Review	Semirings	WFSTs	Composition	Epsilon	Summary

Lecture 16: Weighted Finite State Transducers (WFST)

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

Review	Semirings	WFSTs	Composition	Epsilon	Summary

1 Review: WFSA

2 Semirings

3 How to Handle HMMs: The Weighted Finite State Transducer

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Review	Semirings	WFSTs	Composition	Epsilon	Summary
	O	0000000	0000	000000	00
Outline					

- 2 Semirings
- 3 How to Handle HMMs: The Weighted Finite State Transducer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

6 Summary

 Review
 Semirings
 WFSTs
 Composition
 Epsilon
 Summary

 •0000
 0
 0000
 0000
 0000
 00

Weighted Finite State Acceptors

- An **FSA** specifies a set of strings. A string is in the set if it corresponds to a valid path from start to end, and not otherwise.
- A WFSA also specifies a probability mass function over the set.

A Markov Model (but not an HMM!) may be interpreted as a WFSA: just assign a label to each edge. The label might just be the state number, or it might be something more useful.

 Review
 Semirings
 WFSTs
 Composition
 Epsilon
 Summary

 00000
 0
 000000
 000000
 000000
 000000

 Best-Path Algorithm for a WFSA

Given:

- Input string, S = [s₁,..., s_T]. For example, the string "A dog is very very hungry" has T = 5 words.
- Edges, *e*, each have predecessor state $p[e] \in Q$, next state $n[e] \in Q$, weight $w[e] \in \overline{\mathbb{R}}$ and label $\ell[e] \in \Sigma$.
- Initialize:

$$\delta_0(i) = egin{cases} ar{1} & i = ext{initial state} \ ar{0} & ext{otherwise} \end{cases}$$

• Iterate:

$$\delta_t(j) = \underset{e:n[e]=j,\ell[e]=s_t}{\text{best}} \delta_{t-1}(p[e]) \otimes w[e]$$
$$\psi_t(j) = \underset{e:n[e]=j,\ell[e]=s_t}{\text{argbest}} \delta_{t-1}(p[e]) \otimes w[e]$$

Backtrace:

$$e_t^* = \psi(q_{t+1}^*), \qquad q_t^* = p[e_t^*]$$

A WFSA is said to be **deterministic** if, for any given (predecessor state p[e], label $\ell[e]$), there is at most one such edge. For example, this WFSA is not deterministic.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review Semirings WFSTs Composition Epsilon Summary 00000 OC

The only general algorithm for **determinizing** a WFSA is the following exponential-time algorithm:

- For every state in A, for every set of edges e_1, \ldots, e_K that all have the same label:
 - Create a new edge, e, with weight $w[e] = w[e_1] \oplus \cdots \oplus w[e_K]$.
 - Create a brand new successor state n[e].
 - For every edge leaving any of the original successor states $n[e_k], 1 \le k \le K$, whose label is unique:
 - Copy it to n[e], \otimes its weight by $w[e_k]/w[e]$
 - For every set of edges leaving $n[e_k]$ that all have the same label:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recurse!

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
Outline					

2 Semirings

3 How to Handle HMMs: The Weighted Finite State Transducer

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

6 Summary

▲□> <圖> < E> < E> E のQQ

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	●	0000000	0000	000000	00
Semirings					

A **semiring** is a set of numbers, over which it's possible to define a operators \otimes and \oplus , and identity elements $\overline{1}$ and $\overline{0}$.

- The **Probability Semiring** is the set of non-negative real numbers \mathbb{R}_+ , with $\otimes = \cdot$, $\oplus = +$, $\overline{1} = 1$, and $\overline{0} = 0$.
- The Log Semiring is the extended reals $\mathbb{R} \cup \{\infty\}$, with $\otimes = +, \oplus = -\log \operatorname{sumexp}(-, -), \overline{1} = 0$, and $\overline{0} = \infty$.
- The Tropical Semiring is just the log semiring, but with
 ⊕ = min. In other words, instead of adding the probabilities of two paths, we choose the best path:

$$a \oplus b = \min(a, b)$$

Mohri et al. (2001) formalize it like this: a **semiring** is $K = \{\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}\}$ where \mathbb{K} is a set of numbers.

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
Outline					

2 Semirings

3 How to Handle HMMs: The Weighted Finite State Transducer

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

6 Summary

▲□> <□> < □> < □> < □> < □> < □</p>

 Review
 Semirings
 WFSTs
 Composition
 Epsilon
 Summary

 00000
 000000
 0000
 000000
 000000
 0000000

 Weighted Finite State Transducers

A (Weighted) Finite State Transducer (WFST) is a (W)FSA with two labels on every edge:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- An input label, $i \in \Sigma$, and
- An output label, $o \in \Omega$.

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
What it's	s for				

- An **FST** specifies a mapping between two sets of strings.
 - The input set is $\mathcal{I} \subset \Sigma^*$, where Σ^* is the set of all strings containing zero or more letters from the alphabet Σ .
 - The output set is $\mathcal{O} \subset \Omega^*$.
 - For every *i* = [*i*₁,...,*i*_T] ∈ *I*, the FST specifies one or more possible translations *o* = [*o*₁,...,*o*_T] ∈ *O*.
- A WFST also specifies a probability mass function over the translations. The example on the previous slide was normalized to compute a joint pmf p(i, o), but other WFSAs might be normalized to compute a conditional pmf p(o|i), or something else.

Review Semirings WFSTs Composition Epsilon Summary Normalizing for Conditional Probability

Here is a WFST whose weights are normalized to compute $p(\vec{o}|\vec{i})$:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Normalizing for **conditional probability** allows us to separately represent the two parts of a hidden Markov model.

1 The transition probabilities, a_{ij} , are the weights on a WFSA.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

⁽²⁾ The observation probabilities, $b_j(\vec{x}_t)$, are the weights on a WFST.

It is no longer useful to say that "the labels on the edges are the state numbers." Instead, let's call them **pdfids**.

Now we can create a new WFST whose **output symbols are pdfids** j, whose **input symbols are observations**, $\vec{x_t}$, and whose weights are the observation probabilities, $b_i(\vec{x_t})$.

So far we have:

- You can create a WFSA whose weights are the transition probabilities.
- You can create a WFST whose weights are the observation probabilities.

Here are the problems:

- How can we combine them?
- Even if we could combine them, can this do anything that an HMM couldn't already do?

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
Outline					

2 Semirings

3 How to Handle HMMs: The Weighted Finite State Transducer

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

6 Summary

▲□> <□> < □> < □> < □> < □> < □</p>

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	●000	000000	00
Composit	tion				

The main reason to use WFSTs is an operator called "composition." Suppose you have

- A WFST, R, that translates strings a ∈ A into strings b ∈ B with joint probability p(a, b).
- ② Another WFST, S, that translates strings b ∈ B into strings c ∈ C with conditional probability p(c|b).

The operation $T = R \circ S$ gives you a WFST, T, that translates strings $a \in A$ into strings $c \in C$ with joint probability

$$p(a,c) = \sum_{b \in \mathcal{B}} p(a,b)p(c|b)$$

Review Semirings WFSTs Composition Composition October Summary 000000 The WFST Composition Algorithm

- Initialize: The initial state of T is a pair, $i_T = (i_R, i_S)$, encoding the initial states of both R and S.
- **3** Iterate: While there is any state $q_T = (q_R, q_S)$ with edges $(e_R = a : b, e_S = b : c)$ that have not yet been copied to e_T ,
 - Create a new edge e_T with next state $n[e_T] = (n[e_R], n[e_S])$ and labels $i[e_T] : o[e_T] = i[e_R] : o[e_S] = a : c$.
 - If an edge with the same n[e_T], i[e_T], and o[e_T] already exists, then update its weight:

$$w[e_T] = w[e_T] \oplus (w[e_R] \otimes w[e_S])$$

3 If not, create a new edge with

$$w[e_T] = w[e_R] \otimes w[e_S]$$

3 Terminate: A state $q_T = (q_R, q_S)$ is a final state if both q_R and q_S are final states.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	000	000000	00
Composit	ion Examp	le: HMM			

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
Outline					

2 Semirings

3 How to Handle HMMs: The Weighted Finite State Transducer

4 Composition

5 Doing Useful Stuff: The Epsilon Transition

6 Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- There's only one more thing you need to do useful stuff: nothing.
- To be more precise: we can use the label ϵ (pronounced "epsilon") to mean "nothing at all."

- A "pronlex" (pronunciation lexicon) is a WFST that maps from phoneme strings to words.
- A "phoneme string" is a sequence of many labels. A word is just one label. The extra labels in the output side of the WFST all use *ε*, to mean that they don't generate any extra output string.

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	0	0000000	0000	oo●ooo	00
Fxample	Pronlex				

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

- For example, suppose you have some English speech. You'd like to convert it to French text.
- Suppose you have an English pronlex, *L*, that maps English phonemes to words.
- You also have a translator, *G*, that maps English words to French words.
- Then

$$T = L \circ G$$

maps from English phonemes to French words.

Epsilon 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Review
 Semirings
 WFSTs
 Composition
 Epsilon
 Summary

 00000
 0
 0000
 0000
 0000
 0000

 Example:
 Speech-to-Text
 Translation

Suppose you have:

- Observer, *B*, maps from \vec{x}_t to *j*, with weights $b_j(\vec{x}_t)$.
- HMM, H, maps from i and j to phonemes, with weights a_{ij}.
- Pronlex, *L*, maps from phonemes to English words.
- Grammar, G, maps from English words to French words.

Then the translation of audio frames into French words is given by

$$B \circ H \circ L \circ G$$

Review	Semirings	WFSTs	Composition	Epsilon	Summary
00000	O	0000000	0000	000000	00
Outline					

- 1 Review: WFSA
- 2 Semirings
- 3 How to Handle HMMs: The Weighted Finite State Transducer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4 Composition
- 5 Doing Useful Stuff: The Epsilon Transition

6 Summary

Review Semirings WFSTs Composition Epsilon Summary

A (Weighted) Finite State Transducer (WFST) is a (W)FSA with two labels on every edge:

- An input label, $i \in \Sigma$, and
- An output label, $o \in \Omega$.

Review Semirings WFSTs Composition Composition Cooperation Composition Cooperation Coopera

 $T = R \circ S$

- Initialize: The initial state of T is a pair, $i_T = (i_R, i_S)$, encoding the initial states of both R and S.
- **2** Iterate: Each edge $e_T = (e_R, e_S)$:
 - Starts at $p[e_T] = (p[e_R], p[e_S])$
 - Has the edge label $i[e_R]$: $o[e_S]$.
 - Ends at $n[e_T] = (n[e_R], n[e_S])$.
 - Has the weight w[e_T] = w[e_R] ⊗ w[e_S], possibly summed (⊕) over nondeterministic (e_R, e_S) pairs.

3 Terminate: A state $q_T = (q_R, q_S)$ is a final state if both q_R and q_S are final states.