (2)

Figure 4.3: Example 2: HMM-topology WFST and acoustic matching transducer

states, where the phone pair of the source state has to match a pair consisting of the left and center
phones of the triphone, and the phone pair of the destination state also has to match a pair consisting
of the center and right phones.

Figure 4.5 shows WFST C, which represents triphone context dependency when we have just
two basic phone units /t/ and /s/. The input label of each transition is a triphone while the output
label is a context-independent phone that is equal to the center phone of the triphone. However, the
input labels of transitions from the initial state 0 are left-context independent and those to the final
state 1 are right-context independent.

4.2. CONSTRUCTION OF COMPONENT WFSTS 73

0

S0,S1,S3:s(t)
S4,S1,S2:(s)s

S4,S1,S3:(s)s(t)

(a) HMM-topology WFST
(3)

(b) Acoustic matching transducer (3)

Figure 4.4: Example 3: HMM-topology WFST and acoustic matching transducer

4.2.3 PRONUNCIATION LEXICON
WFST L, which represents a pronunciation lexicon, can be constructed based on a set of transduc-
tions from a phone sequence to a word, where each input label corresponds to a phone unit in the
subword-based acoustic models and each output label corresponds to a word in the vocabulary. For
continuous speech recognition, L is constructed so that each transduction can be applied repeatedly
with cyclic transitions.

Table 4.1 shows an example of a pronunciation, where the words are placed in the left column,
and their pronunciations in the right column. Although each word has only one pronunciation in
this example, it may have multiple pronunciations with probabilities.

Table 4.1: A simple pro-
nunciation lexicon
word pronunciation
<s> sil
</s> sil
START s t aa r t
STOP s t aa p
IT ih t

Figure 4.6 shows a WFST that represents the example lexicon, where each transduction is rep-
resented as a cycle from state 0.By using this WFST, for example,phone sequence “s t aa p ih t”
is transduced into word sequence “STOP IT” with state transitions 0, 5, 6, 7, 0, 8, and 0. Since there
is only one pronunciation for each word in the lexicon, it is assumed that the probability of pronun-

74 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

0

1

s:s

t:t

2s(s):s 3

s(t):s
4

t(s):t

5

t(t):t

(s)s:s

(s)s(s):s

(s)s(t):s

(s)t:t

(s)t(s):t

(s)t(t):t
(t)s:s

(t)s(s):s

(t)s(t):s
(t)t:t

(t)t(s):t

(t)t(t):t

Figure 4.5: Triphone context dependency FST

ciation v for word w, P(v|w), is always one. Hence, the weights are omitted from this figure. But
when multiple pronunciations are allowed for each word, the probability of each pronunciation may
be placed at the beginning transition from state 0.

0

sil:<s>
sil:</s>

1s:START

5
s:STOP

8
ih:IT

2t :ε

6
t :ε

t :ε

3
a a :ε

4

r : ε

t :ε

7a a :ε
p :ε

Figure 4.6: Pronunciation lexicon WFST

There is a more flexible way to describe pronunciations in a lexicon, which allows us to use
the regular expressions for multiple pronunciations. Since any regular expression can be converted
into a finite automaton, we can create L by making a union of automata each representing a single
or multiple pronunciation(s) for a word by regular expression and applying a Kleene closure, where

4.2. CONSTRUCTION OF COMPONENT WFSTS 75

an output word label is attached to each corresponding automaton. In this book, we do not describe
how to make an automaton from a regular expression (For details see Chapter 3 of [HMU06]).

In addition, we mention dealing with a short pause that can be inserted between any two
words. If the language model has a short pause entry, we simply need to add the short pause as a
regular word in the lexicon. But if the language model does not have a pause, a special treatment
is required for the lexicon WFST. One simple way is to insert a transition with “sp:ε” into L as
a self loop at the initial state, where “sp” represents the name of the short pause included in the
acoustic model. With this transition, 0 or more repetitions of pause models are allowed between any
two words. We may attach a weight to the transition to impose a penalty for the insertion of pause
models. If we do not want repetitions of pause models, different types of L can be constructed. For
example, we construct it as in Fig. 4.7. However, the above methods sometimes increases the size
of the fully composed WFST. Memory-efficient methods for handling short pauses are described
in [Gar08]. In addition, techniques for dealing with non-speech events as well as short pauses has
been presented in [RSN12].

0 1

sil:<s>

sil:</s>

2s:START

6
s:STOP

9

ih:IT

ε : ε

sp :ε

3t :ε

7
t :ε

t :ε

4
a a :ε

5
r : ε

t :ε

8
a a :ε p :ε

Figure 4.7: Pronunciation lexicon WFST with a short pause

4.2.4 LANGUAGE MODELS
As described in Section 2.6, Finite-State Grammars (FSGs) and n-gram models are widely used as
language models for speech recognition. Since FSGs are finite-state models, any FSG or probabilistic
FSG (PFSG) can easily be represented as an FSA or a WFSA. Unlike the FSG depicted in 2.8, each
word label needs to be assigned to a transition but not a state. Figure 4.8 shows an FSA equivalent
to the FSG, which is made by attaching every word label to each corresponding transition.

An n-gram model is equivalent to an (n − 1)-order Markov model, and therefore can be
represented as a WFSA as it is. The (n − 1)-order Markov model of a language has |V |n−1 states
and |V |n transitions, where |V | denotes the vocabulary size. Each state of the model corresponds
to an (n − 1)-word history and each transition labeled with a word corresponds to an occurrence of

76 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

0

1
go

2turn

3and

stop

straight

left

right

ε

Figure 4.8: Finite-state grammar as an FSA

the word in the history associated with its source state, where an n-gram probability is attached to
the transition.

However, since |V | is large and n is 2 or more, e.g., |V | ≥ 50, 000 and n = 3 in a standard
LVCSR system, an enormous number of states and transitions are necessary for constructing the
WFSA, e.g., it requires at least 50,0002 states and 50,0003 transitions. Thus, it is too expensive for
the run-time memory of speech recognition to increase |V | and/or n. This problem is solved by
incorporating a back-off mechanism for n-gram probabilities explicitly in the state transitions. As
described in Section 2.6.3, back-off smoothing is effective for estimating the probabilities of unseen
n-grams using m-gram probabilities such that m < n. With this approach, we need probabilities
only for the observed n-grams. The probabilities for unseen n-grams are calculated using m-gram
probabilities and the back-off coefficients, which are much fewer than those of the observed n-grams.

0 1<s> 2ε /0 .11

3

START/1.4

4

STOP/1.4

START/1.5

STOP/1.5

5

</s>/1.1

6IT/1.5

ε /0 .29
</s>/0.69

ε /0 .44
IT/0.69

ε /0 .29

</s>/0.69

Figure 4.9: Bigram WFSA

Figure 4.9 shows an example of a WFSA representing a back-off bigram model. With a
bigram, each state corresponds to a single word history, but one state corresponds to a zero word
history, which is prepared for backing off to the unigrams. In the figure, state 2 is of the zero word
history. Each of the states except for the initial state 0, zero word history state 2 and the final

4.2. CONSTRUCTION OF COMPONENT WFSTS 77

state 5 is associated with a single word history, where states 1, 3, 4 and 6 correspond to the words
“<s>,” “START,” “STOP,” and “IT,” respectively. “<s>” and “</s>” are meta symbols that represent
the beginning and end of a sentence. In the example WFSA, the bigram probability P(IT|STOP) is
assumed to be 0.5 and its weight is assigned to the state transition 4 to 6 as − log P(IT|STOP) = 0.69
in a tropical semiring.

As in the back-off n-gram probability of Eq. (2.18), if a word bigram w1w2 is unseen, i.e.,
C(w1, w2) = 0, its bigram probability is calculated as P(w2|w1) = α(w1)P (w2). Suppose we calcu-
late a bigram probability P(IT|START) using the example WFSA. First we consider a transition from
state 3 to 6. But there is no direct transition labeled with “IT” between those states because the bigram
“START IT” might be unseen and therefore was not made in the WFSA.Thus,we need to apply back-
off by making a transition to state 2 with the back-off coefficient weight − log α(START) = 0.29.
Then, unigram probability weight − log P(IT) = 1.5 is accumulated by making a transition from
2 to 6. Accordingly, the weight for the bigram probability, − log P(IT|START), can be calculated
by making state transitions 3, 2, and 6 using the back-off mechanism. For the word sequence
“<s> START IT STOP IT </s>,” we can calculate the sentence probability with state transitions
0, 1, 3, 2, 6, 2, 4, 6, and 5 by accumulating the weights along the path.

With high-order n-gram models, the back-off mechanism is implemented as well as the
bigram model, where each state corresponds to an m-word history, and 0 ≤ m < n. If we cannot
find any transition labeled with a word in the current state, we can find another transition for the
word by making an epsilon transition to the state with the reduced history truncated into m − 1
words. This back-off transition can be made iteratively until the word is found or m becomes 0.
Note that the back-off mechanism implemented in a WFSA works in a slightly different way
from the back-off scheme in Eq. (2.18) because the WFSA is used in a search network for Viterbi
decoding, which is composed of other component WFSTs. In a Viterbi algorithm with a WFST,
the minimal weighted path is found for a given input sequence when there are different paths that
accept the sequence. In fact, we can obtain different paths for a word sequence if we implement
the back-off mechanism as in Fig. 4.9. For example, there are two paths for calculating the bigram
probability P(IT|STOP), one makes a transition from state 4 to 6 and the other makes transitions of
states 4, 2, and 6. If P(IT|STOP) ≥ α(STOP)P (IT), the back-off works correctly, otherwise it works
incorrectly.Thus, the above implementation is considered an approximate method.The degree of this
approximation depends on the discounting method used for back-off smoothing, but it is usually not
a big problem because the probability of an observed n-gram is higher than its backed-off probability
in most cases. Consequently, this WFSA representation is generally used in WFST-based speech
recognition. There is another representation with more states and transitions for implementing the
back-off scheme exactly in a tropical semiring [AMR03]. But the difference between the speech
recognition accuracies of exact and approximate implementations is usually negligible.

We show an algorithm for constructing a WFSA from an n-gram language model. Algo-
rithm 16 is used for constructing a WFSA that includes an approximate back-off mechanism in a
tropical semiring. In the algorithm, we denote each state that corresponds to a history h, as “(h),”

78 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

where h can be a word sequence, a single word, or a zero word denoted by ε. We use the special
symbol (-) just for the initial state of the WFSA.

At the beginning of the algorithm (lines 1-2), there are an initial state (-) and a sentence-
begin state (<s>), which correspond to states 0 and 1 in Fig. 4.9, respectively. These states are then
connected with a transition at line 3. The occurrence probability for <s> at the beginning of any
sentence is assumed to be one (1̄).

In line 4, state (<s>) is pushed into queue S, and then the WFSA is constructed in the while
loop of lines 5-36. Note that this algorithm works with any queue discipline. In lines 6 and 7, a
state is taken from S as a source state, which is identified by the m-word sequence, vm

1 . In lines
8-14, a back-off state (vm

2) and a transition from state (vm
1) to (vm

2) are made unless vm
1 is ε, i.e.,

a zero-word history. The back-off state is identified as word sequence vm
2 where the first word is

truncated from vm
1 . We assume here that vm

k is ε if m < k. The back-off transition is made on line
13 with back-off coefficient α(vm

1). Through this algorithm, we assume a tropical semiring in which
n-gram probabilities and back-off coefficients are converted into weights by the negative logarithm
function.

In lines 15-35, a state and a transition are made for the probability of each word w following
vm

1 if P(w|vm
1) is defined in the n-gram model. The procedure in lines 16-22 deals with a special

case where w is the sentence end </s>. State (</s>) is made the final state of the WFSA and a
transition is spread from (vm

1) to the final state.
If w is not the sentence end, state s that corresponds to the destination state from (vm

1) is
prepared in lines 24-32. If m is less than n − 1, s is set at (vm

1 , w) or else (vm
2 , w). This means that

the length of the word sequence for each state becomes at most n − 1. On line 33, a transition from
(vm

1) to s is added with label w and weight − log P(w|vm
1). Finally, if queue S becomes empty, the

algorithm terminates and returns WFSA G at line 37.
The number of observed n-grams is actually much smaller than |V |n even in a large-scale

corpus, but the number can still be too high when we increase |V | and n. Generally, we can eliminate
n-gram probabilities that do not contribute to the speech recognition accuracy. Such probabilities are
obtained using the back-off scheme. n-grams to be eliminated from the model can be found as less-
counted n-grams or by using an entropy-based pruning technique [Sto98]. With these techniques,
we can reduce the size of the n-gram WFSA and also make decoding faster because it also reduces
the size of the search network built by the composition of all the components including the n-gram
language model.

After constructing an FSA or a WFSA representing a language model, we need to convert
it into a WFST that is equivalent to the original acceptor, because we perform the composition
operation between the language model and other knowledge sources such as a pronunciation lexicon
in WFST form. The WFST can be made easily to have the same output label as the input label in
every transition. For example, the transition from state 1 to 3 in Fig. 4.9, “START/1.4,” is converted
to “START:START/1.4.”

4.2. CONSTRUCTION OF COMPONENT WFSTS 79

Algorithm 16 N-gram-WFSA(V, P, α)
1: I ← {(-)}
2: Q ← {(-), (<s>)}
3: E ← {((-), <s>, 1̄, (<s>))}
4: S ← {(<s>)}
5: while S �= ∅ do
6: (vm

1) ← Head(S)

7: Dequeue(S)

8: if (vm
1) �= ε then

9: if (vm
2) �∈ Q then

10: Q ← Q ∪ {(vm
2)}

11: Enqueue(S, (vm
2))

12: end if
13: E ← E ∪ {((vm

1), ε, − log α(vm
1), (vm

2))}
14: end if
15: for each w ∈ (V -{<s>}) such that P(w|vm

1) is defined do
16: if w =</s> then
17: if (</s>) �∈ Q then
18: Q ← Q ∪ {(</s>)}
19: F ← {(</s>)}
20: ρ((</s>)) ← 1̄
21: end if
22: E ← E ∪ {((vm

1), </s>, − log P(</s>|vm
1), (</s>))}

23: else
24: if m = n − 1 then
25: s ← (vm

2 , w)

26: else
27: s ← (vm

1 , w)

28: end if
29: if s �∈ Q then
30: Q ← Q ∪ {s}
31: Enqueue(S, s)

32: end if
33: E ← E ∪ {((vm

1), w, − log P(w|vm
1), s)}

34: end if
35: end for
36: end while
37: return G = (V , Q, I, F, E, 1̄ρ)

80 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

4.3 COMPOSITION AND OPTIMIZATION

We explain the composition and optimization steps for constructing a fully composed WFST accord-
ing to the method described in [MPR02]. Before composition, we need to modify the component
WFSTs H , C, and L to make them determinizable in the following optimization step. We refer to
such modified WFSTs as H̃ , C̃, and L̃, respectively. Here G is assumed to be deterministic. The
n-gram WFST with back-off epsilon transitions is actually deterministic if we regard epsilon to
be a regular symbol label. In the determinization operation, we consistently consider epsilons to be
regular symbol labels.

Then the composition and optimization are performed step by step for efficient construction
as follows:

N = fact(πε(min(det(H̃ ◦ C̃ ◦ det(L̃ ◦ G))))), (4.9)

where det(·) and min(·) denote determinization and minimization operations. fact(·) and πε(·)
indicate the factorization and auxiliary symbol removal, which we explain later in this section.
Finally, we obtain a fully composed WFST N that can be used for decoding. Once the WFST is
constructed, we do not have to reconstruct it until at least one knowledge source is updated.

First we modify the WFST of the pronunciation lexicon, L. The most important thing we
need to consider is determinizability. L is often indeterminizable because of the presence of homo-
phonic words. In such a case, L does not become functional, i.e., a phone sequence can be transduced
into multiple word sequences using L. Being functional is a sufficient condition for being a deter-
minizable transducer. To make L determinizable, we insert auxiliary symbol labels that distinguish
the homophones for different words and make L functional. Since the auxiliary symbol labels are
necessary only in determinization, they are replaced with epsilons after the final determinization
step.

A transition that has an auxiliary input symbol label is inserted at the end of the transitions
for the phone sequence. This is equivalent to extending each pronunciation in the lexicon as follows

night n ay t #1
knight n ay t #2,

where the homophonic words “night” and “knight” are distinguished by auxiliary symbols #1 and
#2. If there are M homophonic words, we need to extend their pronunciations with #1, #2, . . . , #M .

Even if we have only one word for a given pronunciation, i.e., there are no other homophonic
words, it is better to insert an auxiliary symbol label for the word because a phone sequence of
two or more consecutive words might be equal to that of another word or word sequence. For
example, “tonight” and “to night” can have the same pronunciation “t ax n ay t.” Hence,
this transducer cannot be functional. To ensure its functionality, we also need to add #1 for all the
non-homophonic words. Consequently, “tonight” and “to night” can be distinguished by their
pronunciations “t ax n ay t #1” and “t ax #1 n ay t #1.” We denote the lexicon WFST
including auxiliary symbol labels as L̃.

4.3. COMPOSITION AND OPTIMIZATION 81

Next we combine L̃ and G, and then determinize the resulting WFST as

LG = det(L̃ ◦ G). (4.10)

If G is the back-off n-gram WFST shown in the previous section, here we need to use a composition
operation with an epsilon-sequencing filter to maintain the number of input epsilon transitions in G.
Strictly speaking, G is not deterministic, i.e., there can be multiple paths for a given word sequence
because of back-off transitions. But if we regard the input epsilons as regular symbols, the WFSA is
assumed to be deterministic. Every back-off path can be distinguished from others by the number of
epsilons, which corresponds to the number of back-offs along the path. Hence, to determinize L̃ ◦ G,
those epsilons must not be removed before performing the composition, or else we cannot ensure
that the L̃ ◦ G result is determinizable, even if pronunciations are distinguishable from each other in
L̃. However, since the epsilon-matching filter consumes an input epsilon of G and an output epsilon
of L̃ simultaneously, the original number of input epsilons in G is not maintained. Therefore, those
back-off paths cannot be distinguished from each other. On the other hand, the epsilon-sequencing
filter keeps G’s epsilon transitions in L̃ ◦ G.

We show examples of L ◦ G and det(L ◦ G) in Figs. 4.10 and 4.11, respectively, where we
omit auxiliary symbols because of space limitations. The determinized WFST det(L ◦ G) is smaller
than that of L ◦ G, and there is at most one transition for an input label from each state, i.e., the
WFST is deterministic.

0 1
sil:<s>

2
ε : ε /0 .11

3
s:START/1.4

4
s:STOP/1.4

s:START/1.5

s:STOP/1.5

5

sil:</s>/1.1

6
ih:IT/1.5

7
t :ε

8
t :ε

9t :ε

10
a a :ε

11a a :ε

ε : ε /0 .29
sil:</s>/0.69

12
r : ε

13
p :ε

14

t :ε

ε : ε /0 .44 ih:IT/0.69

ε : ε /0 .29

sil:</s>/0.69

Figure 4.10: L ◦ G

0 1
sil:<s>

2

ε : ε /0 .11

3

s : ε /1.4

s : ε /1.5 4

sil:</s>/1.1

5ih:IT/1.5

6
t :ε

7
t :ε

8
a a :ε

ε : ε /0 .29

sil:</s>/0.69
9

r:START

10

p:STOP
11

t :ε

ε : ε /0 .44 ih:IT/0.69

ε : ε /0 .29

sil:</s>/0.69

Figure 4.11: det(L ◦ G)

82 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

After the construction of LG, we combine it with C. But, first determinizing C with respect
to output labels is important. We can obtain such a WFST C′ with invert(det(invert(C))), where
invert(·) indicates the inversion of the WFST. Figure 4.12 shows C′ when C is the triphone context-
dependency FST in Fig. 4.5.

0

1

ε : s

2

ε : t

3

s : ε

4s(s):s
5

s(t):t

t :ε

6

t(s):s

7

t(t):t

(s)s:ε

(s)s(s):s
(s)s(t):t (s) t :ε

(s)t(s):s

(s)t(t):t (t)s :ε

(t)s(s):s

(t)s(t):t

(t) t :ε
(t)t(s):s

(t)t(t):t

Figure 4.12: C′ = invert(det(invert(C)))

Since C′ is deterministic with respect to output labels, the composition of C′ and LG does
not significantly exceed the size of LG. In addition, C′ is almost deterministic with respect to input
labels except for epsilon transitions from the initial state as shown in Fig. 4.12. Therefore, C′ ◦ LG

also results in an almost deterministic WFST. The composition of LG in Fig. 4.11 and some C′
actually becomes a deterministic WFST because LG has only one transition from the initial state.
Hence, it is usually unnecessary to determinize the WFST for C′ ◦ LG.

Moreover, we must not forget to insert auxiliary symbols into C′ before the composition of
C′ and LG. LG still has auxiliary symbol labels that are necessary for the succeeding optimization
steps. But since C′ does not have such output labels, transitions with auxiliary symbol labels will be
lost in the composition operation. Accordingly, we need to add self loop transitions with those labels
to every state in C′ so that any auxiliary symbol can be inserted in any word pronunciation. If we
know the maximum number of homophonic words M in the lexicon, M self-loop transitions with
the labels #1, #2, . . . , #M are added to each state of C′. Such transitions should have the same input
and output labels as “#m :#m.” We refer to this modified WFST as C̃. With this modification, the
result of

CLG = C̃ ◦ LG (4.11)

still has the auxiliary symbol labels, which keep the WFST determinizable.
In the next step, H is modified by adding self loops with auxiliary symbol labels to the initial

state, where we assume that the initial state is located at the boundary between any phones as in
Figs. 4.2–4.4. As with C, we insert M transitions into the initial state. We refer to this modified H

4.3. COMPOSITION AND OPTIMIZATION 83

as H̃ . The final composition and determinization are performed as

HCLG = det(H̃ ◦ CLG). (4.12)

Then HCLG is minimized, and the auxiliary symbols are removed as follows

HCLG′ = πε(min(HCLG)), (4.13)

where πε(·) replaces all the auxiliary symbol labels with ε.
Finally, factorization can be applied to HCLG′ as

N = fact(HCLG′). (4.14)

The factorization is effective in terms of WFST size. The numbers of states and transitions of
HCLG′ can be reduced by replacing chained transitions with a single transition, where the labels
on the chain are concatenated and the weights are cumulated with ⊗-multiplication. Figure 4.13
shows an example of factorization, where (a) is the original and (b) is the result. As shown in the

0 1
S0:<s>/0.7

2
S 1 :ε

3
S 2 :ε

4S 3 :ε

5S4:A/1.2

7
S6:AT/1.9

6

S 5 :ε

8S 7 :ε

ε : ε

11
S0:</s>

12
S 1 :ε

9
S 8 :ε

10
S 9 :ε S10:ε

13
S 2 :ε

(a) Original WFST

0 1
S0,S1,S2:<s>/0.7

2S 3 :ε
3

S6,S7,S8,S9,S10:AT/1.9

S4,S5:A/1.2
ε : ε 4

S0,S1,S2:</s>

(b) Factorization of (a)

Figure 4.13: Example of factorization

figure, each transition no longer has a single input label, i.e., it is a sequence of HMM-shared states
like the example in Fig. 4.4(a), where a unique shared-state sequence on a transition is assumed to
be a sub-word HMM. State transitions within such a sub-word HMM need to be simulated in a
decoder based on a transducer as in the example shown in Fig. 4.4(b). Note that each shared-state
sequence in Fig. 4.13(b) has different lengths as a result of factorization unlike Fig. 4.4(a).

In summary, we show the size of each WFST generated according to the above steps in
Table 4.2. We constructed a pronunciation lexicon, acoustic and language models with the Corpus
of Spontaneous Japanese (CSJ) [FMI00], which includes about 2,000 lecture speeches of 10 to
30 minutes’ duration. The acoustic model had 5,000 shared states, each of which had a unique
probabilistic density function of a Gaussian mixture. The pronunciation lexicon covered a 100k-
word vocabulary. The language model was a back-off trigram model estimated with the transcripts
of those lectures. As shown in Table 4.2, the fully composed WFST N is approximately 1.5 times
larger than the language model WFST G, i.e., N does not result in an enormous WFST. This is
almost the same tendency as that reported in the original work [MPR02].

84 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

Table 4.2: The sizes of WFSTs in 100k-word vocabulary
CSJ task

#state #transition
H 6,518 26,634
C 1,894 85,185
L 501,759 602,566
G 220,773 1,177,625
L̃ ◦ G 1,510,293 2,849,833
LG = det(L̃ ◦ G) 1,184,192 2,228,092
CLG = C̃ ◦ LG 1,195,569 2,318,779
H̃ ◦ CLG 3,145,430 4,268,640
HCLG = det(H̃ ◦ CLG) 3,034,175 4,102,668
HCLG′ = πε(min(HCLG)) 2,698,861 3,667,087
N = fact(HCLG′) 736,221 1,704,447

In the following sections, we describe a decoding algorithm with a single WFST for speech
recognition, and then show evaluation results on decoding performance in the CSJ task.

4.4 DECODING ALGORITHM USING A SINGLE WFST
In this section,we present a speech recognition algorithm using a single fully composed WFST,which
is based on the time-synchronous Viterbi beam search. Although our WFST-based algorithm is
similar to that for conventional speech recognition given as Algorithm 1, it is generalized for handling
the WFST. Algorithm 17 shows a pseudo code of the main procedure, which calls sub-codes for
initialization, epsilon transitions, regular (non-epsilon) transitions, and finalization for input feature
vector sequence X = x[1], . . . , x[T]. The pseudo code finally generates the recognition result by
backtracking the minimally weighted path.

In the sub-codes, we use the following quantities, which are similar to those used in the
conventional method.

α(t, s): Cumulative weight of a partial path up to time frame t at a WFST state s, which equals
the negative of the Viterbi score in a tropical semiring.

B(t, s): Back pointer to keep track of the most likely path up to time frame t at a WFST state s.
B(t, s) takes a pair 〈τ, e〉, where τ indicates the starting frame of the transition e, and e is the
most likely transition incoming to state s at time frame t . Let e = 0 if there is no transition
incoming to state s.

α(t, e, j): Cumulative weight of a partial path up to time frame t at an HMM state j in transition
e.

4.4. DECODING ALGORITHM USING A SINGLE WFST 85

Algorithm 17 Single-WFST-ViterbiBeamSearch(N = (�, �, Q, I, F, E, λ, ρ), X =
x[1], . . . , x[T])

1: S ← initialize(I, λ)

2: A ← ∅
3: for t = 1 to T do
4: S ← transition_with_epsilon(E, S, t − 1)

5: 〈S, A〉 ← transition_with_input(E, S, A, x[t], t)
6: prune(S, A, t)

7: end for
8: B̂ ← final_transition(E, F, ρ, S, T)

9: Y ← backtrack(B̂)

10: return Y

b(t, e, j): Back pointer to keep track of the most likely path up to time frame t at an HMM state
j in transition e. b(t, e, j) holds only the starting frame of the transition e.

In the following pseudo codes, the input label of each transition can be an HMM state sequence,
which is considered a subword HMM but does not necessarily correspond to a triphone model. For
example, input labels “S0,S1,S2,” “S3,” “S4,S5,” and “S6,S7,S8,S9,S10” in Fig. 4.13 are considered
subword HMMs. We assume that the subword HMM for each transition e has an initial state ie and
a final state fe in addition to regular HMM states each of which has a probability density function.
We also introduce an acoustic weight function ω(x, k|M, j) to obtain the transition weight from
state j to k of subword HMM M with feature vector x, which is calculated as

ω(x, k|M, j) =
{

− log a
(M)
jk b

(M)
k (x) if x �= ε

− log a
(M)
jk if x = ε

(4.15)

in a tropical semiring.
The Viterbi search starts from initialization. The pseudo code, initialize(I, λ), is shown in

Algorithm 18. In the code, a set of initial states, I , and the initial weight function λ are used to
generate initial hypotheses at time frame 0, each of which has a weight α(0, i) = λ(i) for state i in
I . The back pointers B(0, i) are all set at 〈0, 0〉. Then all the initial states are inserted in queue S to
extend the hypotheses from those states in the following steps.

For each time frame t , epsilon transitions are first made, and then regular transitions are made
with the input vector x[t].The pseudo code for epsilon transitions, transition_with_epsilon(E, S, t),
is shown in Algorithm 19. In lines 5-14, epsilon transitions are made from each state in queue S,
and new hypotheses for the destination states are made with their weights and back pointers. We
use ⊕-addition to compare different weights as line 7, where α ⊕ α′ = α′ means α′ is better than α

in an idempotent semiring such as a tropical semiring. This is substituted with min(α, α′) = α′ in
a tropical semiring. In line 11, the destination state n[e] is pushed into queue S if n[e] is not in S,

86 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 18 initialize(I, λ)

1: for each i ∈ I do
2: α(0, i) ← λ(i)

3: B(0, i) ← 〈0, 0〉
4: Enqueue(S, i)

5: return S

6: end for

since epsilon transitions can be made repeatedly. In lines 15-17, each state s in S is inserted into S′ if
there is at least one regular transition from state s. S′ holds active states from which the subsequent
regular transitions will be made.

Algorithm 19 transition_with_epsilon(E, S, t)

1: S′ ← ∅
2: while S �= ∅ do
3: s ← Head(S)

4: Dequeue(S)

5: for each e ∈ E(s, ε) do
6: α′ ← α(t, s) ⊗ w[e]
7: if α(t, n[e]) ⊕ α′ = α′ then
8: α(t, n[e]) ← α′
9: B(t, n[e]) ← 〈t, e〉

10: if n[e] �∈ S then
11: Enqueue(S, n[e])
12: end if
13: end if
14: end for
15: if s �∈ S′ and {e|e ∈ E(s), i[e] �= ε} �= ∅ then
16: Enqueue(S′, s)
17: end if
18: end while
19: return S′

The pseudo code for regular transitions, transition_with_input(E, S, A, x, t), is shown in
Algorithm 20. In lines 1-9, the hypotheses go into the HMM states of each transition outgoing
from each state s in S. For ie, the initial state of the HMM of transition e, cumulative weight
α(t − 1, e, ie) and back pointer b(t − 1, e, ie) are assigned in lines 3 and 4. The initial HMM states
are inserted in queue A together with the transition in line 6.

4.4. DECODING ALGORITHM USING A SINGLE WFST 87

Algorithm 20 transition_with_input(E, S, A, x, t)

1: for each s ∈ S do
2: for each e ∈ E(s) such that i[e] �= ε do
3: α(t − 1, e, ie) ← α(t − 1, s) ⊗ w[e]
4: b(t − 1, e, ie) ← t − 1
5: if 〈e, ie〉 �∈ A then
6: A ← A ∪ {〈e, ie〉}
7: end if
8: end for
9: end for

10: S′ ← A′ ← ∅
11: while A �= ∅ do
12: 〈e, j〉 ← Head(A)

13: Dequeue(A)

14: for each k ∈ Adj(j) such that k �= fe do
15: α′ ← α(t − 1, e, j) ⊗ ω(x, k|i[e], j)

16: if α(t, e, k) ⊗ α′ = α′ then
17: α(t, e, k) ← α′
18: b(t, e, k) ← b(t − 1, e, j)

19: if 〈e, k〉 �∈ A′ then
20: Enqueue(A′, 〈e, k〉)
21: end if
22: end if
23: end for
24: end while
25: for each 〈e, k〉 ∈ A′ such that fe ∈ Adj(k) do
26: α′ ← α(t, e, k) ⊗ ω(ε, fe|i[e], k)

27: if α(t, n[e]) ⊕ α′ = α′ then
28: α(t, n[e]) ← α′
29: B(t, n[e]) ← 〈b(t, e, k), e〉
30: if n[e] �∈ S′ then
31: Enqueue(S′, n[e])
32: end if
33: end if
34: end for
35: return 〈A′, S′〉

88 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 21 prune(S, A, t)

1: wbest
t ← {⊕

s∈S α(t, s)
} ⊕

{⊕
〈e,j〉∈A α(t, e, j)

}
2: wth

t ← γ ⊗ wbest
t

3: for each s ∈ S do
4: if α(t, s) ⊕ wth

t = wth
t then

5: Erase(S, s)

6: end if
7: end for
8: for each 〈e, j〉 ∈ A do
9: if α(t, e, j) ⊕ wth

t = wth
t then

10: Erase(A, 〈e, j〉)
11: end if
12: end for
13: return 〈S, A〉

HMM-level state transitions are made in lines 10-24. For each pair 〈e, j〉 in A, HMM-level
transitions are made from state j in the HMM associated with transition e. In line 14, Adj(j) returns
the adjacency list for state j , i.e., the set of HMM states that are reachable by one transition from
state j in the HMM. For each transition from state j to k, the cumulative weight and the back
pointer are calculated with the acoustic distance D(i[e], j, k, x), and the best cumulative weight
and the back pointer at the destination state k are recorded in α(t, e, k) and b(t, e, k), respectively.
These new active HMM states are stored in queue A′ in line 20.

In lines 25-34, the cumulative weight and the back pointer outgoing from each transition e

at frame t are given to the next state n[e] as α(t, n[e]) and B(t, n[e]). State n[e] is also stored in S′
for further WFST-level transitions.

Finally, in line 35, active HMM states and WFST states at frame t are returned to the main
code.

After the epsilon and regular transitions over T frames are complete, final epsilon transitions
are made with Algorithm 22. In lines 3-14, epsilon transitions are made from active states in S at
the final frame T . For all the active final states, the best cumulative weight α̂ and the back pointer
B̂ are obtained through lines 15-21.

Using the backtracking of Algorithm 23, the output label sequence on the best path is picked
up for the recognition result. The sequence is obtained by back tracking the path from the best back
pointer B̂ as in lines 2-6.

Thus, a Viterbi search using a single WFST can be performed in a similar way to the con-
ventional decoding algorithm (Algorithm 1). As with the conventional approaches, the decoding
algorithm for WFSTs can also be extended to generate lattices by keeping multiple back point-
ers [LPR99].

4.5. DECODING PERFORMANCE 89

Algorithm 22 final_transition(E, F, ρ, S, T)

1: α̂ ← 0̄
2: while S �= ∅ do
3: s ← Head(S)

4: Dequeue(S)

5: for each e ∈ E(s, ε) do
6: α′ ← α(T , s) ⊗ w[e]
7: if α(T , n[e]) ⊕ α′ = α′ then
8: α(T , n[e]) ← α′
9: B(T , n[e]) ← 〈T , e〉

10: if n[e] �∈ S then
11: Enqueue(S, n[e])
12: end if
13: end if
14: end for
15: if s ∈ F then
16: α′ ← α(T , s) ⊗ ρ(s)

17: if α̂ ⊕ α′ = α′ then
18: α̂ ← α′
19: B̂ ← B(T , s)

20: end if
21: end if
22: end while
23: return B̂

4.5 DECODING PERFORMANCE
Finally, we mention the decoding performance of WFST-based speech recognition. The decoding
performance in speech recognition is evaluated with a pair of the recognition accuracy and the
decoding time, where the performance is assumed to be high if the decoder yields a high recognition
accuracy and a short decoding time at the same time. In a Viterbi beam search, the accuracy and
the decoding time change depending on the beam width. The time becomes shorter for a narrower
beam, but the accuracy decreases due to increase of pruning errors. If we use a wider beam, the
accuracy comes close to the maximum that will be obtained when we turn off beam pruning. In this
section, we show the impact of WFST optimization on the decoding performance in CSJ task.

Figure 4.14 shows relationships between word accuracy and real time factor when using
different WFSTs. The word accuracy is a measure of recognition accuracy, which is calculated as

WACC[%] = NW − SUB − INS − DEL

NW
× 100, (4.16)

90 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

Algorithm 23 backtrack(B̂)

1: Ŵ ← ε

2: 〈t̂ , ê〉 ← B̂

3: while 〈t̂ , ê〉 �= 〈0, 0〉 do
4: Ŵ ← o[ê] · Ŵ

5: 〈t̂ , ê〉 ← B(t̂, p[ê])
6: end while
7: return Ŵ

where NW denotes the number of actually spoken words, SUB, INS, and DEL denote the num-
bers of substitution, insertion, and deletion errors, respectively. These numbers can be obtained by
aligning the correct word sequence (reference) and the recognized word sequence (hypothesis) using
a dynamic programming technique. The real time factor indicates a normalized recognition time,
which is obtained as the ratio of decoding time to utterance time.

In Fig. 4.14, each line corresponds to decoding performances for a WFST when changing the
beam width. The first WFST was fully optimized according to Eq. (4.9), which was the same as N

in Table 4.2. The line is specified as “Optimized” in the figure. The second WFST was optimized
but combined with the original C that was not determinized by output labels. The line is specified
as “Optimized except C.” The third WFST was not optimized, whose line is specified as “Not
optimized.” We measured the recognition time on a multi-core Xeon X5570 3GHz processor when
the decoder ran as a single process.These results show that optimization of the fully composed WFST
has a big impact on the decoding performance in speech recognition. The result for “Optimized
except C” also shows that determining C by output labels is important in the construction process.

In addition, we examine what semiring should be used through the optimization steps. This
choice may affect the decoding performance of the Viterbi beam search. Actually, the semiring affects
the distribution of weights over each path in the WFST as a result of determinization or weight
pushing.

In determinization, each weight is pushed toward the succeeding transitions when binding
the states and transitions. This corresponds to the ⊕-sum at line 9 in Algorithm 11. If we construct
component WFSTs as described in this chapter, weights in N will be well distributed as a result of
determinization. Before determinizing (L̃ ◦ G), most weights are placed at the beginning of intra-
word transitions. Such weights are gradually pushed toward the succeeding transitions during the
determinization operation.

In weight pushing, each weight is pushed to the initial state. When using a tropical semiring,
the weights tend to be located as early as possible on each path. In log semiring, the weights tend
to be distributed more evenly than those in a tropical semiring. The earlier application of weights
is somewhat effective for pruning unpromising hypotheses during the Viterbi beam search, but
increases the risk of pruning errors. The choice of semiring depends on the task.

4.5. DECODING PERFORMANCE 91

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

W
or

d
A

cc
ur

ac
y

[%
]

Real Time Factor

Optimized
Optimized except C

Not optimized

Figure 4.14: Decoding performance with and without optimization in CSJ task.

Moreover, we confirm whether or not weight pushing should be performed as a preprocessing
step for WFST minimization. If we apply weight pushing to HCLG before minimization, the
weights can be pushed beyond one word. In determinization, the weights just move within one
word because the binding procedure necessarily stops within one word due to the auxiliary symbols.
A recent study reported that an optimization procedure including determinization in log semiring
and excluding weight pushing from minimization is effective for decoding. A case only using CLG
without minimization is also used [ARS09].

Figure 4.15 shows the recognition performances for WFSTs optimized in log and tropical
semirings with and without weight pushing in the CSJ task. From these results, it is shown that a
log semiring is better than a tropical semiring in WFST optimization. This tendency is the same
as that reported in [MR01]. In addition, we can see that weight pushing is not necessarily required
in WFST minimization by comparing the results with and without weight pushing, i.e., we do not
have to push weights beyond one word. However, this could not be true for all WFSTs. If L and G

are made unlike the examples in Figs. 4.6 and 4.9, the weight pushing might be necessary to obtain
the best performance.

Thus, we need to be careful of what types of component WFSTs are used when combining and
optimizing them. If we have more time for building a fully composed WFST, a generalized construc-
tion procedure [AMRR04] can be used for combining and optimizing many types of component
WFSTs for speech recognition.

92 4. SPEECH RECOGNITION BY WEIGHTED FINITE-STATE TRANSDUCERS

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

W
or

d
A

cc
ur

ac
y

[%
]

Real Time Factor

Log
Log+push

Tropical
Tropical+push

Figure 4.15: Decoding performance when optimizing the WFST in log and tropical semirings with and
without weight pushing in CSJ task.

93

C H A P T E R 5

Dynamic Decoders with
On-the-fly WFST Operations

As we mentioned in Chapter 4, the WFST approach enables us to accelerate the decoding process for
speech recognition. Moreover, the speech recognition network construction process, which is per-
formed by a series of WFST operations using knowledge sources consistently represented in WFST
form, is more general than conventional methods. This means that it provides a high modularity for
designing a speech recognition network, and thus allows the system to be greatly expanded.

However, we need to consider two problems in real use that do not arise with the conventional
methods. One is the large memory consumption by the recognition network, which is usually a large
static network in WFST form. The other is the computational cost for the online manipulation of
composed and optimized WFSTs. In other words, we have to reconstruct the entire recognition
network when we modify a knowledge source even if it is a minor revision, e.g., adding a new word
to the vocabulary. To address these problems, the native WFST approach has been extended by the
use of a dynamic network that is constructed during decoding with on-the-fly WFST operations.
This extension reduces the run-time memory consumption, and also makes the online manipulation
easier although it needs a certain overhead because of the on-the-fly operations. In this chapter, we
present two dynamic decoding approaches, look-ahead composition and on-the-fly rescoring, which are
more flexible for real applications,1 as solutions of the above problems.

5.1 PROBLEMS IN THE NATIVE WFST APPROACH
Here we describe the problems with the native WFST approach in more detail. Actually, a fully
composed WFST for large-vocabulary continuous speech recognition (LVCSR) often becomes
oversized since the full WFST network is made of the multiplicative combination of states and
transitions of the component WFSTs. In conventional approaches to LVCSR, such a large network
is not usually constructed fully in the memory because its size exceeds the upper bound of the
memory size of standard computers. Therefore, the network is dynamically constructed on demand
during decoding, but a large amount of the decoding process is devoted to this dynamic construction.

In the WFST approach, the use of the static network is made possible due to the optimization
operations. In addition, the efficient language model representation including back-offs (as described
in Section 4.2.4) also helps to limit the network to a practical size. Accordingly, the overhead
1See results in [DHK12], which experimentally compares these decoding methods in terms of speed and memory consumption.
We briefly mention this comparison in the last section of this chapter.

94 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

consumed for constructing the dynamic network with the conventional approaches has been excluded
completely from the decoding process. This is the main reason for the fast decoding. However, the
memory consumption is still much larger than those of the conventional approaches even if the
network is optimized successfully. In bad cases, the fully composed WFST can easily bloat depending
on the specifications of the component WFSTs.

Mohri et al. reported that the total number of transitions of the WFST was 1.4 times that of
the trigram language model for a 40k-word vocabulary task [MPR02]. This does not seem to be a
serious problem in terms of memory consumption. But the language model is typically the largest
component in speech recognition. In addition, WFST representation requires a larger memory than
that for the dedicated data structure used in the conventional approaches for language models.
For instance, the run-time memory for the authors’ WFST-based system using a trigram language
model became two to four times larger than that of the conventional systems with the same models.
Furthermore, when we used a class-based n-gram model, the size increased several times compared
with when we used a model that was not class based [HN05]. Thus, people who handle a WFST-
based ASR system may have to pay attention to its memory consumption.

Another problem with the WFST approach is that it offers less flexibility as regards knowledge
updates. For example, the lexicon, and the language model need to be updated when we add new
words or adapt the system to a new topic. However, once a single WFST is composed and optimized,
such partial knowledge updates cannot be accomplished easily. Whenever changes are made to any
of the knowledge sources, it is necessary to update the related component WFSTs. Therefore, it
requires a long time and usually a large memory to reconstruct a fully composed and optimized
WFST. Hence, the WFST approach is considered to be unsuitable for some applications in which
the user frequently modifies the knowledge sources of the ASR system.

On the other hand, a multi-pass search strategy is often chosen in order to reduce computation
and memory use [ONA97]. In a general two-pass search method, the decoder uses a less complex
language model (usually a bigram model) in the first pass, and generates a word lattice including
multiple hypotheses. In the second pass, the decoder rescores the lattice using a more complex
language model (usually a trigram or a higher-order n-gram model), and selects a better hypothesis
in the lattice. This method can also work in the WFST framework [LPR99]. However, the multi-
pass approach has a drawback for on-line applications. It has a certain latency after an utterance.
Although the first pass can be performed time-synchronously with speech input, the second pass
has to await the completion of the first pass, which cannot be completed until the end point of
the utterance is detected. In addition, since a certain amount of computation and memory is still
necessary for the construction of a fully composed WFST even with a bigram language model, the
difficulty involved in the online manipulation of the knowledge sources is not completely excluded
by the multi-pass approach.

5.2. ON-THE-FLY COMPOSITION AND OPTIMIZATION 95

5.2 ON-THE-FLY COMPOSITION AND OPTIMIZATION
A practical alternative to using a fully composed WFST is on-the-fly composition (sometimes
called on-demand, lazy, or delayed composition) of separated WFSTs [MR97, MPR02, DH01,
WMMK01, CT01, CT03, HHM04, HN05, HHMN07, CDD07, MSK07, ODIF09a, ARS09]. In
this approach, component WFSTs are divided into some groups and one WFST is composed and
optimized for each group. A one-pass decoder partially combines these WFSTs during decoding as
necessary.

For example, a set of WFSTs for speech recognition, {H, C, L, G}, is divided into {H, C, L}
and {G}, where H , C, L, and G are component WFSTs of HMMs, triphone context dependency, a
pronunciation lexicon, and an n-gram language model, respectively. Next HCL is composed as

HCL = f act (πε(min(det (H̃ ◦ (C̃ ◦ det (L̃)))))), (5.1)

in a similar way to the process used for constructing a fully composed WFST N given in Eq. (4.9) of
Section 4.3. HCL construction is computationally much cheaper than that of N , because the largest
component G is not included, i.e., determinization or minimization is applied to a smaller WFST
at each step. Since G is already deterministic if G is made from an n-gram model, the optimization
of G can be omitted.

During decoding, the two WFSTs HCL and G are combined on the fly. Since HCL and G

are smaller than N , we can save the run-time memory of the decoder. Each state or transition of
HCL ◦ G is composed for the first time when it is required in the Viterbi decoding. Once the state
or transition is made, it can be kept in the memory and therefore does not need to be composed
when it is required again. If we want to save the memory, we may delete some of them that are not
frequently used, and compose them again as necessary.

The on-the-fly approach is based on the fact that most WFST operations can be performed
on the fly. When we perform an on-the-fly operation with WFST(s), at first no states or transi-
tions of the resulting WFST exist except for the initial state(s). They are made on demand when
the resulting WFST is used by another operation or an application such as a speech recognition
decoder. The operations, namely union, concatenation, closure, composition, projection, inversion,
determinization, epsilon removal, etc., can be used on the fly.

The algorithms of such operations basically consist of the following steps:

1. generate initial states and place them in a queue.

2. repeat steps (a)-(c) while the queue is not empty.

(a) remove a state from the queue according to an arbitrary queue discipline,

(b) generate transitions outgoing from the state and their destination states according to the
operation if they have not been generated yet, and

(c) place each new destination state in the queue.

96 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

With the above steps, we can generate states and transitions in order of traversing the WFST from
the initial states, where we can choose any traversing order including depth-first, breadth-first, and
best-first orders. The order is determined by the queue discipline to be used. This type of algorithm
can be extended easily to its on-the-fly version.

Suppose a set of transitions is required that are outgoing from an already generated state. If
the state is included in the queue, this means that the transitions outgoing from this state have not
been generated yet. Therefore, the state is taken out of the queue and the new transitions and their
destination states are generated according to steps 2.(a)-(c). If the state is not included in the queue,
this means that the transitions are already generated. Such transitions are simply returned. In this
way, we can use states and transitions that are generated on demand, but it is required that their
source states have ever been used.

5.3 KNOWN PROBLEMS OF ON-THE-FLY COMPOSITION
APPROACH

We mentioned that decoding with on-the-fly composition was economical in terms of memory, but
was slower than that with a fully composed static WFST. One reason for this slowdown is obviously
the computational overhead required for on-the-fly composition. Another reason is that a WFST
composed on the fly is insufficiently optimized. To solve the latter problem, on-the-fly determiniza-
tion may be available to further optimize the composite WFST during decoding. However, the
determinization is not actually helpful because the composite WFST is already subsequential (i.e.,
deterministic for input symbols) according to the fact that the composition of subsequential WFSTs
results in a subsequential WFST, where HCL and G are both subsequential. In reality, the WFST
composed on the fly is not optimal as regards two factors, the existence of dead states and inefficient
weight distributions along the paths. Although trimming and weight pushing operations are usually
used to optimize a WFST with respect to these two factors, neither operations can be performed on
the fly. We provide more detail about why this problem occurs in the on-the-fly composition.

Figure 5.1 shows examples of WFSTs HCL and G. Suppose these two WFSTs are combined
on the fly during decoding.As shown in this example,each arc of HCL has an input label representing
a sequence of HMM-state Id numbers and an output label representing an epsilon or a word such
as A, B, and C. More epsilons appear on the output side because more Id numbers are necessary to
represent a time series of acoustic patterns for a word. On the other hand, each arc of G has only a
word label or an epsilon, which is weighted with an n-gram probability or a back-off coefficient. We
need to use a filter WFST in the composition operation to deal with epsilon transitions, but omit it
from the following explanation for the sake of simplicity.

First, an initial state (0, 0) is composed by coupling the initial states of HCL and G. Once we
start decoding, the succeeding states are gradually composed. The next states (1, 0) and (5, 0) are
composed to make transitions from the initial state (0, 0). Since the state transitions 0 to 1 and 0 to
5 in HCL do not output any symbols, i.e., they are labeled with ε, G does not make any transitions
and stays at state 0.

5.3. KNOWN PROBLEMS OF ON-THE-FLY COMPOSITION APPROACH 97

0

1S1,S2:ε

5S16,S17,S18: ε

2
S3,S4,S5,S6: ε

3S7,S8,S9: ε
6ε : </s>

ε : <s>

ε :A

ε :C

4S10,S11:B

S12,S13:D

ε : ε

S14,S15:ε

(a) WFST HCL

0 3<s>:<s>

1ε : ε / 0 . 1 1

4
A:A/0.92

D:D/2.4

2
</s>:</s>/1.7

A:A/1.1

5

B:B/1.7

6C:C/1.7

ε : ε /0 .031
B:B/1.6

C:C/1.6
ε : ε / 0 . 1 1

A:A/0.92

ε : ε / 0 . 3
</s>:</s>/0.92

(b) WFST G

Figure 5.1: Example WFSTs HCL and G to be combined on the fly

Figure 5.2 shows the progress of an on-the-fly composition, where each path from the initial
state has become capable of reaching states (2, 0), (3, 0), and (5, 0). However, the transitions from

(0,0)

(1,0)S1,S2:ε

(5,0)

S16,S17,S18: ε

(2,0)S3,S4,S5,S6: ε

(3,0)

S7,S8,S9: ε

Figure 5.2: Example of on-the-fly composition (1)

states (2, 0) and (3, 0) are not composed and the paths cannot go to the next states, because the
transition from state 0 in G only accepts <s> and there is no transition that outputs <s> from states
2 and 3 in HCL. Consequently, states (2, 0) and (3, 0) become dead states that are not accessible
to any final states. State (1, 0) is also a dead state since the paths through state (1, 0) only go to the
dead states.

The problem with dead states in on-the-fly composition is that the decoder has to devote a
certain amount of computation to dead states and transitions, even though the computation does
not contribute at all to the search for the best successful path. In the example in Fig. 5.2, only one
transition from state (5, 0) can be composed and this makes it possible to go to the next state.

98 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

The occurrence of such dead states and transitions is caused by consecutive output epsilons
of the first WFST and/or consecutive input epsilons of the second WFST. With HCL and G, the
composition operation repeats to compose states and transitions with output epsilons along each
path in HCL until it meets an output word label, while states in G do not change for these epsilons.
Since we do not know whether the composed states and transitions are dead or not during this
process, we need to compose these states and transitions even though they are not accessible to any
final states.

Figure 5.3 shows a WFST after further progress in on-the-fly composition from Fig. 5.2.The

(0,0)

(1,0)S1,S2:ε

(5,0)

S16,S17,S18: ε

(2,0)S3,S4,S5,S6: ε

(3,0)S7,S8,S9: ε

(6,3)ε : <s>
(6,1)ε : ε / 0 . 1 1

(0,3)

ε : ε

(0,1)ε : ε / 0 . 1 1

(1,3)S1,S2:ε

(5,3)

S16,S17,S18: ε
(1,1)ε : ε / 0 . 1 1

(2,3)

S3,S4,S5,S6: ε

(3,3)S7,S8,S9: ε

(5,1)

ε : ε / 0 . 1 1

(2,1)ε : ε / 0 . 1 1

(6,4)ε : A/0.92

(3,1)ε : ε / 0 . 1 1

(6,2)
ε: </s>/1.7

ε : A/1.1

(6,6)
ε : C/1.7

(4,5)
S10,S11:B/1.7

(4,1)S12,S13:D/2.4

Figure 5.3: Example of on-the-fly composition (2)

nodes and arcs shown in gray represent dead states and transitions that are generated mainly in the
paths from the initial state (0, 0) to states (2, 0) and (3, 0). The other dead states and transitions
such as (6, 3) − (6, 1) and (0, 3) − (0, 1) are generated for input and output epsilons by using the
2-state filter in Section 3.5. Thus, it is not avoidable to generate dead states and transitions for some
WFSTs during the composition operation.

It is possible to generate many dead states and transitions by composition of HCL and G.
HCL usually has many consecutive output epsilons, and most word labels are placed after these
epsilons. This is a result of determinization for L, in which most output labels of L are moved to the
succeeding transitions. In this case, states and transitions are composed based on the output epsilons,
and after that it is found that they are not required if the following output word label is not accepted
by G. Specifically, when G accepts only a limited number of words by transitions from each state,
many dead states and transitions can be composed, which remain in the composition result. But if
G is made from an n-gram model, they are not so many, because an n-gram model usually allows
any word to be connected each other, and therefore the n-gram WFST will accept any word in most
states.

Next we consider another problem, which concerns the weight distribution along each path.
As shown in Fig. 5.3, a non-zero weight that corresponds to an n-gram probability appears on a
transition labeled with a word A, B, C, or D. A weight also appears on a back-off transition with

5.4. LOOK-AHEAD COMPOSITION 99

ε : ε. But most transitions have zero-valued weights, which are omitted from the figure. In the beam
search for decoding, this weight distribution is ineffective because it cannot use those weights until a
word label appears. This means that the WFST generated by on-the-fly composition does not have
any look-ahead weights, which are useful for pruning unpromising hypotheses in an early stage of the
search process. With fully static composition, L and G are first combined and then optimized. Since
each word label in L is located at the first transition from the initial state as shown in Fig. 4.6, the
word label and its weight are also located at the head of its phone sequence in L ◦ G (see Fig. 4.10).
By determinizing L ◦ G, the word labels and their weights are moved to the succeeding transitions,
but the ⊕-sum of weights for bounded transitions is attached to each determinized transition (see
Fig. 4.11), which plays the role of a look-ahead weight. Thus, the fully composed WFST N has
look-ahead weights, which are effective for a beam search.

The above considerations suggest one possible way of improving the efficiency of decoding
with on-the-fly composition, which provides a function that detects dead states and transitions and
also obtains look-ahead weights simultaneously in an on-the-fly fashion.The next section introduces
an approach to an advanced composition algorithm that includes this function.

5.4 LOOK-AHEAD COMPOSITION
Extension of the composition algorithm for on-the-fly use has been extensively investigated
[CT01, CT06, CDD07, MSK07, ODIF09a, ARS09]. Those approaches aim to perform trim-
ming and weight pushing on the fly in the composition operation simultaneously. This is basically
accomplished by incorporating a label look-ahead mechanism in the original composition algorithm.
The mechanism is usually implemented so that each state has a set of reachable non-epsilon labels
from that state. We call such labels prospective labels, and let Li (p) and Lo(p) be a set of prospective
input labels and a set of prospective output labels of state p, respectively.

5.4.1 HOW TO OBTAIN PROSPECTIVE OUTPUT LABELS
Figure 5.4 shows WFST HCL, which is the same as the WFST in Fig. 5.1(a) but with a set of
prospective output labels in each state. For example, label set {A,B,C,D} is assigned to state 1 because
the paths from state 1 can reach transitions with an A, B, C, or D output label, i.e., (2, ε, A, 0, 6),
(2, ε, C, 0, 6), (3, ε, B, 0, 4), and (3, ε, D, 0, 4). A meta symbol “<fin>” is introduced in some label
sets, which denotes that the state is a final state or at least one path originating from the state can
reach one final state.

These label sets are used to detect dead states and transitions and obtain look-ahead weights
during the composition process. The label sets can be obtained efficiently using a depth-first search
(DFS) algorithm, which starts from states that do not have any incoming transitions with out-
put epsilon, and goes through transitions with epsilon output to those with non-epsilon output
[CDD07].

This process, for example, can be accomplished by constructing a tree as in Fig. 5.5 and
applying the DFS. We can construct the tree from the original WFST by making a unique leaf node

100 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

S1,S2:ε

S3,S4,S5,S6:ε

S7,S8,S9:ε S10,S11:B

S12,S13:D

ε:A

ε:C

S14,S15:ε

ε: </s>

ε: <s>
S16,S17,S18:ε

ε : ε

</s>
<s>
A
B
C
D

A
B
C
D

A
CB

D

</s>
<s>

2

50

1 3 4
6

</s>
<s>
A
B
C
D

<fin>

</s>
<s>
A
B
C
D

<fin>

Figure 5.4: Example of WFST HCL with look-ahead labels: the set of look-ahead labels for each state
is framed in a rectangle linked to the state with a dashed line.

for each transition with output label and redirecting the transition to the leaf node. Then, the states
where we start the DFS are changed to root nodes. We may place a global root node for the multiple
root nodes. The tree in Fig. 5.5 is constructed from the WFST in Fig. 5.4, where only state 4 is the
root node. Once we construct the tree, the prospective label sets are efficiently obtained by collecting
output labels and sending them to the parent nodes in the DFS process. In this way, we can make
the prospective output labels for each state.

0
1S1,S2:ε

5

S16,S17,S18: ε

2S3,S4,S5,S6: ε

3S7,S8,S9: ε ε : </s> ε : <s>

 ε :A ε :C S10,S11:B S12,S13:D

4 6S14,S15:ε
ε : ε ε : <fin>

Figure 5.5: Tree structure constructed from the WFST in Fig. 5.4

5.4.2 BASIC PRINCIPLE OF LOOK-AHEAD COMPOSITION
Here, we explain the basic principle of the look-ahead composition. Suppose we per-
form the composition of two WFSTs T1 = (�1, �1, Q1, I1, F1, E1, λ1, ρ1) and T2 =

5.4. LOOK-AHEAD COMPOSITION 101

(�2, �2, Q2, I2, F2, E2, λ2, ρ2) using this method. In the algorithm, each state is composed of
some two states, p1 in Q1 and p2 in Q2.The look-ahead composition allows us to combine states p1

and p2 only if the intersection of Lo(p1) and Li (p2) is not empty. If the intersection is empty, this
means that there will be no match between labels along the paths from p1 and p2. Consequently,
the composed state (p1, p2) becomes a dead state. However, (p1, p2) is not a dead state if there
are paths π1 from p1 and π2 from p2, which are both capable of reaching some final state with
epsilons, i.e., o[π1] = ε, p[π1] = p1, n[π1] ∈ F1, i[π2] = ε, p[π2] = p2, and n[π2] ∈ F2. To avoid
considering the composed state as a dead state, a special symbol indicating the capability of reaching
some final state, e.g., <fin>, is also added to each prospective label set if the state is final or there is
at least one path from the state to a final state.

In the look-ahead composition, we basically apply the following rules when composing a
transition from an already composed state (p1, p2):

1. If o[e1] = i[e2] �= ε and Lo(n[e1]) ∩ Li (n[e2]) �= ∅ for e1 ∈ E[p1] and e2 ∈ E[p2],
compose transition ((p1, p2), i[e1], o[e2], w[e1] ⊗ w[e2], (n[e1], n[e2])).

2. If o[e1] = ε and Lo(n[e1]) ∩ Li (p2) �= ∅ for e1 ∈ E[p1],
compose transition ((p1, p2), i[e1], ε, w[e1], (n[e1], p2)).

3. If i[e2] = ε and Lo(p1) ∩ Li (n[e2]) �= ∅ for e2 ∈ E[p2],
compose transition ((p1, p2), ε, o[e2], w[e2], (p1, n[e2])).

Note that a composition filter is not assumed in the above rules, and therefore they may compose
redundant transitions. We introduce a composition filter in the next section.

When we apply the look-ahead composition for HCL in Fig. 5.4 and G in Fig. 5.1(b), state
(1, 0) is not composed as appeared in Fig. 5.3 because the prospective label set {A,B,C} for state 1
in HCL does not include <s>, which is only the label acceptable from state 0 in G. States (2, 0) and
(3, 0) are also successfully eliminated because state (0, 1) is not composed. In contrast, state (5, 0)

is composed because the label set for state 5 in HCL includes <s>.
In a practical use of look-ahead composition in speech recognition, prospective input label

sets Li (p2) for T2 are not constructed. Instead Li(p2) is used, which is a set of input labels of
transitions outgoing from state p2, i.e., Li(p2) = {i[e2]|i[e2] �= ε, e2 ∈ E[p2]}. If p2 ∈ F2, we also
add <fin> to Li(p2), i.e., Li(p2) = {i[e2]|i[e2] �= ε, e2 ∈ E[p2]} ∪ {<fin>}. This simplification
is for the following reason.

In WFST-based speech recognition with on-the-fly composition, WFSTs T1 and T2, which
are to be combined, are usually HCL and G. Since word labels are moved to the later transitions in
HCL as a result of determinization, label matching is delayed in the decoding process. Until label
matching occurs, there is a potential for many dead states and transitions to be generated. Even if
the composed states and transitions are coaccessible (not dead), they are searched without a help
of the weights of G. This causes pruning errors in the Viterbi beam search. Thus, label look-ahead
for HCL is important. On the other hand, if G is a WFST of an n-gram language model, most
transitions in G do not have an input epsilon except for back-off transitions. Actually, each state has

102 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

at most one epsilon transition for backing off, and such epsilon transitions continue at most n − 1
times, where n is usually 3 or 4. Accordingly, the operation does not generate many dead states and
transitions caused by those input epsilons. Hence, the label look-ahead for G is not effective and the
use of Li (p2) is avoided in speech recognition. This also helps to remove the overhead for obtaining
Li (p2) when G is also composed on the fly, because states and transitions appearing beyond epsilons
do not have to be composed just for looking ahead.

5.4.3 REALIZATION OF LOOK-AHEAD COMPOSITION USING A FILTER
TRANSDUCER

As we mentioned above, look-ahead composition can be performed based on intersection Lo(p1) ∩
Li(p2), where Li(p2) is used instead of Li (p2). However, if there are epsilon transitions from state
p2, Li(p2) may not equal Li (p2) because Li (p2) potentially includes labels placed beyond the
epsilon transitions while Li(p2) includes only the immediate labels from state p2. Accordingly, the
decision in rule 2 may fail if there is at least one epsilon transition from state p2. The condition
of rule 2 can be relaxed so that if some e2 ∈ E[p2] exists such that i[e2] = ε, then the transition
is composed independently of the result of Lo(n[e1]) ∩ Li(p2). But this relaxation may generate
many dead states and transitions according to the structure of T2. Oonishi et al. proposed an effective
method that utilized the state indices of a composition filter [ODIF09a, ODIF09b]. By using this
filter, epsilon input transitions in T2 are not allowed immediately after an epsilon output transition
in T1. In this case, we can rely on the intersection result even if there exists epsilon transitions from
state p2.

In [ODIF09b], they used the two-state filter shown in Fig. 5.6. Note that this filter is slightly

0

x:x
ε i :ε i

1
ε o :ε o

x:x

ε o :ε o

Figure 5.6: 2-state filter for look-ahead composition.

different from the filter presented in Fig. 3.11(a), where labels εi and εo are exchanged. The filter in
Fig. 5.6 eliminates epsilon input transitions in T2 immediately after an epsilon output transition in
T1, while that in Fig. 3.11(a) eliminates epsilon output transitions in T1 immediately after an epsilon
input transition in T2. As we described above, the filter in Fig. 5.6 is more suitable for look-ahead
composition.

When composing a transition from state (p1, pf , p2) where each state is extended by pf

indicating the state of the filter FST, the rules for look-ahead composition are modified as follows.

5.4. LOOK-AHEAD COMPOSITION 103

1. If o[e1] = i[e2] �= ε for e1 ∈ E[p1] and e2 ∈ E[p2],
compose transition ((p1, pf , p2), i[e1], o[e2], w[e1] ⊗ w[e2], (n[e1], 0, n[e2])).

2. If o[e1] = ε and Lo(n[e1]) ∩ Li(p2) �= ∅ for e1 ∈ E[p1],
compose transition ((p1, pf , p2), i[e1], ε, w[e1], (n[e1], 1, p2)).

3. If pf = 0 and i[e2] = ε for e2 ∈ E[p2],
compose transition ((p1, 0, p2), ε, o[e2], w[e2], (p1, 0, n[e2])).

In the above rules, the intersection between the label sets is checked only in rule 2, because the filter
FST makes a transition to state 1 where it obstructs epsilon input transitions in T2, i.e., transition
e2 ∈ E[p2] such that i[e2] = ε is made only if pf = 0. This corresponds to rule 3. However, the
intersection is not checked in rule 1 since we can avoid obtaining label set Li(n[e2]) for destination
state n[e2] to save the computation.To remove more dead states,we may also consider the intersection
in rule 1 only if there is no epsilon input transitions from state n[e2].

5.4.4 LOOK-AHEAD COMPOSITION WITH WEIGHT PUSHING
We can also compose each transition with a weight pushed by the look-ahead mechanism.From some
already composed state (p1, p2), transition ((p1, p2), i[e1], ε, w[e1], (n[e1], p2)) is composed for
e1 ∈ E[p1] such that o[e1] = ε. Such a transition has only weight w[e1] from T1, and the composed
path including such transitions does not have any weight from T2 as long as the epsilon output
continues. The look-ahead composition can incorporate such look-ahead weights as

w′ = V [(p1, p2)]−1 ⊗ V [(n[e1], p2)], (5.2)

where V [(s1, s2)] for a composed state (s1, s2) is the ⊕-sum of weights for future label matches,
which can be obtained by referring to the prospective labels as

V [(s1, s2)] =
{ (⊕

e2∈E[s2]:i[e2]∈Lo(s1)
w[e2]

)
⊕ ρ(s2) if <fin> ∈ Lo(s1) and s2 ∈ F2⊕

e2∈E[s2]:i[e2]∈Lo(s1)
w[e2] otherwise

(5.3)
Here we assume that T2 is epsilon free, i.e., ∀e2 ∈ E[s2], i[e2] �= ε. We finally obtain the composed
transition as ((p1, p2), i[e1], ε, w[e1] ⊗ w′, (n[e1], p2)).This is similar to the language model look-
ahead technique [ONE96] that we mentioned in Section 2.7.3, which is widely used in traditional
speech recognition approaches.

Look-ahead composition with weight pushing is also extended by the filter FST [ODIF09b]
as follows.

1. If o[e1] = i[e2] �= ε for e1 ∈ E[p1] and e2 ∈ E[p2],
compose transition ((p1, pf , p2), i[e1], o[e2], w[e1] ⊗ w′, (n[e1], 0, n[e2])), where w′ =
V [(p1, pf , p2)]−1 ⊗ w[e2].

104 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

2. If o[e1] = ε and Lo(n[e1]) ∩ Li(p2) �= ∅ for e1 ∈ E[p1],
compose transition ((p1, pf , p2), i[e1], ε, w[e1] ⊗ w′, (n[e1], 1, p2)), where w′ =
V [(p1, pf , p2)]−1 ⊗ V [(n[e1], 1, p2)] and V [(n[e1], 1, p2)] equals V [(n[e1], p2)] ob-
tained in Eq. (5.3).

3. If pf = 0 and i[e2] = ε for e2 ∈ E[p2],
compose transition ((p1, 0, p2), ε, o[e2], w[e2], (p1, 0, n[e2])).

We assume that V [(p1, pf , p2)] is initialized by 1̄.

5.4.5 GENERALIZED COMPOSITION
Allauzen et al. proposed an efficient composition algorithm with the help of filters [ARS09], in
which the filter function was generalized to include both the epsilon matching technique and the
look-ahead mechanism. Algorithm 24 shows the pseudo-code, which is extended from the original
pseudo-code in Algorithm 10 by considering a generic composition filter �. The filter � is not an
FST as in Fig. 3.11 but it allows us to design a more powerful filter, for example, which blocks the
composition of specific states and transitions and also modifies their labels and weights. Since �

can be defined independently of the code, we can use an appropriate � depending on the purpose
of composition.

The composition filter � is defined as

� = (T1, T2, Qf , if , ⊥, ϕ, ρf), (5.4)

where Qf , if , ⊥ and ρf denote a set of filter states, an initial filter state, a blocking filter state, and
a final weight filter, respectively. ϕ is called a transition filter that blocks or modifies given transition
pairs according to the current state of the filter.

In the original composition algorithm in Section 3.5, component WFSTs T1 and T2 are modi-
fied by adding self loops with εi or εo. Each output epsilon in T1 and each input epsilon in T2 are also
replaced with εo and εi, respectively.These labels are introduced to handle epsilon matches explicitly
in composition with a filter FST. Similarly, with the generalized composition, a self loop labeled
with εL is added virtually to each state in T1 and T2, where εL is introduced for the composition
filter. In fact, we prepare extended sets of transitions, EL[q1] = E[q1] ∪ {(q1, ε, ε

L, 1̄, q1)} for all
q1 ∈ Q1, and EL[q2] = E[q2] ∪ {(q2, ε

L, ε, 1̄, q2)} for all q2 ∈ Q2.
In Algorithm 24, a composed state is represented as a triple (q1, qf , q2), where q1 ∈ Q1 and

q2 ∈ Q2 are states of T1 and T2, respectively. qf ∈ Qf indicates the state of the filter.2 In lines 1-4,
a set of initial states I is created, where each composed state (i1, if , i2) is combined with the initial
filter state if . In line 5, queue S and set of states Q are initialized by I . In lines 6-21, the expansion
steps are performed for each composed state (q1, qf , q2) in S. Line 9 checks whether the state is
final or not. The final weight of the filter, ρf (qf), is also checked under this condition. This means
2In [ARS09] q3 is used to represent a filter state, and (q1, q2, q3) is used for a composed state. In this book, we use subscript f

and state (q1, qf , q2) to maintain consistency with the description for FST-based filters.

5.4. LOOK-AHEAD COMPOSITION 105

Algorithm 24 GeneralizedComposition(T1, T2, �)
1: for each (i1, if , i2) ∈ I1 × {if } × I2 do
2: λ((i1, if , i2)) ← λ1(i1) ⊗ λ2(i2)

3: I ← I ∪ {(i1, if , i2)}
4: end for
5: Q ← S ← I

6: while S �= ∅ do
7: (q1, qf , q2) ← Head(S)

8: Dequeue(S)

9: if (q1, qf , q2) ∈ F1 × Qf × F2 and ρf (qf) �= 0̄ then
10: F ← F ∪ {(q1, qf , q2)}
11: ρ((q1, qf , q2)) ← ρ1(q1) ⊗ ρf (qf) ⊗ ρ2(q2)

12: end if
13: M ← {(e′

1, e
′
2, q

′
f) = ϕ(e1, e2, qf)|e1 ∈ EL[q1], e2 ∈ EL[q2], q ′

f �= ⊥}
14: for each (e′

1, e
′
2, q

′
f) ∈ M do

15: if (n[e′
1], q ′

f , n[e′
2]) �∈ Q then

16: Q ← Q ∪ {(n[e′
1], q ′

f , n[e′
2])}

17: Enqueue(S, (n[e′
1], q ′

f , n[e′
2]))

18: end if
19: E ← E � {((q1, qf , q2), i[e′

1], o[e′
2], w[e′

1] ⊗ w[e′
2], (n[e′

1], q ′
f , n[e′

2]))}
20: end for
21: end while
22: return T = (�1, �2, Q, I, F, E, λ, ρ)

that the filter can block the state from being a final. In line 13, M the set of triples (e′
1, e

′
2, q

′
f)

is obtained by using the transition filter ϕ, where blocking state ⊥ is used to determine if each
triple (e′

1, e
′
2, q

′
f) should be included in M . If q ′

f = ⊥, the triple is excluded. In lines 14-20, a new
transition is composed for each element in M .

Several composition filters have already been proposed in some studies undertaken by Allauzen
et al. [ARS09, ARS11]. Composition with a filter FST and look-ahead composition with weight
pushing can be realized using the following filters.

1. Epsilon sequencing filter: �ε−seq
Let Qf = {0, 1, ⊥}, if = 0, ρf (qf) = 1̄ for all qf ∈ Qf , and ϕ(e1, e2, qf) = (e1, e2, q

′
f)

where:

q ′
f =

⎧⎪⎪⎨
⎪⎪⎩

0 if (o[e1], i[e2]) = (x, x) with x ∈ �1 ≡ �2

0 if (o[e1], i[e2]) = (ε, εL) and qf = 0
1 if (o[e1], i[e2]) = (εL, ε)

⊥ otherwise

. (5.5)

106 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

This is equivalent to the 2-state filter FST in Fig. 3.11(a), although different representations
are used to handle epsilon transitions.

We can also define �̄ε−seq with

q ′
f =

⎧⎪⎪⎨
⎪⎪⎩

0 if (o[e1], i[e2]) = (x, x) with x ∈ �1 ≡ �2

0 if (o[e1], i[e2]) = (εL, ε) and qf = 0
1 if (o[e1], i[e2]) = (ε, εL)

⊥ otherwise

, (5.6)

which is symmetric with �ε−seq. This filter is equivalent to the filter FST in Fig. 5.6.

2. Epsilon matching filter: �ε−match
Let Qf = {0, 1, 2, ⊥}, if = 0, ρf (qf) = 1̄ for all qf ∈ Qf , and ϕ(e1, e2, qf) = (e1, e2, q

′
f)

where:

q ′
f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if (o[e1], i[e2]) = (x, x) with x ∈ �1 ≡ �2

0 if (o[e1], i[e2]) = (ε, ε) and qf = 0
1 if (o[e1], i[e2]) = (ε, εL) and qf �= 2
2 if (o[e1], i[e2]) = (εL, ε) and qf �= 1
⊥ otherwise

. (5.7)

This is equivalent to the 3-state filter FST in Fig. 3.11(b).

3. Label reachability filter with weight pushing: �push-weight
Let Qf = K, if = 1̄, ⊥ = 0̄, ρf (qf) = q−1

f for all qf ∈ Qf . and ϕ(e1, e2, qf) =
(e1, (p[e2], i[e2], o[e2], w′, n[e2]), q ′

f) where:

(q ′
f , w′) =

⎧⎪⎨
⎪⎩

(1̄, q−1
f) if o[e1] = i[e2]

(V [(n[e1], q2)], q−1
f ⊗ V [(n[e1], q2)] if (o[e1], i[e2]) = (ε, εL)

(0̄, w[e2]) otherwise
. (5.8)

Note that each filter state is identified by a ⊕-sum of weights and is used to obtain the transition
weight w′. This filter can be used for look-ahead composition with weight pushing.

The benefit of composition filters is that a new filter can be synthesized by combining existing filters.
The literature [ARS11] shows how to generate a new filter from two composition filters.

Suppose �a = (Qa
f , iaf , ⊥a, ϕa, ρa

f) and �b = (Qb
f , ibf , ⊥b, ϕb, ρb

f) are two composition
filters. The combined filter �a � �b = (Qf , if , ⊥, ϕ, ρf) is defined as

Qf = Qa
f × Qb

f , if = (iaf , ibf), ⊥ = (⊥a, ⊥b), ρ((qa
f , qb

f)) = ρa
f (qa

f) ⊗ ρb
f (qb

f),

and for a given (e1, e2, qf)

ϕ(e1, e2, qf) = (e′′
1, e′′

2, q ′
f) with q ′

f =
{

⊥ if ra
f = ⊥a or rb

f = ⊥b

(ra
f , rb

f) otherwise
,

5.4. LOOK-AHEAD COMPOSITION 107

where qf = (qa
f , qb

f), ϕ(e1, e2, q
b
f) = (e′

1, e
′
2, r

b
f), and ϕ(e′

1, e
′
2, q

a
f) = (e′′

1, e′′
2, ra

f). For example, a
combined filter �push-weight � �̄ε−seq will perform the look-ahead composition in Section 5.4.4.

5.4.6 INTERVAL REPRESENTATION OF LABEL SETS
Although the look-ahead composition technique effectively eliminates dead states/transitions and
obtains pushed weights during decoding, the computational overhead for this look-ahead processing
may become very large if we do not implement it carefully. For example, the size of a prospective label
set |Lo(p)| for some p ∈ Q1 can be very large in large-vocabulary speech recognition.The maximum
size can equal the vocabulary size if T1 is HCL. Therefore, the intersection Lo(p1) ∩ Li(p2) for
some p1 ∈ Q1 and p2 ∈ Q2 may need a large amount of computation. In addition, summing up the
weights to obtain a pushed weight as in Eq. (5.3) may also take a long time because the enumeration
of all e2 ∈ E[p2] such that i[e2] ∈ Lo(n[e1]) can be expensive for large Lo(n[e1]) and large Li(p2).
Therefore, efficient implementation is important as regards minimizing the overhead.

Allauzen et al. proposed using an interval representation of label sets, which was also useful for
computing the pushed weights efficiently [ARS09]. The interval representation is used to define a
label set as a pair of label Id numbers, i.e., Lo(p1) ≡ [bo(p1), eo(p1)) for all p1 ∈ Q1, where bo(p1)

and eo(p1) denote label Id numbers indicating the starting Id and the ending Id+1 in Lo(p1),
respectively, i.e., ∀l ∈ Lo(p1), bo(p1) ≤ l < eo(p1), and ∀r �∈ Lo(p1), r < bo(p1) or eo(p1) ≤ r .
To use the interval representation, we have to renumber all the output labels in T1 so that every
prospective label set for each p1 ∈ Q1 is represented in the form of an interval. Then, the input
labels in T2 are also renumbered by the new Id numbers. This renumbering can be done in advance
of decoding.

In the look-ahead composition process, whether Lo(p1) ∩ Li(p2) is empty or not is efficiently
evaluated by checking whether there is at least one element l ∈ Li(p2) such that bo(p1) ≤ l <

eo(p1). This check can be performed by computing the upper and lower bounds of the interval in
Li(p2), whose complexity is O(log2 |Li(p2)|) as determined using the binary search, where all the
transitions for each state in T2 should already be sorted by the new Id numbers.

In addition, we can obtain the ⊕-sum of the weights as

V [(p1, p2)] =
⊕

e2∈E[p2]:i[e2]∈Lo(p1)

w[e2]

= W(p2, eo(p1)) ⊕diff W(p2, bo(p1)), (5.9)

where ⊕diff computes the ⊕-difference between two arguments. W(s, n) is the cumulative weight
for all w[e] such that e ∈ E[s] and i[e] < n. W(s, n) can be pre-computed for each (s, n) pair as

W(s, n) =
⊕

e∈E[s]:i[e]<n

w[e], (5.10)

where n is limited such that n ∈ Li(s) ∪ {(maxe∈E[s] i[e]) + 1}. Thus, the computation for
V [(p1, p2)] in Eq. (5.9) has a very short run time.

108 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

A final problem remains, which is how to renumber all the output labels in the first WFST
to introduce the interval representation. Allauzen et al. stated that the problem could be considered
a consecutive ones problem (C1P). Given a set � in which each element belongs to some subset
L ⊆ �, C1P is solved by ordering all the elements in � such that the elements are also consecutive
in each subset L with respect to the order.

Suppose that the output labels of WFST HCL in Fig. 5.4 are originally numbered as in
Table 5.1, where we also add a final state symbol <fin>. The prospective label sets over all the states

Table 5.1: Original label
Ids for HCL

label Id
</s> 1
<s> 2

A 3
B 4
C 5
D 6

<fin> 7

in HCL can be represented as a 0/1 matrix as shown in Fig. 5.7, where each row corresponds to a
state and each column corresponds to a label. Each 1 or 0 value in the matrix indicates whether or not

<s></s> A B C D

label

st
at

e

0

1

2

3

4

5

6

1 1 1 1 1 1

0 0 1 1 1 1

1 10 0 0 0

0 0 0 1 10

1 1 1 1 11

1 1 0 0 00

1 1 1 1 11

<fin>

0

0

0

0

1

0

1

Figure 5.7: 0/1 matrix representing prospective label sets

the label is a member of the prospective label set for the state. Accordingly, to represent each label
set as an interval, a block of consecutive ones must appear only once in each row. This is called the
consecutive ones property.The C1P is the problem of obtaining all the rows that have such consecutive
ones by permutating the columns of the matrix. Since the matrix in Fig. 5.7 has some gaps between
the ones in the rows for states 2 and 3, it does not satisfy the property.

5.4. LOOK-AHEAD COMPOSITION 109

Although there are some general algorithms for solving the C1P such as the PQ-tree algo-
rithm [BL76], the solution can also be derived from a depth-first search (DFS) for WFSTs used in
speech recognition. If we apply the DFS to the WFST in Fig. 5.4 in the same way as that for ob-
taining the prospective label sets, the labels can be ordered and numbered as in Table 5.2. This order

Table 5.2: New label Ids
for HCL

label Id
A 1
C 2
B 3
D 4

</s> 5
<s> 6

<fin> 7

is actually the same as the depth-first order of output labels in the tree of Fig. 5.5. By permutating
the columns in the matrix according to the obtained order, the consecutive ones property is satisfied
in Fig. 5.8. As a result, each prospective label set for each state can be represented as the intervals in
Table 5.3.

<s></s>A BC D

label

st
at

e

0

1

2

3

4

5

6

1 11 11 1

0 01 11 1

1 1 0 00 0

0 00 1 10

1 11 1 11

1 10 0 00

1 11 1 11

<fin>

0

0

0

0

1

0

1

Figure 5.8: A solution for the C1P

However, C1P cannot be solved for all cases, i.e., there are matrices for which a permutation
yielding the consecutive ones property is not found. The C1P for WFST L can be solved if a
unique pronunciation is assigned to each word label. To satisfy this condition, when a word has
multiple pronunciations, the word label has to be extended by subscripting those pronunciations.
The permutation can also be obtained for the determinized and minimized WFST of L. But, even
if the C1P for L can be solved, the C1P for the WFST composed of C and L may not be solved. In

110 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

Table 5.3: Interval representation of prospective la-
bel sets for HCL

state prospective label set interval
0 {A,C,B,D, </s>, <s>} [1, 7)

1 {A,C,B,D} [1, 5)

2 {A,C} [1, 3)

3 {B,D} [3, 5)

4 {A,C,B,D, </s>, <s>, <fin>} [1, 8)

5 {</s>, <s>} [5, 7)

6 {A,C,B,D, </s>, <s>, <fin>} [1, 8)

such a case, intervals obtained for L may be used for CL and HCL instead, where the interval for
each state in L is assigned to each composed state associated with the original state number in L.

5.5 ON-THE-FLY RESCORING APPROACH

Another approach to fast and memory-efficient decoding in WFST-based speech recognition is on-
the-fly rescoring [HHM04, HN05, HHMN07]. The look-ahead composition approach focuses on
how to dynamically generate states and transitions of a fully composed and optimized WFST. Since
a dynamically composed WFST can be considered a single WFST, the decoding algorithm does not
need to be changed depending on whether the WFST is generated statically or dynamically. On the
other hand, the on-the-fly rescoring approach includes a composition step in the decoding process,
but actually does not make the fully composed WFST. With this method, the first component
WFST is simply used to generate hypothetical output label sequences from the WFST, which are
then combined with the next WFSTs to rescore the hypotheses. Thus, this method is designed to
compose hypotheses but not WFSTs. In the following sections, we describe the concept and its
algorithm.

5.5.1 CONSTRUCTION OF COMPONENT WFSTS FOR ON-THE-FLY
RESCORING

The on-the-fly rescoring approach employs an implementation based on incremental language mod-
els (incremental LMs) [DH01, WMMK01]. For example, a set of WFSTs for speech recognition,
{H, C, L, G}, is used to construct two WFSTs, HCLGm and Gn/m, where H , C, L, and G are
WFSTs of HMMs, triphone context dependency, a pronunciation lexicon, and an n-gram language
model, respectively. But G is decomposed into Gm and Gn/m such that G = Gm ◦ Gn/m for some
m where 1 ≤ m < n. Gm is the WFST of the m-gram language model. Gn/m is the WFST of the
n-gram language model where each n-gram probability is divided by the corresponding m-gram

5.5. ON-THE-FLY RESCORING APPROACH 111

probability as follows

P ′(wn|wn−1
1) = P(wn|wn−1

1)

P (wn|wn−1
n−m+1)

. (5.11)

The transition weights in Gn/m are given as the minus logarithm of the divided probabilities.
WFST HCLGm can be composed and optimized in the same way as WFST N in Eq. (4.9).

HCLGm and Gn/m are combined on the fly, where HCLGm ◦ Gn/m = N . Thus, the incremental
LM approach decomposes a language model into multiple WFSTs with increasing complexities
and combines them by on-the-fly composition. The purpose of the incremental LM is to apply
the language model scores as soon as possible before label matches are realized by the composition
operation. The motivation is similar to that for the look-ahead composition with weight pushing,
which can improve the pruning efficiency in a beam search. However, the statically pushed weights
in HCLGm are limited to the lower-order probabilities given by the m-gram model. If we assume
n = 3 and m = 1 as in [WMMK01], only unigram look-ahead weights are available, and those
unigram weights are replaced with trigram weights when each path reaches a transition with a word
label. Since the unigram probabilities are less accurate than the trigram probabilities as a language
model, the beam search is less effective than that with look-ahead composition of the trigram WFST.
Although the on-the-fly rescoring approach does not use dynamic weight pushing, it reduces the
decoding time in a different way.

In standard (or look-ahead) on-the-fly composition, two or more WFSTs are combined during
decoding. The Viterbi search is performed for the composed WFST. With the rescoring approach,
the Viterbi search is performed based on the first WFST. The second or higher WFSTs are only
used to rescore the paths being searched (i.e., hypotheses) in the first WFST. Since this rescoring is
performed efficiently in an on-the-fly fashion, the total amount of computation is almost the same
as when using only the first WFST. Thus, the algorithm can achieve a faster and more memory-
efficient search than that with the standard on-the-fly composition. Note that the search process is
completely one-pass, i.e., the rescoring step is performed frame by frame as necessary in the one-pass
procedure. In addition, the algorithm achieves not only rescoring but also transduction with multiple
WFSTs in a one-pass manner.

5.5.2 CONCEPT
We first define terms for describing the concept of the on-the-fly rescoring approach.We define a path
along consecutive transitions from the initial state as a hypothesis h = e1, . . . , ek , where p[e1] = i

for some i ∈ I , n[ej−1] = p[ej], j = 2, . . . , k. We extend n[·] and p[·] to paths as n[h] = n[ek]
and p[h] = p[e1]. We also extend o[·] and w[·] to paths as o[h] = o[e1] · · · · · o[ek] and w[h] =
w[e1] ⊗ · · · ⊗ w[ek]. If n[ek] ∈ F after an input symbol sequence X was accepted (i.e. i[h] = X), h
is a successful hypothesis. Otherwise, we call h a partial hypothesis or just a hypothesis. In addition,
given a WFST T and symbol sequences X and Y , we use �T (X, Y) to denote a set of successful
paths that accept X and output Y with T . We also use �T (X) = ⋃

Y �T (X, Y). The overall weight

112 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

of T for an input-output sequence (X, Y) is computed as

[[T]](X, Y) =
⊕

π∈�T (X,Y)

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π]). (5.12)

Suppose the decoder employs two WFSTs T1 = (�, �, Q1, I1, F1, E1, λ1, ρ1) and T2 =
(�, �, Q2, I2, F2, E2, λ2, ρ2), which are combined on the fly. In standard on-the-fly composition
approaches, given an input symbol sequence X, the decoder finds Ẑ such that

[[T1 ◦ T2]](X, Ẑ) = min
Z∈�∗[[T1 ◦ T2]](X, Z) (5.13)

= min
(Y,Z)∈�∗×�∗[[T1]](X, Y) ⊗ [[T2]](Y, Z), (5.14)

where we assume the use of a tropical semiring, i.e., the decoder searches for the minimally weighted
path that outputs Ẑ. We can rewrite Eqs. (5.13) and (5.14) as those for finding the best path as

[[T1 ◦ T2]](X, Ẑ) = min
π∈�T1◦T2 (X,Z)

λ1◦2(p[π]) ⊗ w[π] ⊗ ρ1◦2(n[π]) (5.15)

= min
(h,f)∈�T1 (X,Y)×�T2 (Y):Y∈�∗(λ1(p[h]) ⊗ λ2(p[f])) ⊗ (w[h] ⊗ w[f])

⊗(ρ1(n[h]) ⊗ ρ2(n[f])), (5.16)

where λ1◦2(·) and ρ1◦2(·) denote the initial and final weight functions of T1 ◦ T2, respectively.
According to the above equations, finding the best path in T1 ◦ T2 is equivalent to finding the best
pair of paths h in T1 and f in T2 such that o[h] = i[f] whose label sequence corresponds to Y .

We note here that (5.14) can be rewritten as

[[T1 ◦ T2]](X, Ẑ) = min
Y∈�∗

{
[[T1]](X, Y) ⊗ min

Z∈�∗[[T2]](Y, Z)

}
. (5.17)

This equation implies that the algorithm for finding Ẑ given X could be reorganized based on
an algorithm for finding Y that derives minY∈�∗[[T1]](X, Y) with a slight modification where
[[T1]](X, Y) is adjusted by the ⊗-product of minZ∈�∗[[T2]](Y, Z). We can also rewrite Eq. 5.17
with the paths as

[[T1 ◦ T2]](X, Ẑ) = min
h∈�T1 (X)

λ1(p[h]) ⊗ w[h] ⊗ ρ1(n[h])

⊗
{

min
f ∈�T2 (o[h]) λ2(p[f]) ⊗ w[f] ⊗ ρ2(n[f])

}
. (5.18)

Since the decoder finds the minimally weighted path in T2 only for each Y (= o[h]), it is not necessary
to consider all possible combinations of paths as in Eq. (5.16). This fact reveals the potential for
reducing the amount of computation needed for a search with the composed WFST.

According to Eq. (5.18), the search procedure may consist of two steps: (1) enumeration of
all Y (= o[h]) on T1’s paths accepting X, and (2) selection of the minimally weighted path in T2’s

5.5. ON-THE-FLY RESCORING APPROACH 113

paths accepting Y . In practice, this procedure can be performed with a two-pass strategy, i.e., lattice
generation by T1 and rescoring of the lattice by T2, where a WFST is generated by composition of
the lattice and T2, and a shortest path search is applied to the WFST. Since the first pass (lattice
generation) uses only T1, the amount of computation it requires is much less than that of T1 ◦ T2.
Furthermore, if pruning techniques are used in the first pass, the size of the lattice can be reduced
and the amount of computation needed for the second pass can also be reduced. The idea of the
on-the-fly rescoring approach is to solve Eq. (5.18) with a one-pass search strategy.

In the algorithm, partial hypotheses are generated from T1 but they are weighted based on
Eq. (5.18) during a time-synchronous Viterbi search. The main difference from two-pass search
strategies is that the decoder uses all knowledge sources, i.e., both WFSTs T1 and T2, from the
beginning of the search. This is effective for both correct path selection and incorrect path prun-
ing. Compared with the standard approach that handles the search network based on T1 ◦ T2, the
rescoring approach utilizes a smaller network based only on T1. Hence, the rescoring-based method
essentially requires less computation than the standard method.

Suppose that there is a partial hypothesis h generated from T1 and that its weight is computed
as λ1(p[h]) ⊗ w[h]. In the rescoring approach, h is linked to a set of co-hypotheses generated from
T2 by taking the label sequence o[h] as T2’s input, where we call the hypotheses produced by T2

“co-hypotheses” to distinguish them from the hypotheses produced by T1. The decoder rescores h

using the minimally weighted co-hypothesis in the set. The rescoring is performed by handling a
list of co-hypotheses g[h] associated with each hypothesis h. During the decoding, the following
basic procedure is used to generate each hypothesis and rescore it with its co-hypotheses.

When a new hypothesis h′ is generated by adding a transition e originating from state n[h],
the cumulative weight of h′ is basically obtained as λ1(p[h]) ⊗ w[h] ⊗ w[e]. If the transition e

outputs nothing (o[e] = ε and o[h′] = o[h]), no new co-hypothesis is generated with T2. In this
case, the list of co-hypotheses remains as it is, i.e., g[h′] = g[h]. Only when the transition e outputs
a non-epsilon symbol y (o[e] = y �= ε and o[h′] �= o[h]), a new co-hypothesis f ′ is generated for
each existing co-hypothesis f in g[h] by adding a transition r , which originates from state n[f]
with an input symbol y.The weight of f ′ is calculated as λ2(p[f]) ⊗ w[f] ⊗ w[r] as well.The new
co-hypotheses are then stored in g[h′]. We then use the following cumulative weight for hypothesis
h′ as

α1(h
′) = λ1(p[h′]) ⊗ w[h′] ⊗ min

f ′∈g[h′]
λ2(p[f ′]) ⊗ w[f ′]. (5.19)

For simplicity, we introduce a joint cumulative weight

α2(h
′, f ′) = (λ1(p[h′]) ⊗ w[h′]) ⊗ (λ2(p[f ′]) ⊗ w[f ′], (5.20)

for co-hypothesis f ′ ∈ g[h′], and Eq. (5.19) can simply be rewritten as

α1(h
′) = min

f ′∈g[h′]
α2(h

′, f ′). (5.21)

114 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

After processing the final symbol of the input sequence, the best successful hypothesis and
the best successful co-hypothesis can be simultaneously derived as

(ĥ, f̂) = argmin
h,f :f ∈g[h],n[h]∈F1,n[f]∈F2

α2(h, f) ⊗ ρ1(n[h]) ⊗ ρ2(n[f]) (5.22)

Eventually, the result of the search for the best symbol sequence is given by o[f̂], which is the output
symbol sequence of the best successful co-hypothesis.

Figure 5.12 shows the decoding process in the rescoring approach when using WFSTs
HCLGm and Gn/m from Figs. 5.9 and 5.10 as an example. The upper half of Fig. 5.12 repre-

3

2
4

9

S1:ε/0.92

7

8

1

5

6

0

S2:A/0.36

S3:B/1.2

S4:ε/0

S5:ε/0

S6:C/1.2

S5:C/1.2

S8:ε/0

S7:ε/0

S10:ε/0

S11:ε/0

ε:ε/0

ε:ε/0

Figure 5.9: An example of WFST HCLGm : input labels S1,S2, . . . ,S11 are HMM-state Ids, and
output labels A, B, C represent distinct words.

0

1 3

2 4

A:A/0

B:B/0

C:C/-0.18

C:C/0.22
6

B:B/-0.26

C:C
/-0

.26
5

C:C/-0.79

C:C/0.11

B:B/0.21ε:ε/0.2

ε:ε/-0.11

ε:ε
/0

Figure 5.10: An example of WFST Gn/m : a, b, and c represent distinct words.

5.5. ON-THE-FLY RESCORING APPROACH 115

sents a set of partial hypotheses generated with HCLGm. The lower half of Fig. 5.12 shows that
each hypothesis is linked to a list of co-hypotheses generated with Gn/m, and is rescored using the
co-hypotheses in the list. Since minimal computation is required to update the list of co-hypotheses,
the total amount of computation is almost the same as when decoding with only the first WFST. On
the other hand, Fig. 5.11 represents hypotheses generated with the composite WFST of HCLGm

and Gn/m. Here the number of hypotheses dealt with at each time frame is much larger than that
for the rescoring approach in Fig. 5.12. Thus, the basic Viterbi search is performed based only on

S1:ε
S2:A

S3:B

S6:C
S4:ε

S8:ε

S9:ε
(1,0)

(2,1)

(8,3)

(4,2) S8:ε

S9:ε
(8,4)

S5:ε

t0

(7,3)

(7,4)

(5,3)

(5,4)

(6,3)

(6,4)

(0,0)

(3,2)

(4,1)

S7:C

S7:C

S6:C

Figure 5.11: Hypotheses generated during decoding with a standard composition algorithm: each path
from the initial state (0,0) represents a hypothesis at the current time frame t .

S1:ε
S2:A

S3:B

A:A

S6:CS4:ε

S5:ε S7:C

S8:ε

S9:ε

t

Hyps. of 1st WFST

Co-hyps. of 2nd WFST

0

0

1
3

4

3

4

0

1
2

3

5

6 8

7

2

4

B:B

C:C

C:C

C:C

C:C

Figure 5.12: Hypotheses and co-hypotheses generated during decoding with the on-the-fly rescoring
approach

the first WFST in the rescoring approach. Additional computation for updating the co-hypothesis
lists is only necessary when a hypothesis is expanded by a transition with a non-epsilon output label.
If the first and second WFSTs are designed as HCLGm and Gn/m, most transitions in the first
WFST have an epsilon output label. Accordingly, little computation is needed for rescoring each
hypothesis.

116 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

Algorithm 25 ViterbiBeamSearchWithOnTheFlyRescoring(N = {Nm|m = 1, . . . , M}, X =
x[1], . . . , x[T])

1: S ← initialize(I, �)

2: A ← ∅
3: for t = 1 to T do
4: S ← transition_with_epsilon(E, S, t − 1)

5: 〈S, A〉 ← transition_with_input(E, S, A, X, t)

6: prune(S, A, t)

7: end for
8: B̂ ← final_transition(E, F, R, S, T)

9: Y = backtrack(B̂)

10: return Y

Note that, when the Viterbi search chooses the best partial hypothesis from a set of active
hypotheses that meet at a state in T1, their co-hypothesis lists must be merged into one list. If
different co-hypotheses have reached the same state in T2, only the best co-hypothesis among them
is retained in the merged list. Thus, a certain overhead is inevitable due to the list processing, but it
is nonsignificant in the total computation of the decoding. Moreover, lists do not need to be merged
when the two co-hypothesis lists are identical, and the frequency of the merging is reduced by using
the approximation described in Section 5.5.4.

5.5.3 ALGORITHM
The algorithm of on-the-fly rescoring can be expressed as an extension of the decoding algorithm
using a single WFST found in Section 4.4 (Algorithms 17–23). The basic procedure is the same
as the original when using only the first WFST of multiple WFSTs but a few additional steps are
inserted for rescoring hypotheses with the remaining WFSTs. Although we explained the concept
of the rescoring approach for two WFSTs, the algorithm presented here covers cases where these
are more than two WFSTs.

Let M be the number of WFSTs used in the algorithm, and Nm be the m-
th WFST where Nm = (�m, �m, Qm, Im, Fm, Em, λm, ρm) and 1 ≤ m ≤ M . We also use
the notations N = {Nm|m = 1, . . . , M}, I = {Im|m = 1, . . . , M}, F = {Fm|m = 1, . . . , M}, E =
{Em|m = 1, . . . , M}, � = {λm|m = 1, . . . , M}, and R = {ρm|m = 1, . . . , M} to represent the
components of the M WFSTs. Algorithm 25 shows a pseudo-code of the main part of the al-
gorithm. This is actually the same as Algorithm 17 except that it uses the sets N, I, F, E, �, and R
instead of N , I , F , E, λ, and ρ for a single WFST.

In the sub-codes called from the main code, we use the following quantities.

αm(t, s): Cumulative weight of a partial path up to frame t at a WFST state s, which corresponds to
α1(h

′) in Eq. (5.19) and α2(h
′, f ′) in Eq. (5.20) for hypothesis h′ and co-hypothesis f ′. Note

5.5. ON-THE-FLY RESCORING APPROACH 117

Algorithm 26 initialize(I, �)

1: for each i ∈ I1 do
2: 〈λ′, g′〉 ← initial_rescore(I, �, λ1(i), i, 2)

3: α1(0, i) ← λ′
4: g1(0, i) ← g′
5: B1(0, i) ← 〈0, 0〉
6: Enqueue(S, i)

7: return S

8: end for

that state s represents a combined state consisting of the m states that the 1-to-m WFSTs
have reached.

Bm(t, s): Back pointer to keep track of the most likely state sequence up to frame t at a WFST state
s. B(t, s) takes a pair 〈τ, e〉, where τ indicates the starting frame of the transition e, where e

is the most likely transition incoming to state s at frame t . Let e = 0 if there is no transition
incoming to state s.

gm(t, s): Co-hypothesis list associated with a (co)hypothesis up to frame t at a WFST state s.
gm(t, s) takes a pair 〈τ, q〉 as a component of the list, which means that the co-hypothesis for
m-the WFST has arrived in state q at frame τ , where q represents a combined state.

α(t, e, j): Cumulative weight of a partial path up to frame t at an HMM state j in transition e.

b(t, e, j): Back pointer to keep track of the most likely state sequence up to frame t at an HMM
state j in transition e. b(t, e, j) holds only the starting frame of the transition e.

The pseudo-code, initialize(I, �), is shown in Algorithm 26. A set of initial states, I1 and
the initial weight function λ1 of the first WFST N1 are used to generate initial hypotheses at time
frame 0. On line 2, a function initial_rescore(I, �, λ, i, m) is called to obtain a rescored weight λ′
and a co-hypothesis list g′ for each initial hypothesis. Then, λ′ and g′ are assigned to the cumulative
weight of the hypothesis, α1(i.i) and its co-hypothesis list g1(0, i) in lines 3 and 4, respectively. The
back pointer B1(0, i) is initialized on line 5. Then each initial state is inserted in queue S on line 6
to extend the hypotheses from the state in the following steps.

The pseudo-code of initial_rescore() is shown in Algorithm 27. This function takes the ⊗-
product of initial weights, λ and the composed state i up to the (m − 1)-th WFSTs in addition to I,
� and m, and returns the rescored weight λ̂ and the co-hypothesis list ĝ for the (m − 1)-th WFST.
As in lines 4–9, the function is called recursively until m = M . The cumulative weight and back
pointer of each co-hypothesis are initialized in lines 10 and 11. In lines 12–14, the best initial weight
among those of the co-hypotheses is obtained as λ̂. The co-hypothesis list ĝ is constructed on line
15.

118 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

Algorithm 27 initial_rescore(I, �, λ, i, m)

1: λ̂ ← 0̄
2: ĝ ← ∅
3: for each i′ ∈ Im do
4: if m < M then
5: 〈λ′, g′〉 ← initial_rescore(I, �, λ ⊗ λm(i′), (i, i′), m + 1)

6: gm(0, (i, i′)) ← g′
7: else
8: λ′ ← λ ⊗ λm(i′)
9: end if

10: αm(0, (i, i′)) ← λ′
11: Bm(0, (i, i′)) ← 〈0, 0〉
12: if λ̂ ⊕ λ′ = λ′ then
13: λ̂ ← λ′
14: end if
15: Enqueue(ĝ, 〈0, (i, i′)〉)
16: end for
17: return 〈λ̂, ĝ〉

The pseudo-code of transition_with_epsilon() for the rescoring approach is shown in Algo-
rithm 28, where epsilon transitions are made from each state in queue S, and new hypotheses for
the destination states are made with their weights and back pointers. This pseudo-code is similar
to Algorithm 19 for decoding with a single WFST except that function rescore() is called on line
7 and assignments of rescored weight α′ to α1(t, n[e]) and co-hypothesis list g′ to g1(t, n[e]) in
the following lines. Note that E1, α1(t, n[e]) and B1(t, n[e]) have subscript “1” in the pseudo-code,
which indicates the first of the M WFSTs. Hence, the computation amount of this algorithm is
almost the same as that for decoding with only the first WFST if we ignore the computation for
rescore().

We show the pseudo-code of transition_with_input() in Algorithm 29, which is also similar
to Algorithm 20 for decoding with a single WFST. In lines 1–10, the hypotheses go into the HMM
states of each transition outgoing from each state s in S.The difference from the original is only line 5
where the co-hypothesis list g1(t − 1, s) is taken over by g(t − 1, e, ie). In lines 11–26, HMM-level
state transitions are made for each pair 〈e, j〉 in A, where the only difference is line 20 for taking
over the co-hypothesis list. In lines 27–38, the cumulative weight and the back pointer outgoing
from each transition e at frame t are given to the next WFST state, where function rescore() is called
and rescored weight α′ is assigned to α1(t, n[e]) and co-hypothesis list g′ is assigned to g1(t, n[e]).

The function rescore() is shown in Algorithm 30, which is a major component of the rescoring
approach.This function takes arguments E, α, g, e, t , and m, where α is the ⊗-product of cumulative

5.5. ON-THE-FLY RESCORING APPROACH 119

Algorithm 28 transition_with_epsilon(E, S, t)
1: S′ ← ∅
2: while S �= ∅ do
3: s ← Head(S)

4: Dequeue(S)

5: for each e ∈ E1(s, ε) do
6: α′ ← α1(t, s) ⊗ w[e]
7: 〈α′, g′〉 ← rescore(E, α′, g1(t, s), e, t, 2)

8: if α1(t, n[e]) ⊕ α′ = α′ then
9: α1(t, n[e]) ← α′

10: B1(t, n[e]) ← 〈t, e〉
11: if n[e] �∈ S then
12: Enqueue(S, n[e])
13: end if
14: end if
15: g1(t, n[e]) ← g′
16: end for
17: if s �∈ S′ and {e|e ∈ E1(s), i[e] �= ε} �= ∅ then
18: Enqueue(S′, s)
19: end if
20: end while
21: return S′

weights up to the (m − 1)-th WFST,g is the current co-hypothesis list associated with the hypothesis
that has reached state n[e] at frame t in the (m − 1)-th WFST, and e is a composed transition up
to the (m − 1)-th WFSTs. And the function returns the rescored weight λ̂ and the co-hypothesis
list ĝ for the (m − 1)-th WFST.

On line 1, the function rescore() first checks whether the output label o[e] is epsilon or not.
If o[e] �= ε, then it updates the co-hypothesis list and computes the rescored weight in lines 2–24.
If o[e] = ε, it checks if the current co-hypothesis list g needs to be merged with another at the
destination state n[e] on line 26, i.e., it checks whether there is already another (co)hypothesis at
state n[e] and frame t and also checks whether its co-hypothesis list is identical to g. If it is necessary
to merge the co-hypothesis lists, function merge() is called on line 27, or else nothing is done (α and
g are simply copied to α̂ and ĝ in lines 29 and 30 to return them unaltered).

The main rescoring steps are performed in lines 2–24. First we obtain the existing co-
hypothesis list at the destination state n[e] and frame t using a function update_cohyps() and assign
the list to ĝ. The function returns gm−1(t, n[e]) but if the co-hypotheses in gm−1(t, n[e]) have not
proceeded to frame t , their cumulative weights and back pointers need to be updated. We describe
update_cohyps() in detail later.

120 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

Algorithm 29 transition_with_input(E, S, A, X, t)
1: for each s ∈ S do
2: for each e ∈ E1(s) such that i[e] �= ε do
3: α(t − 1, e, ie) ← α1(t − 1, s) ⊗ w[e]
4: b(t − 1, e, ie) ← t − 1
5: g(t − 1, e, ie) ← g1(t − 1, s)

6: if 〈e, ie〉 �∈ A then
7: A ← A ∪ {〈e, ie〉}
8: end if
9: end for

10: end for
11: S′ ← A′ ← ∅
12: while A �= ∅ do
13: 〈e, j〉 ← Head(A)

14: Dequeue(A)

15: for each k ∈ Adj(j) such that k �= fe do
16: α′ ← α(t − 1, e, j) ⊗ ω(x[t], k|i[e], j)

17: if α(t, e, k) ⊗ α′ = α′ then
18: α1(t, e, k) ← α′
19: b(t, e, k) ← b(t − 1, e, j)

20: g(t, e, k) ← g(t − 1, e, j)

21: if 〈e, k〉 �∈ A′ then
22: Enqueue(A′, 〈e, k〉)
23: end if
24: end if
25: end for
26: end while
27: for each 〈e, k〉 ∈ A′ such that fe ∈ Adj(k) do
28: α′ ← α(t, e, k) ⊗ ω(ε, fe|i[e], k)

29: 〈α′, g′〉 ← rescore(E, α′, g(t, e, k), e, t, 2)

30: if α1(t, n[e]) ⊕ α′ = α′ then
31: α1(t, n[e]) ← α′
32: B1(t, n[e]) ← 〈b(t, e, k), e〉
33: if n[e] �∈ S′ then
34: Enqueue(S′, n[e])
35: end if
36: end if
37: g1(t, n[e]) ← g′
38: end for
39: return 〈A′, S′〉

5.5. ON-THE-FLY RESCORING APPROACH 121

Algorithm 30 rescore(E, α, g, e, t, m)
1: if o[e] �= ε then
2: ĝ ← update_cohyps(n[e], t, m)

3: β ←
{⊕

〈τ,q〉∈g αm(τ, q)
}−1 ⊗ α

4: for each 〈τ, q〉 ∈ g do
5: (s′, s′′) ← q

6: for each r ∈ Em(s,′′ o[e]) do
7: α′ ← αm(τ, q) ⊗ β ⊗ w[r]
8: r ′ ← 〈q, ε, o[r], w[r], (n[e], n[r])〉
9: if m < M then

10: 〈α′, g′〉 ← rescore(E, α′, gm(τ, q), r ′, t, m + 1)

11: gm(t, (n[e], n[r])) ← g′
12: end if
13: if αm(t, (n[e], n[r])) ⊕ α′ = α′ then
14: αm(t, (n[e], n[r])) ← α′
15: Bm(t, ([n[e], n[r])) ← 〈τ, r ′〉
16: end if
17: if ĝ �∈ 〈t, (n[e], n[r])〉 then
18: Enqueue(ĝ, 〈t, (n[e], n[r])〉)
19: end if
20: if α̂ ⊕ α′ = α′ then
21: α̂ ← α′
22: end if
23: end for
24: end for
25: else
26: if αm−1(t, n[e]) �= 0̄ and gm−1(t, n[e]) �= g then
27: ĝ ← merge(α, g, n[e], t, m)

28: else
29: ĝ ← g

30: end if
31: end if
32: return 〈α̂, ĝ〉

122 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

On line 3, β is obtained as a cumulative weight through transitions from the last time the co-
hypotheses were extended. α should have been computed as the ⊗-product of the best co-hypothesis
weight in g, i.e.,

⊕
〈τ,q〉∈g αm(τ, q), and the cumulative weight β. Hence, β can be obtained as line

3. In lines 4–24, each co-hypothesis in g is extended with symbol o[e]. In line 5, since state q is a
composed state, state s′′ is extracted from q, which corresponds to the state the co-hypothesis has
reached in the m-th WFST. In lines 6–23, the co-hypothesis is extended by adding each transition
r that accepts o[e] outgoing from state s′′. The weight of the new co-hypothesis, α′, is obtained
on line 7 as αm(τ, q) ⊗ β ⊗ w[r]. The composed transition r ′ is also obtained to keep track of the
co-hypothesis at line 8. These are assigned to αm(t, (n[e], n[r])) and Bm(t, (n[e], n[r])) in lines 14
and 15, respectively, if α′ is better than an already assigned weight to αm(t, (n[e], n[r])).

The function rescore() is called recursively if m < M . On line 10, α′ is replaced with the
rescored weight using the (m + 1)-th and later WFSTs. The co-hypothesis list gm(t, (n[e], n[r]))
is also replaced with the extended co-hypothesis list g′ on line 11.

In lines 17–19, new co-hypothesis list ĝ is constructed by inserting each co-hypothesis repre-
sented as a pair 〈t, (n[e], n[r])〉.The pair means that the co-hypothesis has reached a composed state
(n[e], n[r]) at frame t . In lines 20–22, the rescored weight α̂ is computed as the best co-hypothesis
weight in ĝ. α̂ and ĝ are finally returned to the invoker on line 32.

Note that we assume here for simplicity that the 2nd to m-th WFSTs are input-epsilon-free
transducers, i.e., they have no epsilon input label in each transition. To use WFSTs with epsilon
input labels, we can extend the function so that, for example, all possible epsilon transitions are made
using a local queue of states for each m-th WFST.

Functions update_cohyps() and merge() used in rescore() are given in Algorithms 31 and
32. Function update_cohyps() first checks if a co-hypothesis in list gm−1(t, s) has already reached

Algorithm 31 update_cohyps(s, t, m)

1: if ∃〈τ, (s′, s′′)〉 ∈ gm−1(t, s), τ = t and s′ = s then
2: return gm−1(t, s)

3: else
4: ĝ ← ∅
5: β ←

{⊕
〈τ,q〉∈gm−1(t,s)

αm(τ, q)
}−1 ⊗ αm−1(t, s)

6: for each 〈τ, q〉 ∈ gm−1(t, s) do
7: 〈s′, s′′〉 ← q

8: αm(t, (s, s′′)) ← αm(τ, q) ⊗ β

9: Bm(t, (s, s′′)) ← Bm(τ, q)

10: Enqueue(ĝ, 〈t, (s, s′′)〉)
11: end for
12: return ĝ

13: end if

5.5. ON-THE-FLY RESCORING APPROACH 123

state s at frame t on line 1. If this condition is satisfied, it simply returns gm−1(t, s) unaltered.
If the condition is not satisfied, each co-hypothesis weight is updated with β obtained on line 5,
and assigned to αm(t, (s, s′′)) on line 8. The back pointer is also updated. On line 10, the updated
co-hypothesis is stored in list ĝ.

Algorithm 32 merge(α, g, s, t, m)
1: ĝ ← update_cohyps(s, t, m)

2: β ←
{⊕

〈τ,q〉∈g αm(τ, q)
}−1 ⊗ α

3: for each 〈τ, q〉 ∈ g do
4: (s′, s′′) ← q

5: α′ ← αm(τ, q) ⊗ β

6: if m < M then
7: g′ ← gm(τ, q)

8: if αm(t, (s, s′′)) �= 0̄ and gm(t, (s, s′′)) �= g′ then
9: g′ ← merge(α′, g′, (s, s′′), t, m + 1)

10: end if
11: gm(t, (s, s′′)) ← g′
12: end if
13: if αm(t, (s, s′′)) ⊕ α′ = α′ then
14: αm(t, (s, s′′)) ← α′
15: Bm(t, (s, s′′)) ← Bm(τ, q)

16: end if
17: if ĝ ∈ 〈t, (s, s′′)〉 then
18: Enqueue(ĝ, 〈t, (s, s′′)〉)
19: end if
20: end for
21: return ĝ

Function merge() merges two co-hypothesis lists. One is ĝ, which equals gm−1(t, s), and the
other is g given by the invoker. On line 1, ĝ is updated as necessary. On line 2, β is obtained in a
similar way to rescore(). In lines 3–20, each co-hypothesis in g is inserted in ĝ. The co-hypothesis
weight is calculated with αm(τ, q) and β on line 5. This function is also called recursively if m < M

in lines 6–12 to merge all the associated co-hypothesis lists. The cumulative weight and the back
pointer are assigned in lines 13–16, and the merged co-hypothesis list is constructed in lines 17–19.
The merged list is finally returned on line 21.

Algorithm 33 shows the pseudo-code of final_transition() for the rescoring approach. This is
also similar to that for decoding with a single WFST in Algorithm 22. Function rescore() is called in
line 7 to rescore the hypotheses in the final epsilon transitions. On line 19, final_rescore() is included,

124 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

which is used to find the best co-hypothesis that has reached a composed state of final states in the
M WFSTs.

Algorithm 33 final_transition(E, F, R, S, T)

1: α̂ ← 0̄
2: while S �= ∅ do
3: s ← Head(S)

4: Dequeue(S)

5: for each e ∈ E1(s, ε) do
6: α′ ← α1(T , s) ⊗ w[e]
7: 〈α′, g′〉 ← rescore(E, α′, g1(T , s), e, T , 2)

8: if α1(T , n[e]) ⊕ α′ = α′ then
9: α1(T , n[e]) ← α′

10: B1(T , n[e]) ← 〈T , e〉
11: if n[e] �∈ S then
12: Enqueue(S, n[e])
13: end if
14: end if
15: g1(T , n[e]) ← g′
16: end for
17: if s ∈ F1 then
18: α′ ← α1(T , s) ⊗ ρ1(s)

19: 〈α′, q ′〉 ← final_rescore(F, R, α′, s, T , 2)

20: if α̂ ⊕ α′ = α′ then
21: α̂ ← α′
22: B̂ ← BM(T , q ′)
23: end if
24: end if
25: end while
26: return B̂

Function final_rescore() is shown in Algorithm 34. The best co-hypothesis and its final state
in co-hypothesis list ĝ (=gm(t, s)) is obtained in lines 3–15. If state s′′, which the co-hypothesis has
reached in the m-th WFST, is a final state in Fm, the co-hypothesis weight is multiplied by the final
weight ρm(s′′) on line 6. The final weight is also rescored recursively up to the M-th WFST in lines
7–9. The best co-hypothesis weight and its final state are memorized in α̂ and q̂, which are finally
returned to the invoker on line 16.

Although sub-codes prune() and backtrack() used in the rescoring approach are not presented
in this section, we can use those for a single WFST as they are. In addition, we may employ additional

5.5. ON-THE-FLY RESCORING APPROACH 125

Algorithm 34 final_rescore(F, R, α, s, t, m)
1: ĝ ← update_cohyps(s, t, m)

2: α̂ ← 0̄
3: for each 〈τ, q〉 ∈ ĝ do
4: (s′, s′′) ← q

5: if s′′ ∈ Fm then
6: α′ ← αm(τ, q) ⊗ ρm(s′′)
7: if m < M then
8: 〈α′, q ′〉 ← final_rescore(F, R, α′, (s, s′′), t, m + 1)

9: end if
10: if α̂ ⊕ α′ = α′ then
11: α̂ ← α′
12: q̂ ← q ′
13: end if
14: end if
15: end for
16: return 〈α̂, q̂〉

pruning for co-hypotheses to reduce the computation needed for rescoring. For example, we may
limit the size of the list to a predefined number.

5.5.4 APPROXIMATION IN DECODING
The on-the-fly rescoring approach shown in Algorithms 25–34 does not necessarily ensure that the
best hypothesis is found. This is usually not a big problem but this property is important. In speech
recognition, the first WFST may have an HMM state sequence on each transition as its input label if
the HMM WFST H is represented as in Fig. 4.4. Nevertheless, we can use a factorization operation
to replace chained transitions with one transition.The input label may result in a longer HMM state
sequence.

HMM-level state transitions in one transition are handled in Algorithm 29. In the Viterbi
computation for the HMM-level state transitions,we avoid merging the co-hypothesis lists when one
hypothesis encounters another in an HMM state because frequent list merging may impose a certain
overhead although each merging process involves little computation. However, this simplification
requires an assumption to ensure that the best (co-)hypothesis is found.

Figure 5.13 shows an example of an error that occurs when the assumption is not satisfied. A
trellis space formed by part of a WFST and a time axis can be seen in the figure. The WFST-like
graph shown on the Y -axis is a network that was actually searched by the decoder. The network
comprises four WFST states (the numbered large nodes) and 11 HMM states (the small nodes
labeled by HMM-state Ids as “Sk” where k is an integer).

126 5. DYNAMIC DECODERS WITH ON-THE-FLY WFST OPERATIONS

There are three Viterbi paths representing hypotheses in the trellis space. At time t1, one
hypothesis encounters another, and only the better hypothesis survives and proceeds following t1.
Then the two co-hypothesis lists attached to the hypotheses are merged into one list that is delivered
to the surviving hypothesis. However, at time t2, the co-hypothesis list attached to the worse hy-
pothesis represented with a dashed line is lost since we avoid merging the co-hypothesis lists when
a hypothesis encounters another in an HMM state. Accordingly, search errors will occur as a result
of the loss of the co-hypothesis lists in an HMM state if the co-hypothesis that will become the
best complete co-hypothesis is included in the lost list. The loss of such co-hypotheses also affects
the weights of the succeeding hypotheses. To ensure both the best hypothesis and co-hypothesis are
retained, the boundary time between S4 and S9 (i.e., WFST state 3) must be equal to that between
S8 and S9 for all the hypotheses.

However, as mentioned in [SYM+96] triphones yield a good assumption. If cross-word tri-
phones are used, all transitions to a WFST state come from HMM states associated with a unique
preceding phone. In that case, when hypotheses ending with the same phone meet in a WFST state
during decoding, the boundary time between a phone and a succeeding phone tends to be equal
on the Viterbi paths. This kind of assumption is also used to generate word lattices in the WFST
framework [LPR99].

In addition, even if the boundary times are not the same, critical errors rarely occur because
the same or similar co-hypotheses with the same output symbol sequence are usually included in
both surviving and lost lists. But the cumulative weight may change slightly due to a declination of
the time alignment. Since the time alignment is decided based on the first WFST as well as the two
pass search [LPR99], it can be different from that derived by the composed WFST. In Fig. 5.12,
for example, the boundary times between S4 and S6 and between S5 and S6 necessarily share a
common time decided by the first WFST, while they can be different from each other in Fig. 5.11.
Hence, when using the proposed method, a declination of the time alignment can occur even if the
correct output sequence is derived.

Although the preceding phone is not necessarily unique since the WFST is actually optimized
up to the shared HMM states, we can say that phone-pair approximation can be roughly assumed.
The phone-pair approximation assumes that the best starting time for a phone depends solely on the
preceding phone rather than on the entire preceding phone sequence. In the example in Fig. 5.13,
since HMM states S4 and S8 belong to the same center phone or similar phones, the boundary
times for S9 will be the same or similar in terms of the time alignments of the hypotheses. If this
assumption is satisfied, the rescoring approach ensures that the best (co-)hypothesis is found. Even
if the assumption is not satisfied, the error rarely militates against the recognition result since the
cumulative weight does not change significantly with small differences in time alignment.

5.5.5 COMPARISON WITH LOOK-AHEAD COMPOSITION
Dixon et al. experimentally compared the two dynamic decoding approaches, i.e., look-ahead compo-
sition and on-the-fly rescoring [DHK12]. They reported that a slight degradation of word accuracy

5.5. ON-THE-FLY RESCORING APPROACH 127

Time

S11

S10

S9

S4

S3 S7

S6S2

t 1 t 2 t 3

S5S1

S8

ε:A

ε:εε:ε

1 2

3

4

lost

Figure 5.13: Example of approximation error:There are three hypotheses in a trellis space organized with
time on the X-axis and a search network on the Y -axis.This example shows that one of the hypotheses can
be lost with its co-hypothesis list due to the mismatch in the time alignment from the other hypotheses.

was observed when applying the on-the-fly rescoring approach with a combination of a unigram-
based WFST HCLG1 and the corresponding trigram WFST G3/1. However, the degradation
disappeared when they used a bigram-based WFST HCLG2 and the trigram WFST G3/2. This is
because the approximation was alleviated by using a bigram language model for the first WFST.

Finally, they concluded that these two approaches had the same performance in terms of
speed and accuracy. In addition, they reported that the rescoring approach worked with less memory
consumption than that of the look-ahead composition approach. This seems to be an advantage of
the rescoring approach, but we should note that the look-ahead composition has another advantage
that no approximation is used in the decoding process and no incremental language models need to
be handled in the construction process of WFSTs.

129

C H A P T E R 6

Summary and Perspective
In this book, we introduced speech recognition algorithms based on Weighted Finite-State Trans-
ducers (WFSTs).First,we briefly described the fundamentals of large-vocabulary continuous-speech
recognition (LVCSR). Specifically, we focused on the decoding problem in LVCSR and discussed
why the WFST-based approach improved search efficiency in the decoding process. We also pre-
sented concrete algorithms for constructing a fully composed WFST and decoding with the WFST.
Finally, we described two dynamic decoders with on-the-fly composition of multiple WFSTs, which
are more tractable for practical speech applications than the basic approach with a fully composed
WFST.

As we mentioned in the Introduction, the success of the WFST approach in speech recog-
nition could result both from its enhanced performance in terms of speed and its elegance, which
opened new vistas in the field. The use of this general approach is not limited to decoding in speech
recognition. It covers a wide area from classical text processing to integrated applications that handle
various sequential inputs. Besides decoding, it has recently been used for training acoustic, pronun-
ciation, and language models for speech recognition. Other applications such as spoken language
understanding (SLU), dialog management (DM), speech synthesis, spoken term detection (STD),
and machine translation have also been achieved using WFSTs. Moreover, different transduction
processes can be combined into one process such as speech summarization and speech translation,
where WFSTs for speech recognition and the following language processing are combined with the
composition operation and the composed WFST is used to obtain the summarization or translation
result directly from speech. The approach is also extended to accept a multi-modal input based on
multi-tape WFSTs. Here we describe a brief overview of recent advances in WFST-based speech
applications, and conclude this book.

6.1 REALIZATION OF ADVANCED SPEECH RECOGNITION
TECHNIQUES USING WFSTS

Chapter 4 described the basic WFST-based LVCSR procedure, which utilizes triphone HMMs and
a word n-gram language model. However, there are other speech recognition techniques that further
improve the recognition accuracy. Although most techniques can be used in the WFST framework,
some need additional steps if they are to be used effectively.This section introduces several examples
of advanced speech recognition techniques using WFSTs.

130 6. SUMMARY AND PERSPECTIVE

6.1.1 WFSTS FOR EXTENDED LANGUAGE MODELS
A class-based n-gram model [BdM+92] is sometimes chosen according to the application domain
and the available training data.With the class model, the occurrence probability of wn given a history
w1, . . . , wn−1 is computed as

P(wn|C(wn))P (C(wn)|C(w1), . . . , C(wn−1)), (6.1)

where C(w) denotes the class the word w belongs to. For good language modeling, the classes need
to be designed to contain similar words that we hope occur in the same context.

The effect of the class models is to interpolate the probabilities of unobserved word n-grams
in training data. This means that, for an unobserved n-gram, u1, . . . , un, we can obtain a good
prediction of the probability, i.e., it is interpolated with the probability of the n-class sequence,
P(C(un)|C(u1), . . . , C(un−1)). This model is also convenient when we add a new word v to the
speech recognizer, because we only need to assign one of the classes to the word and set an arbitrary
probability for P(v|C(v)).

Allauzen et al. described how to construct a WFST for a class n-gram model [AMR03],
which can be composed as

G = π1(M ◦ GC), (6.2)

where M denotes a word-to-class mapping WFST with a weight of P(w|C(w)) on each transition,
and GC denotes a WFST of an n-gram model of class labels,which gives a weight calculated based on
probability P(C(wn)|C(w1) . . . C(wn−1)). π1() is a projection operator that overwrites the output
label (i.e., class) of each transition with its input label (i.e., word). However, G can be very large
because each transition labeled with a class in GC is multiplied by transitions of words belonging
to the class in M . Hence, on-the-fly composition and projection may be employed as in [HN05] to
reduce the memory consumption.

Recently, discriminative language models (DLMs) have been used to improve speech recog-
nition accuracy [RSCJ04]. With a DLM, the speech recognition in Eq. (2.3) is extended to

Ŵ = argmax
W∈W

{
log p(O|W)P (W) + a · f (W)

}
, (6.3)

where the first term corresponds to a traditional speech recognition score calculated as the acoustic
likelihood p(O|W) times the language probability P(W) for a hypothesized word sequence W given
input speech O. The additional term a · f (W) represents the DLM score, which is calculated as the
inner product of the weight vector a and the feature vector f (W) extracted from W . a is trained to
reduce the recognition errors in advance.

In this approach, we can utilize different linguistic information in W such as word n-grams,
part-of-speech (POS) n-grams, and the pronunciation of each word. With such features and a
discriminatively trained weight vector, the speech recognition score is modified, and a recognition
result with fewer errors can be selected.

A DLM can also be represented as a set of WFSTs. For example, a WFST representing a
DLM with only word n-gram features has a similar structure to that of a word n-gram language

6.1. REALIZATION OF ADVANCED SPEECH RECOGNITIONTECHNIQUES USING WFSTS 131

model, where each transition corresponds to an arbitrary n-gram feature and has the weight for
the n-gram feature in a. When we use POS n-gram features in addition to word n-gram features,
WFST D of a DLM can be composed as

D = π1(DW ◦ MWP ◦ DP), (6.4)

where DW , MWP , and DP denote WFSTs for word n-gram features, the mapping of each word to
its POS label, and POS n-gram features, respectively. These WFSTs are available in addition to the
standard language model by using on-the-fly composition [OHIN11].

It is well known that a combination of language models in different domains or tasks is an
effective way to improve the recognition accuracy when we cannot obtain enough training data for
the target task [JMSS91, IOR94]. In the WFST approach, the combination of multiple language
models is performed by a union or intersection operation of the language model WFSTs. The
union results in a linear combination of probabilities while the intersection results in a log-linear
combination [LGHW10]. Furthermore, language models over different speaking styles or even
different languages can be combined using the WFST framework. In [HWM03a], written-style
and spoken-style models are combined by introducing a style conversion WFST. In [JOIF09],
an Icelandic model is combined with an English model by introducing a translation WFST to
compensate for the resource deficiency when training the Icelandic model.

6.1.2 DYNAMIC GRAMMARS BASED ON WFSTS
As an extension of the WFST approach, a dynamic grammar-based speech recognition technique
using WFSTs was proposed [JSHS03], in which the dynamic expansion of states and transitions
was performed when the path hypothesis entered a transition with a non-terminal symbol during
decoding. This is no longer a finite-state automaton, but it has become a push-down automaton.
A technique called splicing is used to dynamically insert another WFST at the transition with the
non-terminal label to which the inserted WFST is assigned. This approach is useful for changing
the vocabulary (e.g., adding or deleting a word entry for a semantic class) [Het05], while the original
WFST approach needs to reconstruct the fully composed WFST. In this case, we prepare a WFST
for each word class such as PERSON_NAME,TRAIN_STATION, and ORGANIZATION_NAME.
Since these WFSTs are expanded dynamically during decoding, reconstruction of the whole WFST
is not required even if we modify such component WFSTs. The push-down automaton can also be
used to represent a context free grammar (CFG) that can be used as a language model for speech
recognition.

6.1.3 WIDE-CONTEXT-DEPENDENT HMMS
We can utilize wide-context-dependent acoustic units beyond triphones, called polyphones, to im-
prove recognition accuracy [BdSG91, KLNB95]. For example, quinphones consider the context
dependency of the two preceding and two succeeding phones. The HMM parameters can be es-
timated based on such a wide context dependency. But with the WFST approach, it is very ex-

132 6. SUMMARY AND PERSPECTIVE

pensive to construct a context-dependency WFST C for polyphones because the WFST needs
|P |K−1 states and |P |K transitions, where K denotes the order of polyphones and |P | is the num-
ber of basic phone units, which is usually over 40, e.g., a quinphone WFST needs approximately
404(= 2.56 × 106) states and 405(= 108) transitions. In reality,most transitions of such a polyphone
WFST accept the same HMM state sequence because the number of shared states is empirically
much smaller than the number of unique polyphones. Hence, given an HMM WFST H , the size
of HC = det (H ◦ C) is actually not very large. Some techniques for directly constructing HC have
been proposed [SH05,SM06] to avoid constructing C for the polyphones.The HC can be composed
with L and G according to the standard process of WFST construction for speech recognition.

6.1.4 EXTENSION OF WFSTS FOR MULTI-MODAL INPUTS
As an extension of the WFST approach, multi-tape WFSTs are used to solve the problem of multi-
modal speech recognition. A multi-tape WFST can accept multi-stream inputs by extending the
definition of the WFST so that it has multiple input labels on each transition. In [HSG06], a
multi-tape WFST is applied to audio-visual speech recognition using both speech and visual (lip
movement) input.This work has proposed an efficient decoding algorithm with control of the degree
of asynchrony between input streams. The technique was also used to integrate frame-based and
segment-based acoustic models.

6.1.5 USE OF WFSTS FOR LEARNING
In general, WFST-based speech recognition is known as an efficient decoding approach. However,
the WFST framework has also been used to learn underlying models or the WFST itself because
of its utility.

In the discriminative training of acoustic models, lattices are used to represent a set of com-
peting hypotheses generated with the current acoustic model. The expected loss such as the ex-
pected number of phone errors [PW02] is estimated using the lattice and the reference, and the
parameters of the models are updated to reduce the expected loss. By representing the lattices
and references with WFSTs, we can easily manipulate the importance of each hypothesis and
can also exclude some symbol matches from the loss function calculation [MHLR+07]. Further-
more, some algorithms have been proposed for obtaining the expected loss using WFST operations
[HSN09, HHR+12, ZLCJ12].

On the other hand, an EM algorithm can be employed to estimate the transition weights of
WFSTs [SH02]. The maximum likelihood estimates of the transition weights are obtained using
a set of input/output symbol sequence pairs in a training corpus. In E-step, we can obtain the
expected count for each transition by accumulating posterior probabilities over the paths that accept
the sequence pairs. In M-step, we can obtain the maximum likelihood estimates of transition weights
by normalizing the expected counts so that the total weights of all transitions leaving each state is 1.
The resulting WFST is a joint probability model of the input and output sequences.The WFST can

6.2. INTEGRATION OF SPEECH AND LANGUAGE PROCESSING 133

be converted into a conditional probability model using WFST operations. In [Eis02], a method is
presented for training WFSTs using an expectation semiring.

Furthermore, a WFST can be trained discriminatively since it can be considered a log-linear
model such as a conditional random field (CRF) that classifies sequential patterns [WHMN10,
KWHN12].Thus, several training techniques are available, where we assume that each transition of
the WFST corresponds to a feature that matches an input symbol and is weighted by the transition
weight in the log domain.

The CRF-based approach has already been incorporated in speech recognition as Hidden
CRF and Segmental CRF [ZN09] independently of WFSTs. The advantage of this approach
is that it realizes the optimal integration of basic features such as acoustic and language model
scores and extended features such as phone duration [LS10] and acoustic distance by template
matching [HZN09] in a discriminative criterion.

Accordingly, we can extend the WFST to improve the speech recognition accuracy by incor-
porating additional features. For example, in [WHMN10], the authors introduced acoustic obser-
vations at each transition and the occurrence count of the transition as such features. In this case, a
weight vector is associated with each transition from which the feature vector is extracted.The inner
product of the weight and feature vectors is used as the transition weight during decoding. Hence,
we do not have to change the algorithm of the decoder.

6.2 INTEGRATION OF SPEECH AND LANGUAGE
PROCESSING

One versatile feature of the WFST framework is that different transduction processes in a cascade
can be integrated into one transduction process. As mentioned in Section 4, transductions in speech
recognition can be combined into a single WFST. From this point of view, the speech recognition
process can be composed further with another process that handles speech recognition results. For
example, the speech-input machine translation approach [Cas01] integrates speech recognition and
machine translation into one transduction process.

The translation of a source language W into a target language can be formulated as the search
for a word sequence T̂ from a target language, such that

T̂ = argmax
T

P (T |W) (6.5)

= argmax
T

P (W |T)P (T), (6.6)

where P(W |T) is a translation model between W and T and P(T) is a language model of the
target language. If the source language is speech O, i.e., a speech input case, the translation can be

134 6. SUMMARY AND PERSPECTIVE

formulated as the search for T̂ such that

T̂ = argmax
T

P (T |O) (6.7)

= argmax
T

∑
W

P(O|W, T)P (W |T)P (T) (6.8)

� argmax
T

max
W

P(O|W)P (W |T)P (T). (6.9)

If we can construct a WFST for each probabilistic model, the decoding process can be achieved by
the WFST approach.

For example, we assume the translation probability P(W |T) as

P(W |T) ≈ PG(W)δS(W, T), (6.10)

where PG(W) is a prior probability of W given by a language model for speech recognition, and
δS(W, T) takes a binary 0 or 1 value depending on whether or not it is possible to substitute W

with T , which is given by a set of substitution rules of word sequences. The substitution function
δS(W, T) can be expressed as a WFST [HWM03b].

Let S be a WFST of δS(W, T), and D be a WFST of a language model of the target language.
The integrated WFST for speech translation can be composed as

Z = H ◦ C ◦ L ◦ G ◦ S ◦ D. (6.11)

The speech translation process is illustrated by the cascade in Fig. 6.1. The advantage of this in-

H C L G S D
O

Speech Recognizer Translator

T

Speech Translator

W

Figure 6.1: Cascade of speech-input translation

tegration is that higher level knowledge sources are available from the beginning of the decoding,
and finally the best hypothesis can be found by considering all the knowledge sources. This gen-
eral framework is also applicable to other types of spoken language processing, such as speech
paraphrasing [HWM03b], speech summarization [HHM03], and spoken language understanding,
which generates a sequence of concept or semantic tags representing the spoken content.

On the other hand, the lattice-based approach is also used for integrating speech recognition
and language processing without composing all the WFSTs. General speech recognizers can output
both a single word sequence and a word lattice representing a set of the most likely hypotheses

6.3. OTHER SPEECH APPLICATIONS USING WFSTS 135

for the input utterance. The language processor can work better using the lattice than using a
single hypothesis because it may be unable to handle the single hypothesis that includes recognition
errors. If the lattice is available, the processor can choose a better hypothesis from the lattice, which
potentially includes fewer recognition errors.

The WFST approach is effective if the language processing is also designed as a WFST. Let
the WFST for language processing be F and the word lattice be L, which is also represented as a
WFST. The final result of the language processing is obtained as

R = bestpath(L ◦ F), (6.12)

where bestpath(·) denotes an operation that returns a minimally weighted path in the WFST.
The word lattices are also used for spoken utterance retrieval and classification problems.

In [AM04],a general indexation method is presented in which a set of word lattices over all the spoken
documents are converted into an index for spoken utterance retrieval. The index is constructed as a
large WFST that can be seen as a suffix automaton including all the lattices. The index construction
and the search are achieved by using WFST operations efficiently. In the search step, the composition
operation for the index and a query, which is also represented as a WFST, results in a WFST
representing a list of the matched utterance Ids.

In [CHM04], word lattices are employed in spoken utterance classification problems, where
each lattice is used as an input for a classifier such as a support vector machine (SVM). Rational
kernels defined over WFSTs are used to measure similarities between the lattices. The SVM was
trained using a set of lattices labeled with the corresponding category. It has been shown that the
use of lattices outperforms the accuracy achieved when only using a single hypothesis in call routing
and spoken dialog tasks. The paper has shown that the WFSTs can be applied effectively to the
classification problem by using a rational kernel.

In [BJ09], a multi-tape WFST is used as a multi-modal grammar that yields an effective
mechanism for quickly creating integration and understanding capabilities for interactive systems
supporting the simultaneous use of multiple input modalities. To understand a multi-modal input
as a single concept, composition of a multi-modal grammar and recognition lattices of different
modalities is efficiently performed, where each lattice is obtained by an independent recognizer for
each modality such as speech input and freehand pen input on the map. With this approach, the
most consistent understanding can be derived by considering both inputs.

6.3 OTHER SPEECH APPLICATIONS USING WFSTS
There are many WFST-based applications besides speech recognition. WFSTs are used in
speech synthesis to perform several transductions [Spr96] such as grapheme-to-phoneme conver-
sion [CTOV02], unit selection and prosody prediction so that natural speech is synthesized [BO01].

In [BO02], language generation and speech synthesis are efficiently integrated by using WF-
STs for spoken dialog systems. Specifically, multiple wordings of the response and multiple prosodic
realizations of the different wordings are allowed. The choice of wording and prosodic structure are

136 6. SUMMARY AND PERSPECTIVE

then jointly optimized with unit selection for waveform generation in speech synthesis.This is more
effective for generating natural synthetic speech than cascaded synthesis.

In [HOM+08], a WFST representing possible dialog scenarios is used for dialog management
(DM), where the WFST accepts a sequence of user’s concepts and outputs a sequence of system
actions. The WFST is then composed with the WFST for spoken language understanding (SLU)
that transduces a speech recognition result into a concept sequence. The composed WFST can
handle SLU and DM simultaneously, i.e., it converts a speech recognition result to possible concepts,
and simultaneously changes the dialog state according to the scenario. This method achieves an
appropriate understanding of a user’s utterance depending on the dialog state, and can lead the
dialog in the correct direction. Moreover, it can also be applied to statistical DM using the same
platform [HOM+09].

6.4 CONCLUSION
In this book, we described speech recognition algorithms using WFSTs. We tried to explain this
approach from its fundamentals to the concrete algorithms, and to include important techniques
required for WFST-based speech recognition. We hope this book will prove useful for anyone who
wants to understand, develop, and study the WFST approach in detail.

As we mentioned in the previous sections, currently WFSTs are widely used for various appli-
cations beyond speech recognition decoding. This noteworthy progress originates in their efficiency
and generality. Moreover, we must not forget that the progress has been strongly supported by pub-
licly available software for handling WFSTs. This software is well designed for performing various
WFST operations efficiently. Table 6.1 summarizes popular software packages for WFST opera-
tions. Open source speech recognition decoders are also found in [MDMD+06, DDCTOSF07,
PGB+11, RHL+11]. Currently, such software packages are being used by many researchers and
developers that follow the WFST approach. Thus, the WFST framework is becoming a general-
purpose tool for recognition, translation, and classification of sequential patterns. In the future, the
WFST approach will continue to evolve, and the application area will expand further.

Table 6.1: Library of WFST operations

Name Copyright License Feature Reference
FSM Library AT&T Corp. Non-commercial Binary only [MPR00]

use [FSM]
OpenFst Google, Inc. Apatch v2.0 C++ templates, [ARS+07]
Library Generalized composition [OPE]
MIT FST M.I.T. BSD Splicing, [Het04]
Toolkit EM training [MIT]
RWTH FSA RWTH Aachen GPL [KN04]
Toolkit [RWT]

137

Bibliography

[ABCF95] G. Antoniol, F. Brugnara, M. Cettolo, and M. Frederico, “Language model rep-
resentations for beam-search decoding,” in Proc. ICASSP, 1995, pp. 588–591.
DOI: 10.1109/ICASSP.1995.479666 33

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1974. 4

[AM04] C. Allauzen and M. Mohri, “General indexation of weighted automata—
application to spoken utterance retrieval,” in Proc. HLT-NAACL, 2004. 135

[AMR03] C. Allauzen, M. Mohri, and B. Roark, “Generalized algorithms for constructing
statistical language models,” in Proc. ACL, 2003, pp. 40–47.
DOI: 10.3115/1075096.1075102 77, 130

[AMRR04] C. Allauzen, M. Mohri, M. Riley, and B. Roark, “A generalized construction of
integrated speech recognition transducers,” in Proc. ICASSP, vol. I, 2004, pp. 761–
764. DOI: 10.1109/CASSP.2004.1326097 91

[ARS+07] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst: A general
and efficient weighted finite-state transducer library,” in Proc. of CIAA, 2007, pp.
11–23. DOI: 10.1007/978-3-540-76336-9_3 136

[ARS09] C. Allauzen, M. Riley, and J. Schalkwyk, “A generalized composition algorithm
for weighted finite-state transducers,” in Proc. Interspeech, 2009, pp. 1203–1206.
71, 91, 95, 99, 104, 105, 107

[ARS11] C. Allauzen, M. Riley, and J. Schalkwyk, “A filter-based algorithm for efficient
composition of finite-state transducers,” International Journal of Foundations of
Computer Science, 2011. DOI: 10.1142/S0129054111009033 105, 106

[ASP91] S. Austin, R. Schwartz, and P. Placeway, “The forward-backward search algo-
rithm,” in Proc. ICASSP, vol. 1, 1991, pp. 697–700.
DOI: 10.1109/ICASSP.1991.150435 4

[Aub02] X.L.Aubert,“An overview of decoding techniques for large vocabulary continuous
speech recognition,” Computer Speech and Language, vol. 16, pp. 89–114, 2002.
DOI: 10.1006/csla.2001.0185 4

http://dx.doi.org/10.1109/ICASSP.1995.479666
http://dx.doi.org/10.3115/1075096.1075102
http://dx.doi.org/10.1109/CASSP.2004.1326097
http://dx.doi.org/10.1007/978-3-540-76336-9_3
http://dx.doi.org/10.1142/S0129054111009033
http://dx.doi.org/10.1109/ICASSP.1991.150435
http://dx.doi.org/10.1006/csla.2001.0185

138 BIBLIOGRAPHY

[BBC82] J. S. Bridle, M. D. Brown, and R. M. Chamberlain, “An algorithm for connected
word recognition,” in Proc. ICASSP, 1982, pp. 899–902. 3

[BBCF10] J. Berstel, L. Boasson, O. Carton, and I. Fagnot, “Minimization of automata,”
CoRR, vol. abs/1010.5318, 2010. 61

[BC95] F. Brugnara and M. Cettolo, “Improvements in tree-based language model repre-
sentation,” in Proc. EUROSPEECH, 1995, pp. 1797–1800. 33

[BD62] R.Bellman and S.Dreyfus,Applied Dynamic Programming. New Jersey:Princeton
Univ. Press, 1962. 2, 16

[BdM+92] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai, “Class-
based n-gram models of natural language,” Computational Linguistics, vol. 18(4),
pp. 467–479, 1992. 130

[BdSG91] L. R. Bahl, P. V. de Souza, and P. S. Gopalakrishman, “Decision trees for phono-
logical rules in continuous speech,” in Proc. ICASSP, 1991, pp. 185–188.
DOI: 10.1109/ICASSP.1991.150308 18, 131

[BJ09] S. Bangalore and M. Johnston, “Robust understanding in multimodal interfaces,”
Computer Linguistics, vol. 35, no. 3, pp. 345–397, 2009.
DOI: 10.1162/coli.08-022-R2-06-26 135

[BJM83] L. R. Bahl, F. Jelinek, and R. L. Mercer, “Maximum likelihood approach to con-
tinuous speech recognition,” IEEE Transactions on Patten Analysis and Machine
Intelligence, vol. PAMI-5, no. 2, pp. 179–190, Mar. 1983.
DOI: 10.1109/TPAMI.1983.4767370 9

[BL76] K. Booth and G. Lueker, “Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms,” Journal of Computer and Sys-
tem Sciences, vol. 13, pp. 335–379, 1976. DOI: 10.1016/S0022-0000(76)80045-1
109

[BO01] I. Bulyko and M. Ostendorf, “Joint prosody prediction and unit selection for
concatenative speech synthesis,” in Proc. ICASSP, vol. 2, 2001, pp. 781–784.
DOI: 10.1109/ICASSP.2001.941031 135

[BO02] I.Bulyko and M.Ostendorf,“Efficient integrated response generation from multi-
ple targets using weighted finite state transducers,” Computer Speech and Language,
vol. 16(3-4), pp. 533–550, 2002. DOI: 10.1016/S0885-2308(02)00023-2 135

[Cas01] F. Casacuberta, “Finite-state transducers for speech-input translation,” in Proc.
ASRU, 2001, pp. 375–380. DOI: 10.1109/ASRU.2001.1034664 133

http://dx.doi.org/10.1109/ICASSP.1991.150308
http://dx.doi.org/10.1162/coli.08-022-R2-06-26
http://dx.doi.org/10.1109/TPAMI.1983.4767370
http://dx.doi.org/10.1016/S0022-0000(76)80045-1
http://dx.doi.org/10.1109/ICASSP.2001.941031
http://dx.doi.org/10.1016/S0885-2308(02)00023-2
http://dx.doi.org/10.1109/ASRU.2001.1034664

BIBLIOGRAPHY 139

[CDD07] O. Cheng, J. Dines, and M. M. Doss, “A generalized dynamic composition algo-
rithm of weighted finite state transducers for large vocabulary speech recognition,”
in Proc. ICASSP, 2007, pp. 348–351. DOI: 10.1109/ICASSP.2007.366920 95, 99

[CHM04] C. Cortes, P. Haffner, and M. Mohri, “Rational kernels: Theory and algorithms,”
The Journal of Machine Learning Research, vol. 5, pp. 1035–1062, 2004. 135

[CT01] D. Caseiro and I. Trancoso, “Transducer composition for “on-the-fly” lexicon and
language model integration,” in Proc. ASRU, 2001, pp. 393–396.
DOI: 10.1109/ASRU.2001.1034667 95, 99

[CT03] D. Caseiro and I. Trancoso, “A tail-sharing WFST composition for large vocab-
ulary speech recognition,” in Proc. ICASSP, vol. I, 2003, pp. 356–359.
DOI: 10.1109/ICASSP.2003.1198791 95

[CT06] D. Caseiro and I. Trancoso, “A specialized on-the-fly algorithm for lexicon and
language model composition,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 4, pp. 1281–1291, 2006. DOI: 10.1109/TSA.2005.860838
99

[CTOV02] D. Caseiro, L. Trancoso, L. Oliveira, and C. Viana, “Grapheme-to-phone using
finite-state transducers,” in Proc. IEEE Workshop on Speech Synthesis, 2002, pp.
215–218. DOI: 10.1109/WSS.2002.1224412 135

[DDCTOSF07] P.R. Dixon, D. Caseiro, T. Oonishi, and S. Furui, “The TITECH large vocab-
ulary WFST speech recognition system,” in Proc. ASRU, 2007, pp. 443–448.
DOI: 10.1109/ASRU.2007.4430153 136

[DH01] H. J. G. A. Dolfing and I. L. Hetherington, “Incremental language models for
speech recognition using finite-state transducers,” in Proc. ASRU, 2001, pp. 194–
197. DOI: 10.1109/ASRU.2001.1034620 95, 110

[DHK12] P. R. Dixon, C. Hori, and H. Kashioka, “A comparison of dynamic WFST decod-
ing approaches,” in Proc. ICASSP, Kyoto, Japan, 2012, pp. 4209–4212.
DOI: 10.1109/ICASSP.2012.6288847 93, 126

[Eis02] J. Eisner, “Parameter estimation for probabilistic finite-state transducers,” in Proc.
ACL, 2002, pp. 1–8. DOI: 10.3115/1073083.1073085 133

[FBP88] W. M. Fisher, J. Bernstein, and D. S. Pallett, “The DARPA 1000-word resource
management database for continuous speech recognition,” in Proc. ICASSP, vol. 1,
1988, pp. 651–654. DOI: 10.1109/ICASSP.1988.196669 1

[FMI00] S.Furui,K.Maekawa, and H. Isahara,“A Japanese national project on spontaneous
speech corpus and processing technology,” in Proc. of ASR, 2000, pp. 244–248. 83

http://dx.doi.org/10.1109/ICASSP.2007.366920
http://dx.doi.org/10.1109/ASRU.2001.1034667
http://dx.doi.org/10.1109/ICASSP.2003.1198791
http://dx.doi.org/10.1109/TSA.2005.860838
http://dx.doi.org/10.1109/WSS.2002.1224412
http://dx.doi.org/10.1109/ASRU.2007.4430153
http://dx.doi.org/10.1109/ASRU.2001.1034620
http://dx.doi.org/10.1109/ICASSP.2012.6288847
http://dx.doi.org/10.3115/1073083.1073085
http://dx.doi.org/10.1109/ICASSP.1988.196669

140 BIBLIOGRAPHY

[FSM] “AT&T FSM Library,” web page http://www.itl.nist.gov/iad/mig/
tests/rt/2009/index.html. 136

[Fur86] S. Furui, “Speaker-independent isolated word recognition using dynamic features
of speech spectrum,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 34, no. 1, pp. 52–59, 1986. DOI: 10.1109/TASSP.1986.1164788 12

[Gar08] P.Garner,“Silence models in weighted finite-state transducers,” in Proc. Interspeech,
Brisbane, Australia, 2008, pp. 1817–1820. 75

[GBM95] P. S. Gopalakrishnan, L. R. Bahl, and R. L. Mercer, “A tree search strategy for
large-vocabulary continuous speech recognition,” in Proc. ICASSP, vol. 572–575,
1995. DOI: 10.1109/ICASSP.1995.479662 4

[Goo53] I. J.Good,“The population frequencies of species and the estimation of population
parameters,” Biometrika, vol. 40, no. 3-4, pp. 237–264, 1953.
DOI: 10.2307/2333344 22

[HAH01] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development. Prentice Hall, 2001. 12

[HES00] H. Hermansky, D. P. W. Ellis, and S. Sharma, “Tandem connectionist feature
extraction for conventional HMM systems,” in Proc. ICASSP, vol. 3, 2000, pp.
1635–1638. DOI: 10.1109/ICASSP.2000.862024 12

[Het04] I. L. Hetherington, “The MIT finite-state transducer toolkit for speech and lan-
guage processing,” in Proc. Interspeech—ICSLP, 2004. 136

[Het05] I. L. Hetherington, “A multi-pass, dynamic-vocabulary approach to real-time,
large-vocabulary speech recognition,” in Proc. Interspeech—Eurospeech, 2005, pp.
545–548. 131

[HGD90] C.T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The ATIS spoken language
systems pilot corpus,” in DARPA Speech and Natural Language Workshop, Hidden
Valley, Pennsylvania, June 1990. DOI: 10.3115/116580.116613 1

[HHM03] T. Hori, C. Hori, and Y. Minami, “Speech summarization using weighted finite-
state transducers,” in Proc. Eurospeech, 2003, pp. 2817–2820. 134

[HHM04] T.Hori,C.Hori, and Y.Minami,“Fast on-the-fly composition for weighted finite-
state transducers in 1.8 million-word vocabulary continuous speech recognition,”
in Proc. Interspeech—ICSLP, vol. 1, 2004, pp. 289–292. 6, 95, 110

http://www.itl.nist.gov/iad/mig/tests/rt/2009/index.html
http://www.itl.nist.gov/iad/mig/tests/rt/2009/index.html
http://dx.doi.org/10.1109/TASSP.1986.1164788
http://dx.doi.org/10.1109/ICASSP.1995.479662
http://dx.doi.org/10.2307/2333344
http://dx.doi.org/10.1109/ICASSP.2000.862024
http://dx.doi.org/10.3115/116580.116613

BIBLIOGRAPHY 141

[HHMN07] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Efficient WFST-based one-
pass decoding with on-the-fly hypothesis rescoring in extremely large vocabulary
continuous speech recognition,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15,no.4,pp.1352–1365,2007.DOI: 10.1109/TASL.2006.889790
6, 95, 110

[HHR+12] B. Hoffmeister, G. Heigold, D. Rybach, R. Schluter, and H. Ney, “WFST en-
abled solutions to ASR problems: Beyond HMM decoding,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20(2), pp. 551–564, 2012.
DOI: 10.1109/TASL.2011.2162402 132

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd ed. Addison-Wesley Publishing Company,
2006. 4, 45, 75

[HN05] T. Hori and A. Nakamura, “Generalized fast on-the-fly composition algorithm
for WFST-based speech recognition,” in Proc. Interspeech—Eurospeech, 2005, pp.
557–560. 94, 95, 110, 130

[HOM+08] C. Hori, K. Ohtaki,T. Misu, H. Kashioka, and S. Nakamura,“Dialog management
using weighted finite-state transducers,” in Proc. Interspeech, 2008, pp. 211–214.
DOI: 10.1109/ASRU.2009.5373350 136

[HOM+09] C. Hori, K. Ohtaki, T. Misu, H. Kashioka, and S. Nakamura, “Statistical dialog
management applied to WFST-based dialog systems,” in Proc. ICASSP, 2009, pp.
4793–4796. DOI: 10.1109/ICASSP.2009.4960703 136

[HSG06] I. L. Hetherington, H. Shu, and J. R. Glass, “Flexible multi-stream framework
for speech recognition using multi-tape finite-state transducers,” in Proc. ICASSP,
2006, pp. 417–420. DOI: 10.1109/ICASSP.2006.1660046 132

[HSN09] G. Heigold, R. Schluter, and H. Ney, “A multimedia retrieval system using speech
input,” in Proc. ICASSP, 2009, pp. 3749–3752. DOI: 10.1145/1647314.1647356
132

[HWM03a] T. Hori, D. Willett, and Y. Minami, “Language model adaptation using WFST-
based speaking-style translation,” in Proc. ICASSP, vol. I, 2003, pp. 228–231.
DOI: 10.1109/ICASSP.2003.1198759 131

[HWM03b] T. Hori, D. Willett, and Y. Minami, “Paraphrasing spontaneous speech using
weighted finite-state transducers,” in Proc. SSPR, 2003. 134

[HZN09] G. Heigold, G. Zweig, and P. Nguyen,“A flat direct model for speech recognition,”
in Proc. ICASSP, 2009, pp. 3861–3864. DOI: 10.1109/ICASSP.2009.4960470
133

http://dx.doi.org/10.1109/TASL.2006.889790
http://dx.doi.org/10.1109/TASL.2011.2162402
http://dx.doi.org/10.1109/ASRU.2009.5373350
http://dx.doi.org/10.1109/ICASSP.2009.4960703
http://dx.doi.org/10.1109/ICASSP.2006.1660046
http://dx.doi.org/10.1145/1647314.1647356
http://dx.doi.org/10.1109/ICASSP.2003.1198759
http://dx.doi.org/10.1109/ICASSP.2009.4960470

142 BIBLIOGRAPHY

[IOR94] R. Iyer, M. Ostendorf, and J. R. Rohlicek, “Language modeling with sentence-
level mixtures,” in Proc. Workshop on Human Language Technology, 1994, pp. 82–87.
DOI: 10.3115/1075812.1075828 131

[JBM75] F. Jelinek, L. R. Bahl, and R. L. Mercer, “Design of a linguistic statistical decoder
for the recognition of continuous speech,” IEEE Transactions on Information The-
ory, vol. IT-21, no. 3, pp. 250–256, 1975. DOI: 10.1109/TIT.1975.1055384 9

[Jel98] F. Jelinek, Ed., Statistical Methods for Speech Recognition. The MIT Press, 1998.
1, 9

[JMSS91] F. Jelinek, B. Merialdo, R. S., and M. Strauss, “A dynamic language model for
speech recognition,” in Proc. DARPA Workshop on Speech and Natural Language,
1991, pp. 293–295. DOI: 10.3115/112405.112464 131

[JOIF09] A. T. Jensson, T. Oonishi, K. Iwano, and S. Furui, “Development of a WFST
based speech recognition system for a resource deficient language using machine
translation,” in Proc. APSIPA ASC, 2009, pp. 50–56. 131

[JSHS03] J. J. Schalkwyk, I. L. Hetherington, and E. Story, “Speech recognition with dy-
namic grammars using finite-state transducers,” in Proc. Eurospeech, 2003, pp.
1969–1972. 131

[KA98] N. Kumar and H. G. Andreou, “Heteroscendastic discriminant analysis and re-
duced rank HMMs for improved speech recognition,” Speech Communication,
vol. 26, pp. 283–297, 1998. DOI: 10.1016/S0167-6393(98)00061-2 12

[Kat87] S. M. Katz, “Estimation of probabilities from sparse data for the language model
component of a speech recognizer,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 35, no. 3, pp. 400–401, 1987.
DOI: 10.1109/TASSP.1987.1165125 22

[KHG+91] P. Kenny, R. Hollan,V. Gupta, M. Lennig, P. Mermelstein, and D. O’Shaughnessy,
“A*-admissible heuristics for rapid lexical access,” in Proc. ICASSP, 1991, pp. 689–
692. DOI: 10.1109/ICASSP.1991.150433 4

[KLNB95] R. Kuhn, A. Lazarides, Y. Normandin, and J. Brousseau, “Improved decision trees
for phonetic modeling,” in Proc. ICASSP, vol. 1, 1995, pp. 552–555.
DOI: 10.1007/11965152_26 131

[KN04] S. Kanthak and H. Ney, “FSA: An efficient and flexible C++ toolkit for finite state
automata using on-demand computation,” in Proc. ACL, 2004, pp. 510–517. 136

http://dx.doi.org/10.3115/1075812.1075828
http://dx.doi.org/10.1109/TIT.1975.1055384
http://dx.doi.org/10.3115/112405.112464
http://dx.doi.org/10.1016/S0167-6393(98)00061-2
http://dx.doi.org/10.1109/TASSP.1987.1165125
http://dx.doi.org/10.1109/ICASSP.1991.150433
http://dx.doi.org/10.1007/11965152_26

BIBLIOGRAPHY 143

[KWHN12] Y. Kubo, S. Watanabe,T. Hori, and A. Nakamura, “Structural classification meth-
ods based on weighted finite-state transducers for automatic speech recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, 2012, in press. 133

[Lee88] K.-F. Lee, “Large-vocabulary speaker-independent continuous speech recogni-
tion: the SPHINX system,” PhD thesis, Carnegie Mellon University, April 1988.
17

[LGHW10] X. Liu, M. J. F. Gales, J. L. Hieronymus, and P. C. Woodland, “Language model
combination and adaptation using weighted finite state transducers,” in Proc.
ICASSP, 2010, pp. 5390–5393. 131

[LJ93] L. Labiner and B.-H. Juang, Fundamentals of Speech Recognition. Prentice Hall,
1993. 12

[Low76] B. Lowerre, “The HARPY speech recognition system,” PhD theses, Dept. of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA, USA, 1976. 3, 27

[LPR99] A. Ljolje, F. Pereira, and M. Riley, “Efficient general lattice generation and rescor-
ing,” in Proc. Eurospeech, 1999, pp. 1251–1254. 88, 94, 126

[LS10] M. Lehr and I. Shafran, “Discriminatively estimated joint acoustic, duration, and
language model for speech recognition,” in Proc. ICASSP, 2010, pp. 5542–5545.
DOI: 10.1109/ICASSP.2010.5495227 133

[MDH09] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recog-
nition,” in Proc. NIPS Workshop on Deep Learning for Speech Recognition, 2009.
16

[MDMD+06] D. Moore, J. Dines, M. Magimai Doss, J. Vepa, O. Cheng, and T. Hain, “Juicer:
a weighted finite-state transducer decoder,” Machine Learning for Multimodal In-
teraction, Lecture Notes in Computer Science, vol. 4299, pp. 285–296, 2006. 136

[MHLR+07] E. McDermott, T. J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri, “Discrim-
inative training for large vocabulary speech recognition using minimum classifi-
cation error,” IEEE Transactions on Audio, Speech and Language Processing, vol. 15,
pp. 203–223, 2007. DOI: 10.1109/TASL.2006.876778 132

[MIT] “The MIT FST Toolkit,” web page http://people.csail.mit.edu/ilh/
fst. 136

[Moh02] M. Mohri, “Generic epsilon-removal and input epsilon-normalization algorithms
for weighted transducers,” International Journal of Foundations of Computer Science,
vol. 13(1), pp. 129–143, 2002. DOI: 10.1142/S0129054102000996 65

http://dx.doi.org/10.1109/ICASSP.2010.5495227
http://dx.doi.org/10.1109/TASL.2006.876778
http://people.csail.mit.edu/ilh/fst
http://people.csail.mit.edu/ilh/fst
http://dx.doi.org/10.1142/S0129054102000996

144 BIBLIOGRAPHY

[Moh09] M. Mohri, “Weighted automata algorithms,” in Handbook of Weighted Automata,
M. Droste, W. Kuich, and H. Vogler, Eds. Springer-Verlag New York Inc., 2009.
DOI: 10.1007/978-3-642-01492-5 56, 57, 61, 65

[MPR96] M. Mohri, F. Pereira, and M. Riley, “Weighted automata in text and speech pro-
cessing,” in Proc. ECAI-96, Workshop on Extended Finite State Models of Language,
Budapest, Hungary, 1996. 4

[MPR00] M. Mohri, F. Pereira, and M. Riley, “The design principles of a weighted finite-
state transducer library,” Theoretical Computer Science, vol. 231(1), pp. 17–32, 2000.
DOI: 10.1016/S0304-3975(99)00014-6 136

[MPR02] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in
speech recognition,” Computer Speech and Language, vol. 16, pp. 69–88, 2002.
DOI: 10.1006/csla.2001.0184 4, 41, 71, 80, 83, 94, 95

[MR97] M. Mohri and M. Riley, “Weighted determinization and minimization for large
vocabulary speech recognition,” in Proc. Eurospeech, vol. 1, 1997, pp. 131–134. 95

[MR01] M. Mohri and M. Riley, “A weight pushing algorithm for large vocabulary speech
recognition,” in Proc. Eurospeech, 2001, pp. 1603–1606. 91

[MSK07] J. McDonough, E. Stoimenov, and D. Klakow, “An algorithm for fast compo-
sition of weighted finite-state transducers,” in Proc. ASRU, 2007, pp. 461–466.
DOI: 10.1109/ASRU.2007.4430156 95, 99

[Ney84] H. Ney, “The use of a one-stage dynamic programming algorithm for connected
word recognition,” IEEETransactions on Acoustics,Speech,and Signal Processing, vol.
ASSP-32, no. 2, pp. 263–271, Apr. 1984. DOI: 10.1109/TASSP.1984.1164320 3

[NHUTO92] H.Ney,R.Haeb-Umbach,B.Tran,and M.Oerder,“Improvements in beam search
for 10000-word continuous speech recognition,” in Proc. ICASSP, vol. I, 1992, pp.
9–12. DOI: 10.1109/89.279287 27

[ODIF09a] T. Oonishi, P. R. Dixon, K. Iwano, and S. Furui, “Generalization of spe-
cialized on-the-fly composition,” in Proc. ICASSP, 2009, pp. 4317–4320.
DOI: 10.1109/ICASSP.2009.4960584 95, 99, 102

[ODIF09b] T. Oonishi, P. R. Dixon, K. Iwano, and S. Furui, “Optimization of on-the-fly
composition for WFST-based speech recognition decoders,” IEICE Transactions
on Information and Systems, vol. J92-D, no. 7, pp. 1026–1035, 2009, (in Japanese).
102, 103

http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1016/S0304-3975(99)00014-6
http://dx.doi.org/10.1006/csla.2001.0184
http://dx.doi.org/10.1109/ASRU.2007.4430156
http://dx.doi.org/10.1109/TASSP.1984.1164320
http://dx.doi.org/10.1109/89.279287
http://dx.doi.org/10.1109/ICASSP.2009.4960584

BIBLIOGRAPHY 145

[OHIN11] T. Oba, T. Hori, A. Ito, and A. Nakamura, “Round-robin duel discriminative
language models in one-pass decoding with on-the-fly error correction,” in Proc.
ICASSP, 2011, pp. 5588–5591. DOI: 10.1109/ICASSP.2011.5947626 131

[ONA97] S. Ortmanns, H. Ney, and X. Aubert,“A word graph algorithm for large vocabulary
continuous speech recognition,” Computer Speech and Language, vol. 1, pp. 43–72,
1997. DOI: 10.1006/csla.1996.0022 4, 33, 38, 94

[ONE96] S. Ortmanns, H. Ney, and A. Eiden, “Language-model look-ahead for
large vocabulary speech recognition,” in Proc. ICSLP, 1996, pp. 2095–2098.
DOI: 10.1109/ICSLP.1996.607215 103

[OPE] “OpenFst Library,” web page http://www.openfst.org/twiki/bin/view/
FST/WebHome. 136

[Pal89] D. S. Pallett, “Benchmark tests for DARPA resource management database per-
formance evaluations,” in Proc. ICASSP, 1989, pp. 536–539.
DOI: 10.1109/ICASSP.1989.266482 1

[Pau91] D. B. Paul, “Algorithm for an optimal A* search and linearizing the search in the
stack decoder,” in Proc. ICASSP, 1991, pp. 693–696.
DOI: 10.1109/ICASSP.1991.150434 4

[PBA+11] D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, O. Glembek,
N. Goel, M. Karafiat, A. Rastrow, R. C. Rosei, P. Schwarz, and S. Thomas,
“The subspace Gaussian mixture model—A structured model for speech recog-
nition,” Computer Speech & Language, vol. 25, no. 2, pp. 404–439, April 2011.
DOI: 10.1016/j.csl.2010.06.003 16

[PFFG90] D. S. Pallett, W. M. Fisher, J. G. Fiscus, and J. S. Garofolo, “DARPA ATIS test
results June 1990,” in Proc. Speech and Natural Language Workshop, R. Stern, Ed.
Morgan Kaufmann Publishers, Inc., June 1990, pp. 114–121. 1

[PGB+11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, 2011. 136

[PR96] F. Pereira and M. Riley, “Speech recognition by composition of weighted finite
automata,” in Finite-State Language Processing. MIT Press, 1996, pp. 431–453.
4

[PRS94] F. Pereira, M. Riley, and R. Sproat, “Weighted rational transductions and their
application to human language processing,” in Proc. ARPA Workshop on Human
Language technology, 1994, pp. 249–254. DOI: 10.3115/1075812.1075870 4

http://dx.doi.org/10.1109/ICASSP.2011.5947626
http://dx.doi.org/10.1006/csla.1996.0022
http://dx.doi.org/10.1109/ICSLP.1996.607215
http://www.openfst.org/twiki/bin/view/FST/WebHome
http://www.openfst.org/twiki/bin/view/FST/WebHome
http://dx.doi.org/10.1109/ICASSP.1989.266482
http://dx.doi.org/10.1109/ICASSP.1991.150434
http://dx.doi.org/10.1016/j.csl.2010.06.003
http://dx.doi.org/10.3115/1075812.1075870

146 BIBLIOGRAPHY

[PW02] D. Povey and P. C. Woodland, “Minimum phone error and I-smoothing for im-
proved discriminative training,” in Proc. ICASSP, vol. I, 2002, pp. 105–108.
DOI: 10.1109/ICASSP.2002.5743665 13, 132

[Rev92] D. Revuz, “Minimisation of acyclic deterministic automata in linear time,” Theo-
retical Computer Science, vol. 92(1), pp. 181–189, 1992.
DOI: 10.1016/0304-3975(92)90142-3 64

[RHL+11] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z.Tuske, S.Wiesler,
R. Schluter, and N. Ney, “RASR—The RWTH Aachen university open source
speech recognition toolkit,” in Proc. ASRU, 2011. 136

[RMB+94] S. Renals, N. Morgan, H. Boulard, M. Cohen, and H. Franco, “Connectionist
probability estimators in HMM speech recognition,” IEEE Transactions on Speech
and Audio Processing, vol. 2, no. 1, pp. 161–174, 1994. DOI: 10.1109/89.260359
16

[RPM97] M. Riley, F. Pereira, and M. Mohri, “Transducer composition for context-
dependent network expansion,” in Proc. Eurospeech, 1997, pp. 1427–1430. 71

[RS97] E. Roche and Y. Schabes, Eds., Finite-State Language Processing. A Bradford
Book, 1997. 44

[RSCJ04] B. Roark, M. Saraclar, M. Collins, and M. Johnson, “Discriminative language
modeling with conditional random fields and the perceptron algorithm,” in Proc.
ACL, 2004. DOI: 10.3115/1218955.1218962 130

[RSN12] D. Rybach, R. Schluter, and H. Ney, “Silence is golden: modeling non-speech
events in WFST-based dynamic network decoders,” in Proc. ICASSP, Kyoto,
Japan, 2012, pp. 4205–4208. DOI: 10.1109/ICASSP.2012.6288846 75

[RWT] “The RWTH FSA Toolkit,” web page http://www-i6.informatik.rwth-
aachen.de/˜kanthak/fsa.html. 136

[SA90] R. Schwartz and Y. Austin, “A comparison of several approximate algorithms
for finding multiple (N-best) sentence hypotheses,” in Proc. ICASSP, 1990, pp.
701–704. DOI: 10.1109/ICASSP.1991.150436 39

[SC70] H. Sakoe and S. Chiba, “A similarity evaluation of speech patterns by dynamic
programming (in japanese),” in the Dig. 1970 Nat. Meeting, Inst. Electrn. Comm.
Eng. Japan, July 1970, p. 136. 2

[SC71] H. Sakoe and S. Chiba, “A dynamic programming approach to continuous speech
recognition,” in Proc. ICA, Budapest, Hungary, Paper 20 C 13, August 1971, pp.
65–68. 2

http://dx.doi.org/10.1109/ICASSP.2002.5743665
http://dx.doi.org/10.1016/0304-3975(92)90142-3
http://dx.doi.org/10.1109/89.260359
http://dx.doi.org/10.3115/1218955.1218962
http://dx.doi.org/10.1109/ICASSP.2012.6288846
http://www-i6.informatik.rwth-aachen.de/~kanthak/fsa.html
http://www-i6.informatik.rwth-aachen.de/~kanthak/fsa.html
http://dx.doi.org/10.1109/ICASSP.1991.150436

BIBLIOGRAPHY 147

[SC90] R.Schwartz and Y.Chow,“The N-best algorithm: an efficient and exact procedure
for finding the N most likely sentence hypotheses,” in Proc. ICASSP, 1990, pp.
81–84. DOI: 10.1109/ICASSP.1990.115542 4

[Sch00] M. Schuster, “Memory-efficient LVCSR search using a one-pass stack de-
coder,” Computer Speech & Language, vol. 14(1), pp. 47–77, January 2000.
DOI: 10.1006/csla.1999.0135 4

[SH91] F. K. Soong and E.-F. Huang, “A tree-trellis based fast search for finding the
N-best sentence hypotheses in continuous speech recognition,” in Proc. ICASSP,
vol. 1, 1991, pp. 705–708. DOI: 10.1109/ICASSP.1991.150437 4

[SH02] H. Shu and I. L. Hetherington, “EM training of finite-state transducers and its
application to pronunciation modeling,” in Proc. ICSLP, 2002, pp. 1293–1296.
132

[SH05] M. Schuster and T. Hori, “Efficient generation of high-order context-dependent
weighted finite state transducers for speech recognition,” in Proc. ICASSP, 2005,
pp. 201–204. DOI: 10.1109/ICASSP.2005.1415085 132

[SLY11] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-
dependent deep neural networks,” in Proc. Interspeech, 2011, pp. 437–440. 16

[SM06] E. Stoimenov and J. McDonough, “Modeling polyphone context with weighted
finite-state transducers,” in Proc. ICASSP, vol. I, 2006, pp. 121–124.
DOI: 10.1109/ICASSP.2006.1659972 132

[Spr96] R.Sproat,“Multilingual text analysis for text-to-speech synthesis,” in Proc. ICSLP,
vol. 3, 1996, pp. 1365–1368. DOI: 10.1017/S1351324997001654 135

[Sto98] A. Stolcke, “Entropy-based pruning of backoff language models,” in Proc. DARPA
Broadcast News Transcription and Understanding Workshop, 1998, pp. 270–274. 78

[SW00] K.Shinoda andT.Watanabe,“MDL-based context-dependent subword modeling
for speech recognition,” Acoustic Science and Technology, vol. 21, no. 2, pp. 79–86,
2000. DOI: 10.1250/ast.21.79 19

[SYM+96] T. Shimizu, H. Yamamoto, H. Masataki, S. Matsunaga, and Y. Sagisaka, “Spon-
taneous dialogue speech recognition using cross-word context constrained word
graphs,” in Proc. ICASSP, 1996, pp. 145–148.
DOI: 10.1109/ICASSP.1996.540311 126

[WHMN10] S. Watanabe,T. Hori, E. McDermott, and A. Nakamura, “A discriminative model
for continuous speech recognition based on weighted finite state transducers,” in
Proc. ICASSP, 2010, pp. 4922–4925. DOI: 10.1109/ICASSP.2010.5495096 133

http://dx.doi.org/10.1109/ICASSP.1990.115542
http://dx.doi.org/10.1006/csla.1999.0135
http://dx.doi.org/10.1109/ICASSP.1991.150437
http://dx.doi.org/10.1109/ICASSP.2005.1415085
http://dx.doi.org/10.1109/ICASSP.2006.1659972
http://dx.doi.org/10.1017/S1351324997001654
http://dx.doi.org/10.1250/ast.21.79
http://dx.doi.org/10.1109/ICASSP.1996.540311
http://dx.doi.org/10.1109/ICASSP.2010.5495096

148 BIBLIOGRAPHY

[WMMK01] D. Willett, E. McDermott, Y. Minami, and S. Katagiri, “Time and memory effi-
cient Viterbi decoding for LVCSR using a precompiled search network,” in Proc.
Eurospeech, 2001, pp. 847–850. 95, 110, 111

[WMNU04] S. Watanabe, Y. Minami, A. Nakamura, and N. Ueda, “Variational Bayesian es-
timation and clustering for speech recognition,” IEEE Transactions on Speech and
Audio Processing, vol. 12, pp. 365–381, 2004. DOI: 10.1109/TSA.2004.828640 19

[YOW94] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying for high ac-
curacy acoustics modeling,” in Proc. ARPA Human Language Technology Workshop,
1994, pp. 307–312. DOI: 10.3115/1075812.1075885 18

[ZLCJ12] Y. Zhao, A. Ljolje, D. Caseiro, and B.-H. Juang, “A general discriminative training
algorithm for speech recognition using weighted finite-state transducers,” in Proc.
ICASSP, Kyoto, Japan, 2012, pp. 4217–4220.
DOI: 10.1109/ICASSP.2012.6288849 132

[ZN09] G. Zweig and P. Nguyen, “A segmental CRF approach to large vocabulary con-
tinuous speech recognition,” in Proc. ASRU, 2009, pp. 152–157.
DOI: 10.1109/ASRU.2009.5372916 133

http://dx.doi.org/10.1109/TSA.2004.828640
http://dx.doi.org/10.3115/1075812.1075885
http://dx.doi.org/10.1109/ICASSP.2012.6288849
http://dx.doi.org/10.1109/ASRU.2009.5372916

149

Authors’ Biographies

TAKAAKI HORI
Takaaki Hori received the B.E. and M.E. degrees in electrical and information engineering from
Yamagata University, Yonezawa, Japan, in 1994 and 1996, respectively, and a Ph.D. degree in system
and information engineering from Yamagata University in 1999.

Since 1999, he has been engaged in research on spoken language processing at the Cyber
Space Laboratories, Nippon Telegraph, and Telephone (NTT) Corporation, Kyoto, Japan. He was
a visiting scientist at the Massachusetts Institute of Technology, Cambridge, from 2006 to 2007.
He is currently a senior research scientist in the NTT Communication Science Laboratories, NTT
Corporation.

He received the 22nd Awaya Prize Young Researcher Award from the Acoustical Society of
Japan (ASJ) in 2005, the 24thTELECOM SystemTechnology Award from theTelecommunications
Advancement Foundation in 2009, and the IPSJ Kiyasu Special Industrial Achievement Award from
the Information Processing Society of Japan in 2012.

He is a member of Institute of Electrical and Electronic Engineers (IEEE), the Institute of
Electronics, Information, and Communication Engineers (IEICE), and the ASJ.

ATSUSHI NAKAMURA
Atsushi Nakamura received the B.E., M.E., and Dr.Eng. degrees from Kyushu University, Fukuoka,
Japan, in 1985, 1987, and 2001, respectively.

In 1987, he joined Nippon Telegraph and Telephone Corporation (NTT), where he engaged
in the research and development of network service platforms, including studies on application of
speech processing technologies into network services, at Musashino Electrical Communication Lab-
oratories, Tokyo, Japan. From 1994 to 2000, he was with Advanced Telecommunications Research
(ATR) Institute,Kyoto, Japan, as a Senior Researcher,working on the research of spontaneous speech
recognition, construction of spoken language database, and development of speech translation sys-
tems. Since April 2000, he has been with NTT Communication Science Laboratories, Kyoto, Japan,
and is currently the head of Signal Processing Research Group.

Dr. Nakamura is a senior member of the Institute of Electrical and Electronic Engineers
(IEEE), and serves or served as a member of the IEEE Machine Learning for Signal Processing
(MLSP) Technical Committee, a Vice Chair of the IEEE Signal Processing Society Kansai Chapter,
etc. He is also a member of the Institute of Electronics, Information and Communication Engi-

150 AUTHORS’ BIOGRAPHIES

neering (IEICE) and the Acoustical Society of Japan (ASJ). He received the IEICE Paper Award
in 2004, and received twice the TELECOM System Technology Award of the Telecommunications
Advancement Foundation, in 2006 and 2009.

	Preface
	Introduction
	Speech Recognition and Computation
	Why WFST?
	Purpose of this Book
	Book Organization

	Brief Overview of Speech Recognition
	Statistical Framework of Speech Recognition
	Speech Analysis
	Acoustic Model
	Hidden Markov Model
	Computation of Acoustic Likelihood
	Output Probability Distribution

	Subword Models and Pronunciation Lexicon
	Context-dependent Phone Models
	Language Model
	Finite-State Grammar
	N-gram Model
	Back-off Smoothing

	Decoder
	Viterbi Algorithm for Continuous Speech Recognition
	Time-Synchronous Viterbi Beam Search
	Practical Techniques for LVCSR
	Context-dependent Phone Search Network
	Lattice Generation and N-Best Search

	Introduction to Weighted Finite-State Transducers
	Finite Automata
	Basic Properties of Finite Automata
	Semiring
	Basic Operations
	Transducer Composition
	Optimization
	Determinization
	Weight Pushing
	Minimization

	Epsilon Removal

	Speech Recognition by Weighted Finite-State Transducers
	Overview of WFST-based Speech Recognition
	Construction of Component WFSTs
	Acoustic Models
	Phone Context Dependency
	Pronunciation Lexicon
	Language Models

	Composition and Optimization
	Decoding Algorithm Using a Single WFST
	Decoding Performance

	Dynamic Decoders with On-the-fly WFST Operations
	Problems in the Native WFST Approach
	On-the-fly Composition and Optimization
	Known Problems of On-the-fly Composition Approach
	Look-ahead Composition
	How to Obtain Prospective Output Labels
	Basic Principle of Look-ahead Composition
	Realization of Look-ahead Composition Using a Filter Transducer
	Look-ahead Composition with Weight Pushing
	Generalized Composition
	Interval Representation of Label Sets

	On-the-fly Rescoring Approach
	Construction of Component WFSTs for On-the-fly Rescoring
	Concept
	Algorithm
	Approximation in Decoding
	Comparison with Look-ahead Composition

	Summary and Perspective
	Realization of Advanced Speech Recognition Techniques Using WFSTs
	WFSTs for Extended Language Models
	Dynamic Grammars Based on WFSTs
	Wide-context-dependent HMMs
	Extension of WFSTs for Multi-modal Inputs
	Use of WFSTs for Learning

	Integration of Speech and Language Processing
	Other Speech Applications Using WFSTs
	Conclusion

	Bibliography
	Authors' Biographies

